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Preface

As the title indicates, this is a textbook on formal logic. Formal logic concerns
the study of a certain kind of language which, like any language, can serve to
express states of affairs. It is a formal language, i.e., its expressions (such as sen-
tences) are defined formally. This makes it a very useful language for being very
precise about the states of affairs its sentences describe. In particular, in formal
logic it is impossible to be ambiguous. The study of these languages centres on
the relationship of entailment between sentences, i.e., which sentences follow
from which other sentences. Entailment is central because by understanding it
better we can tell when some states of affairs must obtain provided some other
states of affairs obtain. But entailment is not the only important notion. We will
also consider the relationship of being consistent, i.e., of not being mutually con-
tradictory. These notions can be defined semantically, using precise definitions
of entailment based on interpretations of the language—or proof-theoretically,
using formal systems of deduction.

Formal logic is of course a central sub-discipline of philosophy, where the log-
ical relationship of assumptions to conclusions reached from them is important.
Philosophers investigate the consequences of definitions and assumptions and
evaluate these definitions and assumptions on the basis of their consequences. It
is also important in mathematics and computer science. In mathematics, formal
languages are used to describe not “everyday” states of affairs, but mathemati-
cal states of affairs. Mathematicians are also interested in the consequences of
definitions and assumptions, and for them it is equally important to establish
these consequences (which they call “theorems”) using completely precise and
rigorous methods. Formal logic provides such methods. In computer science,
formal logic is applied to describe the state and behaviours of computational
systems, e.g., circuits, programs, databases, etc. Methods of formal logic can
likewise be used to establish consequences of such descriptions, such as whether
a circuit is errorfree, whether a program does what it’s intended to do, whether
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a database is consistent or if something is true of the data in it.

The book is divided into eight parts. Part I introduces the topic and notions
of logic in an informal way, without introducing a formal language yet. Parts
II-IV concern truth-functional languages. In it, sentences are formed from basic
sentences using a number of connectives (‘or’, ‘and’, ‘not’, ‘if ...then’) which
just combine sentences into more complicated ones. We discuss logical notions
such as entailment in two ways: semantically, using the method of truth tables
(in Part III) and proof-theoretically, using a system of formal derivations (in
Part IV). PartsV—VII deal with a more complicated language, that of first-order
logic. It includes, in addition to the connectives of truth-functional logic, also
names, predicates, identity, and the so-called quantifiers. These additional ele-
ments of the language make it much more expressive than the truth-functional
language, and we’ll spend a fair amount of time investigating just how much
one can express in it. Again, logical notions for the language of first-order logic
are defined semantically, using interpretations, and proof-theoretically, using a
more complex version of the formal derivation system introduced in Part IV.
Part VIII covers an advanced topic: that of expressive adequacy of the truth-
functional connectives.

In the appendices you’ll find a discussion of alternative notations for the
languages we discuss in this text, of alternative derivation systems, and a quick
reference listing most of the important rules and definitions. The central terms
are listed in a glossary at the very end.

This book is based on a text originally written by P. D. Magnus and revised
and expanded by Tim Button and independently by J. Robert Loftis. Aaron
Thomas-Bolduc and Richard Zach have combined elements of these texts into
the present version, changed some of the terminology and examples, and added
material of their own. The resulting text is licensed under a Creative Commons
Attribution-ShareAlike 4.0 license.
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CHAPTER 1

Arguments

Logic is the business of evaluating arguments; sorting the good from the bad.
In everyday language, we sometimes use the word ‘argument’ to talk about
belligerent shouting matches. If you and a friend have an argument in this sense,
things are not going well between the two of you. Logic is not concerned with
such teeth-gnashing and hair-pulling. They are not arguments, in our sense; they
are just disagreements.
An argument, as we will understand it, is something more like this:

It is raining heavily.
If you do not take an umbrella, you will get soaked.
.". You should take an umbrella.

We here have a series of sentences. The three dots on the third line of the
argument are read ‘therefore.” They indicate that the final sentence expresses
the conclusion of the argument. The two sentences before that are the premises of
the argument. If you believe the premises, then the argument (perhaps) provides
you with a reason to believe the conclusion.

This is the sort of thing that logicians are interested in. We will say that an
argument is any collection of premises, together with a conclusion.

This Part discusses some basic logical notions that apply to arguments in a
natural language like English. It is important to begin with a clear understanding
of what arguments are and of what it means for an argument to be valid. Later we
will translate arguments from English into a formal language. We want formal
validity, as defined in the formal language, to have at least some of the important
features of natural-language validity.

In the example just given, we used individual sentences to express both of
the argument’s premises, and we used a third sentence to express the argument’s
conclusion. Many arguments are expressed in this way, but a single sentence can
contain a complete argument. Consider:
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1.1. SENTENCES 3

I was wearing my sunglasses; so it must have been sunny.

This argument has one premise followed by a conclusion.

Many arguments start with premises, and end with a conclusion, but not all
of them. The argument with which this section began might equally have been
presented with the conclusion at the beginning, like so:

You should take an umbrella. After all, it is raining heavily. And if
you do not take an umbrella, you will get soaked.

Equally, it might have been presented with the conclusion in the middle:

It is raining heavily. Accordingly, you should take an umbrella, given
that if you do not take an umbrella, you will get soaked.

When approaching an argument, we want to know whether or not the conclu-
sion follows from the premises. So the first thing to do is to separate out the
conclusion from the premises. As a guide, these words are often used to indicate
an argument’s conclusion:

so, therefore, hence, thus, accordingly, consequently

By contrast, these expressions often indicate that we are dealing with a premise,
rather than a conclusion:

since, because, given that

But in analysing an argument, there is no substitute for a good nose.

1.1 Sentences

To be perfectly general, we can define an ARGUMENT as a series of sentences.
The sentences at the beginning of the series are premises. The final sentence in
the series is the conclusion. If the premises are true and the argument is a good
one, then you have a reason to accept the conclusion.

In logic, we are only interested in sentences that can figure as a premise or
conclusion of an argument. So we will say that a SENTENCE is something that
can be true or false.

You should not confuse the idea of a sentence that can be true or false with
the difference between fact and opinion. Often, sentences in logic will express
things that would count as facts— such as ‘Kierkegaard was a hunchback’ or
‘Kierkegaard liked almonds.” They can also express things that you might think
of as matters of opinion— such as, ‘Almonds are tasty.’
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Also, there are things that would count as ‘sentences’ in a linguistics or
grammar course that we will not count as sentences in logic.

Questions In a grammar class, ‘Are you sleepy yet?”” would count as an in-
terrogative sentence. Although you might be sleepy or you might be alert, the
question itself is neither true nor false. For this reason, questions will not count
as sentences in logic. Suppose you answer the question: ‘I am not sleepy.” This
is either true or false, and so it is a sentence in the logical sense. Generally,
questions will not count as sentences, but answers will.

‘What is this course about?’ is not a sentence (in our sense). ‘No one knows
what this course is about’ is a sentence.

Imperatives Commands are often phrased as imperatives like ‘Wake up!’, ‘Sit
up straight’, and so on. In a grammar class, these would count as imperative
sentences. Although it might be good for you to sit up straight or it might not,
the command is neither true nor false. Note, however, that commands are not
always phrased as imperatives. “You will respect my authority’ is either true or
false— either you will or you will not— and so it counts as a sentence in the
logical sense.

Exclamations ‘Ouch!’ is sometimes called an exclamatory sentence, but it is
neither true nor false. We will treat ‘Ouch, I hurt my toe!” as meaning the same
thing as ‘I hurt my toe.” The ‘ouch’ does not add anything that could be true or
false.

Practice exercises

At the end of some chapters, there are exercises that review and explore the
material covered in the chapter. There is no substitute for actually working
through some problems, because learning logic is more about developing a way
of thinking than it is about memorizing facts.

So here’s the first exercise. Highlight the phrase which expresses the conclu-
sion of each of these arguments:

1. It is sunny. So I should take my sunglasses.

2. It must have been sunny. I did wear my sunglasses, after all.

3. No one but you has had their hands in the cookiejar. And the scene of
the crime is littered with cookie-crumbs. You’re the culprit!
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4. Miss Scarlett and Professor Plum were in the study at the time of the
murder. Reverend Green had the candlestick in the ballroom, and we
know that there is no blood on his hands. Hence Colonel Mustard did it
in the kitchen with the lead-piping. Recall, after all, that the gun had not
been fired.



CHAPTER 2

Valid arguments

In §1, we gave a very permissive account of what an argument is. To see just
how permissive it is, consider the following:

There is a bassoon-playing dragon in the Cathedra Romana.
.". Salvador Dali was a poker player.

We have been given a premise and a conclusion. So we have an argument.
Admittedly, it is a terrible argument, but it is still an argument.

2.1 'Two ways that arguments can go wrong

It is worth pausing to ask what makes the argument so weak. In fact, there
are two sources of weakness. First: the argument’s (only) premise is obviously
false. The Pope’s throne is only ever occupied by a hat-wearing man. Second:
the conclusion does not follow from the premise of the argument. Even if there
were a bassoon-playing dragon in the Pope’s throne, we would not be able to
draw any conclusion about Dali’s predilection for poker.

What about the main argument discussed in §1? The premises of this ar-
gument might well be false. It might be sunny outside; or it might be that you
can avoid getting soaked without taking an umbrella. But even if both premises
were true, it does not necessarily show you that you should take an umbrella.
Perhaps you enjoy walking in the rain, and you would like to get soaked. So,
even if both premises were true, the conclusion might nonetheless be false.

The general point is that, for any argument, there are two ways that it might
go wrong:

* One or more of the premises might be false.
* The conclusion might not follow from the premises.

6



2.2. VALIDITY 7

It is often important to determine whether or not the premises of an argument
are true. However, that is normally a task best left to experts in the field: as
it might be historians, scientists, or whomever. In our role as logicians, we are
more concerned with arguments in general. So we are (usually) more concerned
with the second way in which arguments can go wrong.

So: we are interested in whether or not a conclusion follows from some
premises. Don’t, though, say that the premises infer the conclusion. Entail-
ment is a relation between premises and conclusions; inference is something we
do. So if you want to mention inference when the conclusion follows from the
premises, you could say that one may infer the conclusion from the premises.

2.2 Validity

As logicians, we want to be able to determine when the conclusion of an argu-
ment follows from the premises. One way to put this is as follows. We want to
know whether, if all the premises were true, the conclusion would also have to
be true. This motivates a definition:

An argument is VALID if and only if it is impossible for all of the premises
to be true and the conclusion false.

The crucial thing about a valid argument is that it is impossible for the
premises to be true while the conclusion is false. Consider this example:

Oranges are either fruits or musical instruments.
Oranges are not fruits.
.". Oranges are musical instruments.

The conclusion of this argument is ridiculous. Nevertheless, it follows from the
premises. If both premises are true, ¢then the conclusion just has to be true. So
the argument is valid.

This highlights that valid arguments do not need to have true premises or
true conclusions. Conversely, having true premises and a true conclusion is not
enough to make an argument valid. Consider this example:

London is in England.
Beijing is in China.
.". Paris is in France.

The premises and conclusion of this argument are, as a matter of fact, all true,
but the argument is invalid. If Paris were to declare independence from the rest
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of France, then the conclusion would be false, even though both of the premises
would remain true. Thus, it is possible for the premises of this argument to be
true and the conclusion false. So the argument is invalid.

The important thing to remember is that validity is not about the actual
truth or falsity of the sentences in the argument. It is about whether it is possible
for all the premises to be true and the conclusion false. Nonetheless, we will say
that an argument is SOUND if and only if it is both valid and all of its premises
are true.

2.3 Inductive arguments

Many good arguments are invalid. Consider this one:

In January 1997, it rained in London.

In January 1998, it rained in London.

In January 1999, it rained in London.

In January 2000, it rained in London.
". It rains every January in London.

This argument generalises from observations about several cases to a conclu-
sion about all cases. Such arguments are called INDUCTIVE arguments. The
argument could be made stronger by adding additional premises before draw-
ing the conclusion: In January 2001, it rained in London; In January 2002....
But, however many premises of this form we add, the argument will remain
invalid. Even if it has rained in London in every January thus far, it remains
possible that London will stay dry next January.

The point of all this is that inductive arguments—even good inductive
arguments—are not (deductively) valid. They are not watertight. Unlikely
though it might be, it is possible for their conclusion to be false, even when all
of their premises are true. In this book, we will set aside (entirely) the question
of what makes for a good inductive argument. Our interest is simply in sorting
the (deductively) valid arguments from the invalid ones.

Practice exercises
A. Which of the following arguments are valid? Which are invalid?

1. Socrates is a man.
2. All men are carrots.
.". Socrates is a carrot.
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Abe Lincoln was either born in Illinois or he was once president.

2. Abe Lincoln was never president.
. Abe Lincoln was born in Illinois.

If I pull the trigger, Abe Lincoln will die.

2. I do not pull the trigger.
". Abe Lincoln will not die.

Abe Lincoln was either from France or from Luxemborg.

. Abe Lincoln was not from Luxemborg.

. Abe Lincoln was from France.

If the world were to end today, then I would not need to get up tomorrow
morning.
I will need to get up tomorrow morning.

. The world will not end today.

1.
2.

Joe is now 19 years old.
Joe is now 87 years old.
Bob is now 20 years old.

B. Could there be:

1.

2.
3.
4.

A valid argument that has one false premise and one true premise?

A valid argument that has only false premises?

A valid argument with only false premises and a false conclusion?

An invalid argument that can be made valid by the addition of a new
premise?

A valid argument that can be made invalid by the addition of a new
premise?

In each case: if so, give an example; if not, explain why not.



CHAPTER 3

Other logical

notions

In §2, we introduced the idea of a valid argument. This is one of the most
important ideas in logic. In this section, we will introduce are some similarly
important ideas.

3.1 Joint possibility
Consider these two sentences:

B1. Jane’s only brother is shorter than her.
B2. Jane’s only brother is taller than her.

Logic alone cannot tell us which, if either, of these sentences is true. Yet we can
say that if the first sentence (B1) is true, then the second sentence (B2) must
be false. Similarly, if B2 is true, then B1 must be false. It is impossible that
both sentences are true together. These sentences are inconsistent with each
other, they cannot all be true at the same time. This motivates the following
definition:

Sentences are JOINTLY POSSIBLE if and only if it is possible for them all
to be true together.

Conversely, B1 and Be are jointly impossible.
We can ask about the possibility of any number of sentences. For example,
consider the following four sentences:

10
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G1. There are at least four giraffes at the wild animal park.

Ge. There are exactly seven gorillas at the wild animal park.

G3. There are not more than two martians at the wild animal park.
G4. Every giraffe at the wild animal park is a martian.

G1 and G4 together entail that there are at least four martian giraffes at the park.
This conflicts with Gg, which implies that there are no more than two martian
giraffes there. So the sentences G1-Gy4 are jointly impossible. They cannot all
be true together. (Note that the sentences G1, G3 and G4 are jointly impossible.
But if sentences are already jointly impossible, adding an extra sentence to the
mix will not make them jointly possible!)

3.2 Necessary truths, necessary falsehoods, and
contingency

In assessing arguments for validity, we care about what would be true if the
premises were true, but some sentences just must be true. Consider these sen-
tences:

1. It is raining.
2. Either it is raining here, or it is not.
3. It is both raining here and not raining here.

In order to know if sentence 1 is true, you would need to look outside or check
the weather channel. It might be true; it might be false. A sentence which is
capable of being true and capable of being false (in different circumstances, of
course) is called CONTINGENT.

Sentence 2 is different. You do not need to look outside to know that it is
true. Regardless of what the weather is like, it is either raining or it is not. That
is a NECESSARY TRUTH.

Equally, you do not need to check the weather to determine whether or not
sentence 3 is true. It must be false, simply as a matter of logic. It might be raining
here and not raining across town; it might be raining now but stop raining even
as you finish this sentence; but it is impossible for it to be both raining and not
raining in the same place and at the same time. So, whatever the world is like,
it is not both raining here and not raining here. It is a NECESSARY FALSEHOOD.

Necessary equivalence

We can also ask about the logical relations between two sentences. For example:
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John went to the store after he washed the dishes.
John washed the dishes before he went to the store.

These two sentences are both contingent, since John might not have gone to the
store or washed dishes at all. Yet they must have the same truth-value. If either
of the sentences is true, then they both are; if either of the sentences is false,
then they both are. When two sentences necessarily have the same truth value,
we say that they are NECESSARILY EQUIVALENT.

Summary of logical notions

> An argument is (deductively) VALID if it is impossible for the premises to
be true and the conclusion false; it is INVALID otherwise.

> A NECESSARY TRUTH is a sentence that must be true, that could not possi-
bly be false.

A4

A NECESSARY FALSEHOOD is a sentence that must be false, that could not
possibly be true.

v

A CONTINGENT SENTENCE is neither a necessary truth nor a necessary
falsehood. It may be true but could have been false, or vice versa.

v

Two sentences are NECESSARILY EQUIVALENT if they must have the same
truth value.

v

A collection of sentences is JOINTLY POSSIBLE if it is possible for all these
sentences to be true together; it is JOINTLY IMPOSSIBLE otherwise.

Practice exercises

A. For each of the following: Is it a necessary truth, a necessary falsehood, or
contingent?

Caesar crossed the Rubicon.

Someone once crossed the Rubicon.

No one has ever crossed the Rubicon.

If Caesar crossed the Rubicon, then someone has.

Even though Caesar crossed the Rubicon, no one has ever crossed the
Rubicon.

If anyone has ever crossed the Rubicon, it was Caesar.

CANL S S

&
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B. For each of the following: Is it a necessary truth, a necessary falsehood, or

contingent?
1. Elephants dissolve in water.
2. Wood is a light, durable substance useful for building things.
3. If wood were a good building material, it would be useful for building
things.
4. I'live in a three story building that is two stories tall.
5. If gerbils were mammals they would nurse their young.

C. Which of the following pairs of sentences are necessarily equivalent?

1.

Elephants dissolve in water.

If you put an elephant in water, it will disintegrate.

All mammals dissolve in water.

If you put an elephant in water, it will disintegrate.

George Bush was the 43rd president.

Barack Obama is the 44th president.

Barack Obama is the 44th president.

Barack Obama was president immediately after the 43rd president.
Elephants dissolve in water.

All mammals dissolve in water.

D. Which of the following pairs of sentences are necessarily equivalent?

1.

Thelonious Monk played piano.
John Coltrane played tenor sax.

2. Thelonious Monk played gigs with John Coltrane.

John Coltrane played gigs with Thelonious Monk.

3. All professional piano players have big hands.

Piano player Bud Powell had big hands.

4. Bud Powell suffered from severe mental illness.

All piano players suffer from severe mental illness.

5. John Coltrane was deeply religious.

John Coltrane viewed music as an expression of spirituality.

E. Consider the following sentences:

G1 There are at least four giraffes at the wild animal park.

G2 There are exactly seven gorillas at the wild animal park.
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Gg3 There are not more than two Martians at the wild animal park.

G4 Every giraffe at the wild animal park is a Martian.

Now consider each of the following collections of sentences. Which are
jointly possible? Which are jointly impossible?

1
2
3

4

Sentences G2, G3, and G4
Sentences G1, G3, and G4
Sentences G1, G2, and G4
Sentences G1, G2, and G3

F. Consider the following sentences.

M1 All people are mortal.

M2 Socrates is a person.

M3 Socrates will never die.

M4 Socrates is mortal.

Which combinations of sentences are jointly possible? Mark each “possible” or
“impossible.”

ANl

Sentences M1, Mg, and M3
Sentences M2, M3, and My
Sentences M2 and M3
Sentences M1 and My
Sentences M1, Mg, M3, and M4

G. Which of the following is possible? If it is possible, give an example. If it is
not possible, explain why.

RN S e

A valid argument that has one false premise and one true premise

A valid argument that has a false conclusion

A valid argument, the conclusion of which is a necessary falsehood

An invalid argument, the conclusion of which is a necessary truth

A necessary truth that is contingent

Two necessarily equivalent sentences, both of which are necessary truths
Two necessarily equivalent sentences, one of which is a necessary truth
and one of which is contingent

Two necessarily equivalent sentences that together are jointly impossible
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9.

10.

A jointly possible collection of sentences that contains a necessary false-
hood
A jointly impossible set of sentences that contains a necessary truth

H. Which of the following is possible? If it is possible, give an example. If it is
not possible, explain why.

1.

@

© O T

A valid argument, whose premises are all necessary truths, and whose
conclusion is contingent

A valid argument with true premises and a false conclusion

A jointly possible collection of sentences that contains two sentences that
are not necessarily equivalent

A jointly possible collection of sentences, all of which are contingent

A false necessary truth

A valid argument with false premises

A necessarily equivalent pair of sentences that are not jointly possible

A necessary truth that is also a necessary falsehood

A jointly possible collection of sentences that are all necessary falsehoods
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CHAPTER 4

First steps to
symbolization

4.1 Validity in virtue of form

Consider this argument:

It is raining outside.
If it is raining outside, then Jenny is miserable.
.". Jenny is miserable.

and another argument:

Jenny is an anarcho-syndicalist.
If Jenny is an anarcho-syndicalist, then Dipan is an avid reader of Tolstoy.
.". Dipan is an avid reader of Tolstoy.

Both arguments are valid, and there is a straightforward sense in which we can
say that they share a common structure. We might express the structure thus:

A
If A, then C
. C

This looks like an excellent argument structure. Indeed, surely any argument
with this structure will be valid, and this is not the only good argument structure.
Consider an argument like:

Jenny is either happy or sad.
Jenny is not happy.

17
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.. Jenny is sad.
Again, this is a valid argument. The structure here is something like:

AorB
not-A
. B

A superb structure! Here is another example:

It’s not the case that Jim both studied hard and acted in lots of plays.
Jim studied hard
.". Jim did not act in lots of plays.

This valid argument has a structure which we might represent thus:

not-(A and B)
A
. not-B

These examples illustrate an important idea, which we might describe as validity
in virtue of form. The validity of the arguments just considered has nothing very
much to do with the meanings of English expressions like Jenny is miserable’,
‘Dipan is an avid reader of Tolstoy’, or ‘Jim acted in lots of plays’. If it has to
do with meanings at all, it is with the meanings of phrases like ‘and’, ‘or’, ‘not,’
and ‘if..., then...’.

In Parts II-IV, we are going to develop a formal language which allows us
to symbolize many arguments in such a way as to show that they are valid in
virtue of their form. That language will be truth-functional logic, or TFL.

4.2 Validity for special reasons

There are plenty of arguments that are valid, but not for reasons relating to their
form. Take an example:

Juanita is a vixen
.". Juanita is a fox

It is impossible for the premise to be true and the conclusion false. So the argu-
ment is valid. However, the validity is not related to the form of the argument.
Here is an invalid argument with the same form:

Juanita is a vixen
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.". Juanita is a cathedral

This might suggest that the validity of the first argument is keyed to the meaning
of the words ‘vixen’ and ‘fox’. But, whether or not that is right, it is not simply
the shape of the argument that makes it valid. Equally, consider the argument:

The sculpture is green all over.
.". The sculpture is not red all over.

Again, it seems impossible for the premise to be true and the conclusion false,
for nothing can be both green all over and red all over. So the argument is valid,
but here is an invalid argument with the same form:

The sculpture is green all over.
.". The sculpture is not shiny all over.

The argument is invalid, since it is possible to be green all over and shiny all over.
(One might paint their nails with an elegant shiny green varnish.) Plausibly,
the validity of the first argument is keyed to the way that colours (or colour-
words) interact, but, whether or not that is right, it is not simply the shape of the
argument that makes it valid.

The important moral can be stated as follows. At best, TFL will help us to
understand arguments that are valid due to their form.

4.3 Atomic sentences

We started isolating the form of an argument, in §4.1, by replacing subsentences
of sentences with individual letters. Thus in the first example of this section,
‘it is raining outside’ is a subsentence of ‘If it is raining outside, then Jenny is
miserable’, and we replaced this subsentence with ‘A’.

Our artificial language, TFL, pursues this idea absolutely ruthlessly. We
start with some atomic sentences. These will be the basic building blocks out of
which more complex sentences are built. We will use uppercase Roman letters
for atomic sentences of TFL. There are only twenty-six letters of the alphabet,
but there is no limit to the number of atomic sentences that we might want to
consider. By adding subscripts to letters, we obtain new atomic sentences. So,
here are five different atomic sentences of TFL:

A, P, Py, Py, Ag34

We will use atomic sentences to represent, or symbolize, certain English sentences.
To do this, we provide a SYMBOLIZATION KEY, such as the following:
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A: It is raining outside
C: Jenny is miserable

In doing this, we are not fixing this symbolization once and for all. We are just
saying that, for the time being, we will think of the atomic sentence of TFL,
‘A’, as symbolizing the English sentence ‘It is raining outside’, and the atomic
sentence of TFL, ‘C’, as symbolizing the English sentence ‘Jenny is miserable’.
Later, when we are dealing with different sentences or different arguments, we
can provide a new symbolization key; as it might be:

A: Jenny is an anarcho-syndicalist
C: Dipan is an avid reader of Tolstoy

It is important to understand that whatever structure an English sentence might
have is lost when it is symbolized by an atomic sentence of TFL. From the point
of view of TFL, an atomic sentence is just a letter. It can be used to build more
complex sentences, but it cannot be taken apart.



CHAPTER 5

Connectives

In the previous chapter, we considered symbolizing fairly basic English sentences
with atomic sentences of TFL. This leaves us wanting to deal with the English
expressions ‘and’, ‘or’, ‘not’, and so forth. These are connectives—they can be
used to form new sentences out of old ones. In TFL, we will make use of logical
connectives to build complex sentences from atomic components. There are five
logical connectives in TFL. This table summarises them, and they are explained
throughout this section.

symbol what it is called rough meaning

- negation ‘It is not the case that. ..
A conjunction ‘Both...and ..’

v disjunction ‘Either...or ...

— conditional ‘If ... then ...’

<—> biconditional ‘...ifand only if ...

These are not the only connectives of English of interest. Others are, e.g.,
‘unless’, ‘neither ... nor...’, and ‘because’. We will see that the first two can be
expressed by the connectives we will discuss, while the last cannot. ‘Because’,
in contrast to the others, is not truth functional.

5.1 Negation

Consider how we might symbolize these sentences:
1. Mary is in Barcelona.
2. It is not the case that Mary is in Barcelona.

3. Mary is not in Barcelona.

21
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In order to symbolize sentence 1, we will need an atomic sentence. We might
offer this symbolization key:

B: Mary is in Barcelona.

Since sentence 2 is obviously related to sentence 1, we will not want to symbolize
it with a completely different sentence. Roughly, sentence 2 means something
like ‘It is not the case that B’. In order to symbolize this, we need a symbol for
negation. We will use ‘=’. Now we can symbolize sentence 2 with ‘-~B’.

Sentence 3 also contains the word ‘not’, and it is obviously equivalent to
sentence 2. As such, we can also symbolize it with ‘=5’

A sentence can be symbolized as —d if it can be paraphrased in English
as ‘It is not the case that...’.

It will help to offer a few more examples:

4. The widget can be replaced.
5. The widget is irreplaceable.
6. The widget is not irreplaceable.

Let us use the following representation key:
R: The widget is replaceable

Sentence 4 can now be symbolized by ‘R’. Moving on to sentence 5: saying the
widget is irreplaceable means that it is not the case that the widget is replaceable.
So even though sentence 5 does not contain the word ‘not’, we will symbolize it
as follows: ‘—R’.

Sentence 6 can be paraphrased as ‘It is not the case that the widget is ir-
replaceable.” Which can again be paraphrased as ‘It is not the case that it is
not the case that the widget is replaceable’. So we might symbolize this English
sentence with the TFL sentence ‘--R’.

But some care is needed when handling negations. Consider:

7. Jane is happy.
8. Jane is unhappy.

If we let the TFL-sentence ‘A’ symbolize ‘Jane is happy’, then we can symbolize
sentence 7 as ‘H’. However, it would be a mistake to symbolize sentence 8 with
‘=H’. If Jane is unhappy, then she is not happy; but sentence 8 does not mean
the same thing as ‘It is not the case that Jane is happy’. Jane might be neither
happy nor unhappy; she might be in a state of blank indifference. In order to
symbolize sentence 8, then, we would need a new atomic sentence of TFL.
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5.2 Conjunction
Consider these sentences:

9. Adam is athletic.
10. Barbara is athletic.
11. Adam is athletic, and Barbara is also athletic.

We will need separate atomic sentences of TFL to symbolize sentences g and
10; perhaps

A: Adam is athletic.
B: Barbara is athletic.

Sentence g can now be symbolized as ‘4’, and sentence 10 can be symbolized as
‘B’. Sentence 11 roughly says ‘A and B’. We need another symbol, to deal with
‘and’. We will use ‘A’. Thus we will symbolize it as ‘(4 A B)’. This connective
is called CONJUNCTION. We also say that ‘4’ and ‘B’ are the two CONJUNCTS of
the conjunction ‘(4 A B)’.

Notice that we make no attempt to symbolize the word ‘also’ in sentence 11.
Words like ‘both’ and ‘also’ function to draw our attention to the fact that two
things are being conjoined. Maybe they affect the emphasis of a sentence, but
we will not (and cannot) symbolize such things in TFL.

Some more examples will bring out this point:

12. Barbara is athletic and energetic.

13. Barbara and Adam are both athletic.

14. Although Barbara is energetic, she is not athletic.

15. Adam is athletic, but Barbara is more athletic than him.

Sentence 12 is obviously a conjunction. The sentence says two things (about
Barbara). In English, it is permissible to refer to Barbara only once. It might be
tempting to think that we need to symbolize sentence 12 with something along
the lines of ‘B and energetic’. This would be a mistake. Once we symbolize part
of a sentence as ‘B’, any further structure is lost, as ‘B’ is an atomic sentence
of TFL. Conversely, ‘energetic’ is not an English sentence at all. What we are
aiming for is something like ‘B and Barbara is energetic’. So we need to add
another sentence letter to the symbolization key. Let ‘E’ symbolize ‘Barbara is
energetic’. Now the entire sentence can be symbolized as ‘(B A E)’.

Sentence 13 says one thing about two different subjects. It says of both
Barbara and Adam that they are athletic, even though in English we use the word
‘athletic’ only once. The sentence can be paraphrased as ‘Barbara is athletic,
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and Adam is athletic’. We can symbolize this in TFL as ‘(B A 4)’, using the same
symbolization key that we have been using.

Sentence 14 is slightly more complicated. The word ‘although’ sets up a
contrast between the first part of the sentence and the second part. Nevertheless,
the sentence tells us both that Barbara is energetic and that she is not athletic. In
order to make each of the conjuncts an atomic sentence, we need to replace ‘she’
with ‘Barbara’. So we can paraphrase sentence 14 as, ‘Both Barbara is energetic,
and Barbara is not athletic’. The second conjunct contains a negation, so we
paraphrase further: ‘Both Barbara is energetic and it is not the case that Barbara
is athletic’. Now we can symbolize this with the TFL sentence ‘(E A —B)’. Note
that we have lost all sorts of nuance in this symbolization. There is a distinct
difference in tone between sentence 14 and ‘Both Barbara is energetic and it is
not the case that Barbara is athletic’. TFL does not (and cannot) preserve these
nuances.

Sentence 15 raises similar issues. There is a contrastive structure, but this
is not something that TFL can deal with. So we can paraphrase the sentence
as ‘Both Adam is athletic, and Barbara is more athletic than Adam’. (Notice
that we once again replace the pronoun ‘him’ with ‘Adam’.) How should we
deal with the second conjunct? We already have the sentence letter ‘4’, which
is being used to symbolize ‘Adam is athletic’, and the sentence ‘B’ which is
being used to symbolize ‘Barbara is athletic’; but neither of these concerns their
relative athleticity. So, to symbolize the entire sentence, we need a new sentence
letter. Let the TFL sentence ‘R’ symbolize the English sentence ‘Barbara is more
athletic than Adam’. Now we can symbolize sentence 15 by ‘(4 A R)’.

A sentence can be symbolized as (o A RB) if it can be paraphrased in

b

English as ‘Both..., and...’, or as “..., but ...’, or as ‘although ..., ...".

You might be wondering why we put brackets around the conjunctions. The
reason for this is brought out by considering how negation might interact with
conjunction. Consider:

16. It’s not the case that you will get both soup and salad.
17. You will not get soup but you will get salad.

Sentence 16 can be paraphrased as ‘It is not the case that: both you will get
soup and you will get salad’. Using this symbolization key:

$1: You will get soup.
So: You will get salad.
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We would symbolize ‘both you will get soup and you will get salad’ as ‘(S1 A S2)’.
To symbolize sentence 16, then, we simply negate the whole sentence, thus:
(81 A Sy).

Sentence 17 is a conjunction: you will not get soup, and you will get salad.
“You will not get soup’ is symbolized by ‘=57’. So to symbolize sentence 17 itself,
we offer ‘(=87 A S9)’.

These English sentences are very different, and their symbolizations differ
accordingly. In one of them, the entire conjunction is negated. In the other, just
one conjunct is negated. Brackets help us to keep track of things like the scope
of the negation.

5.3 Disjunction
Consider these sentences:

18. Either Fatima will play videogames, or she will watch movies.
19. Either Fatima or Omar will play videogames.

For these sentences we can use this symbolization key:

F: Fatima will play videogames.
0: Omar will play videogames.
M: Fatima will watch movies.

However, we will again need to introduce a new symbol. Sentence 18 is symbol-
ized by ‘(# vV M)’. The connective is called DISJUNCTION. We also say that ‘/’
and ‘M’ are the DISJUNCTS of the disjunction ‘(F VvV M)’.

Sentence 19 is only slightly more complicated. There are two subjects, but
the English sentence only gives the verb once. However, we can paraphrase sen-
tence 19 as ‘Either Fatima will play videogames, or Omar will play videogames’.
Now we can obviously symbolize it by ‘(¥ v 0)’ again.

A sentence can be symbolized as (o vV RB) if it can be paraphrased in
English as ‘Either..., or....” Each of the disjuncts must be a sentence.

Sometimes in English, the word ‘or’ is used in a way that excludes the possi-
bility that both disjuncts are true. This is called an EXCLUSIVE OR. An exclusive
or is clearly intended when it says, on a restaurant menu, ‘Entrees come with
either soup or salad’: you may have soup; you may have salad; but, if you want
both soup and salad, then you have to pay extra.
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At other times, the word ‘or’ allows for the possibility that both disjuncts
might be true. This is probably the case with sentence 19, above. Fatima might
play videogames alone, Omar might play videogames alone, or they might both
play. Sentence 19 merely says that at least one of them plays videogames. This
is called an INCLUSIVE OR. The TFL symbol ‘v’ always symbolizes an inclusive
or.

It might help to see negation interact with disjunction. Consider:

20. Either you will not have soup, or you will not have salad.
21. You will have neither soup nor salad.
22. You get either soup or salad, but not both.

Using the same symbolization key as before, sentence 20 can be paraphrased in
this way: ‘Either it is not the case that you get soup, or it is not the case that you
get salad’. To symbolize this in TFL, we need both disjunction and negation.
‘It is not the case that you get soup’ is symbolized by ‘-$1’. ‘It is not the case
that you get salad’ is symbolized by ‘=S3’. So sentence 20 itself is symbolized
by ‘(=871 V =89)’.

Sentence 21 also requires negation. It can be paraphrased as, ‘It is not the
case that either you get soup or you get salad’. Since this negates the entire
disjunction, we symbolize sentence 21 with ‘=($7 vV S2)’.

Sentence 22 is an exclusive or. We can break the sentence into two parts. The
first part says that you get one or the other. We symbolize this as ‘(S1V .S2)’. The
second part says that you do not get both. We can paraphrase this as: ‘It is not
the case both that you get soup and that you get salad’. Using both negation
and conjunction, we symbolize this with ‘=(S7 A S2)’. Now we just need to put
the two parts together. As we saw above, ‘but’ can usually be symbolized with
‘A’. Sentence 22 can thus be symbolized as ‘((S1 V S2) A =(81 A S2))’.

This last example shows something important. Although the TFL symbol
‘v’ always symbolizes inclusive or, we can symbolize an exclusive or in TFL. We
just have to use a few of our other symbols as well.

5.4 Conditional

Consider these sentences:

23. If Jean is in Paris, then Jean is in France.
24. Jean is in France only if Jean is in Paris.

Let’s use the following symbolization key:
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P: Jean is in Paris.
F: Jean is in France

Sentence 23 is roughly of this form: ‘if P, then F’. We will use the symbol ‘=’
to symbolize this ‘if..., then...’ structure. So we symbolize sentence 23 by
‘(P — F). The connective is called THE CONDITIONAL. Here, ‘P’ is called the
ANTECEDENT of the conditional ‘(P — F)’, and ‘F’ is called the CONSEQUENT.

Sentence 24 is also a conditional. Since the word ‘if” appears in the second
half of the sentence, it might be tempting to symbolize this in the same way as
sentence 23. That would be a mistake. Your knowledge of geography tells you
that sentence 23 is unproblematically true: there is no way for Jean to be in Paris
that doesn’t involve Jean being in France. But sentence 24 is not so straightfor-
ward: were Jean in Dieppe, Lyons, or Toulouse, Jean would be in France without
being in Paris, thereby rendering sentence 24 false. Since geography alone dic-
tates the truth of sentence 23, whereas travel plans (say) are needed to know the
truth of sentence 24, they must mean different things.

In fact, sentence 24 can be paraphrased as ‘If Jean is in France, then Jean is
in Paris’. So we can symbolize it by ‘(# — P)’.

A sentence can be symbolized as d — 9B if it can be paraphrased in
English as ‘If A, then B’ or ‘A only if B’.

In fact, many English expressions can be represented using the conditional.
Consider:

25. For Jean to be in Paris, it is necessary that Jean be in France.
26. It is a necessary condition on Jean’s being in Paris that she be in France.
27. For Jean to be in France, it is sufficient that Jean be in Paris.
28. It is a sufficient condition on Jean’s being in France that she be in Paris.

If we think deeply about it, all four of these sentences mean the same as ‘If Jean
is in Paris, then Jean is in France’. So they can all be symbolized by ‘P — F’.

It is important to bear in mind that the connective ‘=’ tells us only that,
if the antecedent is true, then the consequent is true. It says nothing about a
causal connection between two events (for example). In fact, we lose a huge
amount when we use ‘=’ to symbolize English conditionals. We will return to
this in §§9.3 and 11.5.

5.5 Biconditional

Consider these sentences:
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29. Laika is a dog only if she is a mammal
30. Laika is a dog if she is a mammal
31. Laika is a dog if and only if she is a mammal

We will use the following symbolization key:

D: Laika is a dog
M: Laika is a mammal

Sentence 29, for reasons discussed above, can be symbolized by ‘D — M’.

Sentence 3o is importantly different. It can be paraphrased as, ‘If Laika is a
mammal then Laika is a dog’. So it can be symbolized by ‘M — D’.

Sentence 31 says something stronger than either 29 or 3o. It can be para-
phrased as ‘Laika is a dog if Laika is a mammal, and Laika is a dog only if Laika
is a mammal’. This is just the conjunction of sentences 29 and 3o. So we can
symbolize it as ‘(D — M) A (M — D)’. We call this a BICONDITIONAL, because
it entails the conditional in both directions.

We could treat every biconditional this way. So, just as we do not need a new
TFL symbol to deal with exclusive or, we do not really need a new TFL symbol
to deal with biconditionals. Because the biconditional occurs so often, however,
we will use the symbol ‘>’ for it. We can then symbolize sentence 31 with the
TFL sentence ‘D < M’.

The expression ‘if and only if” occurs a lot especially in philosophy, mathe-
matics, and logic. For brevity, we can abbreviate it with the snappier word ‘iff’.
We will follow this practice. So ‘if” with only one ‘f” is the English conditional.
But ‘iff” with two ‘f’s is the English biconditional. Armed with this we can say:

A sentence can be symbolized as d < B if it can be paraphrased in
English as ‘A iff B’; that is, as ‘A if and only if B’.

A word of caution. Ordinary speakers of English often use ‘if ..., then...’
when they really mean to use something more like ‘.. .if and only if ...’. Perhaps
your parents told you, when you were a child: ‘if you don’t eat your greens,
you won’t get any dessert’. Suppose you ate your greens, but that your parents
refused to give you any dessert, on the grounds that they were only committed to
the conditional (roughly ‘if you get dessert, then you will have eaten your greens’),
rather than the biconditional (roughly, ‘you get dessert iff you eat your greens’).
Well, a tantrum would rightly ensue. So, be aware of this when interpreting
people; but in your own writing, make sure you use the biconditional iff you
mean to.
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5.6 Unless

We have now introduced all of the connectives of TFL. We can use them together
to symbolize many kinds of sentences. An especially difficult case is when we
use the English-language connective ‘unless’:

32. Unless you wear a jacket, you will catch a cold.
33. You will catch a cold unless you wear a jacket.

These two sentences are clearly equivalent. To symbolize them, we will use the
symbolization key:

J: You will wear a jacket.
D: You will catch a cold.

Both sentences mean that if you do not wear a jacket, then you will catch a cold.
With this in mind, we might symbolize them as ‘-] — D’.

Equally, both sentences mean that if you do not catch a cold, then you must
have worn a jacket. With this in mind, we might symbolize them as ‘-D — J’.

Equally, both sentences mean that either you will wear a jacket or you will
catch a cold. With this in mind, we might symbolize them as ‘/ v D’.

All three are correct symbolizations. Indeed, in chapter 11 we will see that
all three symbolizations are equivalent in TFL.

If a sentence can be paraphrased as ‘Unless A, B,” then it can be symbol-
ized as ‘o v R’

Again, though, there is a little complication. ‘Unless’ can be symbolized as a
conditional; but as we said above, people often use the conditional (on its own)
when they mean to use the biconditional. Equally, ‘unless’ can be symbolized
as a disjunction; but there are two kinds of disjunction (exclusive and inclusive).
So it will not surprise you to discover that ordinary speakers of English often
use ‘unless’ to mean something more like the biconditional, or like exclusive
disjunction. Suppose someone says: ‘I will go running unless it rains’. They
probably mean something like ‘T will go running iff it does not rain’ (i.e. the
biconditional), or ‘either I will go running or it will rain, but not both’ (i.e.
exclusive disjunction). Again: be aware of this when interpreting what other
people have said, but be precise in your writing.
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Practice exercises

A. Using the symbolization key given, symbolize each English sentence in TFL.

ANl S

=3}

M: Those creatures are men in suits.
C: Those creatures are chimpanzees.
G: Those creatures are gorillas.

Those creatures are not men in suits.

Those creatures are men in suits, or they are not.

Those creatures are either gorillas or chimpanzees.

Those creatures are neither gorillas nor chimpanzees.

If those creatures are chimpanzees, then they are neither gorillas nor men
in suits.

Unless those creatures are men in suits, they are either chimpanzees or
they are gorillas.

B. Using the symbolization key given, symbolize each English sentence in TFL.

SO~ W N0 H

~

8.
9.
10.
11.
12.

Mister Ace was murdered.

The butler did it.

The cook did it.

The Duchess is lying.

Mister Edge was murdered.

The murder weapon was a frying pan.

THTEA

. Either Mister Ace or Mister Edge was murdered.

. If Mister Ace was murdered, then the cook did it.

. If Mister Edge was murdered, then the cook did not do it.

. Either the butler did it, or the Duchess is lying.

. The cook did it only if the Duchess is lying.

. If the murder weapon was a frying pan, then the culprit must have been

the cook.

. If the murder weapon was not a frying pan, then the culprit was either the

cook or the butler.

Mister Ace was murdered if and only if Mister Edge was not murdered.
The Duchess is lying, unless it was Mister Edge who was murdered.

If Mister Ace was murdered, he was done in with a frying pan.

Since the cook did it, the butler did not.

Of course the Duchess is lying!

C. Using the symbolization key given, symbolize each English sentence in TFL.
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Ej: Ava is an electrician.

Ey: Harrison is an electrician.

I1: Ava is a firefighter.

Fy: Harrison is a firefighter.

S1: Ava is satisfied with her career.

S9: Harrison is satisfied with his career.

Ava and Harrison are both electricians.

If Ava is a firefighter, then she is satisfied with her career.

Ava is a firefighter, unless she is an electrician.

Harrison is an unsatisfied electrician.

Neither Ava nor Harrison is an electrician.

Both Ava and Harrison are electricians, but neither of them find it satis-

fying.

Harrison is satisfied only if he is a firefighter.

If Ava is not an electrician, then neither is Harrison, but if she is, then he

is too.

9. Ava is satisfied with her career if and only if Harrison is not satisfied with

his.

10. If Harrison is both an electrician and a firefighter, then he must be satisfied
with his work.

11. It cannot be that Harrison is both an electrician and a firefighter.

12. Harrison and Ava are both firefighters if and only if neither of them is an

electrician.

SR AL I
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D. Using the symbolization key given, symbolize each English-language sentence
in TFL.

J1: John Coltrane played tenor sax.
Jo: John Coltrane played soprano sax.
J3: John Coltrane played tuba

M;: Miles Davis played trumpet

Mj: Miles Davis played tuba

1. John Coltrane played tenor and soprano sax.

2. Neither Miles Davis nor John Coltrane played tuba.

3. John Coltrane did not play both tenor sax and tuba.

4. John Coltrane did not play tenor sax unless he also played soprano sax.
5. John Coltrane did not play tuba, but Miles Davis did.

6. Miles Davis played trumpet only if he also played tuba.
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7. If Miles Davis played trumpet, then John Coltrane played at least one of
these three instruments: tenor sax, soprano sax, or tuba.

8. If John Coltrane played tuba then Miles Davis played neither trumpet nor
tuba.

9. Miles Davis and John Coltrane both played tuba if and only if Coltrane
did not play tenor sax and Miles Davis did not play trumpet.

E. Give a symbolization key and symbolize the following English sentences in
TFL.

Alice and Bob are both spies.

If either Alice or Bob is a spy, then the code has been broken.

If neither Alice nor Bob is a spy, then the code remains unbroken.

The German embassy will be in an uproar, unless someone has broken

the code.

5. Either the code has been broken or it has not, but the German embassy
will be in an uproar regardless.

6. Either Alice or Bob is a spy, but not both.

B @ e

F. Give a symbolization key and symbolize the following English sentences in
TFL.

1. If there is food to be found in the pridelands, then Rafiki will talk about
squashed bananas.

2. Rafiki will talk about squashed bananas unless Simba is alive.

3. Rafiki will either talk about squashed bananas or he won’t, but there is
food to be found in the pridelands regardless.

4. Scar will remain as king if and only if there is food to be found in the
pridelands.

5. If Simba is alive, then Scar will not remain as king.

G. For each argument, write a symbolization key and symbolize all of the sen-
tences of the argument in TFL.

1. If Dorothy plays the piano in the morning, then Roger wakes up cranky.
Dorothy plays piano in the morning unless she is distracted. So if Roger
does not wake up cranky, then Dorothy must be distracted.

2. It will either rain or snow on Tuesday. If it rains, Neville will be sad. If it
snows, Neville will be cold. Therefore, Neville will either be sad or cold
on Tuesday.
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3. If Zoog remembered to do his chores, then things are clean but not neat. If
he forgot, then things are neat but not clean. Therefore, things are either
neat or clean; but not both.

H. For each argument, write a symbolization key and symbolize the argument
as well as possible in TFL. The part of the passage in italics is there to provide
context for the argument, and doesn’t need to be symbolized.

1. It is going to rain soon. I know because my leg is hurting, and my leg
hurts if it’s going to rain.

2. Spider-man tries to figure out the bad guy’s plan. If Doctor Octopus gets the
uranium, he will blackmail the city. I am certain of this because if Doctor
Octopus gets the uranium, he can make a dirty bomb, and if he can make
a dirty bomb, he will blackmail the city.

3. A westerner tries to predict the policies of the Chinese government. If the Chinese
government cannot solve the water shortages in Beijing, they will have to
move the capital. They don’t want to move the capital. Therefore they
must solve the water shortage. But the only way to solve the water shortage
is to divert almost all the water from the Yangzi river northward. Therefore
the Chinese government will go with the project to divert water from the
south to the north.

I. We symbolized an exclusive or using ‘V’, ‘A’, and ‘=’. How could you symbolize
an exclusive or using only two connectives? Is there any way to symbolize an
exclusive or using only one connective?



CHAPTER 6

Sentences of TFL

The sentence ‘either apples are red, or berries are blue’ is a sentence of English,
and the sentence ‘(4 V B)’ is a sentence of TFL. Although we can identify sen-
tences of English when we encounter them, we do not have a formal definition
of ‘sentence of English’. But in this chapter, we will offer a complete definition of
what counts as a sentence of TFL. This is one respect in which a formal language
like TFL is more precise than a natural language like English.

6.1 Expressions

We have seen that there are three kinds of symbols in TFL:

Atomic sentences AB,C,....7Z
with subscripts, as needed A3, By, Z1, Ag, Ass, J375, - - -

Connectives AR P g

Brackets (,)

We define an EXPRESSION OF TFL as any string of symbols of TFL. Take any
of the symbols of TFL and write them down, in any order, and you have an
expression of TFL.

6.2 Sentences

Of course, many expressions of TFL will be total gibberish. We want to know
when an expression of TFL amounts to a sentence.

Obviously, individual atomic sentences like ‘4’ and ‘Gy3’ should count as
sentences. We can form further sentences out of these by using the various
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connectives. Using negation, we can get ‘-4’ and ‘~G13’. Using conjunction, we
can get (4 A G13)’, (Gi13 A A)’, (A A A), and ‘(G13 A G13)’. We could also apply
negation repeatedly to get sentences like ‘=4’ or apply negation along with
conjunction to get sentences like ‘=(4 A G13)’ and ‘=(G13 A =G13)’. The possible
combinations are endless, even starting with just these two sentence letters, and
there are infinitely many sentence letters. So there is no point in trying to list
all the sentences one by one.

Instead, we will describe the process by which sentences can be constructed.
Consider negation: Given any sentence 9 of TFL, —d is a sentence of TFL.
(Why the funny fonts? We return to this in §7.3.)

We can say similar things for each of the other connectives. For instance, if
o and 9B are sentences of TFL, then (o A 9B) is a sentence of TFL. Providing
clauses like this for all of the connectives, we arrive at the following formal
definition for a SENTENCE OF TFL:

1. Every atomic sentence is a sentence.

2. If d is a sentence, then —d{ is a sentence.

3. If o and 9B are sentences, then (o A 9B) is a sentence.
4. If o and 9B are sentences, then (s V 9B) is a sentence.
5. If o and 9B are sentences, then (d — 9B) is a sentence.
6. If o and 9 are sentences, then (4 < 9B) is a sentence.

7. Nothing else is a sentence.

Definitions like this are called recursive. Recursive definitions begin with
some specifiable base elements, and then present ways to generate indefinitely
many more elements by compounding together previously established ones. To
give you a better idea of what a recursive definition is, we can give a recursive
definition of the idea of an ancestor of mine. We specify a base clause.

* My parents are ancestors of mine.
and then offer further clauses like:

o If x is an ancestor of mine, then x’s parents are ancestors of mine.
* Nothing else is an ancestor of mine.
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Using this definition, we can easily check to see whether someone is my ancestor:
just check whether she is the parent of the parent of...one of my parents. And
the same is true for our recursive definition of sentences of TFL. Just as the
recursive definition allows complex sentences to be built up from simpler parts,
the definition allows us to decompose sentences into their simpler parts. Once
we get down to atomic sentences, then we know we are ok.

Let’s consider some examples.

Suppose we want to know whether or not ‘-—=—D’ is a sentence of TFL.
Looking at the second clause of the definition, we know that ‘=—-D’ is a sentence
if ‘==D’ is a sentence. So now we need to ask whether or not ‘=—D’ is a sentence.
Again looking at the second clause of the definition, ‘-—D’ is a sentence if ‘=D’
is. So, ‘=D’ is a sentence if ‘D’ is a sentence. Now ‘D’ is an atomic sentence of
TFL, so we know that ‘D’ is a sentence by the first clause of the definition. So
for a compound sentence like ‘-—=—D’, we must apply the definition repeatedly.
Eventually we arrive at the atomic sentences from which the sentence is built
up.

Next, consider the example ‘~(P A—(-~Q V R))’. Looking at the second clause
of the definition, this is a sentence if ‘(P A =(=Q V R))’ is, and this is a sentence
if both ‘P’ and ‘~(—Q V R)’ are sentences. The former is an atomic sentence, and
the latter is a sentence if (—=Q V R)’ is a sentence. It is. Looking at the fourth
clause of the definition, this is a sentence if both ‘-0’ and ‘R’ are sentences, and
both are!

Ultimately, every sentence is constructed nicely out of atomic sentences.
When we are dealing with a sentence other than an atomic sentence, we can see
that there must be some sentential connective that was introduced last, when
constructing the sentence. We call that connective the MAIN LOGICAL OPERA-
TOR of the sentence. In the case of ‘=—-D’, the main logical operator is the very
first ‘=’ sign. In the case of ‘(P A =(=Q V R))’, the main logical operator is ‘A’.
In the case of ‘((=E V F) — =—=G)’, the main logical operator is ‘—’.

As a general rule, you can find the main logical operator for a sentence by
using the following method:

o If the first symbol in the sentence is °

operator
* Otherwise, start counting the brackets. For each open-bracket, i.e. ‘(,
add 1; for each closing-bracket, i.e. ‘)’, subtract 1. When your count is at
< b

exactly 1, the first operator you hit (apart from a ‘=’) is the main logical
operator.

—’, then that is the main logical

(Note: if you do use this method, then make sure to include all/ the brackets
in the sentence, rather than omitting some as per the conventions of §6.3!)
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The recursive structure of sentences in TFL will be important when we con-
sider the circumstances under which a particular sentence would be true or false.
The sentence ‘-——D’ is true if and only if the sentence ‘-—D’ is false, and so on
through the structure of the sentence, until we arrive at the atomic components.
We will return to this point in Part III.

The recursive structure of sentences in TFL also allows us to give a formal
definition of the scope of a negation (mentioned in §5.2). The scope of a ‘=’ is
the subsentence for which ‘=’ is the main logical operator. Consider a sentence
like:

(P A(~(R A B) & Q))

which was constructed by conjoining ‘P’ with ‘(=(R A B) < Q). This last
sentence was constructed by placing a biconditional between ‘~(R A B)’ and ‘Q’.
The former of these sentences—a subsentence of our original sentence—is a
sentence for which ‘=’ is the main logical operator. So the scope of the negation
is just ‘(R A B)’. More generally:

The scoOPE of a connective (in a sentence) is the subsentence for which
that connective is the main logical operator.

6.3 Bracketing conventions

Strictly speaking, the brackets in ‘(Q A R)’ are an indispensable part of the
sentence. Part of this is because we might use ‘(Q A R)’ as a subsentence in a
more complicated sentence. For example, we might want to negate ‘(Q A R)’,
obtaining ‘=(Q A R)’. If we just had ‘Q A R’ without the brackets and put a
negation in front of it, we would have ‘-Q A R’. It is most natural to read this as
meaning the same thing as ‘(=Q AR)’, but as we saw in §5.2, this is very different
from ‘=(Q A R)’.

Strictly speaking, then, ‘Q A R’ is not a sentence. It is a mere expression.

When working with TFL, however, it will make our lives easier if we are
sometimes a little less than strict. So, here are some convenient conventions.

First, we allow ourselves to omit the outermost brackets of a sentence. Thus
we allow ourselves to write ‘Q A R’ instead of the sentence ‘(Q A R)’. However,
we must remember to put the brackets back in, when we want to embed the
sentence into a more complicated sentence!

Second, it can be a bit painful to stare at long sentences with many nested
pairs of brackets. To make things a bit easier on the eyes, we will allow ourselves
to use square brackets, ‘[’ and I, instead of rounded ones. So there is no logical
difference between ‘(P Vv Q)’ and ‘[P Vv Q]’, for example.
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Combining these two conventions, we can rewrite the unwieldy sentence
(H—= 1DV — H)A(JVK))
rather more clearly as follows:
[(H—->D) Vv - H)|A(JVK)

The scope of each connective is now much easier to pick out.

Practice exercises

A. For each of the following: (a) Is it a sentence of TFL, strictly speaking? (b)
Is it a sentence of TFL, allowing for our relaxed bracketing conventions?

(4)

J374 NV = 374

_|_|_|_|F

-AS

(G A-G)

(A4— (AAN-F) V(D < E)
(Z o 8)— WIAL]VX]
(F e -D— J)v(CAD)

PN S M

B. Are there any sentences of TFL that contain no atomic sentences? Explain
your answer.

C. What is the scope of each connective in the sentence

[(H—->D) v - H)]|A(JVK)



CHAPTER 7

Use and mention

In this Part, we have talked a lot about sentences. So we should pause to explain
an important, and very general, point.

7.1 Quotation conventions

Consider these two sentences:

¢ Justin Trudeau is the Prime Minister.
* The expression ‘Justin Trudeau’ is composed of two uppercase letters and
eleven lowercase letters

When we want to talk about the Prime Minister, we use his name. When we
want to talk about the Prime Minister’s name, we mention that name, which we
do by putting it in quotation marks.

There is a general point here. When we want to talk about things in the
world, we just use words. When we want to talk about words, we typically have
to mention those words. We need to indicate that we are mentioning them, rather
than using them. To do this, some convention is needed. We can put them in
quotation marks, or display them centrally in the page (say). So this sentence:

* ‘Justin Trudeau’ is the Prime Minister.

says that some expression is the Prime Minister. That’s false. The man is the
Prime Minister; his zame isn’t. Conversely, this sentence:

* Justin Trudeau is composed of two uppercase letters and eleven lowercase
letters.

also says something false: Justin Trudeau is a man, made of flesh rather than
letters. One final example:
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o “‘Justin Trudeau’” is the name of ‘Justin Trudeau’.

On the left-hand-side, here, we have the name of a name. On the right hand side,
we have a name. Perhaps this kind of sentence only occurs in logic textbooks,
but it is true nonetheless.

Those are just general rules for quotation, and you should observe them
carefully in all your work! To be clear, the quotation-marks here do not indicate
indirect speech. They indicate that you are moving from talking about an object,
to talking about the name of that object.

7.2 Object language and metalanguage

These general quotation conventions are of particular importance for us. Af-
ter all, we are describing a formal language here, TFL, and so we are often
mentioning expressions from TFL.

When we talk about a language, the language that we are talking about is
called the OBJECT LANGUAGE. The language that we use to talk about the object
language is called the METALANGUAGE.

For the most part, the object language in this chapter has been the formal
language that we have been developing: TFL. The metalanguage is English. Not
conversational English exactly, but English supplemented with some additional
vocabulary which helps us to get along.

Now, we have used italic uppercase letters for atomic sentences of TFL:

A,B,C, Z, A1, By, Ags, J375, - - -

These are sentences of the object language (TFL). They are not sentences of
English. So we must not say, for example:

e D is an atomic sentence of TFL.

Obviously, we are trying to come out with an English sentence that says some-
thing about the object language (TFL), but ‘D’ is a sentence of TFL, and not
part of English. So the preceding is gibberish, just like:

¢ Schnee ist weil} is a German sentence.
What we surely meant to say, in this case, is:
e ‘Schnee ist weiB’ is a German sentence.

Equally, what we meant to say above is just:
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e ‘D’ is an atomic sentence of TFL.

The general point is that, whenever we want to talk in English about some
specific expression of TFL, we need to indicate that we are mentioning the ex-
pression, rather than using it. We can either deploy quotation marks, or we can
adopt some similar convention, such as placing it centrally in the page.

7.3 Metavariables
However, we do not just want to talk about specific expressions of TFL. We also
want to be able to talk about any arbitrary sentence of TFL. Indeed, we had to
do this in §6.2, when we presented the recursive definition of a sentence of TFL.
We used uppercase script letters to do this, namely:
A, B, 6, 9D,...

These symbols do not belong to TFL. Rather, they are part of our (augmented)
metalanguage that we use to talk about any expression of TFL. To repeat the
second clause of the recursive definition of a sentence of TFL, we said:

2. If o is a sentence, then —d is a sentence.
This talks about arbitrary sentences. If we had instead offered:

o If ‘4’ is a sentence, then ‘=4’ is a sentence.

this would not have allowed us to determine whether ‘-B’ is a sentence. To
emphasize, then:

‘d’ is a symbol (called a METAVARIABLE) in augmented English, which we
use to talk about any TFL expression. ‘4’ is a particular atomic sentence
of TFL.

But this last example raises a further complication for our quotation conven-
tions. We have not included any quotation marks in the second clause of our
recursive definition. Should we have done so?

The problem is that the expression on the right-hand-side of this rule is not
a sentence of English, since it contains ‘-’. So we might try to write:

o’. If o is a sentence, then ‘~gf’ is a sentence.
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But this is no good: ‘—df’ is not a TFL sentence, since ‘d’ is a symbol of (aug-
mented) English rather than a symbol of TFL.
What we really want to say is something like this:

2”. If d is a sentence, then the result of concatenating the symbol ‘-’ with the
sentence ¢ is a sentence.

This is impeccable, but rather long-winded. But we can avoid long-windedness
by creating our own conventions. We can perfectly well stipulate that an expres-
sion like ‘~9f’ should simply be read directly in terms of rules for concatenation.
So, officially, the metalanguage expression ‘~g’ simply abbreviates:

the result of concatenating the symbol ‘=’ with the sentence o

and similarly, for expressions like ‘(s A B)’, ‘(A V RB)’, etc.

7.4 Quotation conventions for arguments

One of our main purposes for using TFL is to study arguments, and that will be
our concern in Parts IIl and IV. In English, the premises of an argument are often
expressed by individual sentences, and the conclusion by a further sentence.
Since we can symbolize English sentences, we can symbolize English arguments
using TFL. Thus we might ask whether the argument whose premises are the
TFL sentences ‘4’ and ‘4 — C’, and whose conclusion is the TFL sentence ‘C’,
is valid. However, it is quite a mouthful to write that every time. So instead we
will introduce another bit of abbreviation. This:

A, dg, ..., .. 6
abbreviates:

the argument with premises 1, dy, ..., 9, and conclusion €

To avoid unnecessary clutter, we will not regard this as requiring quotation
marks around it. (Note, then, that “.".” is a symbol of our augmented metalan-
guage, and not a new symbol of TFL.)



PART Il

Truth tables



Characteristic
truth tables

Any non-atomic sentence of TFL is composed of atomic sentences with sentential
connectives. The truth value of the compound sentence depends only on the
truth value of the atomic sentences that comprise it. In order to know the truth
value of ‘(D A E)’, for instance, you only need to know the truth value of ‘D’ and
the truth value of ‘£’.

We introduced five connectives in chapter 5, so we simply need to explain
how they map between truth values. For convenience, we will abbreviate “True’
with “T” and ‘False’ with ‘F’. (But just to be clear, the two truth values are True
and False; the truth values are not letzers!)

Negation. For any sentence d: If d is true, then —d is false. If =d is true, then
d is false. We can summarize this in the characteristic truth table for negation:

oo R

-
F
T

Conjunction. For any sentences o and 9B, AARB is true if and only if both
A and 9B are true. We can summarize this in the characteristic truth table for
conjunction:
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oo g R
I R I Y
oo | >

Note that conjunction is symmetrical. The truth value for of A &R is always the
same as the truth value for & A d.

Disjunction. Recall that ‘v’ always represents inclusive or. So, for any sen-
tences A and 9B, 4 vV R is true if and only if either o or AR is true. We can
summarize this in the characteristic truth table for disjunction:

d B | AVARB
T T T
T F T
F T T
F F F

Like conjunction, disjunction is symmetrical.

Conditional. We’re just going to come clean and admit it: Conditionals are
a right old mess in TFL. Exactly how much of a mess they are is philosophically
contentious. We’ll discuss a few of the subtleties in §8§9.3 and 11.5. For now,
we are going to stipulate the following:  — 9B is false if and only if o is true
and B is false. We can summarize this with a characteristic truth table for the
conditional.

d RB|d—>RB
T T T
T F F
F T T
F F T

The conditional is asymmetrical. You cannot swap the antecedent and consequent
without changing the meaning of the sentence, because § — 9% has a very
different truth table from % — .

Biconditional. Since a biconditional is to be the same as the conjunction of
a conditional running in each direction, we will want the truth table for the
biconditional to be:



46 CHAPTER 8. CHARACTERISTIC TRUTH TABLES

d B|deRB
T T T
T F F
F T F
F F T

Unsurprisingly, the biconditional is symmetrical.



CHAPTER 9

Truth-functional
connectives

9.1 The idea of truth-functionality

Let’s introduce an important idea.

A connective is TRUTH-FUNCTIONAL iff the truth value of a sentence with
that connective as its main logical operator is uniquely determined by the
truth value(s) of the constituent sentence(s).

Every connective in TFL is truth-functional. The truth value of a negation
is uniquely determined by the truth value of the unnegated sentence. The truth
value of a conjunction is uniquely determined by the truth value of both con-
juncts. The truth value of a disjunction is uniquely determined by the truth
value of both disjuncts, and so on. To determine the truth value of some TFL
sentence, we only need to know the truth value of its components.

This is what gives TFL its name: it is ¢ruth-functional logic.

In plenty of languages there are connectives that are not truth-functional. In
English, for example, we can form a new sentence from any simpler sentence
by prefixing it with ‘It is necessarily the case that...’. The truth value of this
new sentence is not fixed solely by the truth value of the original sentence. For
consider two true sentences:

1. 2+2=4
2. Shostakovich wrote fifteen string quartets

Whereas it is necessarily the case that 2 + 2 = 4, it is not necessarily the case
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that Shostakovich wrote fifteen string quartets. If Shostakovich had died earlier,
he would have failed to finish Quartet no. 15; if he had lived longer, he might
have written a few more. So ‘It is necessarily the case that...’ is a connective of
English, but it is not truth-functional.

9.2 Symbolizing versus translating

All of the connectives of TFL are truth-functional, but more than that: they
really do nothing but map us between truth values.

When we symbolize a sentence or an argument in TFL, we ignore everything
besides the contribution that the truth values of a component might make to the
truth value of the whole. There are subtleties to our ordinary claims that far
outstrip their mere truth values. Sarcasm; poetry; snide implicature; emphasis;
these are important parts of everyday discourse, but none of this is retained in
TFL. As remarked in §5, TFL cannot capture the subtle differences between the
following English sentences:

Dana is a logician and Dana is a nice person

Although Dana is a logician, Dana is a nice person

Dana is a logician despite being a nice person

Dana is a nice person, but also a logician

Dana’s being a logician notwithstanding, he is a nice person

CANL Sl S S

All of the above sentences will be symbolized with the same TFL sentence,
perhaps ‘L A N’.

We keep saying that we use TFL sentences to symbolize English sentences.
Many other textbooks talk about translating English sentences into TFL. How-
ever, a good translation should preserve certain facets of meaning, and—as we
have just pointed out—TFL just cannot do that. This is why we will speak of
symbolizing English sentences, rather than of ¢ranslating them.

This affects how we should understand our symbolization keys. Consider a
key like:

L: Dana is a logician.
N: Dana is a nice person.

Other textbooks will understand this as a stipulation that the TFL sentence ‘L’
should mean that Dana is a logician, and that the TFL sentence ‘N’ should
mean that Dana is a nice person, but TFL just is totally unequipped to deal with
meaning. The preceding symbolization key is doing no more and no less than
stipulating that the TFL sentence ‘L’ should take the same truth value as the
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English sentence ‘Dana is a logician’ (whatever that might be), and that the TFL
sentence ‘N’ should take the same truth value as the English sentence ‘Dana is
a nice person’ (whatever that might be).

When we treat a TFL sentence as symbolizing an English sentence, we are
stipulating that the TFL sentence is to take the same truth value as that
English sentence.

9.3 Indicative versus subjunctive conditionals

We want to bring home the point that TFL can only deal with truth functions by
considering the case of the conditional. When we introduced the characteristic
truth table for the material conditional in §8, we did not say anything to justify
it. Let’s now offer a justification, which follows Dorothy Edgington.*

Suppose that Lara has drawn some shapes on a piece of paper, and coloured
some of them in. We have not seen them, but nevertheless claim:

If any shape is grey, then that shape is also circular.

As it happens, Lara has drawn the following:

® O

In this case, our claim is surely true. Shapes C and D are not grey, and so can
hardly present counterexamples to our claim. Shape A is grey, but fortunately it
is also circular. So my claim has no counterexamples. It must be true. That
means that each of the following instances of our claim must be true too:

o If A is grey, then it is circular (true antecedent, true consequent)
o If C is grey, then it is circular (false antecedent, true consequent)
» If D is grey, then it is circular (false antecedent, false consequent)

However, if Lara had drawn a fourth shape, thus:

OO

1Dorothy Edgington, ‘Conditionals’, 2006, in the Stanford Encyclopedia of Philosophy (http:
Iplato.stanford.edw/entries/conditionals/).
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then our claim would be false. So it must be that this claim is false:
o If B is grey, then it is circular (true antecedent, false consequent)

Now, recall that every connective of TFL has to be truth-functional. This means
that merely the truth values of the antecedent and consequent must uniquely
determine the truth value of the conditional as a whole. Thus, from the truth
values of our four claims—which provide us with all possible combinations of
truth and falsity in antecedent and consequent—we can read off the truth table
for the material conditional.

What this argument shows is that ‘=’ is the best candidate for a truth-
functional conditional. Otherwise put, it is the best conditional that TFL can pro-
vide. But is it any good, as a surrogate for the conditionals we use in everyday
language? Consider two sentences:

1. If Mitt Romney had won the 2012 election, then he would have been the
45th President of the USA.

2. If Mitt Romney had won the 2012 election, then he would have turned
into a helium-filled balloon and floated away into the night sky.

Sentence 1 is true; sentence 2 is false, but both have false antecedents and
false consequents. So the truth value of the whole sentence is not uniquely
determined by the truth value of the parts. Do not just blithely assume that you
can adequately symbolize an English ‘if ..., then ...’ with TFLs ‘—=’.

The crucial point is that sentences 1 and 2 employ subjunctive conditionals,
rather than indicative conditionals. They ask us to imagine something contrary
to fact—Mitt Romney lost the 2012 election—and then ask us to evaluate what
would have happened in that case. Such considerations just cannot be tackled
using ‘—’.

We will say more about the difficulties with conditionals in §11.5. For now,
we will content ourselves with the observation that ‘=’ is the only candidate
for a truth-functional conditional for TFL, but that many English conditionals
cannot be represented adequately using ‘=’. TFL is an intrinsically limited
language.



CHAPTER 10

Complete truth
tables

So far, we have considered assigning truth values to TFL sentences indirectly.
We have said, for example, that a TFL sentence such as ‘B’ is to take the same
truth value as the English sentence ‘Big Ben is in London’ (whatever that truth
value may be), but we can also assign truth values directly. We can simply
stipulate that ‘B’ is to be true, or stipulate that it is to be false.

A VALUATION is any assignment of truth values to particular atomic sen-
tences of TFL.

The power of truth tables lies in the following. Each row of a truth table
represents a possible valuation. The entire truth table represents all possible
valuations; thus the truth table provides us with a means to calculate the truth
values of complex sentences, on each possible valuation. This is easiest to ex-
plain by example.

10.1 A worked example

Consider the sentence ‘(H A I) — H’. There are four possible ways to assign
True and False to the atomic sentence ‘H’ and ‘/’—four possible valuations—
which we can represent as follows:

5
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| (HAI)>H

oo |

1
T
F
T
F

To calculate the truth value of the entire sentence (H A I) — H’, we first copy
the truth values for the atomic sentences and write them underneath the letters
in the sentence:

H 1| HN)>H
T T|T T T
T F| T F T
F T|F T F
F F| F F F

Now consider the subsentence ‘(H A I)’. This is a conjunction, (o A &), with
‘H’ as 9l and with ‘I’ as 9. The characteristic truth table for conjunction gives
the truth conditions for any sentence of the form (s A %), whatever o and %
might be. It represents the point that a conjunction is true iff both conjuncts are
true. In this case, our conjuncts are just ‘A’ and ‘I’. They are both true on (and
only on) the first line of the truth table. Accordingly, we can calculate the truth
value of the conjunction on all four rows.

oA NGB
H I|HAN)—H
T T| TTT T
T F| TFF T
F T| FFT F
F F| FFF F

Now, the entire sentence that we are dealing with is a conditional, 4 — 9, with
‘(HAI) as 4 and with ‘A’ as 9. On the second row, for example, ‘(H A ) is
false and ‘H’ is true. Since a conditional is true when the antecedent is false, we
write a “T” in the second row underneath the conditional symbol. We continue
for the other three rows and get this:

A —R
H I|HAN)—>H
T T T TT
T F F TT
F T F TF
F F F TF
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The conditional is the main logical operator of the sentence, so the column of
“T’s underneath the conditional tells us that the sentence ‘(H A I) — H’ is true
regardless of the truth values of ‘4’ and ‘I’. They can be true or false in any
combination, and the compound sentence still comes out true. Since we have
considered all four possible assignments of truth and falsity to ‘4’ and ‘I’—
since, that is, we have considered all the different valuations—we can say that
‘(H N1I) — H’ is true on every valuation.

In this example, we have not repeated all of the entries in every column in
every successive table. When actually writing truth tables on paper, however, it
is impractical to erase whole columns or rewrite the whole table for every step.
Although it is more crowded, the truth table can be written in this way:

H I|HA)-H
T T| TTTTT
T F| TFFTT
F T| FFTTF
F F| FFFTF

Most of the columns underneath the sentence are only there for bookkeeping
purposes. The column that matters most is the column underneath the main
logical operator for the sentence, since this tells you the truth value of the entire
sentence. We have emphasized this, by putting this column in bold. When you
work through truth tables yourself, you should similarly emphasize it (perhaps
by underlining).

10.2 Building complete truth tables

A COMPLETE TRUTH TABLE has a line for every possible assignment of True and
False to the relevant atomic sentences. Each line represents a valuation, and a
complete truth table has a line for all the different valuations.

The size of the complete truth table depends on the number of different
atomic sentences in the table. A sentence that contains only one atomic sentence
requires only two rows, as in the characteristic truth table for negation. This is
true even if the same letter is repeated many times, as in the sentence ‘[(C <
C) = C]A—=(C — C)’. The complete truth table requires only two lines because
there are only two possibilities: ‘C’ can be true or it can be false. The truth
table for this sentence looks like this:

C|[(CoC)>CIA-(C>C)
T| TTT TTFF TTT
F| FTF FF FF FTF
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Looking at the column underneath the main logical operator, we see that the
sentence is false on both rows of the table; i.e., the sentence is false regardless
of whether ‘C’ is true or false. It is false on every valuation.

A sentence that contains two atomic sentences requires four lines for a com-
plete truth table, as in the characteristic truth tables for our binary connectives,
and as in the complete truth table for ‘(H A1) — H’.

A sentence that contains three atomic sentences requires eight lines:

M A(NVP)
TTTTT
TTTTF
TTFTT
TFFFF
FFTTT
FFTTF
FFFTT
FFFFF

s8R
S S RN IS S g
R

From this table, we know that the sentence ‘M A (N V P)’ can be true or false,
depending on the truth values of ‘A, ‘N’, and ‘P’.

A complete truth table for a sentence that contains four different atomic
sentences requires 16 lines. Five letters, 32 lines. Six letters, 64 lines. And so
on. To be perfectly general: If a complete truth table has n different atomic
sentences, then it must have 2" lines.

In order to fill in the columns of a complete truth table, begin with the right-
most atomic sentence and alternate between ‘I’ and ‘F’. In the next column to
the left, write two “I’s, write two ‘F’s, and repeat. For the third atomic sentence,
write four “I’s followed by four ‘F’s. This yields an eight line truth table like the
one above. For a 16 line truth table, the next column of atomic sentences should
have eight “T’s followed by eight ‘I’s. For a 32 line table, the next column would
have 16 “I’s followed by 16 ‘F’s, and so on.

10.3 More about brackets

Consider these two sentences:

(AAB)AC)
(AN(BAQ))

These are truth functionally equivalent. Consequently, it will never make any
difference from the perspective of truth value — which is all that TFL cares about
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(see §9) — which of the two sentences we assert (or deny). Even though the order
of the brackets does not matter as to their truth, we should not just drop them.
The expression

ANBAC

is ambiguous between the two sentences above. The same observation holds for
disjunctions. The following sentences are logically equivalent:

((4AvB)v(O)
(Av BV Q)

But we should not simply write:
AvVBVC

In fact, it is a specific fact about the characteristic truth table of v and A that
guarantees that any two conjunctions (or disjunctions) of the same sentences
are truth functionally equivalent, however you place the brackets. But be careful.
These two sentences have different truth tables:

((4—-> B)—> 0C)
A4—- (B —0)

So if we were to write:
A—>B—->C

it would be dangerously ambiguous. So we must not do the same with condi-
tionals. Equally, these sentences have different truth tables:

((AvB)AC)
Av(BAQ)

So if we were to write:
AVBAC

it would be dangerously ambiguous. Never write this. The moral is: never drop
brackets.
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Practice exercises

A. Offer complete truth tables for each of the following:

©

PN S @ P K

A— A

C - -C

(4 < B) & =(4 & -B)
(4> B)V(B — A)
(AAB) > (BV A)
—(AV B) & (=A A —=B)
[(AAB)A~(AAB)| AC
[(AAB)AC]— B
=[(C v 4) v B]

B. Check all the claims made in introducing the new notational conventions in
§10.3, i.e. show that:

B @ e

‘(AN B)AC) and ‘(4 A (B A C)) have the same truth table

‘(Av B)Vv C) and ‘(4 Vv (B Vv (C)) have the same truth table

‘(Av B)AC) and ‘(A V (B A C)) do not have the same truth table
‘((4—> B) > C) and ‘(4 — (B — ())’ do not have the same truth table

Also, check whether:

5.

‘(4 < B) < C) and ‘(4 < (B < C))’ have the same truth table

C. Write complete truth tables for the following sentences and mark the column
that represents the possible truth values for the whole sentence.

CANL ol S S

(S o P —29)
-[(XAY)V((XVY)]

(A4 — B) & (=B & —-4)

[C & (DVE)]A-C
-(GABAH)) - (GV(BVH))

D. Write complete truth tables for the following sentences and mark the column
that represents the possible truth values for the whole sentence.

S w0 e

(DA=-D)—> G
(~PV-M)yeM
-=(=4 A =B)
[DAR)—>I]— ~(DVR)
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5. =[(D & 0) & Al = (=D A 0)

If you want additional practice, you can construct truth tables for any of the
sentences and arguments in the exercises for the previous chapter.



CHAPTER 11

Semantic concepts

In the previous section, we introduced the idea of a valuation and showed how
to determine the truth value of any TFL sentence, on any valuation, using a
truth table. In this section, we will introduce some related ideas, and show how
to use truth tables to test whether or not they apply.

11.1 Tautologies and contradictions

In §3, we explained necessary truth and necessary falsity. Both notions have surro-
gates in TFL. We will start with a surrogate for necessary truth.

d is a TAUTOLOGY iff it is true on every valuation. ]

We can determine whether a sentence is a tautology just by using truth tables.
If the sentence is true on every line of a complete truth table, then it is true on
every valuation, so it is a tautology. In the example of §10, ‘(H AI) - H’is a
tautology.

This is only, though, a surrogate for necessary truth. There are some nec-
essary truths that we cannot adequately symbolize in TFL. An example is
2+ 2 = 4. This must be true, but if we try to symbolize it in TFL, the best
we can offer is an atomic sentence, and no atomic sentence is a tautology. Still,
if we can adequately symbolize some English sentence using a TFL sentence
which is a tautology, then that English sentence expresses a necessary truth.

We have a similar surrogate for necessary falsity:

d is a CONTRADICTION iff it is false on every valuation.

We can determine whether a sentence is a contradiction just by using truth
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tables. If the sentence is false on every line of a complete truth table, then
it is false on every valuation, so it is a contradiction. In the example of §10,
‘I(C < C) — C]A—~(C — C) is a contradiction.

11.2 Logical equivalence

Here is a similar useful notion:

o and % are LOGICALLY EQUIVALENT iff, for every valuation, their truth
values agree, i.e. if there is no valuation in which they have opposite truth
values.

We have already made use of this notion, in effect, in §10.3; the point was
that (4 A B) A C’ and ‘4 A (B A C) are logically equivalent. Again, it is easy to
test for logical equivalence using truth tables. Consider the sentences ‘~(P Vv Q)’
and ‘-P A —~Q’. Are they logically equivalent? To find out, we construct a truth
table.

P Q|-(PvQ) | -PA-Q
T T|FTTT | FTFFT
T F|FTTF | FTFTF
F T
F F

FFTT | TFFFT
TFFF | TFTTF

Look at the columns for the main logical operators; negation for the first sen-
tence, conjunction for the second. On the first three rows, both are false. On
the final row, both are true. Since they match on every row, the two sentences
are logically equivalent.

11.3 Consistency

In §3, we said that sentences are jointly possible iff it is possible for all of them
to be true at once. We can offer a surrogate for this notion too:

Aq, Ay, ..., l, are JOINTLY LOGICALLY CONSISTENT iff there is some val-
uation which makes them all true.

Derivatively, sentences are jointly logically inconsistent if there is no valua-
tion that makes them all true. Again, it is easy to test for joint logical consistency
using truth tables.
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11.4 Entailment and validity

The following idea is closely related to that of joint consistency:

The sentences slq, o, . .., 9, ENTAIL the sentence 6 if there is no valu-
ation of the atomic sentences which makes all of sf1, 99, ...,d, true and
@ false.

Again, it is easy to test this with a truth table. Let us check whether ‘=L —
(/ VL) and ‘-L’ entail ‘J’, we simply need to check whether there is any
valuation which makes both ‘<L — (/ Vv L) and ‘-~L’ true whilst making ‘/’
false. So we use a truth table:

L|-Lo>(JVvL) | -L|J
T|FTTTTT | FT|T
F T
T F

TFTTTF | TF
FTTFTT | FT
F|TFFFFF | TF

o 3~

iy

The only row on which both‘~L — (/ vV L)’ and ‘=L’ are true is the second row,
and that is a row on which /’ is also true. So ‘-L — (/ V L)’ and ‘~L’ entail
‘J,.

We now make an important observation:

l If dq,d,...,94, entail 6, then oA, Ay, ..., o, .". 6 is valid.

Here’s why. If 1, oy, . . ., o, entail €, then there is no valuation which makes
all of dq,dy,...,d, true whilst making € false. This means that it is logically
impossible for <1, o, . .., d, all to be true whilst € is false. But this is just what
it takes for an argument, with premises o1, 9, ..., d, and conclusion 6, to be
valid!

In short, we have a way to test for the validity of English arguments. First,
we symbolize them in TFL, as having premises ol1, s, ..., d,, and conclusion
6. Then we test for entailment using truth tables.

11.5 The limits of these tests

We have reached an important milestone: a test for the validity of arguments!

However, we should not get carried away just yet. It is important to understand

the limits of our achievement. We will illustrate these limits with three examples.
First, consider the argument:
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1. Daisy has four legs. So Daisy has more than two legs.

To symbolize this argument in TFL, we would have to use two different atomic
sentences — perhaps ‘F” and ‘7’ —for the premise and the conclusion respectively.
Now, it is obvious that ‘/” does not entail ‘7’. The English argument surely
seems valid, though!

Second, consider the sentence:

2. Jan is neither bald nor not-bald.

To symbolize this sentence in TFL, we would offer something like ‘=] A == J’.
This a contradiction (check this with a truth-table), but sentence 2 does not
itself seem like a contradiction; for we might have happily go on to add Jan is
on the borderline of baldness’!

Third, consider the following sentence:

3. It’s not the case that, if God exists, She answers malevolent prayers.

Symbolizing this in TFL, we would offer something like ‘~+(G — M)’. Now,
‘(G — M)’ entails ‘G’ (again, check this with a truth table). So if we symbolize
sentence 3 in TFL, it seems to entail that God exists. But that’s strange: surely
even an atheist can accept sentence 3, without contradicting herself!

One lesson of this is that the symbolization of 3 as ‘+(G — M)’ shows that
3 does not express what we intend. Perhaps we should rephrase it as

3. If God exists, She does not answer malevolent prayers.

and symbolize 3 as ‘G — —M’. Now, if atheists are right, and there is no God,
then ‘G’ is false and so ‘G — =M’ is true, and the puzzle disappears. However,
if ‘G’ is false, ‘G — M’, i.e. ‘If God exists, She answers malevolent prayers’, is
also true!

In different ways, these four examples highlight some of the limits of working
with a language (like TFL) that can only handle truth-functional connectives.
Moreover, these limits give rise to some interesting questions in philosophical
logic. The case of Jan’s baldness (or otherwise) raises the general question of
what logic we should use when dealing with vague discourse. The case of the
atheist raises the question of how to deal with the (so-called) paradoxes of the
material conditional. Part of the purpose of this course is to equip you with the
tools to explore these questions of philosophical logic. But we have to walk before
we can run; we have to become proficient in using TFL, before we can adequately
discuss its limits, and consider alternatives.
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11.6 The double-turnstile

We are going to use the notion of entailment rather a lot in this course. It will
help us, then, to introduce a symbol that abbreviates it. Rather than saying that
the TFL sentences o1, 9y, ... and o, together entail ‘6, we will abbreviate this
by:

A, Ag, ..., Ay E @

The symbol ‘¢’ is known as the double-turnstile, since it looks like a turnstile with
two horizontal beams.

Let me be clear. ‘¢’ is not a symbol of TFL. Rather, it is a symbol of our
metalanguage, augmented English (recall the difference between object language
and metalanguage from §7). So the metalanguage sentence:

e PP—>QkQ
is just an abbreviation for the English sentence:
o The TFL sentences ‘P’ and ‘P — Q’ entail ‘Q’

Note that there is no limit on the number of TFL sentences that can be men-
tioned before the symbol ‘¢’. Indeed, we can even consider the limiting case:

EB

This says that there is no valuation which makes all the sentences mentioned
on the left hand side of ‘¢’ true whilst making € false. Since no sentences are
mentioned on the left hand side of ‘¢’ in this case, this just means that there is
no valuation which makes 6 false. Otherwise put, it says that every valuation
makes 6 true. Otherwise put, it says that € is a tautology. Equally:

AE

says that ¢ is a contradiction.

11.7 ‘¥’ versus ‘=’

We now want to compare and contrast ‘” and ‘—’.

Observe: o £ 6 iff there is no valuation of the atomic sentences that makes
o true and 6 false.

Observe: gl — 6 is a tautology iff there is no valuation of the atomic sen-
tences that makes sf — € false. Since a conditional is true except when its
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antecedent is true and its consequent false, dl — € is a tautology iff there is no
valuation that makes ¢ true and 6 false.

Combining these two observations, we see that o/ — € is a tautology iff
o £ 6. But there is a really, really important difference between ‘¢’ and ‘=

‘—’ is a sentential connective of TFL.
‘e’ is a symbol of augmented English.

Indeed, when ‘=’ is flanked with two TFL sentences, the result is a longer
TFL sentence. By contrast, when we use ‘¢’, we form a metalinguistic sentence
that mentions the surrounding TFL sentences.

Practice exercises

A. Revisit your answers to §10A. Determine which sentences were tautologies,
which were contradictions, and which were neither tautologies nor contradic-
tions.

B. Use truth tables to determine whether these sentences are jointly consistent,
or jointly inconsistent:

A—> A, -A— A, ANA, AV A
.AVB,A—-C,B—C
.BA(CVA),A— B,~(BVC()

. A (Bv(C),C— -4, 4A— -B

o o M

C. Use truth tables to determine whether each argument is valid or invalid.

A—A. . A

A— (AN=4).. -4

AV(B— A)..-A— =B
AVB,BvVC,-A..BAC

(BAA) - C,(CANA) —>B...(CAB)— A

CANL Sl S S

D. Determine whether each sentence is a tautology, a contradiction, or a con-
tingent sentence, using a complete truth table.

1. -BAB
2. =DV D
3. (AANB)V (B AA)
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4. =[4 — (B — A)]
5 Ao [A— (BA-B)
6. [(AAB) < B] » (4 — B)

E. Determine whether each the following sentences are logically equivalent using
complete truth tables. If the two sentences really are logically equivalent, write
“equivalent.” Otherwise write, “Not equivalent.”

1. A and -4

2. AN—-Aand =B < B

3. [(AvB)vCland [AV (BV (C)]
4. AVBAC)and (AVB)A(AV C)
5 [AN(AV B)] > Band 4 — B

F. Determine whether each the following sentences are logically equivalent using
complete truth tables. If the two sentences really are equivalent, write “equiva-
lent.” Otherwise write, “not equivalent.”

A— Aand A < A

-(4 — B) and -4 — —-B

AV Band -4 — B
(A—-B)—>Cand4— (B— ()
5 A< (B C)and AA(BAC)

B @ e

G. Determine whether each collection of sentences is jointly consistent or jointly
inconsistent using a complete truth table.

1. AN-B,-(A— B),B— A

AV B, A— —-A, B— —-B
~(-=AVB),A—-C,A— (B—C)
A— B, AN-B
A—->B—-C),A4—->B)—-C,A—>C

AT L S

H. Determine whether each collection of sentences is jointly consistent or jointly
inconsistent, using a complete truth table.

1. =B, A— B, 4

2. «(AVB),A— B,B— A
3. AV B, =B, =B — -4

4. A B, -BV-4, A— B
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(AvB)vC,-AvV-B,-CV-B

I. Determine whether each argument is valid or invalid, using a complete truth

table.

1.
2.
3.
4.

A—> B, B.. A

AoB B (C. . A C
A—>B,A—->C..B—->C
A—>B, B—>A. .A< B

J- Determine whether each argument is valid or invalid, using a complete truth

table.

1.
2.
3.
4.
5.

AV[A—> (4o 4)] .. 4
AVB,BVC,-B..ANC
A— B,-~A..-B

A, B..=(4— —-B)
~(ANB),AVB,A—B..C

K. Answer each of the questions below and justify your answer.

1.

Suppose that of and 9 are logically equivalent. What can you say about
A B?

Suppose that (s A B) — 6 is neither a tautology nor a contradiction.
What can you say about whether o/, .". € is valid?

Suppose that d, & and 6 are jointly inconsistent. What can you say about
(ANBAB)

Suppose that o is a contradiction. What can you say about whether o, R ¢
@?

Suppose that 6 is a tautology. What can you say about whether o, B £ 6?
Suppose that o and % are logically equivalent. What can you say about
(o v B)?

Suppose that d and 9B are not logically equivalent. What can you say
about (4 vV $)?

L. Consider the following principle:

Suppose d and 9B are logically equivalent. Suppose an argument contains
o (either as a premise, or as the conclusion). The validity of the argument
would be unaffected, if we replaced o with 9.

Is this principle correct? Explain your answer.
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Truth table
shortcuts

With practice, you will quickly become adept at filling out truth tables. In this
section, we want to give you some permissible shortcuts to help you along the
way.

12.1  Working through truth tables
You will quickly find that you do not need to copy the truth value of each atomic

sentence, but can simply refer back to them. So you can speed things up by
writing:

P Q| @PVvQ)o-P
T T T FF
T F T FF
F T T TT
F F F FT

You also know for sure that a disjunction is true whenever one of the disjuncts is
true. So if you find a true disjunct, there is no need to work out the truth values
of the other disjuncts. Thus you might offer:

P Q ‘ (—|P\/—IQ)V—|P
T T|F FF FF
T F|F TT TF
F T TT
F F TT

66
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Equally, you know for sure that a conjunction is false whenever one of the con-
juncts is false. So if you find a false conjunct, there is no need to work out the
truth value of the other conjunct. Thus you might offer:

P Q ‘ —1(P/\—|Q)/\—|P

T T FF
T F FF
F T|T F TT

F F|T F TT

A similar short cut is available for conditionals. You immediately know that a
conditional is true if either its consequent is true, or its antecedent is false. Thus
you might present:

P Q| (P>Q) >P)>P
T T T
T F T
F T T F T
F F T F T

So ‘(P — Q) — P) — P’ is a tautology. In fact, it is an instance of Peirce’s Law,
named after Charles Sanders Peirce.

12.2 Testing for validity and entailment

When we use truth tables to test for validity or entailment, we are checking for
bad lines: lines where the premises are all true and the conclusion is false. Note:

* Any line where the conclusion is true is not a bad line.
* Any line where some premise is false is not a bad line.

Since all we are doing is looking for bad lines, we should bear this in mind.
So: if we find a line where the conclusion is true, we do not need to evaluate
anything else on that line: that line definitely isn’t bad. Likewise, if we find a
line where some premise is false, we do not need to evaluate anything else on
that line.

With this in mind, consider how we might test the following for validity:

~L—> (JVL,-L..]

The first thing we should do is evaluate the conclusion. If we find that the
conclusion is frue on some line, then that is not a bad line. So we can simply
ignore the rest of the line. So at our first stage, we are left with something like:
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J L|-L>(vL | -L| ]
T T T
T F T
F T ? P | F
F F ? | F

where the blanks indicate that we are not going to bother doing any more in-
vestigation (since the line is not bad) and the question-marks indicate that we
need to keep investigating.

The easiest premise to evaluate is the second, so we next do that:

J L|-L>(vL) | -L|J
T T T
T F T
F T F | F
F F ? T |F

Note that we no longer need to consider the third line on the table: it will not
be a bad line, because (at least) one of premises is false on that line. Finally, we
complete the truth table:

| ~L—>(JVvL) | -L|

oo 1~

L J
T T
F T
T F
F F

F
T F F | T

The truth table has no bad lines, so the argument is valid. (Any valuation on
which all the premises are true is a valuation on which the conclusion is true.)

It might be worth illustrating the tactic again. Let us check whether the
following argument is valid

ANV B,=(AAC),=~(BA=D)..(=CVD)

At the first stage, we determine the truth value of the conclusion. Since this is
a disjunction, it is true whenever either disjunct is true, so we can speed things
along a bit. We can then ignore every line apart from the few lines where the
conclusion is false.
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A B C D|AVB | =(AAC)| =(BA=D) | (=CVD)
T T T T T
T T T F ? ? ? F F
T T F T T
T T F F T T
T F T T T
T F T F ? ? ? F F
T F F T T
T F F F T T
F T T T T
F T T F ? ? ? F F
F T F T T
F T F F T T
F F T T T
F F T F ? ? ? F F
F F F T T
F F F F T T

We must now evaluate the premises. We use shortcuts where we can:

AVB | = (AANC) | =(BA=D) | (=CV D)

T F T F

T

F F

M
AR
Mm-S E a0
MRS
—
HEEAESSESS S

T

If we had used no shortcuts, we would have had to write 256 “I’s or ‘F’s on this
table. Using shortcuts, we only had to write 37. We have saved ourselves a /ot
of work.
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We have been discussing shortcuts in testing for logically validity, but exactly
the same shortcuts can be used in testing for entailment. By employing a similar
notion of bad lines, you can save yourself a huge amount of work.

Practice exercises

A. Using shortcuts, determine whether each sentence is a tautology, a contra-
diction, or neither.

-BAB

-DvD

(AANB)V (BAA)

-[4 — (B — A)]

Ao [A— (BA-B)]
-(AANB)e— A

A— (BvVC0O)
(AAN-4) > (BV C)
(BAD) o [Ae (AV Q)]

© XN T



CHAPTER 13

Partial truth
tables

Sometimes, we do not need to know what happens on every line of a truth table.
Sometimes, just a line or two will do.

Tautology. In order to show that a sentence is a tautology, we need to show
that it is true on every valuation. That is to say, we need to know that it comes
out true on every line of the truth table. So we need a complete truth table.

To show that a sentence is not a tautology, however, we only need one line:
a line on which the sentence is false. Therefore, in order to show that some
sentence is not a tautology, it is enough to provide a single valuation—a single
line of the truth table—which makes the sentence false.

Suppose that we want to show that the sentence (U A T) — (S A W)’ is not
a tautology. We set up a PARTIAL TRUTH TABLE:

S T U W|UAT)>(SAW)
| F

We have only left space for one line, rather than 16, since we are only looking
for one line on which the sentence is false. For just that reason, we have filled in
‘F’ for the entire sentence.

The main logical operator of the sentence is a conditional. In order for the
conditional to be false, the antecedent must be true and the consequent must
be false. So we fill these in on the table:

S T U W|UAT)>(SAW)
| T F F

71



72 CHAPTER 13. PARTIAL TRUTH TABLES

In order for the (U A T')’ to be true, both ‘U’ and ‘T’ must be true.

S T U W|UAT)>(SAW)
T T | TTTF F

Now we just need to make ‘(S A W)’ false. To do this, we need to make at least
one of ‘S” and ‘W’ false. We can make both ‘S’ and ‘W’ false if we want. All
that matters is that the whole sentence turns out false on this line. Making an
arbitrary decision, we finish the table in this way:

S T U W|UAT)>(SAW)
F T T F|TTTFFFF

We now have a partial truth table, which shows that (U A T) — (S A W)’ is
not a tautology. Put otherwise, we have shown that there is a valuation which
makes ‘(U A T) — (§ A W)’ false, namely, the valuation which makes ‘S’ false,
‘T’ true, ‘U’ true and ‘W’ false.

Contradiction. Showing that something is a contradiction requires a com-
plete truth table: we need to show that there is no valuation which makes the
sentence true; that is, we need to show that the sentence is false on every line
of the truth table.

However, to show that something is no¢ a contradiction, all we need to do is
find a valuation which makes the sentence true, and a single line of a truth table
will suffice. We can illustrate this with the same example.

S T U W|[UAT)>(SAW)
| T

To make the sentence true, it will suffice to ensure that the antecedent is false.
Since the antecedent is a conjunction, we can just make one of them false. For no
particular reason, we choose to make ‘U’ false; and then we can assign whatever
truth value we like to the other atomic sentences.

S T U W|[UAT)>(SAW)
F T F F|FFTTFFF

Truth functional equivalence. To show that two sentences are logically
equivalent, we must show that the sentences have the same truth value on every
valuation. So this requires a complete truth table.

To show that two sentences are not logically equivalent, we only need to
show that there is a valuation on which they have different truth values. So this
requires only a one-line partial truth table: make the table so that one sentence
is true and the other false.
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Consistency. To show that some sentences are jointly consistent, we must
show that there is a valuation which makes all of the sentences true,so this
requires only a partial truth table with a single line.

To show that some sentences are jointly inconsistent, we must show that
there is no valuation which makes all of the sentence true. So this requires a
complete truth table: You must show that on every row of the table at least one
of the sentences is false.

Validity. To show that an argument is valid, we must show that there is no
valuation which makes all of the premises true and the conclusion false. So this
requires a complete truth table. (Likewise for entailment.)

To show that argument is invalid, we must show that there is a valuation
which makes all of the premises true and the conclusion false. So this requires
only a one-line partial truth table on which all of the premises are true and the
conclusion is false. (Likewise for a failure of entailment.)

This table summarises what is required:

Yes No
tautology? complete one-line partial
contradiction? complete one-line partial
equivalent? complete one-line partial
consistent? one-line partial complete
valid? complete one-line partial
entailment? complete one-line partial

Practice exercises

A. Use complete or partial truth tables (as appropriate) to determine whether
these pairs of sentences are logically equivalent:

A, -4

A, AV A
A—> A, A A

AV -B,A— B
AN-A,-B < B
—-(AAB),mAV —B
—|(A—>B), -A— -B
(A —> B), (=B — —4)

PN ST b
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B. Use complete or partial truth tables (as appropriate) to determine whether
these sentences are jointly consistent, or jointly inconsistent:

1. ANB,C — =B, C

A— B, B—C, A, -C
AVB,BVC,C— -4

A, B, C,-D, -E, F
AANBVC),=(ANC),~(BAC)
A— B, B—C,—-(4—- ()

ISR ANL Sl

C. Use complete or partial truth tables (as appropriate) to determine whether
each argument is valid or invalid:

LAV[A—> (4o 4)] .. 4
Ao =B A). . A
.A—>BB.. A
.AVB,BVC,-B..ANC
5 AoB B (C. . A< C

= W 0 -

D. Determine whether each sentence is a tautology, a contradiction, or a contin-
gent sentence. Justify your answer with a complete or partial truth table where
appropriate.

1. A— -4

A— (AAN(AV B))

(4— B) & (B— A)

A— =(AA(AV B))

-B — [(mA A A)V B]
—~(AV B) & (A A-B)
[(AAB)AC] — B
-[(C v 4)v B|
[AABYA=~(AAB)]|AC
(AAB)] - [(AANC)V (BAD)

© PO S »® D

i
e

E. Determine whether each sentence is a tautology, a contradiction, or a contin-
gent sentence. Justify your answer with a complete or partial truth table where
appropriate.

1. =(4V A4)
2. (A—> B)vV(B— A
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[(A—> B)—> A]—> A
=[(4— B)V (B — A)]
(AANB)V(AV B)
-(AAB) e A

A— (BVv ()
(AAN—-A4)—> (BVCO)
(BAD)o [Ae (AV 0)]
10. =[(4 — B) Vv (C — D)]

L XY o @

F. Determine whether each the following pairs of sentences are logically equiv-
alent using complete truth tables. If the two sentences really are logically equiv-
alent, write “equivalent.” Otherwise write, “not equivalent.”

Aand AV A

Aand AN A

AV -Band A —> B

(A — B) and (=B — —A)

—(AA B) and -4V —-B
(U->XVvX)vU)and -(X A(X A D))
((CA(N < (C)) o C)and (-—=N — C)
[(AVB)AC]and [AV (B A Q)]
(LACGYAI)and LV C

PN ST @ b

©

G. Determine whether each collection of sentences is jointly consistent or jointly
inconsistent. Justify your answer with a complete or partial truth table where
appropriate.

A—> A, -A— A, ANA AV A
A—>—|A,—|A—>A

AVB,A— C,B—C

AvVvB,A— C,B— C,-C
BA(CV A),A— B,~(BVC)
(A—>B)—>B,B—> (A< B),AVB
A Bv(C),C— -4, 4— -B
A< B,-BV-A4,A— B

A< B, A— C,B— D,—~(CV D)
(A A-B), B— —A, -B

CL XN T @ b K

-

H. Determine whether each argument is valid or invalid. Justify your answer
with a complete or partial truth table where appropriate.



76 CHAPTER 13. PARTIAL TRUTH TABLES

1. A—> (AAN-4).. -4

2. AVB,A—-B,B—>A.".A<— B

3. AV(B— A).". -4 — —-B

4. AVBA—- B, B—-A..ANB

5 (BANA) - C,(CANA) —-B..(CAB)— 4
6. «(~AV-B),A4—-C..A— (B— C)

7. AN(B— C),-CA(=B—-4)..CA-C
8 AANB,-A—-C,B—-D..AVB

9 A—B. . (ANB)V (—=AA-B)

O

10. -4 —- B,-B—> (C,~C > A4..-4— (=BV-0)

I. Determine whether each argument is valid or invalid. Justify your answer with
a complete or partial truth table where appropriate.

1. Ao—-(Be—A).. A

2. AVB,BVC,-A.".BAC

3. A->C,E—->(DVB),B—>-D..(AvC)V (B — (EAD))
4. AVB,C > A4,C—>B..A— (B—-C)

5 A= B,-BVA. .A< B



PART IV

Natural
deduction for
TFL



CHAPTER 14

The very idea of
natural deduction

Way back in §2, we said that an argument is valid iff it is impossible to make all
of the premises true and the conclusion false.

In the case of TFL, this led us to develop truth tables. Each line of a complete
truth table corresponds to a valuation. So, when faced with a TFL argument, we
have a very direct way to assess whether it is possible to make all of the premises
true and the conclusion false: just thrash through the truth table.

However, truth tables do not necessarily give us much insight. Consider two
arguments in TFL:

PVQ,—|P Q
P—Q.P. . Q

Clearly, these are valid arguments. You can confirm that they are valid by con-
structing fourline truth tables, but we might say that they make use of different
forms of reasoning. It might be nice to keep track of these different forms of
inference.

One aim of a natural deduction system is to show that particular arguments are
valid, in a way that allows us to understand the reasoning that the arguments
might involve. We begin with very basic rules of inference. These rules can be
combined to offer more complicated arguments. Indeed, with just a small starter
pack of rules of inference, we hope to capture all valid arguments.

This is a very different way of thinking about arguments.

With truth tables, we directly consider different ways to make sentences true
or false. With natural deduction systems, we manipulate sentences in accordance

78
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with rules that we have set down as good rules. The latter promises to give us a
better insight—or at least, a different insight—into how arguments work.

The move to natural deduction might be motivated by more than the search
for insight. It might also be motivated by necessity. Consider:

A1—>01.'.(Al/\AQ/\Ag/\A4/\A5)—>(01VCQV03VC4VC5)

To test this argument for validity, you might use a 1024-line truth table. If you do
it correctly, then you will see that there is no line on which all the premises are
true and on which the conclusion is false. So you will know that the argument is
valid. (But, as just mentioned, there is a sense in which you will not know why
the argument is valid.) But now consider:

A1 > C1 .. (AL NAg ANAg N Ay N As N Ag AN A7 A Ag A Ag A Aqp) —
(C1VC VO3V CyVC;VCsV GV CgV CyV Cr)

This argument is also valid—as you can probably tell—but to test it requires a
truth table with 22° = 1048576 lines. In principle, we can set a machine to grind
through truth tables and report back when it is finished. In practice, complicated
arguments in TFL can become intractable if we use truth tables.

When we get to first-order logic (FOL) (beginning in chapter 21), though,
the problem gets dramatically worse. There is nothing like the truth table test
for FOL. To assess whether or not an argument is valid, we have to reason
about all interpretations, but, as we will see, there are infinitely many possible
interpretations. We cannot even in principle set a machine to grind through
infinitely many possible interpretations and report back when it is finished: it
will never finish. We either need to come up with some more efficient way of
reasoning about all interpretations, or we need to look for something different.

There are, indeed, systems that codify ways to reason about all possible
interpretations. They were developed in the 1950s by Evert Beth and Jaakko
Hintikka, but we will not follow this path. We will, instead, look to natural
deduction.

Rather than reasoning directly about all valuations (in the case of TFL),
we will try to select a few basic rules of inference. Some of these will govern
the behaviour of the sentential connectives. Others will govern the behaviour
of the quantifiers and identity that are the hallmarks of FOL. The resulting
system of rules will give us a new way to think about the validity of arguments.
The modern development of natural deduction dates from simultaneous and
unrelated papers by Gerhard Gentzen and Stanistaw Jaskowski (1934). However,
the natural deduction system that we will consider is based largely around work
by Frederic Fitch (first published in 1952).



CHAPTER 15
Basic rules for
TFL

We will develop a NATURAL DEDUCTION system. For each connective, there
will be INTRODUCTION rules, that allow us to prove a sentence that has that
connective as the main logical operator, and ELIMINATION rules, that allow us to
prove something given a sentence that has that connective as the main logical
operator.

15.1 The idea of a formal proof

A formal proof is a sequence of sentences, some of which are marked as being
initial assumptions (or premises). The last line of the formal proof is the con-
clusion. (Henceforth, we will simply call these ‘proofs’, but you should be aware
that there are informal proofs too.)

As an illustration, consider:

-(AVvB)..—-AAN-B

We will start a proof by writing the premise:

1 | =4V B)

Note that we have numbered the premise, since we will want to refer back to it.
Indeed, every line on a proof is numbered, so that we can refer back to it.
Note also that we have drawn a line underneath the premise. Everything
written above the line is an assumption. Everything written below the line will
either be something which follows from the assumptions, or it will be some

8o
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new assumption. We are hoping to conclude that ‘-4 A =B’; so we are hoping
ultimately to conclude our proof with

n -AA-B

for some number z. It doesn’t matter what line number we end on, but we would
obviously prefer a short proof to a long one.
Similarly, suppose we wanted to consider:

AV B,~(AANC),~(BA=-D).".-CVD

The argument has three premises, so we start by writing them all down, num-
bered, and drawing a line under them:

and we are hoping to conclude with some line:

n ‘—|C\/D

All that remains to do is to explain each of the rules that we can use along the
way from premises to conclusion. The rules are broken down by our logical
connectives.

15.2 Conjunction

Suppose we want to show that Ludwig is both reactionary and libertarian. One
obvious way to do this would be as follows: first we show that Ludwig is reac-
tionary; then we show that Ludwig is libertarian; then we put these two demon-
strations together, to obtain the conjunction.

Our natural deduction system will capture this thought straightforwardly. In
the example given, we might adopt the following symbolization key:

R: Ludwig is reactionary
L: Ludwig is libertarian

Perhaps we are working through a proof, and we have obtained ‘R’ on line 8
and ‘L’ on line 15. Then on any subsequent line we can obtain ‘R A L’ thus:
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8 R
15 | L
RAL AL 8, 15

Note that every line of our proof must either be an assumption, or must be
justified by some rule. We cite ‘AI 8, 15’ here to indicate that the line is obtained
by the rule of conjunction introduction (AI) applied to lines 8 and 15. We could
equally well obtain:

8 R
15 | L
LAR AL 15,8

with the citation reversed, to reflect the order of the conjuncts. More generally,
here is our conjunction introduction rule:

m | A
n 9]
ANRB ANl m, n

To be clear, the statement of the rule is schematic. It is not itself a proof. ‘o’
and ‘%’ are not sentences of TFL. Rather, they are symbols in the metalanguage,
which we use when we want to talk about any sentence of TFL (see §7). Similarly,
‘m’ and ‘n’ are not a numerals that will appear on any actual proof. Rather, they
are symbols in the metalanguage, which we use when we want to talk about any
line number of any proof. In an actual proof, the lines are numbered ‘1’, ‘2’, ‘3’,
and so forth, but when we define the rule, we use variables to emphasize that
the rule may be applied at any point. The rule requires only that we have both
conjuncts available to us somewhere in the proof. They can be separated from
one another, and they can appear in any order.

The rule is called ‘conjunction introduction’ because it introduces the symbol
‘A’ into our proof where it may have been absent. Correspondingly, we have
a rule that eliminates that symbol. Suppose you have shown that Ludwig is
both reactionary and libertarian. You are entitled to conclude that Ludwig is
reactionary. Equally, you are entitled to conclude that Ludwig is libertarian.
Putting this together, we obtain our conjunction elimination rule(s):
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m | ANB

A AE m

and equally:

m | AANB

7] AE m

The point is simply that, when you have a conjunction on some line of a
proof, you can obtain either of the conjuncts by AE. (But one point is worth
emphasising: you can only apply this rule when conjunction is the main logical
operator. So you cannot infer ‘D’ just from ‘C Vv (D A E)!)

Even with just these two rules, we can start to see some of the power of our
formal proof system. Consider:

[(AvB) > (CVD)IA[EVF)—>(GV H)
S (EVF)—> (GVH)|A[(AVB)— (CV D)

The main logical operator in both the premise and conclusion of this argument
is ‘A’. In order to provide a proof, we begin by writing down the premise, which
is our assumption. We draw a line below this: everything after this line must
follow from our assumptions by (repeated applications of) our rules of inference.
So the beginning of the proof looks like this:

1 |[(AVB)—>(CVD)]/\[(EVF)—>(GVH)]

From the premise, we can get each of the conjuncts by AE. The proof now looks
like this:

1 |[(AVB)—>(C\/D)]/\[(EVF)—>(GVH)]
2 | [(Av B) — (CV D)] AE 1
3 |(EVF)—>(GvV H)] AE 1

So by applying the Al rule to lines 3 and 2 (in that order), we arrive at the
desired conclusion. The finished proof looks like this:
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1 |[[(AvB)—> (CVD)]A[(EVF)—(GVH)]

2 | [(A4v B)— (CvV D) AE 1
3 |(EVF)—>(GvV H) AE 1
4 11

(EVF)—> (GVH)]A[AV B)— (CV D) Al 3, 2

This is a very simple proof, but it shows how we can chain rules of proof together
into longer proofs. In passing, note that investigating this argument with a truth
table would have required 256 lines; our formal proof required only four lines.

It is worth giving another example. Back in §10.3, we noted that this argu-
ment is valid:

ANBAC). . (ANB)AC

To provide a proof corresponding with this argument, we start by writing:

1 [AABACQC)

From the premise, we can get each of the conjuncts by applying AE twice. We
can then apply AE twice more, so our proof looks like:

1 |AABAC)

2 |4 AE 1
3 |BAC AE 1
4 | B AE 3
5 |C AE 3

But now we can merrily reintroduce conjunctions in the order we wanted them,
so that our final proof is:
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1 |AANBACQC)

2 | 4 AE 1
3 |BAC AE 1
4 | B AE 3
5 |C AE 3
6 | AAB AL 2, 4
7 |(AAB)AC AL 6,5

Recall that our official definition of sentences in TFL only allowed conjunctions
with two conjuncts. The proof just given suggests that we could drop inner
brackets in all of our proofs. However, this is not standard, and we will not
do this. Instead, we will maintain our more austere bracketing conventions.
(Though we will still allow ourselves to drop outermost brackets, for legibility.)

Let me offer one final illustration. When using the AI rule, there is no need
to apply it to different sentences. So, if we want, we can formally prove ‘4’ from
‘A’ thus:

1 |4
2 |AnA4 AL, 1
3 4 AE 2

Simple, but effective.

15.3 Conditional

Consider the following argument:
If Jane is smart then she is fast. Jane is smart. ." Jane is fast.

This argument is certainly valid, and it suggests a straightforward conditional
elimination rule (—E):
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m |4 — B
n A
] —Em, n

This rule is also sometimes called modus ponens. Again, this is an elimination
rule, because it allows us to obtain a sentence that may not contain ‘—’, having
started with a sentence that did contain ‘=’. Note that the conditional and
the antecedent can be separated from one another, and they can appear in any
order. However, in the citation for —E, we always cite the conditional first,
followed by the antecedent.

The rule for conditional introduction is also quite easy to motivate. The
following argument should be valid:

Ludwig is reactionary. Therefore if Ludwig is libertarian, then Lud-
wig is both reactionary and libertarian.

If someone doubted that this was valid, we might try to convince them otherwise
by explaining ourselves as follows:

Assume that Ludwig is reactionary. Now, additionally assume that
Ludwig is libertarian. Then by conjunction introduction—which
we just discussed—Ludwig is both reactionary and libertarian. Of
course, that’s conditional on the assumption that Ludwig is libertar-
ian. But this just means that, if Ludwig is libertarian, then he is both
reactionary and libertarian.

Transferred into natural deduction format, here is the pattern of reasoning that
we just used. We started with one premise, ‘Ludwig is reactionary’, thus:

1 |R
The next thing we did is to make an additional assumption (‘Ludwig is libertar-
ian’), for the sake of argument. To indicate that we are no longer dealing merely

with our original assumption (‘R’), but with some additional assumption, we
continue our proof as follows:

1 |R

[
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Note that we are no¢ claiming, on line 2, to have proved ‘L’ from line 1, so we
do not need to write in any justification for the additional assumption on line 2.
We do, however, need to mark that it is an additional assumption. We do this by
drawing a line under it (to indicate that it is an assumption) and by indenting
it with a further vertical line (to indicate that it is additional).

With this extra assumption in place, we are in a position to use AL So we
can continue our proof:

1 |R
2 L
3 RAL AL, 2

So we have now shown that, on the additional assumption, ‘L’, we can obtain
‘R A L’. We can therefore conclude that, if ‘L’ obtains, then so does ‘R A L’. Or,
to put it more briefly, we can conclude ‘L — (R A L)”:

R

L
RAL AL, 2

A~ W N M

L—(RAL) —12-3

Observe that we have dropped back to using one vertical line. We have discharged
the additional assumption, ‘L’, since the conditional itself follows just from our
original assumption, ‘R’.

The general pattern at work here is the following. We first make an additional
assumption, A; and from that additional assumption, we prove B. In that case, we
know the following: If A, then B. This is wrapped up in the rule for conditional
introduction:

i d
j B
d—RB —li—j

There can be as many or as few lines as you like between lines i and ;.
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It will help to offer a second illustration of —I in action. Suppose we want
to consider the following:

P—-00—-R...P—>R

We start by listing both of our premises. Then, since we want to arrive at a
conditional (namely, ‘P — R’), we additionally assume the antecedent to that
conditional. Thus our main proof starts:

1 |P—>Q
2 |Q—R

1

Note that we have made ‘P’ available, by treating it as an additional assumption,
but now, we can use —E on the first premise. This will yield ‘Q’. We can then
use —E on the second premise. So, by assuming ‘P’ we were able to prove ‘R’,
so we apply the —I rule—discharging ‘P’—and finish the proof. Putting all this
together, we have:

1 |P—>0Q

2 |0—R

3 P

4 0 —E1,3
5 R —E 2,4
6 |P—>R —I13-5

15.4 Additional assumptions and subproofs

The rule —I invoked the idea of making additional assumptions. These need
to be handled with some care.

Consider this proof:
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1 |4

2 _B

3 BAB AL 2,2
4 B AE 3
5 |B—B —12-4

This is perfectly in keeping with the rules we have laid down already, and it
should not seem particularly strange. Since ‘B — B’ is a tautology, no particular
premises should be required to prove it.

But suppose we now tried to continue the proof as follows:

1 |4

2 L B

3 BAB AL 2,2

4 B AE 3

5 |B—B —I12-4

6 | B naughty attempt to invoke —E 5, 4

If we were allowed to do this, it would be a disaster. It would allow us to prove
any atomic sentence letter from any other atomic sentence letter. However, if you
tell me that Anne is fast (symbolized by ‘4’), we shouldn’t be able to conclude
that Queen Boudica stood twenty-feet tall (symbolized by ‘B’)! We must be
prohibited from doing this, but how are we to implement the prohibition?

We can describe the process of making an additional assumption as one of
performing a subproof: a subsidiary proof within the main proof. When we start
a subproof, we draw another vertical line to indicate that we are no longer in
the main proof. Then we write in the assumption upon which the subproof will
be based. A subproof can be thought of as essentially posing this question: what
could we show, if we also make this additional assumption?

When we are working within the subproof, we can refer to the additional
assumption that we made in introducing the subproof, and to anything that we
obtained from our original assumptions. (After all, those original assumptions
are still in effect.) At some point though, we will want to stop working with the
additional assumption: we will want to return from the subproof to the main
proof. To indicate that we have returned to the main proof, the vertical line for
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the subproof comes to an end. At this point, we say that the subproof is CLOSED.
Having closed a subproof, we have set aside the additional assumption, so it
will be illegitimate to draw upon anything that depends upon that additional
assumption. Thus we stipulate:

To cite individual lines when applying a rule, those lines must (1) come
before the application of the rule, but (2) not occur within a closed sub-
proof.

This stipulation rules out the disastrous attempted proof above. The rule
of —E requires that we cite two individual lines from earlier in the proof. In
the purported proof, above, one of these lines (namely, line 4) occurs within a
subproof that has (by line 6) been closed. This is illegitimate.

Closing a subproof is called DISCHARGING the assumptions of that subproof.
So we can put the point this way: you cannot refer back to anything that was obtained
using discharged assumptions.

Subproofs, then, allow us to think about what we could show, if we made
additional assumptions. The point to take away from this is not surprising—in
the course of a proof, we have to keep very careful track of what assumptions we
are making, at any given moment. Our proof system does this very graphically.
(Indeed, that’s precisely why we have chosen to use tkis proof system.)

Once we have started thinking about what we can show by making additional
assumptions, nothing stops us from posing the question of what we could show
if we were to make even more assumptions. This might motivate us to introduce
a subproof within a subproof. Here is an example which only uses the rules of
proof that we have considered so far:

1 |4

2 _B

3 _C

4 ANB ALl 2
5 C - (AAB) —13-4
6 |B—(C—(AAB)) —12-5

Notice that the citation on line 4 refers back to the initial assumption (on line
1) and an assumption of a subproof (on line 2). This is perfectly in order, since
neither assumption has been discharged at the time (i.e. by line 4).
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Again, though, we need to keep careful track of what we are assuming at
any given moment. Suppose we tried to continue the proof as follows:

B — (C— (AAB)) —I12-5

1 |4
o | |8

3 lc

4 AAB AL, 2
5 C — (AAB) —I 34
6

7

C — (ANB) naughty attempt to invoke —I 3—4

This would be awful. If we tell you that Anne is smart, you should not be
able to infer that, if Cath is smart (symbolized by ‘C’) then both Anne is smart
and Queen Boudica stood 2o-feet tall! But this is just what such a proof would
suggest, if it were permissible.

The essential problem is that the subproof that began with the assumption
‘C’ depended crucially on the fact that we had assumed ‘B’ on line 2. By line 6,
we have discharged the assumption ‘B’: we have stopped asking ourselves what
we could show, if we also assumed ‘B’. So it is simply cheating, to try to help
ourselves (on line 7) to the subproof that began with the assumption ‘C’. Thus
we stipulate, much as before:

To cite a subproof when applying a rule, the subproof must (1) come
before the application of the rule, but (2) not occur within some other
closed subproof.

The attempted disastrous proof violates this stipulation. The subproof of
lines 3—4 occurs within a subproof that ends on line 5. So it cannot be invoked
in line 7. The attempted disastrous proof violates this stipulation. The subproof
of lines 3—4 occurs within the subproof of lines 2—5, so the subproof of lines 3—4
cannot be invoked in line 7.

It is always permissible to open a subproof with any assumption. However,
there is some strategy involved in picking a useful assumption. Starting a sub-
proof with an arbitrary, wacky assumption would just waste lines of the proof.
In order to obtain a conditional by —I, for instance, you must assume the an-
tecedent of the conditional in a subproof.
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Equally, it is always permissible to close a subproof and discharge its assump-
tions. However, it will not be helpful to do so until you have reached something
useful.

15.5 Biconditional

The rules for the biconditional will be like double-barrelled versions of the rules
for the conditional.

In order to prove ‘W < X’, for instance, you must be able to prove ‘X’ on
the assumption ‘W’ and prove ‘W’ on the assumption ‘X’. The biconditional
introduction rule (<I) therefore requires two subproofs. Schematically, the rule
works like this:

~
EIE

s

A B oli-j, k-1

There can be as many lines as you like between i and j, and as many lines
as you like between £ and /. Moreover, the subproofs can come in any order,
and the second subproof does not need to come immediately after the first.

The biconditional elimination rule («<>E) lets you do a bit more than the
conditional rule. If you have the left-hand subsentence of the biconditional, you
can obtain the right-hand subsentence. If you have the right-hand subsentence,
you can obtain the left-hand subsentence. So we allow:

m |AdeRB
n A
9B oEm, n

and equally:
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m | A RB
n B
A —Em, n

Note that the biconditional, and the right or left half, can be separated from
one another, and they can appear in any order. However, in the citation for
—E, we always cite the biconditional first.

15.6 Disjunction

Suppose Ludwig is reactionary. Then Ludwig is either reactionary or libertar-
ian. After all, to say that Ludwig is either reactionary or libertarian is to say
something weaker than to say that Ludwig is reactionary.

Let me emphasize this point. Suppose Ludwig is reactionary. It follows
that Ludwig is either reactionary or a kumquat. Equally, it follows that either
Ludwig is reactionary or that kumquats are the only fruit. Equally, it follows
that either Ludwig is reactionary or that God is dead. Many of these are strange
inferences to draw, but there is nothing logically wrong with them (even if they
maybe violate all sorts of implicit conversational norms).

Armed with all this, we present the disjunction introduction rule(s):

m | A
AV B vl m

and

m ol
BVdA VI m

Notice that 9B can be any sentence whatsoever, so the following is a perfectly
acceptable proof:

1 | M
9 | MV (4o B)— (CAD)] < [EAF]) vI1



94 CHAPTER 15. BASIC RULES FOR TFL

Using a truth table to show this would have taken 128 lines.

The disjunction elimination rule is, though, slightly trickier. Suppose that
either Ludwig is reactionary or he is libertarian. What can you conclude? Not
that Ludwig is reactionary; it might be that he is libertarian instead. Equally,
not that Ludwig is libertarian; for he might merely be reactionary. Disjunctions,
just by themselves, are hard to work with.

But suppose that we could somehow show both of the following: first, that
Ludwig’s being reactionary entails that he is an Austrian economist: second,
that Ludwig’s being libertarian entails that he is an Austrian economist. Then
if we know that Ludwig is either reactionary or libertarian, then we know that,
whichever he is, Ludwig is an Austrian economist. This insight can be expressed
in the following rule, which is our disjunction elimination (VE) rule:

m |dAVRB
i oA
i | e
k B
[ @
€ VE m, i—j, k-1

This is obviously a bit clunkier to write down than our previous rules, but
the point is fairly simple. Suppose we have some disjunction, o/ vV 9. Suppose
we have two subproofs, showing us that € follows from the assumption that o,
and that ‘6 follows from the assumption that 8. Then we can infer € itself. As
usual, there can be as many lines as you like between ¢ and j, and as many lines
as you like between £ and /. Moreover, the subproofs and the disjunction can
come in any order, and do not have to be adjacent.

Some examples might help illustrate this. Consider this argument:

(PAQ)V(PAR)..P

An example proof might run thus:
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1 [(PAQ)V(PAR)

2 PAQ

3 P AE 2

4 PAR

5 P AE 4

6 | P VE 1, 2-3, 4-5

Here is a slightly harder example. Consider:
ANBVC). . (AANB)V(AAC)

Here is a proof corresponding to this argument:

1 AN(BV Q)

2 A AE 1

3 BvC AE 1

4 B

5 7/\3 AL 2, 4

6 (AAB)V(AACQC) vl 5

7 Cc

8 7/\0 AL 2,7

9 (AAB)V(AACQ) vl 8

10 [(AAB)V(AAC) VE 3, 4-6, 7-9

Don’t be alarmed if you think that you wouldn’t have been able to come up
with this proof yourself. The ability to come up with novel proofs comes with
practice. The key question at this stage is whether, looking at the proof, you can
see that it conforms with the rules that we have laid down. That just involves
checking every line, and making sure that it is justified in accordance with the
rules we have laid down.
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15.7 Contradiction and negation

We have only one connective left to deal with: negation. But to tackle it, we
must connect negation with contradiction.

An effective form of argument is to argue your opponent into contradicting
themselves. At that point, you have them on the ropes. They have to give up
at least one of their assumptions. We are going to make use of this idea in our
proof system, by adding a new symbol, ‘L’, to our proofs. This should be read as
something like ‘contradiction!” or ‘reductio!” or ‘but that’s absurd!” The rule for
introducing this symbol is that we can use it whenever we explicitly contradict
ourselves, i.e. whenever we find both a sentence and its negation appearing in

our proof:
m | ~d
n | d
L -Em, n

It does not matter what order the sentence and its negation appear in, and
they do not need to appear on adjacent lines. However, we always cite the line
number of the negation first, followed by that of the sentence it is a negation of.

There is obviously a tight link between contradiction and negation. The
rule —E lets us proceed from two contradictory sentences—s! and its negation
—gdl—to an explicit contradition L. We choose the label for a reason: it is the
the most basic rule that lets us proceed from a premise containing a negation,
i.e. ~dl, to a sentence not containing it, i.e. L. So it is a rule that eliminates —.

We have said that ‘1’ should be read as something like ‘contradiction!’ but
this does not tell us much about the symbol. There are, roughly, three ways to
approach the symbol.

* We might regard ‘L’ as a new atomic sentence of TFL, but one which can
only ever have the truth value False.

* We might regard ‘L’ as an abbreviation for some canonical contradiction,
such as ‘4 A =A4’. This will have the same effect as the above—obviously,
‘A A =4’ only ever has the truth value False—but it means that, officially,
we do not need to add a new symbol to TFL.

* We might regard ‘L’, not as a symbol of TFL, but as something more like
a punctuation mark that appears in our proofs. (It is on a par with the line
numbers and the vertical lines, say.)
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There is something very philosophically attractive about the third option, but
here we will officially adopt the first. ‘1L’ is to be read as a sentence letter that is
always false. This means that we can manipulate it, in our proofs, just like any
other sentence.

We still have to state a rule for negation introduction. The rule is very simple:
if assuming something leads you to a contradiction, then the assumption must
be wrong. This thought motivates the following rule:

i A

A | i—j

There can be as many lines between i and j as you like. To see this in
practice, and interacting with negation, consider this proof:

1 |D

2 O =D

3 1 -E 2,1
4 | —-=D -12-3

If the assumption that o is true leads to a contradiction, & cannot be true,
i.e. it must be false, i.e., =of must be true. Of course, if the assumption that
is false (i.e. the assumption that —df is true) leads to a contradiction, then o
cannot be false, i.e. 9§ must be true. So we can consider the following rule:

i A
J 1

o P i—j

This rule is called indirect proof; since it allows us to prove o indirectly, by
assuming its negation. Formally, the rule is very similar to —I, but o/ and -9
have changed places. Since —d is not the conclusion of the rule, we are not
introducing -, so IP is not a rule that introduces any connective. It also doesn’t
eliminate a connective, since it has no free-standing premises which contain -,
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only a subproof with an assumption of the form —d. By contrast, —E does have
a premise of the form —gf: that’s why —E eliminates —, but IP does not."

Using —I, we were able to give a proof of == from <. Using IP, we can go
the other direction (with essentially the same proof).

1 |-=-D

2 -D

3 L -E 1,2
4 | D IP 2-3

We need one last rule. It is a kind of elimination rule for ‘1’, and known
as explosion.® If we obtain a contradiction, symbolized by ‘L’, then we can infer
whatever we like. How can this be motivated, as a rule of argumentation? Well,
consider the English rhetorical device ‘... and if that’s true, I’ll eat my hat’. Since
contradictions simply cannot be true, if one is true then not only will I eat my
hat, I’ll have it too.3 Here is the formal rule:

Xm

Note that o can be any sentence whatsoever.

The explosion rule is a bit odd. It looks like o arrives in our proof like a
bunny out of a hat. When trying to find proofs, it is very tempting to try to use
it everywhere, since it seems so powerful. Resist this temptation: you can only
apply it when you already have L! And you get L only when your assumptions
are contradictory.

Still, isn’t it odd that from a contradiction anything whatsoever should fol-
low? Not according to our notion of entailment and validity. For of entails 9 iff
there is no valuation of the atomic sentences which makes ¢ true and % false
at the same time. Now L is a contradiction—it is never true, whatever the valu-
ation of the atomic sentences. Since there is no valuation which makes 1 true,

IThere are logicians who have qualms about IP, but not about —E. They are called “intu-
itionists.” Intuitionists don’t buy our basic assumption that every sentence has one of two truth
values, true or false. They also think that — works differently—for them, a proof of L from o
guarantees —d, but a proof of L from —dl does not guarantee that o, but only ——d. So, for them,
o and ——dl are not equivalent.

2The latin name for this principle isex contradictione quod libet, “from contradiction, anything.”

3Thanks to Adam Caulton for this.
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there of course is also no valuation that makes L true and 9 false! So according
to our definition of entailment, L £ 98, whatever 9% is. A contradiction entails
anything.4

These are all of the basic rules for the proof system for TFL.

Practice exercises

A. The following two ‘proofs’ are incorrect. Explain the mistakes they make.

1 |(ALAA)VL

2 -LAA

3 -L AE 3

4 A AE 1

5 L

6 T -E 3,5
7 A X6

8 |4 VE 1, 2-4, 5-7
1 |AABACQC)

2 |(BvC)—D

3 | B AE 1

4 |BvC vl 3

5 |D —E 4,2

B. The following three proofs are missing their citations (rule and line numbers).
Add them, to turn them into bona fide proofs. Additionally, write down the
argument that corresponds to each proof.

4There are some logicians who don’t buy this. They think that if o entails 9, there must be
some relevant connection between 9l and 9B—and there isn’t one between L and some arbitrary
sentence 9B. So these logicians develop other, “relevant” logics in which you aren’t allowed the
explosion rule.
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1 |[PAS 1 -L—(JVL)

2 |S—R 2 L

3 | P 3 JVL

4 |S 4 J

5 | R 5 7/\ J

6 |RVE 6 J

1 |4—-D 7 i
— 8 L

2 ANB

3 A ? J

. D 10 ()

5 DVE

6 |(AAB)—> (DVE)

C. Give a proof for each of the following arguments:

J=-J . n]
0—(QA-0Q)..Q
A—>B—->C)..(AANB)—>C
KAL.. K< L
(CAD)VE..EvVD

Ao BB (C. . A C
-F—-G,F-H..GVH
ZAK)V(KAM),K—>D..D
PAQVR),P—>-R..QVE
ST . . §Se(TVvS)

11. (P - Q) .. -0

12. =(P - Q)..P

CL PN oT kP H



CHAPTER 16

Additional rules
for TFL

In §15, we introduced the basic rules of our proof system for TFL. In this section,
we will add some additional rules to our system. These will make our system
much easier to work with. (However, in §19 we will see that they are not strictly
speaking necessary.)

16.1 Reiteration

The first additional rule is reiteration (R). This just allows us to repeat ourselves:

ol Rm

Such a rule is obviously legitimate; but one might well wonder how such a
rule could ever be useful. Well, consider:

101
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1 |4A—> -4

2 A

3 TA —-E1,2

4 -4

5 -4 R4

6 | -4 LEM 2-3, 4-5

This is a fairly typical use of the R rule.

16.2 Disjunctive syllogism

Here is a very natural argument form.

Elizabeth is either in Massachusetts or in DC. She is not in DC. So,
she is in Massachusetts.

This inference pattern is called disjunctive syllogism. We add it to our proof system
as follows:

m | AV B
n -9
9] DSm, n
and
m | AV B
n —l%
A DSm, n

As usual, the disjunction and the negation of one disjunct may occur in either
order and need not be adjacent. However, we always cite the disjunction first.
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16.3 Modus tollens

Another useful pattern of inference is embodied in the following argument:

If Mitt has won the election, then he is in the White House. He is
not in the White House. So he has not won the election.

This inference pattern is called modus tollens. The corresponding rule is:

m |d—>RB
n -9
- MT m, n

As usual, the premises may occur in either order, but we always cite the
conditional first.

16.4 Double-negation elimination

Another useful rule is double-negation elimination. This rule does exactly what it
says on the tin:

m St

o/} DNE m

The justification for this is that, in natural language, double-negations tend
to cancel out.

That said, you should be aware that context and emphasis can prevent them
from doing so. Consider: ‘Jane is not not happy’. Arguably, one cannot infer
‘Jane is happy’, since the first sentence should be understood as meaning the
same as Jane is not unhappy’. This is compatible with ‘Jane is in a state of
profound indifference’. As usual, moving to TFL forces us to sacrifice certain
nuances of English expressions.

16.5 Excluded middle

Suppose that we can show that if it’s sunny outside, then Bill will have brought
an umbrella (for fear of burning). Suppose we can also show that, if it’s not
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sunny outside, then Bill will have brought an umbrella (for fear of rain). Well,
there is no third way for the weather to be. So, whatever the weather, Bill will
have brought an umbrella.

This line of thinking motivates the following rule:

i s
E)
k ol
! B
B LEM i—j, k-1

The rule is sometimes called the law of excluded middle, since it encapsulates
the idea that o can be true or -9 may be true, but there is no middle way where
neither is true." There can be as many lines as you like between i and j, and
as many lines as you like between £ and /. Moreover, the subproofs can come
in any order, and the second subproof does not need to come immediately after
the first.

To see the rule in action, consider:

P..(PAD)V (P A-D)

Here is a proof corresponding with the argument:

1 |P

2 L D

3 7/\ D ALl 2

4 (PAD)V (P A-D) vl 3

5 -D

6 PA-D ALl 5

7 (PAD)V(PA=D) vl 6

8 | (PAD)V (P A-D) LEM 2-4, 5-7

1You may sometimes find logicians or philosophers talking about “tertium non datur.” That’s
the same principle as excluded middle; it means “no third way.” Logicians who have qualms about
indirect proof also have qualms about LEM.
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16.6 De Morgan Rules

Our final additional rules are called De Morgan’s Laws (named after Augustus
De Morgan). The shape of the rules should be familiar from truth tables.
The first De Morgan rule is:

—(d A B)
- V%R DeM m

m

The second De Morgan is the reverse of the first:

-V -9

m

~(sd A B) DeM m

The third De Morgan rule is the dual of the first:

—(dA vV B)
- A =9B DeM m

m

And the fourth is the reverse of the third:

m - A -9B

(A vV RB) DeM m

These are all of the additional rules of our proof system for TFL.

Practice exercises

A. The following proofs are missing their citations (rule and line numbers).
Add them wherever they are required:

W — =B

ANW

BV (] ANK)

w

-B

JNK

N oo 0 N
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L & =0

Lv -0
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© 0 N o N =

e T = T = T
SO T VU T =

16

B. Give a proof for each of these arguments:

AW 0 -

.EVF, FVG,-F..EANG

. MV(N->M)..-M — -N

. MVN)A(OVP),N—>P,-P. . MANO
. XAYY)VXANZ),-(XAD),DVM ..M

Z — (C A=N)
-Z — (N A=C)

(N Vv C)
-N A-C
-N
-C

N A=C

—-=(N Vv C)
NvC



CHAPTER 17

Proof-theoretic
concepts

In this chapter we will introduce some new vocabulary. The following expres-
sion:

di, dy,....d, 6

means that there is some proof which starts with assumptions among
d1,dy,...,d, and ends with 6 (and contains no undischarged assumptions
other than those we started with). Derivatively, we will write:

F oA

to mean that there is a proof of o with no assumptions.

The symbol ‘+’ is called the single turnstile. We want to emphasize that this
is not the double turnstile symbol (‘¢’) that we introduced in chapter 11 to
symbolize entailment. The single turnstile, ‘+’, concerns the existence of proofs;
the double turnstile, ‘F’, concerns the existence of valuations (or interpretations,
when used for FOL). They are very different notions.

Armed with our ‘+’ symbol, we can introduce some more terminology. To
say that there is a proof of o with no undischarged assumptions, we write: + 4.
In this case, we say that d is a THEOREM.

4 is a THEOREM iff + o ]

To illustrate this, suppose we want to show that ‘=(4 A =4)’ is a theorem.
So we need a proof of ‘~(4 A =4)’ which has no undischarged assumptions.
However, since we want to prove a sentence whose main logical operator is a

107
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negation, we will want to start with a subproof within which we assume ‘4 A -4,
and show that this assumption leads to contradiction. All told, then, the proof
looks like this:

1 AN-A
9 4 AE 1
3 -4 AE 1
4 1 -E 3,2
5 | =(4A-A) ~11-4

We have therefore proved ‘—(4 A =4)’ on no (undischarged) assumptions. This
particular theorem is an instance of what is sometimes called the Law of Non-
Contradiction.

To show that something is a theorem, you just have to find a suitable proof.
It is typically much harder to show that something is not a theorem. To do
this, you would have to demonstrate, not just that certain proof strategies fail,
but that no proof is possible. Even if you fail in trying to prove a sentence in a
thousand different ways, perhaps the proof is just too long and complex for you
to make out. Perhaps you just didn’t try hard enough.

Here is another new bit of terminology:

Two sentences d and 98 are PROVABLY EQUIVALENT iff each can be proved
from the other; i.e., both of + % and % + d.

As in the case of showing that a sentence is a theorem, it is relatively easy to
show that two sentences are provably equivalent: it just requires a pair of proofs.
Showing that sentences are not provably equivalent would be much harder: it is
just as hard as showing that a sentence is not a theorem.

Here is a third, related, bit of terminology:

The sentences o1, 9o, . . ., 9, are PROVABLY INCONSISTENT iff a contradic-
tion can be proved from them, i.e. di,dg,...,d, + L. If they are not
INCONSISTENT, we call them PROVABLY CONSISTENT.

It is easy to show that some sentences are provably inconsistent: you just
need to prove a contradiction from assuming all the sentences. Showing that
some sentences are not provably inconsistent is much harder. It would require
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more than just providing a proof or two; it would require showing that no proof
of a certain kind is possible.

This table summarises whether one or two proofs suffice, or whether we must
reason about all possible proofs.

Yes No
theorem? one proof all possible proofs
inconsistent? one proof all possible proofs
equivalent?  two proofs all possible proofs
consistent? all possible proofs one proof

Practice exercises

A. Show that each of the following sentences is a theorem:

1. 0 -0
2. NVv-N
3 JeolJVELA-L)]
4. (A—>B)—> A)— A

B. Provide proofs to show each of the following:

1. C>(ENG),-C—>G+G

2. MA(=-N - -M)r(NAM)vV-M

3. ZANK)yo Y AM,DAND->M)+Y > Z
4 WVX) VY VZL,X>Y,~ZrWVY

C. Show that each of the following pairs of sentences are provably equivalent:

R E E~—R

G, -——-G
T—S8,-8S—>-T
U—1,-(UA=I)
-(C - D),CA=D
-G o H,~(G < H)

AL R

D. If you know that d + 9B, what can you say about (4 A 6) - B? What about
(o v 6) + RB? Explain your answers.

E. In this chapter, we claimed that it is just as hard to show that two sentences
are not provably equivalent, as it is to show that a sentence is not a theorem.
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Why did we claim this? (Hint: think of a sentence that would be a theorem iff
9 and 9B were provably equivalent.)



CHAPTER 18

Proof strategies

There is no simple recipe for proofs, and there is no substitute for practice.
Here, though, are some rules of thumb and strategies to keep in mind.

Work backwards from what you want. The ultimate goal is to obtain the
conclusion. Look at the conclusion and ask what the introduction rule is for its
main logical operator. This gives you an idea of what should happen just before
the last line of the proof. Then you can treat this line as if it were your goal.
Ask what you could do to get to this new goal.

For example: If your conclusion is a conditional § — 9, plan to use the —I
rule. This requires starting a subproof in which you assume of. The subproof
ought to end with 9. So, what can you do to get %?

Work forwards from what you have. When you are starting a proof, look at
the premises; later, look at the sentences that you have obtained so far. Think
about the elimination rules for the main operators of these sentences. These
will tell you what your options are.

For a short proof, you might be able to eliminate the premises and introduce
the conclusion. A long proof is formally just a number of short proofs linked
together, so you can fill the gap by alternately working back from the conclusion
and forward from the premises.

Try proceeding indirectly. If you cannot find a way to show o directly, try
starting by assuming —sf. If a contradiction follows, then you will be able to
obtain =—dl by —I, and then o by DNE.

Persist. Try different things. If one approach fails, then try something else.
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Derived rules

In this section, we will see why we introduced the rules of our proof system in
two separate batches. In particular, we want to show that the additional rules of
§16 are not strictly speaking necessary, but can be derived from the basic rules

of §15.

19.1 Derivation of Reiteration
Suppose you have some sentence on some line of your deduction:
m ‘ o/}

You now want to repeat yourself, on some line £. You could just invoke the rule
R, introduced in §16. But equally well, you can do this with the basic rules of

§15:

m A
k ANd Al m, m
k+1 | d AE k

To be clear: this is not a proof. Rather, it is a proof scheme. After all, it uses a
variable, ‘’, rather than a sentence of TFL, but the point is simple: Whatever
sentences of TFL we plugged in for ‘d’, and whatever lines we were working
on, we could produce a bona fide proof. So you can think of this as a recipe for
producing proofs.

Indeed, it is a recipe which shows us that, anything we can prove using the
rule R, we can prove (with one more line) using just the basic rules of §15. So
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we can describe the rule R as a derived rule, since it can be justified using only
the basic rules.

19.2 Derivation of Disjunctive Syllogism

Suppose that you are in a proof, and you have something of this form:
m |AVR
n | ~d

You now want, on line £, to prove 9. You can do this with the rule of DS,
introduced in §16, but equally well, you can do this with the bdasic rules of §15:

m AV A

n -

k oA

k+1 T -E n, k

k+2 B Xk+1

k+3 B

k+4 gx\% ANlLE+3,k+3

k+5 B ANE k£ +4

k+6 | R VEm, k—=k +2, k+3-k+5

So the DS rule, again, can be derived from our more basic rules. Adding it to
our system did not make any new proofs possible. Anytime you use the DS rule,
you could always take a few extra lines and prove the same thing using only our
basic rules. It is a derived rule.

19.3 Derivation of Modus tollens

Suppose you have the following in your proof:

m |d—>RB
n -9
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You now want, on line £, to prove ~d. You can do this with the rule of MT,
introduced in §16. Equally well, you can do this with the basic rules of §15:

m ad— B

n -9

k d

k+1 9%B —E m, k
k+2 L -En, k+1
k+3 | ~d -1 k-k+2

Again, the rule of MT can be derived from the basic rules of §15.

19.4 Derivation of Double-negation elimination

Consider the following deduction scheme:

m =

k -4

k+1 L -E m, k
k+2 | d IP k—k +1

Again, we can derive the DNE rule from the basic rules of §15.

19.5 Derivation of Excluded middle

Suppose you want to prove something using the LEM rule, i.e., you have in your
proof

m A
n ]
k -
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You now want, on line / + 1, to prove 9. The rule LEM from §16 would allow
you to do it. But can do this with the basic rules of §15?
One option is to first prove d V —~d, and then apply VE, i.e. proof by cases:

m o/}

. El

k -d

l B

i v -d

i+1 |9 VE i, m—n, k-1

(We leave the proof of d vV =gl using only our basic rules as an exercise.)

Here is another way that is a bit more complicated than the ones before.
What you have to do is embed your two subproofs inside another subproof. The
assumption of the subproof will be =%, and the last line will be L. Thus, the
complete subproof is the kind you need to conclude &8 using IP. Inside the proof,
youd have to do a bit more work to get L:

m -%RB

m+1 A

n+1 g

n+2 L -Em,n+1
k+2 -4

[+2 R

[+3 L -Ek+2,[+2
[+4 -9 -Im+1-n+2
l+5 - -1k+2-[+3
[+6 L -El+5,1+4
[+7 B IP m-1 +6
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Note that because we add an assumption at the top and additional conclusions
inside the subproofs, the line numbers change. You may have to stare at this for
a while before you understand what’s going on.

19.6 Derivation of De Morgan rules

Here is a demonstration of how we could derive the first De Morgan rule:

k+1
k+2
k+3
k+4
k+5
k+6
k+7
k+8

—(d A B)

ANRB

-5
AV -9
te: )

-4V -RB
-4V -3RB

ALk E+1
-Em, k+2
-1k+1-k+3
VIk+4

VIEk+6
LEM k—k+5,k+6-k+7

Here is a demonstration of how we could derive the second De Morgan rule:
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m AV -%B

k ANB

k+1 A AE k

k+2 B AE k

k+3 -

k+4 L -Ek+3,k+1

k+5 -RB

k+6 L -Ek+5k+2

k+7 1 VEm, k+3-k+4, k+5-k+6
k+8 | =(AARB) -1 k-k +7

Similar demonstrations can be offered explaining how we could derive the third
and fourth De Morgan rules. These are left as exercises.

Practice exercises

A. Provide proof schemes that justify the addition of the third and fourth De
Morgan rules as derived rules.

B. The proofs you offered in response to the practice exercises of §§16-17 used
derived rules. Replace the use of derived rules, in such proofs, with only basic
rules. You will find some ‘repetition’ in the resulting proofs; in such cases, offer
a streamlined proof using only basic rules. (This will give you a sense, both of
the power of derived rules, and of how all the rules interact.)

C. Give a proof of o vV =d. Then give a proof that wuses only the basic rules.

D. Show that if you had LEM as a basic rule, you could justify IP as a derived
rule. That is, suppose you had the proof:
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How could you use it to prove d without using IP but with using TND as well
as all the other primite rules?

E. Give a proof of the first De Morgan rule, but using only the basic rules, in
particular, without using LEM. (Of course, you can combine the proof using LEM
with the proof of LEM. Try to find a proof directly.)



CHAPTER 20

Soundness and
completeness

In §17, we saw that we could use derivations to test for the same concepts we
used truth tables to test for. Not only could we use derivations to prove that an
argument is valid, we could also use them to test if a sentence is a tautology or
a pair of sentences are equivalent. We also started using the single turnstile the
same way we used the double turnstile. If we could prove that o was a tautology
with a truth table, we wrote k£ ¢, and if we could prove it using a derivation, we
wrote + A.

You may have wondered at that point if the two kinds of turnstiles always
worked the same way. If you can show that o is a tautology using truth tables,
can you also always show that it is true using a derivation? Is the reverse true?
Are these things also true for tautologies and pairs of equivalent sentences? As it
turns out, the answer to all these questions and many more like them is yes. We
can show this by defining all these concepts separately and then proving them
equivalent. That is, we imagine that we actually have two notions of validity,
valid. and valid, and then show that the two concepts always work the same
way.

To begin with, we need to define all of our logical concepts separately for
truth tables and derivations. A lot of this work has already been done. We
handled all of the truth table definitions in §11. We have also already given
syntactic definitions for tautologies (theorems) and pairs of logically equivalent
sentences. The other definitions follow naturally. For most logical properties we
can devise a test using derivations, and those that we cannot test for directly
can be defined in terms of the concepts that we can define.

For instance, we defined a theorem as a sentence that can be derived without
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any premises (p. 107). Since the negation of a contradiction is a tautology, we
can define a SYNTACTIC CONTRADICTION IN TFL as a sentence whose negation
can be derived without any premises. The syntactic definition of a contingent
sentence is a little different. We don’t have any practical, finite method for prov-
ing that a sentence is contingent using derivations, the way we did using truth
tables. So we have to content ourselves with defining “contingent sentence” neg-
atively. A sentence is SYNTACTICALLY CONTINGENT IN TFL if it is not a theorem
or a contradiction.

A collection of sentences are PROVABLY INCONSISTENT IN TFL if and only if
one can derive a contradiction from them. Consistency, on the other hand, is
like contingency, in that we do not have a practical finite method to test for it
directly. So again, we have to define a term negatively. A collection of sentences
is PROVABLY CONSISTENT IN TFL if and only if they are not provably inconsistent.

Finally, an argument is PROVABLY VALID IN TFL if and only if there is a deriva-
tion of its conclusion from its premises. All of these definitions are given in Table
20.1.

All of our concepts have now been defined both semantically and syntacti-
cally. How can we prove that these definitions always work the same way? A
full proof here goes well beyond the scope of this book. However, we can sketch
what it would be like. We will focus on showing the two notions of validity to
be equivalent. From that the other concepts will follow quickly. The proof will
have to go in two directions. First we will have to show that things which are
syntactically valid will also be semantically valid. In other words, everything
that we can prove using derivations could also be proven using truth tables. Put
symbolically, we want to show that valid, implies valid.. Afterwards, we will
need to show things in the other directions, valid. implies valid,

This argument from + to k is the problem of SOUNDNESS. A proof system
is SOUND if there are no derivations of arguments that can be shown invalid
by truth tables. Demonstrating that the proof system is sound would require
showing that any possible proof is the proof of a valid argument. It would not
be enough simply to succeed when trying to prove many valid arguments and
to fail when trying to prove invalid ones.

The proof that we will sketch depends on the fact that we initially defined
a sentence of TFL using a recursive definition (see p. 35). We could have also
used recursive definitions to define a proper proof in TFL and a proper truth
table. (Although we didn’t.) If we had these definitions, we could then use a
recursive proof to show the soundness of TFL. A recursive proof works the same
way as a recursive definition. With the recursive definition, we identified a group
of base elements that were stipulated to be examples of the thing we were trying
to define. In the case of a TFL sentence, the base class was the set of sentence
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letters A4, B, C, .... We just announced that these were sentences. The second
step of a recursive definition is to say that anything that is built up from your
base class using certain rules also counts as an example of the thing you are
defining. In the case of a definition of a sentence, the rules corresponded to the
five sentential connectives (see p. 35). Once you have established a recursive
definition, you can use that definition to show that all the members of the class
you have defined have a certain property. You simply prove that the property
is true of the members of the base class, and then you prove that the rules for
extending the base class don’t change the property. This is what it means to
give a recursive proof.

Even though we don’t have a recursive definition of a proof in TFL, we can
sketch how a recursive proof of the soundness of TFL would go. Imagine a
base class of one-line proofs, one for each of our eleven rules of inference. The
members of this class would look like this o1, B + AAB; AATB + od; AVRB, -~ + B

. etc. Since some rules have a couple different forms, we would have to have
add some members to this base class, for instance { A % + 9B Notice that these
are all statements in the metalanguage. The proof that TFL is sound is not a
part of TFL, because TFL does not have the power to talk about itself.

You can use truth tables to prove to yourself that each of these one-line proofs
in this base class is valid.. For instance the proof f,8 + o A % corresponds
to a truth table that shows 4,98 £ d A 9B This establishes the first part of our
recursive proof.

The next step is to show that adding lines to any proof will never change
a valid. proof into an invalid. one. We would need to do this for each of our
eleven basic rules of inference. So, for instance, for AI we need to show that for
any proof dy, ..., d, + B adding a line where we use Al to infer € A &, where
6 A D can be legitimately inferred from o, ..., d,, %, would not change a
valid proof into an invalid proof. But wait, if we can legitimately derive € A
from these premises, then € and & must be already available in the proof. They
are either already among o1, ..., d,, 9B, or can be legitimately derived from
them. As such, any truth table line in which the premises are true must be a
truth table line in which € and & are true. According to the characteristic truth
table for A, this means that € A 9 is also true on that line. Therefore, € A &
validly follows from the premises. This means that using the AE rule to extend
a valid proof produces another valid proof.

In order to show that the proof system is sound, we would need to show this
for the other inference rules. Since the derived rules are consequences of the
basic rules, it would suffice to provide similar arguments for the 11 other basic
rules. This tedious exercise falls beyond the scope of this book.

So we have shown that o + & implies o £ 9. What about the other direction,
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that is why think that every argument that can be shown valid using truth tables
can also be proven using a derivation.

This is the problem of completeness. A proof system has the property of
COMPLETENESS if and only if there is a derivation of every semantically valid
argument. Proving that a system is complete is generally harder than proving
that it is sound. Proving that a system is sound amounts to showing that all of
the rules of your proof system work the way they are supposed to. Showing that
a system is complete means showing that you have included all the rules you
need, that you haven’t left any out. Showing this is beyond the scope of this
book. The important point is that, happily, the proof system for TFL is both
sound and complete. This is not the case for all proof systems or all formal
languages. Because it is true of TFL, we can choose to give proofs or give truth
tables—whichever is easier for the task at hand.

Now that we know that the truth table method is interchangeable with the
method of derivations, you can chose which method you want to use for any
given problem. Students often prefer to use truth tables, because they can be
produced purely mechanically, and that seems ‘easier’. However, we have al-
ready seen that truth tables become impossibly large after just a few sentence
letters. On the other hand, there are a couple situations where using proofs sim-
ply isn’t possible. We syntactically defined a contingent sentence as a sentence
that couldn’t be proven to be a tautology or a contradiction. There is no prac-
tical way to prove this kind of negative statement. We will never know if there
isn’t some proof out there that a statement is a contradiction and we just haven’t
found it yet. We have nothing to do in this situation but resort to truth tables.
Similarly, we can use derivations to prove two sentences equivalent, but what if
we want to prove that they are not equivalent? We have no way of proving that
we will never find the relevant proof. So we have to fall back on truth tables
again.

Table 20.2 summarizes when it is best to give proofs and when it is best to
give truth tables.

Practice exercises
A. Use either a derivation or a truth table for each of the following.
1. Show that 4 — [((B A C) V D) — A] is a tautology.

2. Show that 4 — (4 — B) is not a tautology

3. Show that the sentence 4 — —4 is not a contradiction.
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Logical property

CHAPTER 20. SOUNDNESS AND COMPLETENESS

To prove it present

To prove it absent

Being a tautology

Derive the sentence

Find the false line in the
truth table for the
sentence

Find the true line in the

Being a Derive the negation of the
g, . 8 truth table for the
contradiction sentence
sentence
Find a false line and a .
. L Prove the sentence or its
Contingency true line in the truth table .
negation
for the sentence
Find a line in the truth
Eaui Derive each sentence tables for the sentence
quivalence .
from the other where they have different
values
Find a line in truth table Deri dicti
Consistency for the sentence where erive a contradiction
from the sentences
they all are true
Find no line in the truth
Derive the conclusion i
Validity table where the premises

from the premises

are true and the
conclusion false.

Table 20.2: When to provide a truth table and when to provide a proof.

4. Show that the sentence 4 <> =4 is a contradiction.

5. Show that the sentence (W — (/ V J)) is contingent

6. Show that the sentence ~(X V (Y vV Z)) V(X V (Y V Z)) is not contingent

7. Show that the sentence B — —.§ is equivalent to the sentence =B — —§

8. Show that the sentence —(X V 0) is not equivalent to the sentence X A O

9. Show that the sentences (4 Vv B), C, C — A are jointly inconsistent.

10. Show that the sentences ~(4 V B), =B, B — A are jointly consistent

11. Show that =(4 v (B V C)) .".=C is valid.
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Show that —=(4 A (B Vv C)) .".=C is invalid.

B. Use either a derivation or a truth table for each of the following.

1.

2.

3.

10.

11.

12.

Show that 4 — (B — A) is a tautology

Show that =((N < Q) vV Q) V N) is not a tautology

Show that Z V (-Z < Z) is contingent

show that (L & ((N — N) — L)) V H is not contingent
Show that (4 <> A) A (B A =B) is a contradiction

Show that (B < (C V B)) is not a contradiction.

Show that ((-X < X)V X) is equivalent to X

Show that ' A (K A R) is not equivalent to (F < (K < R))

Show that the sentences =(W — W), (W < W)AW, EN(W — =(EAW))
are inconsistent.

Show that the sentences =R vV C, (C A R) — =R, (=(R V R) — R) are
consistent.

Show that =—(C < =C),(GV C)V G) .. (G — C) A G) is valid.

Show that ——L,(C — =L) — C) .". =C is invalid.
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First-order logic



CHAPTER 21

Building blocks
of FOL

21.1 The need to decompose sentences
Consider the following argument, which is obviously valid in English:

Willard is a logician. All logicians wear funny hats. .”.Willard wears
a funny hat.

To symbolize it in TFL, we might offer a symbolization key:

L: Willard is a logician.
A4: All logicians wear funny hats.
F: Willard wears a funny hat.

And the argument itself becomes:
LA . F

This is invalid in TFL, but the original English argument is clearly valid.

The problem is not that we have made a mistake while symbolizing the
argument. This is the best symbolization we can give in TFL. The problem
lies with TFL itself. ‘All logicians wear funny hats’ is about both logicians and
hat-wearing. By not retaining this structure in our symbolization, we lose the
connection between Willard’s being a logician and Willard’s wearing a hat.

The basic units of TFL are atomic sentences, and TFL cannot decompose
these. To symbolize arguments like the preceding one, we will have to develop
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a new logical language which will allow us to split the atom. We will call this
language first-order logic, or FOL.

The details of FOL will be explained throughout this chapter, but here is the
basic idea for splitting the atom.

First, we have names. In FOL, we indicate these with lowercase italic letters.
For instance, we might let ‘4’ stand for Bertie, or let ‘i’ stand for Willard.

Second, we have predicates. English predicates are expressions like ¢ is
adog’or ¢ is a logician’. These are not complete sentences by themselves.
In order to make a complete sentence, we need to fill in the gap. We need
to say something like ‘Bertie is a dog’ or ‘Willard is a logician’. In FOL, we
indicate predicates with uppercase italic letters. For instance, we might let the
FOL predicate ‘D’ symbolize the English predicate ©_ is a dog’. Then the
expression ‘Db’ will be a sentence in FOL, which symbolizes the English sentence
‘Bertie is a dog’. Equally, we might let the FOL predicate ‘L’ symbolize the
English predicate ¢ is a logician’. Then the expression ‘Li’ will symbolize
the English sentence ‘Willard is a logician’.

Third, we have quantifiers. For instance, ‘3’ will roughly convey ‘There is at
least one ...’. So we might symbolize the English sentence ‘there is a dog’ with
the FOL sentence ‘3xDx’, which we would naturally read out-loud as ‘there is
at least one thing, x, such that x is a dog’.

That is the general idea, but FOL is significantly more subtle than TFL, so
we will come at it slowly.

21.2 Names

In English, a singular term is a word or phrase that refers to a specific person,
place, or thing. The word ‘dog’ is not a singular term, because there are a great
many dogs. The phrase ‘Bertie’ is a singular term, because it refers to a specific
terrier. Likewise, the phrase ‘Philip’s dog Bertie’ is a singular term, because it
refers to a specific little terrier.

Proper names are a particularly important kind of singular term. These are
expressions that pick out individuals without describing them. The name ‘Emer-
son’ is a proper name, and the name alone does not tell you anything about
Emerson. Of course, some names are traditionally given to boys and other are
traditionally given to girls. If ‘Hilary’ is used as a singular term, you might guess
that it refers to a woman. You might, though, be guessing wrongly. Indeed, the
name does not necessarily mean that the person referred to is even a person:
Hilary might be a giraffe, for all you could tell just from the name.
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In FOL, our NAMES are lower-case letters ‘a’ through to ‘r’. We can add
subscripts if we want to use some letter more than once. So here are some
singular terms in FOL:

a,b,c,...,r, a1, f32, j390, M2

These should be thought of along the lines of proper names in English, but with
one difference. ‘Tim Button’ is a proper name, but there are several people with
this name. (Equally, there are at least two people with the name ‘P.D. Magnus’.)
We live with this kind of ambiguity in English, allowing context to individuate
the fact that “Tim Button’ refers to an author of this book, and not some other
Tim. In FOL, we do not tolerate any such ambiguity. Each name must pick out
exactly one thing. (However, two different names may pick out the same thing.)

As with TFL, we can provide symbolization keys. These indicate, temporar-
ily, what a name will pick out. So we might offer:

e: Elsa
g: Gregor
m: Marybeth

21.3 Predicates

The simplest predicates are properties of individuals. They are things you can
say about an object. Here are some examples of English predicates:

is a dog
is a member of Monty Python
A piano fell on

In general, you can think about predicates as things which combine with sin-
gular terms to make sentences. Conversely, you can start with sentences and
make predicates out of them by removing terms. Consider the sentence, ‘Vinnie
borrowed the family car from Nunzio.” By removing a singular term, we can
obtain any of three different predicates:

borrowed the family car from Nunzio
Vinnie borrowed from Nunzio
Vinnie borrowed the family car from

In FOL, PREDICATES are capital letters 4 through Z, with or without subscripts.
We might write a symbolization key for predicates thus:
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Ax: x 1S angry
Hx: x is happy

(Why the subscripts on the gaps? We will return to this in §23.)

If we combine our two symbolization keys, we can start to symbolize some
English sentences that use these names and predicates in combination. For
example, consider the English sentences:

1. Elsa is angry.
2. Gregor and Marybeth are angry.
3. If Elsa is angry, then so are Gregor and Marybeth.

Sentence 1 is straightforward: we symbolize it by ‘4e’.

Sentence 2: this is a conjunction of two simpler sentences. The simple sen-
tences can be symbolized just by ‘4g’ and ‘Am’. Then we help ourselves to our
resources from TFL, and symbolize the entire sentence by ‘4g A Am’. This il-
lustrates an important point: FOL has all of the truth-functional connectives of
TFL.

Sentence 3: this is a conditional, whose antecedent is sentence 1 and whose
consequent is sentence 2, so we can symbolize this with ‘de — (Ag A Am)’.

21.4 Quantifiers
We are now ready to introduce quantifiers. Consider these sentences:

4. Everyone is happy.
5. Someone is angry.

It might be tempting to symbolize sentence 4 as ‘He AHg AHm’. Yet this would
only say that Elsa, Gregor, and Marybeth are happy. We want to say that everyone
is happy, even those with no names. In order to do this, we introduce the V’
symbol. This is called the UNIVERSAL QUANTIFIER.

A quantifier must always be followed by a VARIABLE. In FOL, variables are
italic lowercase letters ‘s’ through ‘z’, with or without subscripts. So we might
symbolize sentence 4 as ‘VxHx’. The variable ‘x’ is serving as a kind of place-
holder. The expression ‘Vx’ intuitively means that you can pick anyone and put
them in as ‘x’. The subsequent ‘H x’ indicates, of that thing you picked out, that
it is happy.

It should be pointed out that there is no special reason to use ‘x’ rather than
some other variable. The sentences ‘VxHx’, VyHYy’, VzH?z’, and ‘VxsH x5  use
different variables, but they will all be logically equivalent.
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To symbolize sentence 5, we introduce another new symbol: the EXISTEN-
TIAL QUANTIFIER, ‘F’. Like the universal quantifier, the existential quantifier
requires a variable. Sentence 5 can be symbolized by ‘IxA4x’. Whereas ‘VxAx’ is
read naturally as ‘for all x, x is angry’, ‘IxA4x’ is read naturally as ‘there is some-
thing, x, such that x is angry’. Once again, the variable is a kind of placeholder;
we could just as easily have symbolized sentence 5 with ‘32A42°, ‘FwyseAwase’,
or whatever.

Some more examples will help. Consider these further sentences:

6. No one is angry.
7. There is someone who is not happy.
8. Not everyone is happy.

Sentence 6 can be paraphrased as, ‘It is not the case that someone is angry’.
We can then symbolize it using negation and an existential quantifier: ‘-3x4x’.
Yet sentence 6 could also be paraphrased as, ‘Everyone is not angry’. With
this in mind, it can be symbolized using negation and a universal quantifier:
‘Vx-Ax’. Both of these are acceptable symbolizations. Indeed, it will transpire
that, in general, Vx—d is logically equivalent to —3xd. (Notice that we have here
returned to the practice of using ‘?l’ as a metavariable, from §7.) Symbolizing
a sentence one way, rather than the other, might seem more ‘natural’ in some
contexts, but it is not much more than a matter of taste.

Sentence 7 is most naturally paraphrased as, ‘There is some x, such that
x is not happy’. This then becomes ‘Ix—Hx’. Of course, we could equally
have written ‘~VxH x’, which we would naturally read as ‘it is not the case that
everyone is happy’. That too would be a perfectly adequate symbolization of
sentence 8.

21.5 Domains

Given the symbolization key we have been using, ‘VxH x’ symbolizes ‘Everyone
is happy’. Who is included in this everyone? When we use sentences like this in
English, we usually do not mean everyone now alive on the Earth. We certainly
do not mean everyone who was ever alive or who will ever live. We usually mean
something more modest: everyone now in the building, everyone enrolled in the
ballet class, or whatever.

In order to eliminate this ambiguity, we will need to specify a DOMAIN. The
domain is the collection of things that we are talking about. So if we want to
talk about people in Chicago, we define the domain to be people in Chicago.
We write this at the beginning of the symbolization key, like this:



132 CHAPTER 21. BUILDING BLOCKS OF FOL

domain: people in Chicago

The quantifiers range over the domain. Given this domain, ‘Vx’ is to be read
roughly as ‘Every person in Chicago is such that...” and ‘3Jx’ is to be read
roughly as ‘Some person in Chicago is such that... .

In FOL, the domain must always include at least one thing. Moreover, in
English we can infer ‘something is angry’ from ‘Gregor is angry’. In FOL, then,
we will want to be able to infer ‘Ix4x’ from ‘4Ag’. So we will insist that each
name must pick out exactly one thing in the domain. If we want to name people

in places beside Chicago, then we need to include those people in the domain.

A domain must have at least one member. A name must pick out exactly
one member of the domain, but a member of the domain may be picked
out by one name, many names, or none at all.

Even allowing for a domain with just one member can produce some strange
results. Suppose we have this as a symbolization key:

domain: the Eiffel Tower

Px: » is in Paris.

The sentence VxPx might be paraphrased in English as ‘Everything is in Paris.’
Yet that would be misleading. It means that everything in the domain is in Paris.
This domain contains only the Eiffel Tower, so with this symbolization key VxPx
just means that the Eiffel Tower is in Paris.

Non-referring terms

In FOL, each name must pick out exactly one member of the domain. A name
cannot refer to more than one thing—it is a singular term. Each name must still
pick out something. This is connected to a classic philosophical problem: the
so-called problem of non-referring terms.

Medieval philosophers typically used sentences about the chimera to exem-
plify this problem. Chimera is a mythological creature; it does not really exist.
Consider these two sentences:

9. Chimera is angry.
10. Chimera is not angry.

It is tempting just to define a name to mean ‘chimera.” The symbolization key
would look like this:
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domain: creatures on Earth
Ax: x 1S angry.
¢: chimera

We could then symbolize sentence g as Ac and sentence 10 as —Ac.
Problems will arise when we ask whether these sentences are true or false.
One option is to say that sentence g is not true, because there is no chimera.
If sentence g is false because it talks about a non-existent thing, then sentence
10 is false for the same reason. Yet this would mean that Ac and —A¢ would
both be false. Given the truth conditions for negation, this cannot be the case.
Since we cannot say that they are both false, what should we do? Another
option is to say that sentence g is meaningless because it talks about a non-existent
thing. So 4¢ would be a meaningful expression in FOL for some interpretations
but not for others. Yet this would make our formal language hostage to particular
interpretations. Since we are interested in logical form, we want to consider the
logical force of a sentence like A¢ apart from any particular interpretation. If Ac
were sometimes meaningful and sometimes meaningless, we could not do that.
This is the problem of non-referring terms, and we will return to it later (see
p. 161.) The important point for now is that each name of FOL must refer
to something in the domain, although the domain can contain any things we
like. If we want to symbolize arguments about mythological creatures, then we
must define a domain that includes them. This option is important if we want to
consider the logic of stories. We can symbolize a sentence like ‘Sherlock Holmes
lived at 221B Baker Street’ by including fictional characters like Sherlock Holmes
in our domain.
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Sentences with
one quantifier

We now have all of the pieces of FOL. Symbolizing more complicated sentences
will only be a matter of knowing the right way to combine predicates, names,
quantifiers, and connectives. There is a knack to this, and there is no substitute
for practice.

22.1 Common quantifier phrases
Consider these sentences:

1. Every coin in my pocket is a quarter.

2. Some coin on the table is a dime.

3. Not all the coins on the table are dimes.
4. None of the coins in my pocket are dimes.

In providing a symbolization key, we need to specify a domain. Since we are
talking about coins in my pocket and on the table, the domain must at least
contain all of those coins. Since we are not talking about anything besides coins,
we let the domain be all coins. Since we are not talking about any specific coins,
we do not need to deal with any names. So here is our key:

domain: all coins

Px: x is in my pocket
T x: x 1s on the table
Ox: x is a quarter
Dx: x is a dime

134
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Sentence 1 is most naturally symbolized using a universal quantifier. The univer-
sal quantifier says something about everything in the domain, not just about the
coins in my pocket. Sentence 1 can be paraphrased as ‘for any coin, if that coin
is in my pocket then it is a quarter’. So we can symbolize it as ‘Vx(Px — Qx)’.

Since sentence 1 is about coins that are both in my pocket and that are
quarters, it might be tempting to symbolize it using a conjunction. However,
the sentence ‘Vx(Px A Qx)’ would symbolize the sentence ‘every coin is both a
quarter and in my pocket’. This obviously means something very different than
sentence 1. And so we see:

A sentence can be symbolized as Vx(Fx — Gx) if it can be paraphrased
in English as ‘every F is G’.

Sentence 2 is most naturally symbolized using an existential quantifier. It
can be paraphrased as ‘there is some coin which is both on the table and which
is a dime’. So we can symbolize it as ‘Fx(7Tx A Dx)’.

Notice that we needed to use a conditional with the universal quantifier, but
we used a conjunction with the existential quantifier. Suppose we had instead
written ‘Ix(7’x — Dx)’. That would mean that there is some object in the
domain of which ‘(7x — Dx)’ is true. Recall that, in TFL, d — R is logically
equivalent (in TFL) to -4 v 9. This equivalence will also hold in FOL. So
‘Tx(Tx — Dx)’ is true if there is some object in the domain, such that ‘(=7'x v
Dx)’ is true of that object. That is, ‘Ix(7’x — Dx)’ is true if some coin is either
not on the table or is a dime. Of course there is a coin that is not on the table:
there are coins lots of other places. So it is very easy for ‘Ix(T'x — Dx)’ to be
true. A conditional will usually be the natural connective to use with a universal
quantifier, but a conditional within the scope of an existential quantifier tends
to say something very weak indeed. As a general rule of thumb, do not put
conditionals in the scope of existential quantifiers unless you are sure that you
need one.

A sentence can be symbolized as 3x(Fx A €x) if it can be paraphrased
in English as ‘some F is G’.

Sentence 3 can be paraphrased as, ‘It is not the case that every coin on the
table is a dime’. So we can symbolize it by ‘-Vx(7'x — Dx)’. You might look
at sentence 3 and paraphrase it instead as, ‘Some coin on the table is not a
dime’. You would then symbolize it by ‘Ix(7'x A =Dx)’. Although it is probably
not immediately obvious yet, these two sentences are logically equivalent. (This
is due to the logical equivalence between =Vxdl and 3x—d, mentioned in §21,
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along with the equivalence between —(d — %) and o A =%.)

Sentence 4 can be paraphrased as, ‘It is not the case that there is some dime
in my pocket’. This can be symbolized by ‘-3x(Px A Dx)’. It might also be
paraphrased as, ‘Everything in my pocket is a non-dime’, and then could be
symbolized by ‘Vx(Px — —Dx)’. Again the two symbolizations are logically
equivalent; both are correct symbolizations of sentence 4.

22.2 Empty predicates

In §21, we emphasized that a name must pick out exactly one object in the
domain. However, a predicate need not apply to anything in the domain. A
predicate that applies to nothing in the domain is called an EMPTY PREDICATE.
This is worth exploring.

Suppose we want to symbolize these two sentences:

5. Every monkey knows sign language
6. Some monkey knows sign language

It is possible to write the symbolization key for these sentences in this way:

domain: animals
Mx: x is a monkey.
Sx: x knows sign language.

Sentence 5 can now be symbolized by ‘Vx(Mx — Sx)’. Sentence 6 can be
symbolized as ‘Fx(Mx A Sx)’.

It is tempting to say that sentence 5 entails sentence 6. That is, we might think
that it is impossible for it to be the case that every monkey knows sign language,
without its also being the case that some monkey knows sign language, but this
would be a mistake. It is possible for the sentence ‘Vx(Mx — Sx)’ to be true
even though the sentence ‘Ix(Mx A Sx)’ is false.

How can this be? The answer comes from considering whether these sen-
tences would be true or false if there were no monkeys. If there were no monkeys
at all (in the domain), then ‘Vx(Mx — Sx)’ would be vacuously true: take any
monkey you like—it knows sign language! But if there were no monkeys at all
(in the domain), then ‘Ax(Mx A Sx)’ would be false.

Another example will help to bring this home. Suppose we extend the above
symbolization key, by adding:

Rx: x is a refrigerator
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Now consider the sentence ‘Vx(Rx — Mx)’. This symbolizes ‘every refriger-
ator is a monkey’. This sentence is true, given our symbolization key, which
is counterintuitive, since we (presumably) do not want to say that there are a
whole bunch of refrigerator monkeys. It is important to remember, though, that
‘Vx(Rx — Mx)’ is true iff any member of the domain that is a refrigerator is a
monkey. Since the domain is animals, there are no refrigerators in the domain.
Again, then, the sentence is vacuously true.

If you were actually dealing with the sentence ‘All refrigerators are monkeys’,
then you would most likely want to include kitchen appliances in the domain.
Then the predicate ‘R’ would not be empty and the sentence ‘Vx(Rx — Mx)’
would be false.

When & is an empty predicate, a sentence Yx(Fx — . ..) will be vacuously
true.

22.3 Picking a domain

The appropriate symbolization of an English language sentence in FOL will
depend on the symbolization key. Choosing a key can be difficult. Suppose we
want to symbolize the English sentence:

7. Every rose has a thorn.
We might offer this symbolization key:

Rx: x 1S a rose
Tx: x has a thorn

It is tempting to say that sentence 7 should be symbolized as ‘Vx(Rx — T'x)’,
but we have not yet chosen a domain. If the domain contains all roses, this
would be a good symbolization. Yet if the domain is merely things on my kitchen
table, then ‘Vx(Rx — T x)’ would only come close to covering the fact that every
rose on my kitchen table has a thorn. If there are no roses on my kitchen table,
the sentence would be trivially true. This is not what we want. To symbolize
sentence 7 adequately, we need to include all the roses in the domain, but now
we have two options.

First, we can restrict the domain to include all roses but only roses. Then
sentence 7 can, if we like, be symbolized with ‘Vx7'x’. This is true iff everything
in the domain has a thorn; since the domain is just the roses, this is true iff every
rose has a thorn. By restricting the domain, we have been able to symbolize our
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English sentence with a very short sentence of FOL. So this approach can save
us trouble, if every sentence that we want to deal with is about roses.

Second, we can let the domain contain things besides roses: rhododendrons;
rats; rifles; whatevers., and we will certainly need to include a more expansive
domain if we simultaneously want to symbolize sentences like:

8. Every cowboy sings a sad, sad song.

Our domain must now include both all the roses (so that we can symbolize
sentence 7) and all the cowboys (so that we can symbolize sentence 8). So we
might offer the following symbolization key:

domain: people and plants

Cx: x is a cowboy

Sx: x sings a sad, sad song
Rx: . is a rose

T x: . has a thorn

Now we will have to symbolize sentence 7 with ‘Vx(Rx — T'x)’, since VxT'x’
would symbolize the sentence ‘every person or plant has a thorn’. Similarly, we
will have to symbolize sentence 8 with Vx(Cx — Sx)’.

In general, the universal quantifier can be used to symbolize the English
expression ‘everyone’ if the domain only contains people. If there are people and
other things in the domain, then ‘everyone’ must be treated as ‘every person’.

22.4 The utility of paraphrase

When symbolizing English sentences in FOL, it is important to understand the
structure of the sentences you want to symbolize. What matters is the final
symbolization in FOL, and sometimes you will be able to move from an En-
glish language sentence directly to a sentence of FOL. Other times, it helps to
paraphrase the sentence one or more times. Each successive paraphrase should
move from the original sentence closer to something that you can easily sym-
bolize directly in FOL.
For the next several examples, we will use this symbolization key:

domain: people

Bx: » 1s a bassist.
Rx: » is a rock star.
k: Kim Deal

Now consider these sentences:
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9. If Kim Deal is a bassist, then she is a rock star.
10. If a person is a bassist, then she is a rock star.

The same words appear as the consequent in sentences g and 10 (‘... she is
a rock star’), but they mean very different things. To make this clear, it often
helps to paraphrase the original sentences, removing pronouns.

Sentence g can be paraphrased as, ‘If Kim Deal is a bassist, then Kim Deal
is a rockstar’. This can obviously be symbolized as ‘Bk — Rk’.

Sentence 10 must be paraphrased differently: ‘If a person is a bassist, then
that person is a rock star’. This sentence is not about any particular person, so
we need a variable. As an intermediate step, we can paraphrase this as, ‘For
any person X, if x is a bassist, then x is a rockstar’. Now this can be symbolized
as ‘Vx(Bx — Rx)’. This is the same sentence we would have used to symbolize
‘Everyone who is a bassist is a rock star’. On reflection, that is surely true iff
sentence 10 is true, as we would hope.

Consider these further sentences:

11. If anyone is a bassist, then Kim Deal is a rock star.
12. If anyone is a bassist, then she is a rock star.

The same words appear as the antecedent in sentences 11 and 12 (‘If anyone is
a bassist. ..’), but it can be tricky to work out how to symbolize these two uses.
Again, paraphrase will come to our aid.

Sentence 11 can be paraphrased, ‘If there is at least one bassist, then Kim
Deal is a rock star’. It is now clear that this is a conditional whose antecedent is a
quantified expression; so we can symbolize the entire sentence with a conditional
as the main logical operator: ‘IxBx — Rk’.

Sentence 12 can be paraphrased, ‘For all people x, if x is a bassist, then x is
a rock star’. Or, in more natural English, it can be paraphrased by ‘All bassists
are rock stars’. It is best symbolized as ‘Vx(Bx — Rx)’, just like sentence 10.

The moral is that the English words ‘any’ and ‘anyone’ should typically be
symbolized using quantifiers, and if you are having a hard time determining
whether to use an existential or a universal quantifier, try paraphrasing the
sentence with an English sentence that uses words besides ‘any’ or ‘anyone’.

22.5 Quantifiers and scope

Continuing the example, suppose we want to symbolize these sentences:

13. If everyone is a bassist, then Lars is a bassist
14. Everyone is such that, if they are a bassist, then Lars is a bassist.
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To symbolize these sentences, we will have to add a new name to the symbol-
ization key, namely:

[: Lars

Sentence 13 is a conditional, whose antecedent is ‘everyone is a bassist’, so we
will symbolize it with ‘VxBx — Bl’. This sentence is necessarily true: if everyone
is indeed a bassist, then take any one you like—for example Lars—and he will
be a bassist.

Sentence 14, by contrast, might best be paraphrased by ‘every person x
is such that, if x is a bassist, then Lars is a bassist’. This is symbolized by
VYx(Bx — Bl)’. This sentence is false; Kim Deal is a bassist. So ‘Bk’ is true,
but Lars is not a bassist, so ‘B/l’ is false. Accordingly, ‘Bk — B/’ will be false,
so ‘Vx(Bx — BI)’ will be false as well.

In short, VxBx — Bl’ and ‘Vx(Bx — Bl)’ are very different sentences. We
can explain the difference in terms of the scope of the quantifier. The scope
of quantification is very much like the scope of negation, which we considered
when discussing TFL, and it will help to explain it in this way.

In the sentence ‘-Bk — B/’, the scope of ‘=’ is just the antecedent of the
conditional. We are saying something like: if ‘B’ is false, then ‘Bl’ is true.
Similarly, in the sentence ‘VxBx — B[’, the scope of ‘Vx’ is just the antecedent
of the conditional. We are saying something like: if ‘Bx’ is true of everything,
then ‘B[’ is also true.

In the sentence ‘~(Bk — Bl)’, the scope of ‘=’ is the entire sentence. We are
saying something like: ‘(Bk — Bl)’ is false. Similarly, in the sentence ‘Vx(Bx —
Bl)’, the scope of ‘Vx’ is the entire sentence. We are saying something like:
‘(Bx — Bl) is true of everything.

The moral of the story is simple. When you are using conditionals, be very
careful to make sure that you have sorted out the scope correctly.

Ambiguous predicates
Suppose we just want to symbolize this sentence:
15. Adina is a skilled surgeon.

Let the domain be people, let Kx mean ‘x is a skilled surgeon’, and let 2 mean
Adina. Sentence 15 is simply Ka.
Suppose instead that we want to symbolize this argument:

The hospital will only hire a skilled surgeon. All surgeons are greedy.
Billy is a surgeon, but is not skilled. Therefore, Billy is greedy, but
the hospital will not hire him.
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We need to distinguish being a skilled surgeon from merely being a surgeon. So
we define this symbolization key:

domain: people
Gx: x is greedy.
Hx: The hospital will hire -
Rx: x 1S a surgeon.
Kx: » 1s skilled.
b: Billy

Now the argument can be symbolized in this way:

Vx[ﬁ(Rx ANKx)—> —|Hx]
Vx(Rx — Gx)
RbA-Kb

. GbA-Hb

Next suppose that we want to symbolize this argument:

Carol is a skilled surgeon and a tennis player. Therefore, Carol is a
skilled tennis player.

If we start with the symbolization key we used for the previous argument, we
could add a predicate (let 7x mean ‘x is a tennis player’) and a name (let ¢
mean Carol). Then the argument becomes:

(ReAKe)ATec
. TenNKe

This symbolization is a disaster! It takes what in English is a terrible argument
and symbolizes it as a valid argument in FOL. The problem is that there is a
difference between being skilled as a surgeon and skilled as a tennis player. Sym-
bolizing this argument correctly requires two separate predicates, one for each
type of skill. If we let K;jx mean ‘x is skilled as a surgeon’ and Kyx mean ‘x is
skilled as a tennis player,” then we can symbolize the argument in this way:

(Re ANK1c) AT
o Te N Koe

Like the English language argument it symbolizes, this is invalid.
The moral of these examples is that you need to be careful of symbolizing
predicates in an ambiguous way. Similar problems can arise with predicates like
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good, bad, big, and small. Just as skilled surgeons and skilled tennis players have
different skills, big dogs, big mice, and big problems are big in different ways.

Is it enough to have a predicate that means ‘x is a skilled surgeon’, rather
than two predicates ‘x is skilled’ and ‘x is a surgeon’> Sometimes. As sentence
15 shows, sometimes we do not need to distinguish between skilled surgeons
and other surgeons.

Must we always distinguish between different ways of being skilled, good,
bad, or big? No. As the argument about Billy shows, sometimes we only need
to talk about one kind of skill. If you are symbolizing an argument that is just
about dogs, it is fine to define a predicate that means ‘x is big.” If the domain
includes dogs and mice, however, it is probably best to make the predicate mean
‘x is big for a dog.’

Practice exercises

A. Here are the syllogistic figures identified by Aristotle and his successors,
along with their medieval names:

e Barbara. All G are F. All H are G. So: All H are F

¢ Celarent. No G are F. All H are G. So: No H are F

¢ Ferio. No G are F. Some H is G. So: Some H is not F

e Darii. All G are F. Some H is G. So: Some H is F.

e Camestres. All F are G. No H are G. So: No H are F.

e Cesare. No F are G. All H are G. So: No H are F.

e Baroko. All F are G. Some H is not G. So: Some H is not F.
¢ Festino. No F are G. Some H are G. So: Some H is not F.

e Datisi. All G are F. Some G is H. So: Some H is F.

e Disamis. Some G is F. All G are H. So: Some H is F.

e Ferison. No G are F. Some G is H. So: Some H is not F.

e Bokardo. Some G is not F. All G are H. So: Some H is not F.
e Camenes. All F are G. No G are H So: No H is F.

e Dimaris. Some F is G. All G are H. So: Some H is F.

¢ Fresison. No F are G. Some G is H. So: Some H is not F.

Symbolize each argument in FOL.

B. Using the following symbolization key:

domain: people
Kx: x knows the combination to the safe
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Sx: x 1S a spy

Vx: x 1S a vegetarian
h: Hofthor
i: Ingmar

symbolize the following sentences in FOL:

1. Neither Hofthor nor Ingmar is a vegetarian.

2. No spy knows the combination to the safe.

3. No one knows the combination to the safe unless Ingmar does.
4. Hofthor is a spy, but no vegetarian is a spy.

C. Using this symbolization key:

domain: all animals

Ax: x is an alligator.
Mx: x is a monkey.
Rx: x is a reptile.
Zx: x lives at the zoo.
a: Amos
b: Bouncer
¢: Cleo

symbolize each of the following sentences in FOL:

Amos, Bouncer, and Cleo all live at the zoo.

Bouncer is a reptile, but not an alligator.

Some reptile lives at the zoo.

Every alligator is a reptile.

Any animal that lives at the zoo is either a monkey or an alligator.
There are reptiles which are not alligators.

If any animal is an reptile, then Amos is.

If any animal is an alligator, then it is a reptile.

PN ST w P

D. For each argument, write a symbolization key and symbolize the argument
in FOL.

1. Willard is a logician. All logicians wear funny hats. So Willard wears a
funny hat

2. Nothing on my desk escapes my attention. There is a computer on my
desk. As such, there is a computer that does not escape my attention.

3. All my dreams are black and white. Old TV shows are in black and white.
Therefore, some of my dreams are old TV shows.
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Neither Holmes nor Watson has been to Australia. A person could see a
kangaroo only if they had been to Australia or to a zoo. Although Watson
has not seen a kangaroo, Holmes has. Therefore, Holmes has been to a
z0o0.

. No one expects the Spanish Inquisition. No one knows the troubles I've

seen. Therefore, anyone who expects the Spanish Inquisition knows the
troubles I've seen.

. All babies are illogical. Nobody who is illogical can manage a crocodile.

Berthold is a baby. Therefore, Berthold is unable to manage a crocodile.



CHAPTER 23

Multiple
generality

So far, we have only considered sentences that require one-place predicates and
one quantifier. The full power of FOL really comes out when we start to use
many-place predicates and multiple quantifiers. For this insight, we largely have
Gottlob Frege (1879) to thank, but also C.S. Peirce.

23.1 Many-placed predicates

All of the predicates that we have considered so far concern properties that
objects might have. Those predicates have one gap in them, and to make a
sentence, we simply need to slot in one term. They are ONE-PLACE predicates.

However, other predicates concern the relation between two things. Here are
some examples of relational predicates in English:

loves
is to the left of
is in debt to

These are TWO-PLACE predicates. They need to be filled in with two terms in
order to make a sentence. Conversely, if we start with an English sentence
containing many singular terms, we can remove two singular terms, to obtain
different two-place predicates. Consider the sentence ‘Vinnie borrowed the fam-
ily car from Nunzio’. By deleting two singular terms, we can obtain any of three
different two-place predicates

145
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Vinnie borrowed from
borrowed the family car from
borrowed from Nunzio

and by removing all three singular terms, we obtain a THREE-PLACE predicate:

borrowed from

Indeed, there is no in principle upper limit on the number of places that our
predicates may contain.
Now there is a little foible with the above. We have used the same symbol,
’, to indicate a gap formed by deleting a term from a sentence. However
(as Frege emphasized), these are different gaps. To obtain a sentence, we can fill
them in with the same term, but we can equally fill them in with different terms,
and in various different orders. The following are all perfectly good sentences,
and they all mean very different things:

<

Karl loves Karl
Karl loves Imre
Imre loves Karl
Imre loves Imre

The point is that we need to keep track of the gaps in predicates, so that we can
keep track of how we are filling them in.

To keep track of the gaps, we will label them. The labelling conventions we
will adopt are best explained by example. Suppose we want to symbolize the
following sentences:

1. Karl loves Imre.

2. Imre loves himself.

3. Karl loves Imre, but not vice versa.
4. Karl is loved by Imre.

We will start with the following representation key:

domain: people
i: Imre
k: Karl
Lxy: x loves ¥

Sentence 1 will now be symbolized by ‘Lk7’.
Sentence 2 can be paraphrased as ‘Imre loves Imre’. It can now be symbol-
ized by ‘Lii’.



23.2. THE ORDER OF QUANTIFIERS 147

Sentence 3 is a conjunction. We might paraphrase it as ‘Karl loves Imre, and
Imre does not love Karl’. It can now be symbolized by ‘Lki A ~Lik’.

Sentence 4 might be paraphrased by ‘Imre loves Karl’. It can then be sym-
bolized by ‘Lik’. Of course, this slurs over the difference in tone between the
active and passive voice; such nuances are lost in FOL.

This last example, though, highlights something important. Suppose we add
to our symbolization key the following:

Mxy: » loves x

Here, we have used the same English word (‘loves’) as we used in our symboliza-
tion key for ‘Lxy’. However, we have swapped the order of the gaps around (just
look closely at those little subscripts!) So ‘M ki’ and ‘Lik’ now both symbolize
‘Imre loves Karl’. ‘M ik’ and ‘Lki’ now both symbolize ‘Karl loves Imre’. Since
love can be unrequited, these are very different claims.

The moral is simple. When we are dealing with predicates with more than
one place, we need to pay careful attention to the order of the places.

23.2 The order of quantifiers

Consider the sentence ‘everyone loves someone’. This is potentially ambiguous.
It might mean either of the following:

5. For every person x, there is some person that x loves
6. There is some particular person whom every person loves

Sentence 5 can be symbolized by ‘Vx3yLxy’, and would be true of a love-triangle.
For example, suppose that our domain of discourse is restricted to Imre, Juan
and Karl. Suppose also that Karl loves Imre but not Juan, that Imre loves Juan
but not Karl, and that Juan loves Karl but not Imre. Then sentence 5 is true.

Sentence 6 is symbolized by ‘IyVxLxy’. Sentence 6 is not true in the situation
just described. Again, suppose that our domain of discourse is restricted to
Imre, Juan and Karl. This requires that all of Juan, Imre and Karl converge on
(at least) one object of love.

The point of the example is to illustrate that the order of the quantifiers
matters a great deal. Indeed, to switch them around is called a quantifier shift
fallacy. Here is an example, which comes up in various forms throughout the
philosophical literature:

For every person, there is some truth they cannot know. (V3)
.". There is some truth that no person can know. (3av)
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This argument form is obviously invalid. It’s just as bad as:*

Every dog has its day. (V3)
.". There is a day for all the dogs. (av)

The order of quantifiers is also important in definitions in mathematics. For
instance, there is a big difference between pointwise and uniform continuity of
functions:

> A function f is pointwise continuous if
VerVy36(|x —y| <d— |f(x) —f(y)| <€)
> A function f is uniformly continuous if

VEE](SVxVy(|x —y| <6 — |f(x) —f(y)| <€)

The moral is: take great care with the order of quantification.

23.3 Stepping-stones to symbolization

Once we have the possibility of multiple quantifiers and many-place predicates,
representation in FOL can quickly start to become a bit tricky. When you are
trying to symbolize a complex sentence, we recommend laying down several
stepping stones. As usual, this idea is best illustrated by example. Consider this
representation key:

domain: people and dogs

Dx: x is a dog
Fxy: x is a friend of y
Oxy: x Owns y
g: Geraldo

Now let’s try to symbolize these sentences:

Geraldo is a dog owner.

Someone is a dog owner.

All of Geraldo’s friends are dog owners.

Every dog owner is a friend of a dog owner.

11. Every dog owner’s friend owns a dog of a friend.

e L o

IThanks to Rob Trueman for the example.
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Sentence 7 can be paraphrased as, “There is a dog that Geraldo owns’. This can
be symbolized by ‘Ix(Dx A Ogx)’.

Sentence 8 can be paraphrased as, ‘There is some y such that y is a dog
owner’. Dealing with part of this, we might write ‘3y(y is a dog owner)’. Now
the fragment we have left as ‘y is a dog owner’ is much like sentence 7, except
that it is not specifically about Geraldo. So we can symbolize sentence 8 by:

Jy3x(Dx A Oyx)

We should pause to clarify something here. In working out how to symbolize
the last sentence, we wrote down ‘Jy(y is a dog owner)’. To be very clear: this
is meither an FOL sentence nor an English sentence: it uses bits of FOL (‘Z’, ‘y’)
and bits of English (‘dog owner’). It is really is just a stepping-stone on the way
to symbolizing the entire English sentence with a FOL sentence. You should
regard it as a bit of rough-working-out, on a par with the doodles that you might
absent-mindedly draw in the margin of this book, whilst you are concentrating
fiercely on some problem.

Sentence g can be paraphrased as, ‘Everyone who is a friend of Geraldo is
a dog owner’. Using our stepping-stone tactic, we might write

Vx [Fxg — x is a dog owner]

Now the fragment that we have left to deal with, ‘x is a dog owner’, is structurally
just like sentence 7. However, it would be a mistake for us simply to write

Vx [Fxg — dx(Dx A Oxx)]

for we would here have a clash of variables. The scope of the universal quantifier,
‘Vx’, is the entire conditional, so the ‘x’ in ‘Dx’ should be governed by that,
but ‘Dx’ also falls under the scope of the existential quantifier ‘3x’, so the ‘x” in
‘Dx’ should be governed by that. Now confusion reigns: which ‘x’ are we talking
about? Suddenly the sentence becomes ambiguous (if it is even meaningful at
all), and logicians hate ambiguity. The broad moral is that a single variable
cannot serve two quantifiermasters simultaneously.

To continue our symbolization, then, we must choose some different variable
for our existential quantifier. What we want is something like:

Vx[Fxg — 32(Dz A Oxz)]

This adequately symbolizes sentence g.
Sentence 10 can be paraphrased as ‘For any x that is a dog owner, there is a
dog owner who x is a friend of’. Using our stepping-stone tactic, this becomes

Vx[x is a dog owner — Jy(y is a dog owner A Fxy)]
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Completing the symbolization, we end up with
Vx|32(Dz A Oxz) — Jy(32(Dz A 0yz) A Fxy)|

Note that we have used the same letter, ‘z’, in both the antecedent and the conse-
quent of the conditional, but that these are governed by two different quantifiers.
This is ok: there is no clash here, because it is clear which quantifier that vari-
able falls under. We might graphically represent the scope of the quantifiers
thus:

scope of ‘Vx’

scope of ‘Jy’

scope of 1st ‘32’ scope of end ‘32’
—_— —_——
Vx[Hz(Dz A Oxz) — y(Fz(Dz A Oyz) /\ny)]

This shows that no variable is being forced to serve two masters simultaneously.

Sentence 11 is the trickiest yet. First we paraphrase it as ‘For any x that is
a friend of a dog owner, x owns a dog which is also owned by a friend of x’.
Using our stepping-stone tactic, this becomes:

Vx[x is a friend of a dog owner —
x owns a dog which is owned by a friend of x|

Breaking this down a bit more:

Vx[3y(Fxy Ay is a dog owner) —
Jy(Dy A Oxy A y is owned by a friend of x)]

And a bit more:
Vx [Ey(ny A Jz(Dz A Oyz)) — Jy(Dy A Oxy A Jz(Fzx A OZy))]

And we are done!

23.4 Supressed quantifiers

Logic can often help to get clear on the meanings of English claims, especially
where the quantifiers are left implicit or their order is ambiguous or unclear. The
clarity of expression and thinking afforded by FOL can give you a significant
advantage in argument, as can be seen in the following takedown by British po-
litical philosopher Mary Astell (1666-1731) of her contemporary, the theologian
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William Nicholls. In Discourse IV: The Duty of Wives to their Husbands of his
The Duty of Inferiors towards their Superiors, in Five Practical Discourses (London
1701), Nicholls argued that women are naturally inferior to men. In the preface
to the grd edition of her treatise Some Reflections upon Marriage, Occasiond by the
Duke and Duchess of Mazarine’s Case; which is also considered, Astell responded as
follows:

"Tis true, thro’ Want of Learning, and of that Superior Genius
which Men as Men lay claim to, she [Astell] was ignorant of the
Natural Inferiority of our Sex, which our Masters lay down as a Self-
Evident and Fundamental Truth. She saw nothing in the Reason of
Things, to make this either a Principle or a Conclusion, but much
to the contrary; it being Sedition at least, if not Treason to assert it
in this Reign.

For if by the Natural Superiority of their Sex, they mean that
every Man is by Nature superior to every Woman, which is the obvious
meaning, and that which must be stuck to if they would speak Sense,
it woud be a Sin in any Woman to have Dominion over any Man, and
the greatest Queen ought not to command but to obey her Footman,
because no Municipal Laws can supersede or change the Law of
Nature; so that if the Dominion of the Men be such, the Saligue
Law,® as unjust as English Men have ever thought it, ought to take
place over all the Earth, and the most glorious Reigns in the English,
Danish, Castilian, and other Annals, were wicked Violations of the
Law of Nature!

If they mean that some Men are superior to some Women this is no
great Discovery; had they turnd the Tables they might have seen that
some Women are Superior to some Men. Or had they been pleased
to remember their Oaths of Allegiance and Supremacy, they might
have known that One Woman is superior to A/l the Men in these
Nations, or else they have sworn to very little purpose.3 And it must
not be supposd, that their Reason and Religion woud suffer them to
take Oaths, contrary to the Laws of Nature and Reason of things.*

We can symbolize the different interpretations Astell offers of Nicholls’ claim
that men are superior to women: He either meant that every man is superior to

2The Salique law was the common law of France which prohibited the crown be passed on
to female heirs.

3In 1706, England was ruled by Queen Anne.

4Mary Astell, Reflections upon Marriage, 1706 Preface, iii-iv, and Mary Astell, Political Writings,
ed. Patricia Springborg, Cambridge University Press, 1996, g—10.
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every woman, i.e.,
Vx(Mx — NVy(Wy — Sxy))

or that some men are superior to some women,
Ax(Mx A Ty(Wy A Sxy)).
The latter is true, but so is
y(Wy A Ix(Mx A Syx)).

(some women are superior to some men), so that would be “no great discovery.”
In fact, since the Queen is superior to all her subjects, it’s even true that some
woman is superior to every man, i.e.,

Ay(Wy AVx(Mx — Syx)).
But this is incompatible with the “obvious meaning” of Nicholls’ claim, i.e., the
first reading. So what Nicholls claims amounts to treason against the Queen!
Practice exercises
A. Using this symbolization key:

domain: all animals

Ax: x is an alligator
Mx: x is a monkey
Rx: x is a reptile
Zx: » lives at the zoo
Lxy: x loves ¥
a: Amos
b: Bouncer
¢: Cleo

symbolize each of the following sentences in FOL:

If Cleo loves Bouncer, then Bouncer is a monkey.

If both Bouncer and Cleo are alligators, then Amos loves them both.
Cleo loves a reptile.

Bouncer loves all the monkeys that live at the zoo.

All the monkeys that Amos loves love him back.

Every monkey that Cleo loves is also loved by Amos.

Sk ® P
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There is a monkey that loves Bouncer, but sadly Bouncer does not recip-
rocate this love.

B. Using the following symbolization key:

domain: all animals

Dx: x is a dog

Sx: « likes samurai movies

Lxy: x is larger than y

r: Rave
h: Shane
d: Daisy

symbolize the following sentences in FOL:

© O oG ® P

[E -
o = o

p—
w

Rave is a dog who likes samurai movies.

Rave, Shane, and Daisy are all dogs.

Shane is larger than Rave, and Daisy is larger than Shane.

All dogs like samurai movies.

Only dogs like samurai movies.

There is a dog that is larger than Shane.

If there is a dog larger than Daisy, then there is a dog larger than Shane.
No animal that likes samurai movies is larger than Shane.

No dog is larger than Daisy.

Any animal that dislikes samurai movies is larger than Rave.

. There is an animal that is between Rave and Shane in size.

There is no dog that is between Rave and Shane in size.

. No dog is larger than itself.
14.

15.
16.

Every dog is larger than some dog.

There is an animal that is smaller than every dog.

If there is an animal that is larger than any dog, then that animal does not
like samurai movies.

C. Using the symbolization key given, symbolize each English-language sentence

into FOL.

domain: candies
Cx: » has chocolate in it.
Mx: x has marzipan in it.
Sx: x has sugar in it.
T x: Boris has tried -

Bxy: « is better than -
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Boris has never tried any candy.

Marzipan is always made with sugar.

Some candy is sugarfree.

The very best candy is chocolate.

No candy is better than itself.

Boris has never tried sugarfree chocolate.

Boris has tried marzipan and chocolate, but never together.

Any candy with chocolate is better than any candy without it.

Any candy with chocolate and marzipan is better than any candy that
lacks both.

D. Using the following symbolization key:

domain: people and dishes at a potluck

Rx: » has run out.
Tx: » is on the table.
Fx:  1s food.
Px: x 1S a person.
Lxy: x likes -

e: Eli

f: Francesca
g: the guacamole

symbolize the following English sentences in FOL:

© O o ® P

All the food is on the table.

If the guacamole has not run out, then it is on the table.

Everyone likes the guacamole.

If anyone likes the guacamole, then Eli does.

Francesca only likes the dishes that have run out.

Francesca likes no one, and no one likes Francesca.

Eli likes anyone who likes the guacamole.

Eli likes anyone who likes the people that he likes.

If there is a person on the table already, then all of the food must have run
out.

E. Using the following symbolization key:

domain: people

Dx: , dances ballet.
Fx: » is female.

Mx: x is male.
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Cxy: x is a child of 'y
Sxy: x is a sibling of 5
¢: Elmer
j: Jane
p: Patrick

symbolize the following sentences in FOL:

1. All of Patrick’s children are ballet dancers.

2. Jane is Patrick’s daughter.

3. Patrick has a daughter.

4. Jane is an only child.

5. All of Patrick’s sons dance ballet.

6. Patrick has no sons.

7. Jane is Elmer’s niece.

8. Patrick is Elmer’s brother.

9. Patrick’s brothers have no children.
10. Jane is an aunt.
11. Everyone who dances ballet has a brother who also dances ballet.
12. Every woman who dances ballet is the child of someone who dances ballet.
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Identity

Consider this sentence:
1. Pavel owes money to everyone

Let the domain be people; this will allow us to symbolize ‘everyone’ as a univer-
sal quantifier. Offering the symbolization key:

Oxy: x owes money to y
p: Pavel

we can symbolize sentence 1 by ‘VxOpx’. But this has a (perhaps) odd con-
sequence. It requires that Pavel owes money to every member of the domain
(whatever the domain may be). The domain certainly includes Pavel. So this
entails that Pavel owes money to himself.

Perhaps we meant to say:

2. Pavel owes money to everyone else
3. Pavel owes money to everyone other than Pavel
4. Pavel owes money to everyone except Pavel himself

but we do not know how to deal with the italicised words yet. The solution is to
add another symbol to FOL.
24.1 Adding identity

The symbol ‘=’ is a two-place predicate. Since it is to have a special meaning,
we will write it a bit differently: we put it between two terms, rather than out
front. And it does have a very particular meaning. We always adopt the following
symbolization key:

156
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X =y x is identical to y

This does not mean merely that the objects in question are indistinguishable, or
that all of the same things are true of them. Rather, it means that the objects in
question are the very same object.

Now suppose we want to symbolize this sentence:

5. Pavel is Mister Checkov.
Let us add to our symbolization key:
¢: Mister Checkov

Now sentence 5 can be symbolized as ‘p = ¢’. This means that the names ‘p’
and ‘¢’ both name the same thing.

We can also now deal with sentences 2—4. All of these sentences can be para-
phrased as ‘Everyone who is not Pavel is owed money by Pavel’. Paraphrasing
some more, we get: ‘For all x, if x is not Pavel, then x is owed money by Pavel’.
Now that we are armed with our new identity symbol, we can symbolize this as
Vx(-x = p — Opx)’.

This last sentence contains the formula ‘-x = p’. That might look a bit
strange, because the symbol that comes immediately after the ‘=’ is a variable,
rather than a predicate, but this is not a problem. We are simply negating the
entire formula, ‘x = p’.

In addition to sentences that use the word ‘else’, ‘other than’ and ‘except’,
identity will be helpful when symbolizing some sentences that contain the words
‘besides’ and ‘only.” Consider these examples:

6. No one besides Pavel owes money to Hikaru.
7. Only Pavel owes Hikaru money.

Let ‘A’ name Hikaru. Sentence 6 can be paraphrased as, ‘No one who is not
Pavel owes money to Hikaru’. This can be symbolized by ‘=3x(-x = p A Oxh)’.
Equally, sentence 6 can be paraphrased as ‘for all x, if x owes money to Hikaru,
then x is Pavel’. It can then be symbolized as ‘Vx(Oxh — x = p)’.

Sentence 7 can be treated similarly, but there is one subtlety here. Do either
sentence 6 or 7 entail that Pavel himself owes money to Hikaru?

24.2 There are at least...

We can also use identity to say how many things there are of a particular kind.
For example, consider these sentences:
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8. There is at least one apple
9. There are at least two apples
10. There are at least three apples

We will use the symbolization key:
Ax: x is an apple

Sentence 8 does not require identity. It can be adequately symbolized by ‘IxAx’:
There is an apple; perhaps many, but at least one.

It might be tempting to also symbolize sentence g without identity. Yet
consider the sentence ‘Ix3y(Ax A Ay)’. Roughly, this says that there is some
apple x in the domain and some apple y in the domain. Since nothing precludes
these from being one and the same apple, this would be true even if there were
only one apple. In order to make sure that we are dealing with different apples,
we need an identity predicate. Sentence g needs to say that the two apples that
exist are not identical, so it can be symbolized by ‘Fx3y((4x A Ay) A ~x = y)’.

Sentence 10 requires talking about three different apples. Now we need
three existential quantifiers, and we need to make sure that each will pick out
something different: ‘IxIyFz[((Ax A Ay) NAZ)A((mx =y Ay =2) A—x = 2)].

24.3 There are at most..

Now consider these sentences:

11. There is at most one apple
12. There are at most two apples

Sentence 11 can be paraphrased as, ‘It is not the case that there are at least two
apples’. This is just the negation of sentence g:

—3x3y[(Ax A Ay) A —x = y]

But sentence 11 can also be approached in another way. It means that if you
pick out an object and it’s an apple, and then you pick out an object and it’s
also an apple, you must have picked out the same object both times. With this
in mind, it can be symbolized by

VaVy[(Ax A Ay) = x = y|

The two sentences will turn out to be logically equivalent.
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In a similar way, sentence 12 can be approached in two equivalent ways. It
can be paraphrased as, ‘It is not the case that there are tAhree or more distinct
apples’, so we can offer:

—dxTyFz(AX ANAYy ANAZ AN X =y ANy =2 Ax = 2)

Alternatively we can read it as saying that if you pick out an apple, and an apple,
and an apple, then you will have picked out (at least) one of these objects more
than once. Thus:

VxVsz[(Ax/\Ay/\Az)—>(x:ny:sz:z)]

24.4 There are exactly...

We can now consider precise statements, like:

13. There is exactly one apple.
14. There are exactly two apples.
15. There are exactly three apples.

Sentence 13 can be paraphrased as, ‘“There is at least one apple and there is at
most one apple’. This is just the conjunction of sentence 8 and sentence 11. So
we can offer:

JxAx AVaVy[(Ax A Ay) — x = y]

But it is perhaps more straightforward to paraphrase sentence 13 as, ‘There is
a thing x which is an apple, and everything which is an apple is just x itself’.
Thought of in this way, we offer:

Jx[Ax AVy(dy — x = y)]

Similarly, sentence 14 may be paraphrased as, ‘There are at least two apples,
and there are at most two apples’. Thus we could offer

JxTy((Ax A Ay) A —x = 9) A
VxVyVz [((Ax NAY)NAz) > (x=yVx=2z)Vy= z)]

More efficiently, though, we can paraphrase it as “There are at least two different
apples, and every apple is one of those two apples’. Then we offer:

EIxEIy[((Ax ANAY)AN—-x =9)AV2(Az > (x =2V y = z)]

Finally, consider these sentence:
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16. There are exactly two things
17. There are exactly two objects

It might be tempting to add a predicate to our symbolization key, to symbolize
the English predicate ¢ is a thing’ or ¢ is an object’, but this is unnec-
essary. Words like ‘thing’ and ‘object’ do not sort wheat from chaff: they apply
trivially to everything, which is to say, they apply trivially to every thing. So we
can symbolize either sentence with either of the following:

JxJy-x =y A =IxTyFz(mx =y Ay =2) A ~x = 2)
IxTy[-~x =y AVa(x =2V y =2)]

Practice exercises
A. Explain why:

* ‘IxVy(Ay <> x = y)’ is a good symbolization of ‘there is exactly one apple’.
e ‘xTy[-x = y AVz(dz & (x = z Vy = 2))|” is a good symbolization of
‘there are exactly two apples’.



CHAPTER 25
Definite
descriptions

Consider sentences like:

1. Nick is the traitor.
2. The traitor went to Cambridge.
3. The traitor is the deputy

These are definite descriptions: they are meant to pick out a unigue object. They
should be contrasted with indefinite descriptions, such as ‘Nick is a traitor’. They
should equally be contrasted with generics, such as ‘The whale is a mammal’ (it’s
inappropriate to ask which whale). The question we face is: how should we deal
with definite descriptions in FOL?

25.1 Treating definite descriptions as terms

One option would be to introduce new names whenever we come across a def-
inite description. This is probably not a great idea. We know that the traitor—
whoever it is—is indeed a traitor. We want to preserve that information in our
symbolization.

A second option would be to use a new definite description operator, such
as ‘. The idea would be to symbolize ‘the F’ as ‘2xFx’; or to symbolize ‘the G’
as 7xGx’, etc. Expression of the form 7csfoc would then behave like names. If
we followed this path, then using the following symbolization key:

domain: people
Tx: x 18 a traitor

161
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Dx: x is a deputy
Cx: x went to Cambridge
n: Nick

We could symbolize sentence 1 with ‘2x7'x = »’, sentence 2 with ‘Cix7x’, and
sentence 3 with ‘x7'x = 1xDx’.

However, it would be nice if we didn’t have to add a new symbol to FOL.
And indeed, we might be able to make do without one.

25.2 Russell’s analysis

Bertrand Russell offered an analysis of definite descriptions. Very briefly put, he
observed that, when we say ‘the F’ in the context of a definite description, our
aim is to pick out the one and only thing that is F (in the appropriate context).
Thus Russell analysed the notion of a definite description as follows:*

the F is G iff there is at least one F, and
there is at most one F, and

every F is G

Note a very important feature of this analysis: ‘the’ does not appear on the right-
side of the equivalence. Russell is aiming to provide an understanding of definite
descriptions in terms that do not presuppose them.

Now, one might worry that we can say ‘the table is brown’ without implying
that there is one and only one table in the universe. But this is not (yet) a
fantastic counterexample to Russell’s analysis. The domain of discourse is likely
to be restricted by context (e.g. to objects in my line of sight).

If we accept Russell’s analysis of definite descriptions, then we can symbolize
sentences of the form ‘the F is G’ using our strategy for numerical quantification
in FOL. After all, we can deal with the three conjuncts on the right-hand side of
Russell’s analysis as follows:

xFx AVxVYy(Fx AN Fy) = x =) ANVx(Fx — Gx)

In fact, we could express the same point rather more crisply, by recognizing that
the first two conjuncts just amount to the claim that there is exactly one F, and
that the last conjunct tells us that that object is F. So, equivalently, we could
offer:

Elx[(Fx AVY(Fy = x=9y)) A Gx]

1Bertrand Russell, ‘On Denoting’, 1905, Mind 14, pp. 479-93; also Russell, Introduction to
Mathematical Philosophy, 1919, London: Allen and Unwin, ch. 16.
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Using these sorts of techniques, we can now symbolize sentences 1-3 without
using any new-fangled fancy operator, such as ‘7’.

Sentence 1 is exactly like the examples we have just considered. So we would
symbolize it by ‘Ix(Tx AVy(Ty —» x =y) Ax = n)’.

Sentence 2 poses no problems either: ‘Ix(T'x AVy(Ty — x = y) A Cx)’.

Sentence 3 is a little trickier, because it links two definite descriptions. But,
deploying Russell’s analysis, it can be paraphrased by ‘there is exactly one
traitor, x, and there is exactly one deputy, y, and x = y’. So we can symbol-
ize it by:

IxFy([Tx AV2(Tz > x = 2)| A [Dy AV2(Dz > y = 2)] Ax =)

Note that we have made sure that the formula ‘¢ = y’ falls within the scope of
both quantifiers!

25.3 Empty definite descriptions

One of the nice features of Russell’s analysis is that it allows us to handle empty
definite descriptions neatly.

France has no king at present. Now, if we were to introduce a name, ‘%’, to
name the present King of France, then everything would go wrong: remember
from §21 that a name must always pick out some object in the domain, and
whatever we choose as our domain, it will contain no present kings of France.

Russell’s analysis neatly avoids this problem. Russell tells us to treat definite
descriptions using predicates and quantifiers, instead of names. Since predicates
can be empty (see §22), this means that no difficulty now arises when the definite
description is empty.

Indeed, Russell’s analysis helpfully highlights two ways to go wrong in a
claim involving a definite description. To adapt an example from Stephen Neale
(1990),” suppose Alex claims:

4. I am dating the present king of France.

Using the following symbolization key:

a: Alex
Kx: x is a present king of France
Dxy: x is dating ¥

®Neale, Descriptions, 1990, Cambridge: MIT Press.
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Sentence 4 would be symbolized by ‘Ix(Vy(Ky <> x = y) A Dax)’. Now, this can
be false in (at least) two ways, corresponding to these two different sentences:

5. There is no one who is both the present King of France and such that he
and Alex are dating.
6. There is a unique present King of France, but Alex is not dating him.

Sentence 5 might be paraphrased by ‘It is not the case that: the present King of
France and Alex are dating’. It will then be symbolized by ‘~3x[(Kx AVy(Ky —
x = y))ADax|’. We might call this outer negation, since the negation governs the
entire sentence. Note that it will be true if there is no present King of France.

Sentence 6 can be symbolized by ‘Ix((Kx A Vy(Ky — x = y)) A =Dax)’. We
might call this inner negation, since the negation occurs within the scope of the
definite description. Note that its truth requires that there is a present King of
France, albeit one who is not dating Alex.

25.4 The adequacy of Russell’s analysis

How good is Russell’s analysis of definite descriptions? This question has gen-
erated a substantial philosophical literature, but we will restrict ourselves to two
observations.

One worry focusses on Russell’s treatment of empty definite descriptions. If
there are no Fs, then on Russell’s analysis, both ‘the F is G’ is and ‘the F is non-
G’ are false. P.F. Strawson suggested that such sentences should not be regarded
as false, exactly.3 Rather, they involve presupposition failure, and need to be
regarded as neither true nor false.

If we agree with Strawson here, we will need to revise our logic. For, in our
logic, there are only two truth values (True and False), and every sentence is
assigned exactly one of these truth values.

But there is room to disagree with Strawson. Strawson is appealing to some
linguistic intuitions, but it is not clear that they are very robust. For example:
isn’t it just false, not ‘gappy’, that Tim is dating the present King of France?

Keith Donnellan raised a second sort of worry, which (very roughly) can be
brought out by thinking about a case of mistaken identity.* Two men stand in
the corner: a very tall man drinking what looks like a gin martini; and a very
short man drinking what looks like a pint of water. Seeing them, Malika says:

3P.F. Strawson, ‘On Referring’, 1950, Mind 59, pp. 320-34.
4Keith Donnellan, ‘Reference and Definite Descriptions’, 1966, Philosophical Review 77, pp.
281-304.
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7. The gin-drinker is very tall!
Russell’s analysis will have us render Malika’s sentence as:

7’. There is exactly one gin-drinker [in the corner], and whoever is a gin-
drinker [in the corner] is very tall.

Now suppose that the very tall man is actually drinking water from a martini
glass; whereas the very short man is drinking a pint of (neat) gin. By Russell’s
analysis, Malika has said something false, but don’t we want to say that Malika
has said something true?

Again, one might wonder how clear our intuitions are on this case. We can
all agree that Malika intended to pick out a particular man, and say something
true of him (that he was tall). On Russell’s analysis, she actually picked out a
different man (the short one), and consequently said something false of him.
But maybe advocates of Russell’s analysis only need to explain why Malika’s
intentions were frustrated, and so why she said something false. This is easy
enough to do: Malika said something false because she had false beliefs about
the men’s drinks; if Malika’s beliefs about the drinks had been true, then she
would have said something true.>

To say much more here would lead us into deep philosophical waters. That
would be no bad thing, but for now it would distract us from the immediate
purpose of learning formal logic. So, for now, we will stick with Russell’s analysis
of definite descriptions, when it comes to putting things into FOL. It is certainly
the best that we can offer, without significantly revising our logic, and it is quite
defensible as an analysis.

Practice exercises

A. Using the following symbolization key:

domain: people

Kx: x knows the combination to the safe.
Sx: x 1S a spy.
Vx: x is a vegetarian.
T xy: x trusts -
h: Hofthor
i: Ingmar

SInterested parties should read Saul Kripke, ‘Speaker Reference and Semantic Reference’,
1977, in French et al (eds.), Contemporary Perspectives in the Philosophy of Language, Minneapolis:
University of Minnesota Press, pp. 6-27.
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symbolize the following sentences in FOL:

AL S e

Hofthor trusts a vegetarian.

Everyone who trusts Ingmar trusts a vegetarian.

Everyone who trusts Ingmar trusts someone who trusts a vegetarian.
Only Ingmar knows the combination to the safe.

Ingmar trusts Hofthor, but no one else.

The person who knows the combination to the safe is a vegetarian.

7. The person who knows the combination to the safe is not a spy.

B. Using the following symbolization key:

domain:
Bx:

Cx:

Dx:

Jx
Mx:
Ox:

W x:

cards in a standard deck
. is black.
» is a club.
« is a deuce.
x is a jack.
» i1s @ man with an axe.
x is one-eyed.
» 1s wild.

symbolize each sentence in FOL:

CL XN ST -

All clubs are black cards.

There are no wild cards.

There are at least two clubs.

There is more than one one-eyed jack.

There are at most two one-eyed jacks.

There are two black jacks.

There are four deuces.

The deuce of clubs is a black card.

One-eyed jacks and the man with the axe are wild.

If the deuce of clubs is wild, then there is exactly one wild card.

11. The man with the axe is not a jack.
12. The deuce of clubs is not the man with the axe.

C. Using the following symbolization key:

domain:
Bx:
Hx:

animals in the world
. is in Farmer Brown’s field.
« 1s a horse.
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Px: x is a Pegasus.
W x: x has wings.

symbolize the following sentences in FOL:

There are at least three horses in the world.

There are at least three animals in the world.

There is more than one horse in Farmer Brown’s field.

There are three horses in Farmer Brown’s field.

There is a single winged creature in Farmer Brown’s field; any other crea-
tures in the field must be wingless.

6. The Pegasus is a winged horse.

7. The animal in Farmer Brown’s field is not a horse.

8. The horse in Farmer Brown’s field does not have wings.

ANl S

D. In this chapter, we symbolized ‘Nick is the traitor’ by ‘Ix(Tx AVy(Ty — x =
y) A x = n)’. Two equally good symbolizations would be:

e TuAVy(Ty —» n=y)
c Vy(Ty < y=mn)

Explain why these would be equally good symbolizations.



CHAPTER 26

Sentences of FOL

We know how to represent English sentences in FOL. The time has finally come
to define the notion of a sentence of FOL.
26.1 Expressions

There are six kinds of symbols in FOL:

Predicates 4,B,C, ..., Z, or with subscripts, as needed: A1, By, Z1, Ag, Ags, J375, . . .
Names a,b,¢,...,r, or with subscripts, as needed ay, boo4, h7, m3g, . . .
Variables s,¢,u,0,w,x,y,z, or with subscripts, as needed x1, y1, 21, %2, . . .
Connectives —, A, V, —, &

Brackets (,)

Quantifiers V, 3

We define an EXPRESSION OF FOL as any string of symbols of FOL. Take any
of the symbols of FOL and write them down, in any order, and you have an
expression.

26.2 Terms and formulas

In §6, we went straight from the statement of the vocabulary of TFL to the
definition of a sentence of TFL. In FOL, we will have to go via an intermediary
stage: via the notion of a FORMULA. The intuitive idea is that a formula is any
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sentence, or anything which can be turned into a sentence by adding quantifiers
out front. But this will take some unpacking.

We start by defining the notion of a term.

A TERM is any name or any variable.

So, here are some terms:

a, b, x,x1%9,9, Y254, 2

Next we need to define atomic formulas.

1. If R is an n-place predicate and 1,%9,...,1, are terms, then
Rt1ty ... 1, is an atomic formula.

2. If 11 and €9 are terms, then 1 = 49 is an atomic formula.

3. Nothing else is an atomic formula.

The use of script letters here follows the conventions laid down in §7. So,
‘R’ is not itself a predicate of FOL. Rather, it is a symbol of our metalanguage
(augmented English) that we use to talk about any predicate of FOL. Similarly,
‘?1’ is not a term of FOL, but a symbol of the metalanguage that we can use
to talk about any term of FOL. So, where ‘F’ is a one-place predicate, ‘G’ is
a three-place predicate, and ‘S’ is a six-place predicate, here are some atomic
formulas:

Gxay
Gaaa
Sx1x2abyx1
Sbyssszaaz

Once we know what atomic formulas are, we can offer recursion clauses to define
arbitrary formulas. The first few clauses are exactly the same as for TFL.
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1. Every atomic formula is a formula.

2. If d is a formula, then -9 is a formula.

3. If d and 9B are formulas, then (f A %) is a formula.
4. If 4 and A are formulas, then (4 V %) is a formula.
5. If o and 9B are formulas, then (f — %) is a formula.
6. If o and A are formulas, then (f < %) is a formula.

7. If o is a formula, « is a variable, o contains at least one occurrence
of «, and 9 contains neither Va nor 3, then Yol is a formula.

8. If o is a formula, «x is a variable, 9 contains at least one occurrence
of x, and o contains neither Va nor 3, then Ja o is a formula.

9. Nothing else is a formula.

So, assuming again that ‘/’ is a one-place predicate, ‘G’ is a three-place
predicate and ‘H’ is a six place-predicate, here are some formulas:

Fx
Gayz
Syzyayx
(Gayz — Syzyayx)
Vz(Gayz — Syzyayx)
Fx & Vz2(Gayz — Syzyayx)
Jy(Fx & Vz(Gayz — Syzyayx))
Vxdy(Fx & Vz(Gayz — Syzyayx))

However, this is not a formula:

Vx3xGxxx

Certainly ‘Gxxx’ is a formula, and ‘xGxxx’ is therefore also a formula. But
we cannot form a new formula by putting ‘Vx’ at the front. This violates the
constraints on clause 7 of our recursive definition: ‘IxGxxx’ contains at least
one occurrence of ‘x’, but it already contains ‘3x’.

These constraints have the effect of ensuring that variables only serve one
master at any one time (see §23). In fact, we can now give a formal definition
of scope, which incorporates the definition of the scope of a quantifier. Here we
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follow the case of TFL, though we note that a logical operator can be either a
connective or a quantifier:

The MAIN LOGICAL OPERATOR in a formula is the operator that was intro-
duced last, when that formula was constructed using the recursion rules.

The scopk of a logical operator in a formula is the subformula for which
that operator is the main logical operator.

So we can graphically illustrate the scope of the quantifiers in the preceding
example thus:

scope of ‘Vx’

scope of ‘Jy’

scope of ‘Vz’

Va Ay(Fx & Vz2(Gayz — Syzyayx))

26.3 Sentences

Recall that we are largely concerned in logic with assertoric sentences: sentences
that can be either true or false. Many formulas are not sentences. Consider the
following symbolization key:

domain: people
Lxy: x loves y
b: Boris

Consider the atomic formula ‘Lzz’. All atomic formula are formulas, so ‘Lzz’
is a formula, but can it be true or false? You might think that it will be true just
in case the person named by ‘2’ loves themself, in the same way that ‘Lb5’ is
true just in case Boris (the person named by ‘0’) loves himself. However, %’ is a
variable, and does not name anyone or any thing.

Of course, if we put an existential quantifier out front, obtaining ‘3zLz2’,
then this would be true iff someone loves herself. Equally, if we wrote ‘VzLz2’,
this would be true iff everyone loves themself. The point is that we need a
quantifier to tell us how to deal with a variable.

Let’s make this idea precise.
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A BOUND VARIABLE is an occurrence of a variable « that is within the
scope of either Vo or 3.

A FREE VARIABLE is any variable that is not bound.

For example, consider the formula
Vx(Ex V Dy) — Jz(Ex — Lzx)

The scope of the universal quantifier ‘Vx’ is ‘Vx(Ex vV Dy)’, so the first ‘x’ is
bound by the universal quantifier. However, the second and third occurrence of
‘x> are free. Equally, the ‘y’ is free. The scope of the existential quantifier ‘32’
is (Ex — Lzx)’, so ‘2’ is bound.

Finally we can say the following.

A SENTENCE of FOL is any formula of FOL that contains no free variables.

26.4 Bracketing conventions

We will adopt the same notational conventions governing brackets that we did
for TFL (see §6 and §10.3.)

First, we may omit the outermost brackets of a formula.

Second, we may use square brackets, " and ‘|, in place of brackets to in-
crease the readability of formulas.

Practice exercises

A. Identify which variables are bound and which are free.

dxLxy ANVyLyx

VxAx A Bx

Vx(Ax A Bx) AVy(Cx A Dy)
Vx3y[Rxy — (Jz A Kx)] V Ryx
Va1 (Mxg <> Lxox1) A IxgLx3zxg

ANl S S
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Interpretations
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CHAPTER 27

Extensionality

Recall that TFL is a truth-functional language. Its connectives are all truth-
functional, and all that we can do with TFL is key sentences to particular truth
values. We can do this directly. For example, we might stipulate that the TFL
sentence ‘P’ is to be true. Alternatively, we can do this indirectly, offering a
symbolization key, e.g.:

P: Big Ben is in London
Now recall from §g that this should be taken to mean:

» The TFL sentence ‘P’ is to take the same truth value as the English sen-
tence ‘Big Ben is in London’ (whatever that truth value may be)

The point that we emphasized is that TFL cannot handle differences in meaning
that go beyond mere differences in truth value.
27.1 Symbolizing versus translating

FOL has some similar limitations, but it goes beyond mere truth values, since it
enables us to split up sentences into terms, predicates and quantifier expressions.
This enables us to consider what is ¢rue of some particular object, or of some
or all objects. But we can do no more than that.

When we provide a symbolization key for some FOL predicates, such as:

Cx: x teaches Logic III in Calgary

we do not carry the meaning of the English predicate across into our FOL pred-
icate. We are simply stipulating something like the following:
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e ‘Cx’and ‘ x teaches Logic III in Calgary’ are to be true of exactly the
same things.

So, in particular:

e ‘Cx’ is to be true of all and only those things which teach Logic III in
Calgary (whatever those things might be).

This is an indirect stipulation. Alternatively, we can directly stipulate which
objects a predicate should be true of. For example, we can stipulate that ‘Cx’ is
to be true of Richard Zach, and Richard Zach alone. As it happens, this direct
stipulation would have the same effect as the indirect stipulation. Note, however,
that the English predicates * is Richard Zach’ and * teaches Logic III
in Calgary’ have very different meanings!

The point is that FOL does not give us any resources for dealing with nu-
ances of meaning. When we interpret FOL, all we are considering is what the
predicates are true of, regardless of whether we specify these things directly or
indirectly. The things a predicate is true of are known as the EXTENSION of that
predicate. We say that FOL is an EXTENSIONAL LANGUAGE because FOL does
not represent differences of meaning between predicates that have the same ex-
tension.

For this reason, we say only that FOL sentences symbolize English sentences.
It is doubtful that we are translating English into FOL, as translations should
preserve meanings, and not just extensions.

27.2 A word on extensions

We can stipulate directly what predicates are to be true of, so it is worth noting
that our stipulations can be as arbitrary as we like. For example, we could
stipulate that ‘Hx’ should be true of, and only of, the following objects:

Justin Trudeau
the number 7
every top-F key on every piano ever made

Now, the objects that we have listed have nothing particularly in common. But
this doesn’t matter. Logic doesn’t care about what strikes us mere humans as
‘natural’ or ‘similar’. Armed with this interpretation of ‘Hx’, suppose we now
add to our symbolization key:

j: Justin Trudeau
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r: Rachel Notley
p: the number n

Then ‘Hj’ and ‘Hp’ will both be true, on this interpretation, but ‘Hr’ will be
false, since Rachel Notley was not among the stipulated objects.

27.3 Many-place predicates

All of this is quite easy to understand when it comes to one-place predicates, but
it gets messier when we consider two-place predicates. Consider a symbolization
key like:

Lxy: + loves ¥
Given what we said above, this symbolization key should be read as saying:

e ‘Lxy’ and ¢ x loves , are to be true of exactly the same things

So, in particular:
* ‘Lxy’ is to be true of x and y (in that order) iff x loves y.

It is important that we insist upon the order here, since love—famously—is
not always reciprocated. (Note that ‘x’ and ‘y’ here are symbols of augmented
English, and that they are being used. By contrast, ‘x’ and ‘y’ are symbols of
FOL, and they are being mentioned.)

That is an indirect stipulation. What about a direct stipulation? This is
slightly harder. If we simply list objects that fall under ‘Lxy’, we will not know
whether they are the lover or the beloved (or both). We have to find a way to
include the order in our explicit stipulation.

To do this, we can specify that two-place predicates are true of pairs of
objects, where the order of the pair is important. Thus we might stipulate that
‘Bxy’ is to be true of, and only of, the following pairs of objects:

(Lenin, Marx)
(Heidegger, Sartre)
(Sartre, Heidegger)

Here the angle-brackets keep us informed concerning order. Suppose we now
add the following stipulations:

/: Lenin
m: Marx
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h: Heidegger
r: Sartre

Then ‘Blm’ will be true, since (Lenin, Marx) was in our explicit list, but ‘Bm/’
will be false, since (Marx, Lenin) was not in our list. However, both ‘BAr’ and
‘Brk’ will be true, since both (Heidegger, Sartre) and (Sartre, Heidegger) are
in our explicit list.

To make these ideas more precise, we would need to develop some set theory.
That would give us some precise tools for dealing with extensions and with
ordered pairs (and ordered triples, etc.). However, set theory is not covered in
this book, so we will leave these ideas at an imprecise level. Nevertheless, the
general idea should be clear.

27.4 Semantics for identity

Identity is a special predicate of FOL. We write it a bit differently than other
two-place predicates: ‘x = y’ instead of ‘7xy’ (for example). More important,
though, its interpretation is fixed, once and for all.

If two names refer to the same object, then swapping one name for another
will not change the truth value of any sentence. So, in particular, if ‘e’ and ‘4’
name the same object, then all of the following will be true:

Aa < Ab
Ba & Bb
Raa < Rbb
Raa < Rab
Rca < Rcb
VxRxa < YxRxb

Some philosophers have believed the reverse of this claim. That is, they have
believed that when exactly the same sentences (not containing ‘=’) are true of
two objects, then they are really just one and the same object after all. This
is a highly controversial philosophical claim (sometimes called the identity of
indiscernibles) and our logic will not subscribe to it; we allow that exactly the
same things might be true of two distinct objects.

To bring this out, consider the following interpretation:

domain: P.D. Magnus, Tim Button
a: P.D. Magnus
b: Tim Button
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* For every primitive predicate we care to consider, that predicate is true of
nothing.

Suppose ‘A’ is a one-place predicate; then ‘Aa’ is false and ‘45’ is false, so
‘Aa < AP’ is true. Similarly, if ‘R’ is a two-place predicate, then ‘Raa’ is false
and ‘Rab’ is false, so that ‘Raa < Rab’ is true. And so it goes: every atomic
sentence not involving ‘=’ is false, so every biconditional linking such sentences
is true. For all that, Tim Button and P.D. Magnus are two distinct people, not
one and the same!

27.5 Interpretation

We defined a VALUATION in TFL as any assignment of truth and falsity to atomic
sentences. In FOL, we are going to define an INTERPRETATION as consisting of
three things:

* the specification of a domain

* for each name that we care to consider, an assignment of exactly one
object within the domain

* for each predicate that we care to consider—other than ‘="—a specification
of what things (in what order) the predicate is to be true of

The symbolization keys that we considered in Part V consequently give us one
very convenient way to present an interpretation. We will continue to use them
throughout this chapter. However, it is sometimes also convenient to present an
interpretation diagrammatically.

Suppose we want to consider just a single two-place predicate, ‘Rxy’. Then
we can represent it just by drawing an arrow between two objects, and stipulate
that ‘Rxy’ is to hold of x and y just in case there is an arrow running from x to
y in our diagram. As an example, we might offer:

1 2
4 3
This would be suitable to characterize an interpretation whose domain is the

first four positive whole numbers, and which interprets ‘Rxy’ as being true of
and only of:

|

|
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(1, 2), (2, 3), (3, 4), {4, 1), (1, 3)
Equally we might offer:

Cl 2

4 ——37)

for an interpretation with the same domain, which interprets ‘Rxy’ as being true
of and only of:

(1, 3), (3, 1), (3, 47, (1, 1), (3, 3)

If we wanted, we could make our diagrams more complex. For example, we
could add names as labels for particular objects. Equally, to symbolize the ex-
tension of a one-place predicate, we might simply draw a ring around some
particular objects and stipulate that the thus encircled objects (and only them)
are to fall under the predicate ‘Hx’, say.
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Truth in FOL

We know what interpretations are. Since, among other things, they tell us which

predicates are true of which objects, they will provide us with an account of the

truth of atomic sentences. However, we must also present a detailed account of

what it is for an arbitrary FOL sentence to be true or false in an interpretation.
We know from §26 that there are three kinds of sentence in FOL.:

* atomic sentences
* sentences whose main logical operator is a sentential connective
* sentences whose main logical operator is a quantifier

We need to explain truth for all three kinds of sentence.

We will provide a completely general explanation in this section. However,
to try to keep the explanation comprehensible, we will, at several points, use the
following interpretation:

domain: all people born before 2000CE
a: Aristotle

b: Beyoncé
Px: x is a philosopher
Rxy: x was born before ¥

This will be our go-to example in what follows.

28.1 Atomic sentences

The truth of atomic sentences should be fairly straightforward. The sentence
‘Pa’ should be true just in case ‘Px’ is true of ‘a’. Given our go-to interpretation,
this is true iff Aristotle is a philosopher. Aristotle is a philosopher. So the
sentence is true. Equally, ‘P4’ is false on our go-to interpretation.
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Likewise, on this interpretation, ‘Rad’ is true iff the object named by ‘a’ was
born before the object named by ‘4’. Well, Aristotle was born before Beyoncé.
So ‘Rab’ is true. Equally, ‘Raa’ is false: Aristotle was not born before Aristotle.

Dealing with atomic sentences, then, is very intuitive. When R is an n-place
predicate and 1, @9, ..., @, are names,

Ra1@y ..., is true in an interpretation iff
R is true of the objects named by @1, @q,...,a, in that interpretation
(considered in that order)

Recall, though, that there is a second kind of atomic sentence: two names
connected by an identity sign constitute an atomic sentence. This kind of atomic
sentence is also easy to handle. Where @ and ¢ are any names,

« = G is true in an interpretation iff
<« and 6 name the very same object in that interpretation

So in our go-to interpretation, ‘a = 4’ is false, since Aristotle is distinct from
Beyoncé.

28.2 Sentential connectives

We saw in §26 that FOL sentences can be built up from simpler ones using the
truth-functional connectives that were familiar from TFL. The rules governing
these truth-functional connectives are exactly the same as they were when we
considered TFL. Here they are:
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o A R is true in an interpretation iff
both d is true and 9 is true in that interpretation

9 vV R is true in an interpretation iff
either o is true or & is true in that interpretation

—dl is true in an interpretation iff
d is false in that interpretation

d — 9B is true in an interpretation iff
either o is false or 9 is true in that interpretation

9 < A is true in an interpretation iff
o has the same truth value as 9 in that interpretation

This presents the very same information as the characteristic truth tables for
the connectives; it just does so in a slightly different way. Some examples will
probably help to illustrate the idea. On our go-to interpretation:

e ‘a=aAPa is true

* ‘Rab A PP’ is false because, although ‘Rabd’ is true, ‘PJ’ is false

e ‘a=bV Pa is true

o ‘mg =b is true

e ‘PaA-(a=bARab) is true, because ‘Pa’ is true and ‘a = &’ is false

Make sure you understand these examples.

28.3 When the main logical operator is a quantifier

The exciting innovation in FOL, though, is the use of quantifiers, but expressing
the truth conditions for quantified sentences is a bit more fiddly than one might
first expect.

Here is a naive first thought. We want to say that ‘VxFx’ is true iff ‘Fx’
is true of everything in the domain. This should not be too problematic: our
interpretation will specify directly what ‘Fx’ is true of.

Unfortunately, this naive thought is not general enough. For example, we
want to be able to say that ‘Vx3yLxy’ is true just in case ‘IyLxy’ is true of
everything in the domain. This is problematic, since our interpretation does
not directly specify what ‘IyLxy’ is to be true of. Instead, whether or not this is



28.3. WHEN THE MAIN LOGICAL OPERATOR IS A QUANTIFIER 183

true of something should follow just from the interpretation of ‘Lxy’, the domain,
and the meanings of the quantifiers.

So here is a second naive thought. We might try to say that ‘Vx3yLxy’ is to be
true in an interpretation iff 3y Ly is true for every name « that we have included
in our interpretation. Similarly, we might try to say that 3yLay is true just in
case Lat is true for some name 6 that we have included in our interpretation.

Unfortunately, this is not right either. To see this, observe that in our go-to
interpretation, we have only given interpretations for fwo names, ‘a’ and ‘4’, but
the domain—all people born before the year 2000CE—contains many more than
two people. We have no intention of trying to name all of them!

So here is a third thought. (And this thought is not naive, but correct.)
Although it is not the case that we have named everyone, each person could have
been given a name. So we should focus on this possibility of extending an
interpretation, by adding a new name. We will offer a few examples of how this
might work, centring on our go-to interpretation, and we will then present the
formal definition.

In our go-to interpretation, ‘IxRbx’ should be true. After all, in the domain,
there is certainly someone who was born after Beyoncé. Lady Gaga is one of
those people. Indeed, if we were to extend our go-to interpretation—temporarily,
mind—by adding the name ‘¢’ to refer to Lady Gaga, then ‘Rb¢’ would be true
on this extended interpretation. This, surely, should suffice to make ‘IxRbx’
true on the original go-to interpretation.

In our go-to interpretation, ‘Ix(Px A Rxa)’ should also be true. After all, in
the domain, there is certainly someone who was both a philosopher and born
before Aristotle. Socrates is one such person. Indeed, if we were to extend our
go-to interpretation by letting a new name, ‘c’, denote Socrates, then ‘W¢ARca’
would be true on this extended interpretation. Again, this should surely suffice
to make ‘Ix(Px A Rxa)’ true on the original go-to interpretation.

In our go-to interpretation, ‘Vx3yRxy’ should be false. After all, consider the
last person born in the year 1999. We don’t know who that was, but if we were to
extend our go-to interpretation by letting a new name, ‘d’, denote that person,
then we would not be able to find anyone else in the domain to denote with some
further new name, perhaps ‘¢’, in such a way that ‘Rde’ would be true. Indeed, no
matter whom we named with ‘¢’, ‘Rde’ would be false. This observation is surely
sufficient to make ‘yRdy’ false in our extended interpretation, which in turn is
surely sufficient to make ‘Vx3yRxy’ false on the original go-to interpretation.

If you have understood these three examples, good. That’s what matters.
Strictly speaking, though, we still need to give a precise definition of the truth
conditions for quantified sentences. The result, sadly, is a bit ugly, and requires
a few new definitions. Brace yourself!
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Suppose that o is a formula containing at least one instance of the variable
x, and that « is free in /. We will write this thus:

A(...x...x...)
Suppose also that ¢ is a name. Then we will write:
A(...c...c...)

for the formula obtained by replacing every occurrence of x in o with <. The
resulting formula is called a SUBSTITUTION INSTANCE of VYl and Jxd. Also, ¢
is called the INSTANTIATING NAME. So:

Ax(Rex & Fx)
is a substitution instance of
Vy3x(Ryx < Fx)

with the instantiating name ‘¢’.

Armed with this notation, the rough idea is as follows. The sentence
Vad(...ax...ax...)willbe trueiff d(...c...<¢...)is true no matter what object
(in the domain) we name with ¢. Similarly, the sentence Jacdl will be true iff
there is some way to assign the name < to an object that makes d(...c...c...)
true. More precisely, we stipulate:

Vad(...a...a...)is true in an interpretation iff

A(...c...c...)is true in every interpretation that extends the original
interpretation by assigning an object to any name ¢ (without changing
the interpretation in any other way).

Joed(... ... ...)is true in an interpretation iff

d(...c...c...)is true in some interpretation that extends the original
interpretation by assigning an object to some name ¢ (without changing
the interpretation in any other way).

To be clear: all this is doing is formalizing (very pedantically) the intuitive
idea expressed on the previous page. The result is a bit ugly, and the final
definition might look a bit opaque. Hopefully, though, the spiriz of the idea is
clear.
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Practice exercises
A. Consider the following interpretation:

* The domain comprises only Corwin and Benedict
* ‘Ax’ is to be true of both Corwin and Benedict

* ‘Bx’ is to be true of Benedict only

* ‘Nx’ is to be true of no one

* ‘¢’ is to refer to Corwin

Determine whether each of the following sentences is true or false in that inter-
pretation:

B¢

Ac & - Ne¢

Nc¢ — (Ac V Be)
VxAx

Vx-Bx

Ax(Ax A Bx)
Ax(Ax — Nx)
Vx(Nx V —=Nx)
JAxBx — VxAx

Q © X T P

B. Consider the following interpretation:

* The domain comprises only Lemmy, Courtney and Eddy
e ‘Gx’ is to be true of Lemmy, Courtney and Eddy.

* ‘Hx’ is to be true of and only of Courtney

e ‘Mx’ is to be true of and only of Lemmy and Eddy

* ‘¢’ is to refer to Courtney

e ‘¢’ is to refer to Eddy

Determine whether each of the following sentences is true or false in that inter-
pretation:

Hc¢

He

McN Me
Ge VvV —Ge
Mc — Ge
dxHx
VxHx

DR ANL ol S
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8.

9.
10.
11.
12.
13.
14.
15.

CHAPTER 28. TRUTH IN FOL

dx-Mx

Ax(Hx A Gx)
Ax(Mx A Gx)
Vax(Hx vV Mx)
dAxHx AN IxMx
Vx(Hx & - Mx)
dxGx A dx-Gx
Vx3y(Gx A Hy)

C. Following the diagram conventions introduced at the end of §27, consider
the following interpretation:

S

Determine whether each of the following sentences is true or false in that inter-
pretation:

[T
v H O

© O S ® P

dxRxx

VxRxx

AxVyRxy

AxVyRyx

VxVyVz((Rxy A Ryz) — Rxz)
VxVyVz((Rxy A Rxz) — Ryz)
AxVy-Rxy

Vx(3yRxy — JyRyx)
JxIy(—x =y A Rxy A Ryx)
JxVy(Rxy & x =y)

. JxVy(Ryx < x =)
. Jx3y(—x =y ARxy AVz(Rzx <> y = 2))
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Semantic concepts

Offering a precise definition of truth in FOL was more than a little fiddly, but
now that we are done, we can define various central logical notions. These will
look very similar to the definitions we offered for TFL. However, remember that
they concern interpretations, rather than valuations.

We will use the symbol ‘¢’ for FOL much as we did for TFL. So:

di, dy,....d, EEG

means that there is no interpretation in which all of o, dy, ..., d, are true and
in which € is false. Derivatively,
Ed

means that ¢ is true in every interpretation.
The other logical notions also have corresponding definitions in FOL:

> An FOL sentence o is a LOGICAL TRUTH iff d is true in every interpreta-
tion; i.e., F of.

> d is a CONTRADICTION iff o is false in every interpretation; i.e., F =d.

> dq1,dy,...d, .". € is VALID IN FOL iff there is no interpretation in which all
of the premises are true and the conclusion is false; i.e., d1, oy, ... d, F 6.
It is INVALID IN FOL otherwise.

> Two FOL sentences & and % are LOGICALLY EQUIVALENT iff they are true
in exactly the same interpretations as each other; i.e., both o £ % and

PBEIA.

> The FOL sentences od1,8o,...,9, are JOINTLY CONSISTENT iff there is
some interpretation in which all of the sentences are true. They are
JOINTLY INCONSISTENT iff there is no such interpretation.
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CHAPTER 30
Using
interpretations

30.1 Logical truths and contradictions

Suppose we want to show that ‘IxAxx — Bd’ is not a logical truth. This requires
showing that the sentence is not true in every interpretation; i.e., that it is false
in some interpretation. If we can provide just one interpretation in which the
sentence is false, then we will have shown that the sentence is not a logical truth.

In order for ‘IxAxx — Bd’ to be false, the antecedent (‘IxAxx’) must be
true, and the consequent (‘Bd’) must be false. To construct such an interpreta-
tion, we start by specifying a domain. Keeping the domain small makes it easier
to specify what the predicates will be true of, so we will start with a domain that
has just one member. For concreteness, let’s say it is the city of Paris.

domain: Paris
The name ‘d’ must refer to something in the domain, so we have no option but:
d: Paris

Recall that we want ‘IxAxx’ to be true, so we want all members of the domain
to be paired with themselves in the extension of ‘4’. We can just offer:

Axy: « is identical with ¥

Now ‘4dd’ is true, so it is surely true that ‘IxA4xx’. Next, we want ‘Bd’ to be
false, so the referent of ‘d’ must not be in the extension of ‘B’. We might simply
offer:
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Bx: x is in Germany

Now we have an interpretation where ‘IxAxx’ is true, but where ‘Bd’ is false.
So there is an interpretation where ‘Ix4xx — Bd’ is false. So ‘IxAxx — Bd’ is
not a logical truth.

We can just as easily show that ‘Ix4xx — Bd’ is not a contradiction. We
need only specify an interpretation in which ‘IxAxx — Bd’ is true; i.e., an
interpretation in which either ‘IxAxx’ is false or ‘Bd’ is true. Here is one:

domain: Paris

d: Paris
Axy: x is identical with y
Bx: x is in France

This shows that there is an interpretation where ‘IxAxx — Bd’ is true. So
‘IxAxx — Bd’ is not a contradiction.

30.2 Logical equivalence

Suppose we want to show that ‘VxSx’ and ‘IxSx’ are not logically equivalent.
We need to construct an interpretation in which the two sentences have different
truth values; we want one of them to be true and the other to be false. We start
by specifying a domain. Again, we make the domain small so that we can specify
extensions easily. In this case, we will need at least two objects. (If we chose a
domain with only one member, the two sentences would end up with the same
truth value. In order to see why, try constructing some partial interpretations
with one-member domains.) For concreteness, let’s take:

domain: Ornette Coleman, Miles Davis

We can make ‘JxSx’ true by including something in the extension of ‘S’, and
we can make ‘VxSx’ false by leaving something out of the extension of ‘S’. For
concreteness we will offer:

Sx: x plays saxophone

Now ‘IxSx’ is true, because ‘S’ is true of Ornette Coleman. Slightly more
precisely, extend our interpretation by allowing ‘¢’ to name Ornette Coleman.
‘S¢’ is true in this extended interpretation, so ‘3xSx’ was true in the original
interpretation. Similarly, ‘VxSx’ is false, because ‘Sx’ is false of Miles Davis.
Slightly more precisely, extend our interpretation by allowing ‘d’ to name Miles
Davis, and ‘Sd’ is false in this extended interpretation, so ‘VxSx’ was false in the
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original interpretation. We have provided a counter-interpretation to the claim
that ‘VaxSx” and ‘3xS$x’ are logically equivalent.

To show that d is not a logical truth, it suffices to find an interpretation
where d is false.

To show that d is not a contradiction, it suffices to find an interpretation
where d is true.

To show that of and 9B are not logically equivalent, it suffices to find an
interpretation where one is true and the other is false.

30.3 Validity, entailment and consistency

To test for validity, entailment, or consistency, we typically need to produce in-
terpretations that determine the truth value of several sentences simultaneously.
Consider the following argument in FOL:

Ax(Gx — Ga) .. AxGx — Ga

To show that this is invalid, we must make the premise true and the conclusion
false. The conclusion is a conditional, so to make it false, the antecedent must
be true and the consequent must be false. Clearly, our domain must contain two
objects. Let’s try:

domain: Karl Marx, Ludwig von Mises
Gx: » hated communism
a: Karl Marx

Given that Marx wrote The Communist Manifesto, ‘Ga’ is plainly false in this
interpretation. But von Mises famously hated communism, so ‘3xGx’ is true in
this interpretation. Hence ‘IxGx — Ga’ is false, as required.

Does this interpretation make the premise true? Yes it does! Note that ‘Ga —
Ga’ is true. (Indeed, it is a logical truth.) But then certainly ‘Ix(Gx — Ga)’ is
true, so the premise is true, and the conclusion is false, in this interpretation.
The argument is therefore invalid.

In passing, note that we have also shown that ‘Ix(Gx — Ga)’ does not entail
‘IxGx — Ga’. Equally, we have shown that the sentences ‘Ix(Gx — Ga)’ and
‘=(3xGx — Ga)’ are jointly consistent.

Let’s consider a second example. Consider:

Vx3dyLxy .. AyVxLxy
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Again, we want to show that this is invalid. To do this, we must make the
premises true and the conclusion false. Here is a suggestion:

domain: UK citizens currently in a civil partnership with another UK citizen
Lxy: x is in a civil partnership with y

The premise is clearly true on this interpretation. Anyone in the domain is a
UK citizen in a civil partnership with some other UK citizen. That other citizen
will also, then, be in the domain. So for everyone in the domain, there will be
someone (else) in the domain with whom they are in a civil partnership. Hence
‘Vx3yLxy’ is true. However, the conclusion is clearly false, for that would require
that there is some single person who is in a civil partnership with everyone in
the domain, and there is no such person, so the argument is invalid. We observe
immediately that the sentences ‘Vx3yLxy’ and ‘~3yVxLxy’ are jointly consistent
and that ‘Vx3yLxy’ does not entail ‘IyVxLxy’.

For our third example, we’ll mix things up a bit. In §27, we described how
we can present some interpretations using diagrams. For example:

Co—s

Using the conventions employed in §27, the domain of this interpretation is the
first three positive whole numbers, and ‘Rxy’ is true of x and y just in case
there is an arrow from x to y in our diagram. Here are some sentences that the
interpretation makes true:

o VxdyRyx’

* ‘TxVyRxy’ witness 1
o ‘AWVy(Ryx & x =y) witness 1
e ‘AxJyIz((—y = 2 A Rxy) A Rzx) witness 2
e ‘AxVy-Rxy’ witness 3
e ‘Ax(IyRyx A -IyRxy) witness 3

This immediately shows that all of the preceding six sentences are jointly con-
sistent. We can use this observation to generate invalid arguments, e.g.:

Vx3dyRyx, AxVyRxy .". VxIyRxy
JxVyRxy, IxVy-Rxy .. ~IxIy32(-y = 2 A (Rxy A Rzx))
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and many more besides.

To show that o1, dy,...,d, .. 6 is invalid, it suffices to find an interpre-
tation where all of 91, 9, ..., d, are true and where 6 is false.

That same interpretation will show that dq, dy, ..., 9, do not entail 6.
It will also show that o1, dy, ..., d,, =6 are jointly consistent.

When you provide an interpretation to refute a claim—to logical truth, say,
or to entailment—this is sometimes called providing a counter-interpretation (or
providing a counter-model).

Practice exercises

A. Show that each of the following is neither a logical truth nor a contradiction:

AN ol

Da A Db

AxT xh

Pm A -=VxPx

VzJz & 3y [y
Vx(Wxmn Vv 3yLxy)
Jx(Gx — VyMy)
Ax(x=hAx=1)

B. Show that the following pairs of sentences are not logically equivalent.

© O S ® P

Ja, Ka

Ax Jx, Jm

VxRxx, 3xRxx

JxPx — Qc¢, Ix(Px — Qc)
Vx(Px — =Qx), Ix(Px A =Qx)
Jx(Px A Qx), Ix(Px — Qx)
Vx(Px — Qx), Vx(Px A Qx)
Vx3dyRxy, AxVyRxy

Vx3yRxy, VxIyRyx

C. Show that the following sentences are jointly consistent:

- p M

Ma,~Na,Pa,—~Qa
Lee,Leg,—Lge,~Lgg

-(Ma ATxAx),Ma VN Fa,¥Yx(Fx — Ax)
Ma~v Mb,Ma — Vx—-Mx



30.3.

VALIDITY, ENTAILMENT AND CONSISTENCY

VyGy,Vx(Gx — Hx),Ay—1y

dAx(Bx V Ax),Yx—Cx, Vx[(Ax A Bx) — Cx]
AxXx, AxY x,Vx(Xx & —Y x)

Vx(Px VvV Qx),x—(Qx A Px)

J2(Nz A 022),VxVy(Oxy — Oyx)
—JxVyRxy,VxIyRxy

—Raa,Vx(x = aV Rxa)

VaVyVz[(x =y Vy=2)Vx =z], IxTy ~x =y

L AxTy(Zx ANZy)Ax=9), " Zd,d =¢

D. Show that the following arguments are invalid:

-

CL XN T @ b K

Vx(Ax — Bx) .". xBx

Vx(Rx — Dx),Yx(Rx — Fx) .. Ax(Dx A Fx)
Jx(Px — Qx) .. IxPx
NaANbANc..VxNx

Rde,3AxRxd .". Red

Ax(Ex A Fx),3xFx — xGx .". Ax(Ex A Gx)
VxO0xc,Vx0cx .". VxOxx

Ax(Jx A Kx),Ix—~Kx,3x— Jx .". Ix(—~ ] x A = Kx)

Lab — VxLxb,AxLxb .". Lbb
Vx(Dx — JyTyx) .. yTz -y =z
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CHAPTER 31
Reasoning about
all

interpretations

31.1 Logical truths and contradictions

We can show that a sentence is no¢ a logical truth just by providing one care-
fully specified interpretation: an interpretation in which the sentence is false.
To show that something is a logical truth, on the other hand, it would not be
enough to construct ten, one hundred, or even a thousand interpretations in
which the sentence is true. A sentence is only a logical truth if it is true in every
interpretation, and there are infinitely many interpretations. We need to reason
about all of them, and we cannot do this by dealing with them one by one!

Sometimes, we can reason about all interpretations fairly easily. For exam-
ple, we can offer a relatively simple argument that ‘Raa < Raa’ is a logical
truth:

Any relevant interpretation will give ‘Raa’ a truth value. If ‘Raa’
is true in an interpretation, then ‘Raa < Raa’ is true in that inter-
pretation. If ‘Raa’ is false in an interpretation, then ‘Raa < Raa’
is true in that interpretation. These are the only alternatives. So
‘Raa < Rada’ is true in every interpretation. Therefore, it is a logi-
cal truth.

This argument is valid, of course, and its conclusion is true. However, it is not
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an argument in FOL. Rather, it is an argument in English about FOL: it is an
argument in the metalanguage.

Note another feature of the argument. Since the sentence in question con-
tained no quantifiers, we did not need to think about how to interpret ‘a’ and
‘R’; the point was just that, however we interpreted them, ‘Raa’ would have
some truth value or other. (We could ultimately have given the same argument
concerning TFL sentences.)

Here is another bit of reasoning. Consider the sentence ‘Vx(Rxx < Rxx)’.
Again, it should obviously be a logical truth, but to say precisely why is quite a
challenge. We cannot say that ‘Rxx <> Rxx’ is true in every interpretation, since
‘Rxx < Rxx’ is not even a sentence of FOL (remember that ‘x’ is a variable, not
a name). So we have to be a bit cleverer.

Consider some arbitrary interpretation. Consider some arbitrary
member of the domain, which, for convenience, we will call obbie,
and suppose we extend our original interpretation by adding a new
name, ‘c’, to name obbie. Then either ‘Rcc’ will be true or it will be
false. If ‘Rcc’ is true, then ‘Rec <> Rec’ is true. If ‘Rec’ is false, then
‘Rce & Ree’ will be true. So either way, ‘Rcc <> Rec’ is true. Since
there was nothing special about obbie—we might have chosen any
object—we see that no matter how we extend our original interpre-
tation by allowing ‘c’ to name some new object, ‘Rcc <> Rcc’ will be
true in the new interpretation. So ‘Vx(Rxx < Rxx)’ was true in the
original interpretation. But we chose our interpretation arbitrarily,
so ‘Vx(Rxx < Rxx) is true in every interpretation. It is therefore a
logical truth.

This is quite longwinded, but, as things stand, there is no alternative. In order to
show that a sentence is a logical truth, we must reason about a// interpretations.

31.2 Other cases

Similar points hold of other cases too. Thus, we must reason about all interpre-
tations if we want to show:

* that a sentence is a contradiction; for this requires that it is false in every
interpretation.

* that two sentences are logically equivalent; for this requires that they have
the same truth value in every interpretation.
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* that some sentences are jointly inconsistent; for this requires that there
is no interpretation in which all of those sentences are true together; i.e.

that, in every interpretation, at least one of those sentences is false.

e that an argument is valid; for this requires that the conclusion is true in

every interpretation where the premises are true.
* that some sentences entail another sentence.

The problem is that, with the tools available to you so far, reasoning about all
interpretations is a serious challenge! Let’s take just one more example. Here is

an argument which is obviously valid:

Vx(Hx N Jx) .. VxHx

After all, if everything is both H and J, then everything is H. But we can only
show that the argument is valid by considering what must be true in every
interpretation in which the premise is true. To show this, we would have to

reason as follows:

Consider an arbitrary interpretation in which the premise ‘Vx(Hx A
Jx) is true. It follows that, however we expand the interpretation
with a new name, for example ‘c’, ‘H¢ A J¢’ will be true in this new
interpretation. ‘H ¢’ will, then, also be true in this new interpretation.
But since this held for any way of expanding the interpretation, it
must be that ‘VxH x’ is true in the old interpretation. We’ve assumed
nothing about the interpretation except that it was one in which
‘Vx(Hx A Jx) is true, so any interpretation in which ‘Vx(Hx A Jx)
is true is one in which ‘VxHx’ is true. The argument is valid!

Even for a simple argument like this one, the reasoning is somewhat complicated.

For longer arguments, the reasoning can be extremely torturous.

The following table summarises whether a single (counter-)interpretation

suffices, or whether we must reason about all interpretations.

Yes

No

logical truth?  all interpretations
contradiction? all interpretations

equivalent? all interpretations
consistent? one interpretation
valid? all interpretations
entailment? all interpretations

one counter-interpretation
one counter-interpretation
one counter-interpretation
all interpretations

one counter-interpretation
one counter-interpretation
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This might usefully be compared with the table at the end of §13. The key
difference resides in the fact that TFL concerns truth tables, whereas FOL con-
cerns interpretations. This difference is deeply important, since each truth-table
only ever has finitely many lines, so that a complete truth table is a relatively
tractable object. By contrast, there are infinitely many interpretations for any
given sentence(s), so that reasoning about all interpretations can be a deeply
tricky business.
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CHAPTER 32
Basic rules for
FOL

The language of FOL makes use of all of the connectives of TFL. So proofs in
FOL will use all of the basic and derived rules from Part IV. We will also use the
proof-theoretic notions (particularly, the symbol ‘+’) introduced there. However,
we will also need some new basic rules to govern the quantifiers, and to govern
the identity sign.

32.1 Universal elimination

From the claim that everything is F, you can infer that any particular thing is F.
You name it; it’s F. So the following should be fine:

1 | VxRxxd
2 | Raad VE 1

We obtained line 2 by dropping the universal quantifier and replacing every
instance of ‘x” with ‘a’. Equally, the following should be allowed:

1 | VxRxxd
2 | Rddd VE 1

We obtained line 2 here by dropping the universal quantifier and replacing every
instance of ‘x’ with ‘d’. We could have done the same with any other name we
wanted.
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This motivates the universal elimination rule (VE):

m |VYaed(...x...x...)
A(...c...¢c...) VE m

The notation here was introduced in §28. The point is that you can ob-
tain any substitution instance of a universally quantified formula: replace every
instance of the quantified variable with any name you like.

I should emphasize that (as with every elimination rule) you can only apply
the VE rule when the universal quantifier is the main logical operator. So the
following is banned:

1 | VxBx — Bk

2 | Bb— Bk naughtily attempting to invoke VE 1

This is illegitimate, since ‘Vx’ is not the main logical operator in line 1. (If you
need a reminder as to why this sort of inference should be banned, reread §22.)

32.2 Existential introduction

From the claim that some particular thing is an F, you can infer that something
is an F. So we ought to allow:

1 | Raad

2 | dxRaax i1

Here, we have replaced the name ‘d’ with a variable ‘x’, and then existentially
quantified over it. Equally, we would have allowed:

1 | Raad
2 | IxRxxd J11

Here we have replaced both instances of the name ‘@’ with a variable, and then
existentially generalised. But we do not need to replace both instances of a
name with a variable: if Narcissus loves himself, then there is someone who
loves Narcissus. So we also allow:
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1 | Raad
2 | 3xRxad a1

Here we have replaced one instance of the name ‘a’ with a variable, and then
existentially generalised. These observations motivate our introduction rule,
although to explain it, we will need to introduce some new notation.

Where 4 is a sentence containing the name ¢, we can emphasize this by
writing ‘d(...c...c...). We will write ‘d(...a...c...) to indicate any for-
mula obtained by replacing some or all of the instances of the name ¢ with the
variable «. Armed with this, our introduction rule is:

m |A(..c...c...)
AxdA(...x...c...) Al m

o« must not occurin (... ¢c...¢c...)

The constraint is included to guarantee that any application of the rule yields
a sentence of FOL. Thus the following is allowed:

2 | 3xRxad 1
3 | IyFxRxyd a2

2 | xRxad a1

3 | Ix3xRxxd naughtily attempting to invoke 3I 2

since the expression on line 3 contains clashing variables, and so is not a sen-
tence of FOL.

32.3 Empty domains

The following proof combines our two new rules for quantifiers:
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1 | VaxFx
2 | Fa VE 1
3 | IxFx 12

Could this be a bad proof? If anything exists at all, then certainly we can infer
that something is F, from the fact that everything is F. But what if nothing exists
at all? Then it is surely vacuously true that everything is F; however, it does not
following that something is F, for there is nothing to be F. So if we claim that, as
a matter of logic alone, ‘xFx’ follows from ‘VxFx’, then we are claiming that,
as a matter of logic alone, there is something rather than nothing. This might
strike us as a bit odd.

Actually, we are already committed to this oddity. In §21, we stipulated that
domains in FOL must have at least one member. We then defined a logical truth
(of FOL) as a sentence which is true in every interpretation. Since ‘Ix x = x’
will be true in every interpretation, this also had the effect of stipulating that it
is a matter of logic that there is something rather than nothing.

Since it is far from clear that logic should tell us that there must be something
rather than nothing, we might well be cheating a bit here.

If we refuse to cheat, though, then we pay a high cost. Here are three things
that we want to hold on to:

e VxFx + Fa: after all, that was VE.

e Fat+ dxFx: after all, that was 3L

* the ability to copy-and-paste proofs together: after all, reasoning works by
putting lots of little steps together into rather big chains.

If we get what we want on all three counts, then we have to countenance that
VxFx + 3xFx. So, if we get what we want on all three counts, the proof system
alone tells us that there is something rather than nothing. And if we refuse to
accept that, then we have to surrender one of the three things that we want to
hold on to!

Before we start thinking about which to surrender, we might want to ask how
much of a cheat this is. Granted, it may make it harder to engage in theological
debates about why there is something rather than nothing. But the rest of the
time, we will get along just fine. So maybe we should just regard our proof
system (and FOL, more generally) as having a very slightly limited purview. If
we ever want to allow for the possibility of nothing, then we will have to cast
around for a more complicated proof system. But for as long as we are content
to ignore that possibility, our proof system is perfectly in order. (As, similarly,
is the stipulation that every domain must contain at least one object.)
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32.4 Universal introduction

Suppose you had shown of each particular thing that it is F (and that there are
no other things to consider). Then you would be justified in claiming that every-
thing is F. This would motivate the following proof rule. If you had established
each and every single substitution instance of ‘VxFx’, then you can infer ‘VxFx’.

Unfortunately, that rule would be utterly unusable. To establish each and
every single substitution instance would require proving ‘Fa’, ‘Fb&’, ..., ‘Fjo,
.o ‘Fry9009’, ..., and so on. Indeed, since there are infinitely many names
in FOL, this process would never come to an end. So we could never apply
that rule. We need to be a bit more cunning in coming up with our rule for
introducing universal quantification.

Our cunning thought will be inspired by considering:

VxFx .. VyFy

This argument should obviously be valid. After all, alphabetical variation ought
to be a matter of taste, and of no logical consequence. But how might our proof
system reflect this? Suppose we begin a proof thus:

1 | VxFx
2 | Fa VE 1

We have proved ‘Fa’. And, of course, nothing stops us from using the same
justification to prove ‘F&’, ‘Fc¢’, ..., ‘Fjo’, ..., ‘Fryope,. .., and so on until we
run out of space, time, or patience. But reflecting on this, we see that there is a
way to prove Fc, for any name <. And if we can do it for any thing, we should
surely be able to say that ‘F”’ is true of everything. This therefore justifies us in
inferring ‘VyFy’, thus:

1 | VxFx

2 | Fa VE 1

3 | VyFy VvI2
The crucial thought here is that ‘e’ was just some arbitrary name. There was
nothing special about it—we might have chosen any other name—and still the

proof would be fine. And this crucial thought motivates the universal introduc-
tion rule (VI):
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m |A(..c...c...)
Ved(...x...xc...) Vim

< must not occur in any undischarged assumption
o must not occur in 4(...¢c...c...)

A crucial aspect of this rule, though, is bound up in the first constraint. This
constraint ensures that we are always reasoning at a sufficiently general level.
To see the constraint in action, consider this terrible argument:

Everyone loves Kylie Minogue; therefore everyone loves themselves.
We might symbolize this obviously invalid inference pattern as:

VxLxk .. VxLxx

Now, suppose we tried to offer a proof that vindicates this argument:

1
2 | Lkk VE 1
3 | VxLxx naughtily attempting to invoke VI 2

This is not allowed, because ‘4’ occurred already in an undischarged assump-
tion, namely, on line 1. The crucial point is that, if we have made any assump-
tions about the object we are working with, then we are not reasoning generally
enough to license VI.

Although the name may not occur in any undischarged assumption, it may
occur in a discharged assumption. That is, it may occur in a subproof that we
have already closed. For example, this is just fine:

1 Gd

2 Gd R1

3 | Gd > Gd —11-2
4 | V2(Gz —> G2) VI3

This tells us that Vz(Gz — Gz)’ is a theorem. And that is as it should be.
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I should emphasise one last point. As per the conventions of §28.3, the use of
VI requires that we are replacing every instance of the name ¢ ind(... ... x...)
with the variable «. If we only replace some names and not others, we end up
‘proving’ silly things. For example, consider the argument:
Everyone is as old as themselves; so everyone is as old as Judi Dench
We might symbolise this as follows:

VxOxx . .VxOxd

But now suppose we tried to vindicate this terrible argument with the following:

VE 1

3 | VxOxd naughtily attempting to invoke VI 2

Fortunately, our rules do not allow for us to do this: the attempted proof is
banned, since it doesn’t replace every occurrence of ‘d’ in line 2 with an ‘x’.

32.5 Existential elimination

Suppose we know that something is F. The problem is that simply knowing this
does not tell us which thing is F. So it would seem that from ‘IxFx’ we cannot
immediately conclude ‘Fa’, ‘Feg3’, or any other substitution instance of the
sentence. What can we do?

Suppose we know that something is F, and that everything which is F is G.
In (almost) natural English, we might reason thus:

Since something is F, there is some particular thing which is an F.
We do not know anything about it, other than that it’s an F, but for
convenience, let’s call it ‘obbie’. So: obbie is F. Since everything
which is F is G, it follows that obbie is G. But since obbie is G, it
follows that something is G. And nothing depended on which object,
exactly, obbie was. So, something is G.

We might try to capture this reasoning pattern in a proof as follows:
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1 | dxFx

2 | Vx(Fx — Gx)

3 Fo

4 Fo— Go VE 2

5 Go —E 4,3
6 AxGx b

7 | IxGx JE 1, 3-6

Breaking this down: we started by writing down our assumptions. At line 3, we
made an additional assumption: ‘Fo’. This was just a substitution instance of
‘IxFx’. On this assumption, we established ‘3xGx’. Note that we had made no
special assumptions about the object named by ‘0’; we had only assumed that it
satisfies ‘Fx’. So nothing depends upon which object it is. And line 1 told us
that something satisfies ‘Fx’, so our reasoning pattern was perfectly general. We
can discharge the specific assumption ‘Fo’, and simply infer ‘IxGx’ on its own.
Putting this together, we obtain the existential elimination rule (3E):

m | Jaxd(...x...x...)
i |$ﬂ(...c...c...)
i| o |@
RB 3JE m, i—j

< must not occur in any assumption undischarged before line i
< must not occur in JxA(...x...x...)
< must not occur in %

As with universal introduction, the constraints are extremely important. To
see why, consider the following terrible argument:

Tim Button is a lecturer. Someone is not a lecturer. So Tim Button
is both a lecturer and not a lecturer.

We might symbolize this obviously invalid inference pattern as follows:

Lb,Ax—Lx .. Lb A -Lb
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Now, suppose we tried to offer a proof that vindicates this argument:

Lb
x—-Lx
-Lb
LbA=Lb A1, 3

S T C R SR

LbAN=Lb naughtily attempting to invoke JE 2, 3—4

The last line of the proof is not allowed. The name that we used in our substitu-
tion instance for ‘Ix—Lx’ on line 3, namely ‘4’, occurs in line 4. The this would
be no better:

1 | Lb

2 | Ix-Lx

3 -Lb

4 LbA-Lb A1, 3

5 Ax(Lx A =Lx) I 4

6 | Ix(Lx A-Lx) naughtily attempting to invoke 3E 2, 3-5

The last line is still not be allowed. For the name that we used in our substitution
instance for ‘Ix—Lx’, namely ‘4’, occurs in an undischarged assumption, namely
line 1.

The moral of the story is this. If you want to squeeze information out of an
existential quantifier, choose a new name for your substitution instance. That way, you
can guarantee that you meet all the constraints on the rule for 3JE.

Practice exercises

A. Explain why these two ‘proofs’ are incorrect. Also, provide interpretations
which would invalidate the fallacious argument forms the ‘proofs’ enshrine:

1 | VxRxx

2 | Raa VE1
3 | YyRay V12
4 | VxVyRxy VI3
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[ N

Vx3yRxy

dyRay VE1
Raa
AxRxx 13
dxRxx dE 2, 3-4

CHAPTER 32. BASIC RULES FOR FOL

B. The following three proofs are missing their citations (rule and line numbers).
Add them, to turn them into bona fide proofs.

X 9 O oA W N MM

© 0 NN S g A W N+

_ =
— o

Vx3y(Rxy V Ryx)

Vx—Rmx

Jy(Rmy V Rym)

Rma Vv Ram
-Rma
Ram

dxRxm

dxRxm

Vx(IyLxy — VzLzx)
Lab

dyLay — VzLza
dyLay

VzLza

Lca

dyLecy — VzLzc
dyLcy

VzLzc

Lec

VxLxx
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© 0 N o e w N =

—
o

11

Vx(Jx — Kx)
AxVyLxy
Vx Jx

VyLay
Laa

Ja
Ja— Ka
Ka

Ka AN Laa

Ax(Kx A Lxx)
Ax(Kx A Lxx)

C. In §22 problem A, we considered fifteen syllogistic figures of Aristotelian
logic. Provide proofs for each of the argument forms. NB: You will find it much
easier if you symbolize (for example) ‘No F is G’ as ‘Vx(Fx — —Gx)’.

D. Aristotle and his successors identified other syllogistic forms which depended
upon ‘existential import’. Symbolize each of these argument forms in FOL and
offer proofs.

Barbari. Something is H. All G are F. All H are G. So: Some H is F
Celaront. Something is H. No G are F. All H are G. So: Some H is not F
Cesaro. Something is H. No F are G. All H are G. So: Some H is not F.
Camestros. Something is H. All F are G. No H are G. So: Some H is not
F.

Felapton. Something is G. No G are F. All G are H. So: Some H is not F.
Darapti. Something is G. All G are F. All G are H. So: Some H is F.
Calemos. Something is H. All F are G. No G are H. So: Some H is not F.
Fesapo. Something is G. No F is G. All G are H. So: Some H is not F.
Bamalip. Something is F. All F are G. All G are H. So: Some H are F.

E. Provide a proof of each claim.

1. FVxFxV aVxFx
2. +Yz(PzV =Pz)
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Vx(Ax — Bx),3xAx + 3xBx

Vx(Mx < Nx),Ma A IxRxa + IxNx

VaVyGxy - IxGxx

FVxRxx — JxIyRxy

FVy3x(Qy — Qx)

Na > Vx(Mx & Ma),Ma,-Mb+ -Na

VaVy(Gxy — Gyx) F VxVy(Gxy < Gyx)

Vx(~MxV Ljx),Vx(Bx — Ljx),Vx(MxV Bx) + VxLjx

CL BT o

i

F. Write a symbolization key for the following argument, symbolize it, and prove
it:

There is someone who likes everyone who likes everyone that she
likes. Therefore, there is someone who likes herself.

G. Show that each pair of sentences is provably equivalent.

1. Yx(Ax — —=Bx), =3x(Ax A Bx)
2. Yx(=Ax — Bd), VxAx VvV Bd
3. 3xPx — Qc¢, Vx(Px — Qc)

H. For each of the following pairs of sentences: If they are provably equivalent,
give proofs to show this. If they are not, construct an interpretation to show that
they are not logically equivalent.

VxPx — Qc,Vx(Px — Qc)
VxVyVzBxyz,YxBxxx
VxVyDxy,YyVxDxy
JxVyDxy,VyIxDxy

5. Yx(Rca & Rxa),Rca <> VxRxa

B~ p M

I. For each of the following arguments: If it is valid in FOL, give a proof. If it is
invalid, construct an interpretation to show that it is invalid.

AyVxRxy .. VxIyRxy

Vx3yRxy .". yVxRxy

Jx(Px A =Qx) .". Vx(Px — —Qx)

Vx(Sx — Ta),Sd .. Ta

Vx(Ax — Bx),Vx(Bx — Cx) .". Vx(Ax — Cx)
Ax(Dx V Ex),Yx(Dx — Fx) .. Ax(Dx A Fx)
VxVy(Rxy V Ryx) .". Rjj

Jx3y(Rxy V Ryx) .". Rjj

VxPx — VxQx,3x-Px .". Ix~0x

© O S ® P
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10. dxMx — IAxNx, -IxNx .". Vx-Mx



CHAPTER 33

Conversion of
quantifiers

In this section, we will add some additional rules to the basic rules of the previ-
ous section. These govern the interaction of quantifiers and negation.

In §21, we noted that —-3xd is logically equivalent to Vx—d. We will add
some rules to our proof system that govern this. In particular, we add:

m | Ye—d
—Jod COm
and
m | =Jxd

Vo —d COm

Equally, we add:

m Jx—d

—Vad COm

and

212
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m | =V
Jx-d COm

Practice exercises

A. Show in each case that the sentences are provably inconsistent:

1. Sa—>Tm,Tm— Sa,TmA-Sa

2. ~dxRxa,VxVyRyx

3. ~3x3dyLxy,Laa

4. Yx(Px — Qx),YV2(Pz — Rz),YyPy,~Qa A =Rb
N

B. Show that each pair of sentences is provably equivalent:

1. Vx(Ax — —Bx),—~3x(Ax A Bx)
2. Yx(=Ax — Bd),YxAx Vv Bd

C. In §22, we considered what happens when we move quantifiers ‘across’ vari-
ous logical operators. Show that each pair of sentences is provably equivalent:

Vx(Fx A Ga),VxFx A Ga
Ax(FxV Ga),3xFx Vv Ga
Vx(Ga — Fx),Ga — VxFx
Vx(Fx — Ga),3xFx — Ga
dx(Ga — Fx),Ga — JxFx
Ax(Fx — Ga),YVxFx — Ga

SR AL I

NB: the variable ‘¥’ does not occur in ‘Ga’. When all the quantifiers occur at the
beginning of a sentence, that sentence is said to be in prenex normal form. These
equivalences are sometimes called prenexing rules, since they give us a means for
putting any sentence into prenex normal form.
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Rules for identity

In §27, we mentioned the philosophically contentious thesis of the identity of
indiscernibles. This is the claim that objects which are indiscernible in every
way are, in fact, identical to each other. It was also mentioned that we will not
subscribe to this thesis. It follows that, no matter how much you learn about two
objects, we cannot prove that they are identical. That is unless, of course, you
learn that the two objects are, in fact, identical, but then the proof will hardly
be very illuminating.

The general point, though, is that no sentences which do not already contain
the identity predicate could justify an inference to ‘e = &#’. So our identity
introduction rule cannot allow us to infer to an identity claim containing two
different names.

However, every object is identical to itself. No premises, then, are required
in order to conclude that something is identical to itself. So this will be the
identity introduction rule:

Notice that this rule does not require referring to any prior lines of the proof.
For any name ¢, you can write ¢ = < on any point, with only the =I rule as
justification.

Our elimination rule is more fun. If you have established ‘@ = &’, then
anything that is true of the object named by ‘a’ must also be true of the object
named by ‘0’. For any sentence with ‘@’ in it, you can replace some or all of the
occurrences of ‘a’ with ‘4> and produce an equivalent sentence. For example,
from ‘Raa’ and ‘a = &’, you are justified in inferring ‘Rabd’, ‘Rba’ or ‘Rbb’. More
generally:
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m |a==6
n |d(..a...a...)
A(...6...w...) =E m, n

The notation here is as for JI. So d(...« ...« ...) is a formula containing
the name «, and d(...6 ... ...) is a formula obtained by replacing one or
more instances of the name « with the name 6. Lines m and n can occur in
either order, and do not need to be adjacent, but we always cite the statement
of identity first. Symmetrically, we allow:

m |a=06
n |d(..6...6...)
A(...a...6...) =E m, n

This rule is sometimes called Leibniz’s Law, after Gottfried Leibniz.

To see the rules in action, we will prove some quick results. First, we will
prove that identity is symmetric:

1

2 =I

3 =E 1, 2
4 |la=b—ob=a —I11-3
5 |Vy(a=y—>y=a) VI 4

6 | VaVy(x =y =y =x) VI 5

We obtain line 3 by replacing one instance of ‘@’ in line 2 with an instance of
‘’; this is justified given ‘a = &’.

Second, we will prove that identity is transitive:
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1 a=bAb=c¢

2 a=1b AE 1
3 b=c¢ AE 1
4 a=c¢ =E 2, 3
5 |(a=bAb=c)>a=c¢ —I11-4
6 |Vz((a=bAb=2)—> a=2) VI 5

7 | VyWz((a=yAy=2)—> a=2) VI 6

8 | VaVyVz((x =yAy=2) > x=2) V17

We obtain line 4 by replacing ‘4’ in line 3 with ‘a’; this is justified given ‘a = 4’.

Practice exercises
A. Provide a proof of each claim.

Pav 0b,0b—b=c,~Par+ Qc
m=nVn=o0,A4An+ Am vV Ao

Vx x = m,Rma + IxRxx

VxVy(Rxy — x = y) - Rab — Rba

-dx—x = m + VxVy(Px — Py)

dx Jx,Ax—=Jx +Ixdy -x =y

Vax(x =n o Mx),Vx(Ox vV -Mx) + On
JxDx,Vx(x = p & Dx)+ Dp

Jx|(Kx AVy(Ky — x =) A Bx|,Kd + Bd
F Pa — Vx(PxV —x = a)

CL XN T o

[

B. Show that the following are provably equivalent:

o Ix([Fx AVy(Fy > x=y)|Ax =n)
s Fn AVy(Fy = n=y)

And hence that both have a decent claim to symbolize the English sentence
‘Nick is the F’.

C. In §24, we claimed that the following are logically equivalent symbolizations
of the English sentence ‘there is exactly one I
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. EIxe/\VxVy[(Fx/\Fy)ﬁx:y]
o x[Fx AVy(Fy - x = )]
o IxVy(Fy & x=y)

Show that they are all provably equivalent. (Hint: to show that three claims
are provably equivalent, it suffices to show that the first proves the second, the
second proves the third and the third proves the first; think about why.)

D. Symbolize the following argument

There is exactly one F. There is exactly one G. Nothing is both F
and G. So: there are exactly two things that are either F or G.

And offer a proof of it.
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Derived rules

As in the case of TFL, we first introduced some rules for FOL as basic (in §32),
and then added some further rules for conversion of quantifiers (in §33). In fact,
the CQ rules should be regarded as derived rules, for they can be derived from
the basic rules of §32. (The point here is as in §19.) Here is a justification for
the first CQ rule:

1 | Vx-Ax

2 AxAx

3 Ac

4 -Ac VE 1

5 1 -E 4,3

6 1 dE 2, 3-5
7 | ~JxAx -1 2-6

Here is a justification of the third CQ rule:
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1 | dx-Ax

2 VxAx

3 -Ac

4 Ac VE 2

5 1 -E 3, 4

6 1 JE 1, 3-5
7 | -VxAx -1 2-6

This explains why the CQ rules can be treated as derived. Similar justifications
can be offered for the other two CQ rules.

Practice exercises

A. Offer proofs which justify the addition of the second and fourth CQ rules as
derived rules.
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Proof-theoretic
and semantic
conceplts

We have used two different turnstiles in this book. This:
.qu,&(lg,. . .,Sﬂn FB

means that there is some proof which starts with assumptions oy, dy, . .., d, and
ends with ‘€ (and no undischarged assumptions other than o1, ds, . .., d,). This
is a proof-theoretic notion.
By contrast, this:
Sﬂl,&qg,. . .,Sﬂn EB

means that no valuation (or interpretation) makes all of o,9g,...,d, true
and € false. This concerns assignments of truth and falsity to sentences. It
is a semantic notion.

It cannot be emphasized enough that these are different notions. But we can
emphasize it a bit more: They are different notions.

Once you have internalised this point, continue reading.

Although our semantic and proof-theoretic notions are different, there is
a deep connection between them. To explain this connection,we will start by
considering the relationship between logical truths and theorems.

To show that a sentence is a theorem, you need only produce a proof.
Granted, it may be hard to produce a twenty line proof, but it is not so hard to
check each line of the proof and confirm that it is legitimate; and if each line of
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the proof individually is legitimate, then the whole proof is legitimate. Showing
that a sentence is a logical truth, though, requires reasoning about all possible
interpretations. Given a choice between showing that a sentence is a theorem
and showing that it is a logical truth, it would be easier to show that it is a
theorem.

Contrawise, to show that a sentence is not a theorem is hard. We would need
to reason about all (possible) proofs. That is very difficult. However, to show
that a sentence is not a logical truth, you need only construct an interpretation
in which the sentence is false. Granted, it may be hard to come up with the
interpretation; but once you have done so, it is relatively straightforward to
check what truth value it assigns to a sentence. Given a choice between showing
that a sentence is not a theorem and showing that it is not a logical truth, it
would be easier to show that it is not a logical truth.

Fortunately, a sentence is a theorem if and only if it is a logical truth. As a result,
if we provide a proof of & on no assumptions, and thus show that  is a theorem,
i.e. + d, we can legitimately infer that o is a logical truth, i.e., £ 9. Similarly, if
we construct an interpretation in which o is false and thus show that it is not a
logical truth, i.e. # d, it follows that o is not a theorem, i.e. ¥ d.

More generally, we have the following powerful result:

ﬁl,&gg,...,&qn 9B iff&ql,dg,...,dn E 9B

This shows that, whilst provability and entailment are different notions, they are
extensionally equivalent. As such:

* An argument is valid iff the conclusion can be proved from the premises.
* Two sentences are logically equivalent iff they are provably equivalent.
» Sentences are provably consistent iff they are not provably inconsistent.

For this reason, you can pick and choose when to think in terms of proofs and
when to think in terms of valuations/interpretations, doing whichever is easier
for a given task. The table on the next page summarises which is (usually)
easier.

It is intuitive that provability and semantic entailment should agree. But—
let us repeat this—do not be fooled by the similarity of the symbols ‘¢’ and ‘+’.
These two symbols have very different meanings. The fact that provability and
semantic entailment agree is not an easy result to come by.

In fact, demonstrating that provability and semantic entailment agree is,
very decisively, the point at which introductory logic becomes intermediate logic.



CHAPTER 36. PROOF-THEORETIC AND SEMANTIC CONCEPTS

222

Is d a logical truth?

Is o a contr

adiction’

Are 9l and 9B equivalent?

Are dq,949,.

consistent?

Is ,&T n&mv .

..,d, jointly

.9y, L6 valid?

Yes

give a proof which shows + d
give a proof which shows + —~d
give two proofs, one for o + % and

one for B+ o

give an interpretation in which all of

Ay, Ag, ..., A, are true
give a proof with assumptions
d1,ds,...,d, and concluding with €

No

give an interpretation in which o is
false

give an interpretation in which o is
true

give an interpretation in which o and
% have different truth values

prove a contradiction from assump-
tions sy, Ay, ..., A,

give an interpretation in which each of
Aq, Ao, ..., 9, is true and 6 is false



PART VI

Advanced
1opics



CHAPTER 37

Normal forms
and expressive
completeness

37.1 Disjunctive Normal Form

Sometimes it is useful to consider sentences of a particularly simple form. For
instance, we might consider sentences in which — only attaches to atomic sen-
tences, or those which are combinations of atomic sentences and negated atomic
sentences using only A. A relatively general but still simple form is that where a
sentence is a disjunction of conjunctions of atomic or negated atomic sentences.
When such a sentence is constructed, we start with atomic sentences, then (per-
haps) attach negations, then (perhaps) combine using A, and finally (perhaps)
combine using V.

Let’s say that a sentence is in DISJUNCTIVE NORMAL FORM iff it meets all of
the following conditions:

(DNF1) No connectives occur in the sentence other than negations, conjunctions
and disjunctions;

(DNF2) Every occurrence of negation has minimal scope (i.e. any ‘=’ is imme-
diately followed by an atomic sentence);

(DNF3) No disjunction occurs within the scope of any conjunction.
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So, here are are some sentences in disjunctive normal form:

A

(AA=-BACQC)

(AANB)V (AA-B)
(AANB)V(AABACA-DA=E)
AV (C AN=Py3g A Pyzz ANQ)V —B

Note that we have here broken one of the maxims of this book and temporarily
allowed ourselves to employ the relaxed bracketing-conventions that allow con-
junctions and disjunctions to be of arbitrary length. These conventions make it
easier to see when a sentence is in disjunctive normal form. We will continue to
help ourselves to these relaxed conventions, without further comment.

To further illustrate the idea of disjunctive normal form, we will introduce
some more notation. We write ‘+d{’ to indicate that o is an atomic sentence
which may or may not be prefaced with an occurrence of negation. Then a
sentence in disjunctive normal form has the following shape:

(Fdy Ao Axd)V (FEdigr A A )V LV (1 A A 2y

We now know what it is for a sentence to be in disjunctive normal form. The
result that we are aiming at is:

Disjunctive Normal Form Theorem. For any sentence, there is a logi-
cally equivalent sentence in disjunctive normal form.

Henceforth, we will abbreviate ‘Disjunctive Normal Form’ by ‘DNF’.

37.2 Proof of DNF Theorem via truth tables

Our first proof of the DNF Theorem employs truth tables. We will first illustrate
the technique for finding an equivalent sentence in DNF, and then turn this
illustration into a rigorous proof.

Let’s suppose we have some sentence, §, which contains three atomic sen-
tences, ‘4A’, ‘B’ and ‘C’. The very first thing to do is fill out a complete truth
table for S. Maybe we end up with this:



226 CHAPTER 37. NORMAL FORMS AND EXPRESSIVE COMPLETENESS
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e e BN I B I %)

As it happens, § is true on four lines of its truth table, namely lines 1, 3, 7
and 8. Corresponding to each of those lines, we will write down four sentences,
whose only connectives are negations and conjunctions, where every negation
has minimal scope:

s ‘ANBAC which is true on line 1 (and only then)
e ‘AN-BAC which is true on line 3 (and only then)
e ““AAN-BANC which is true on line 7 (and only then)
e ‘“AAN-BA-C which is true on line 8 (and only then)

We now combine all of these conjunctions using V, like so:
(AABAC)VAAN-BAC)V(=AAN-BAC)V(mAA-BA-=C)

This gives us a sentence in DNF which is true on exactly those lines where one
of the disjuncts is true, i.e. it is true on (and only on) lines 1, 3, 7, and 8. So this
sentence has exactly the same truth table as S. So we have a sentence in DNF
that is logically equivalent to S, which is exactly what we wanted!

Now, the strategy that we just adopted did not depend on the specifics of S;
it is perfectly general. Consequently, we can use it to obtain a simple proof of
the DNF Theorem.

Pick any arbitrary sentence, §, and let dy,...,d, be the atomic sentences
that occur in §. To obtain a sentence in DNF that is logically equivalent §, we
consider 8’s truth table. There are two cases to consider:

1. S is false on every line of its truth table. Then, § is a contradiction. In that
case, the contradiction (1 A —gf) is in DNF and logically equivalent to S.

2. § is true on at least one line of its truth table. For each line i of the truth
table, let %; be a conjunction of the form

(1 AL A xdy)
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where the following rules determine whether or not to include a negation
in front of each atomic sentence:

Ay is a conjunct of BB, iff d,, is true on line i

-9, is a conjunct of %B; iff A, is false on line i

Given these rules, 9B; is true on (and only on) line i of the truth table
which considers all possible valuations of dy,...,d, (i.e. 8’s truth table).

Next, let i1, i, ..., iy be the numbers of the lines of the truth table where
S is true. Now let & be the sentence:

Biy VB, V...VB;

Since § is true on at least one line of its truth table, 9 is indeed well-
defined; and in the limiting case where § is true on exactly one line of its
truth table, < is just 9, , for some 7.

By construction, & is in DNF. Moreover, by construction, for each line i
of the truth table: § is true on line i of the truth table iff one of @’s
disjuncts (namely, 9;) is true on, and only on, line i. Hence § and &
have the same truth table, and so are logically equivalent.

These two cases are exhaustive and, either way, we have a sentence in DNF that
is logically equivalent to S.

So we have proved the DNF Theorem. Before we say any more, though, we
should immediately flag that we are hereby returning to the austere definition of
a (TFL) sentence, according to which we can assume that any conjunction has
exactly two conjuncts, and any disjunction has exactly two disjuncts.

37.3 Conjunctive Normal Form

So far in this chapter, we have discussed disjunctive normal form. It may not
come as a surprise to hear that there is also such a thing as conjunctive normal
form (CNF).

The definition of CNF is exactly analogous to the definition of DNF. So, a
sentence is in CNF iff it meets all of the following conditions:

(cNF1) No connectives occur in the sentence other than negations, conjunctions
and disjunctions;

(cNrF2) Every occurrence of negation has minimal scope;

(cNF3) No conjunction occurs within the scope of any disjunction.
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Generally, then, a sentence in CNF looks like this
(s V.. VA A(Edia Voo VEA DA A (D1 VLV Edy)

where each 9f; is an atomic sentence.
We can now prove another normal form theorem:

Conjunctive Normal Form Theorem. For any sentence, there is a log-
ically equivalent sentence in conjunctive normal form.

Given a TFL sentence, §, we begin by writing down the complete truth table
for S.

If S is true on every line of the truth table, then S and (47 V—d) are logically
equivalent.

If S is false on at least one line of the truth table then, for every line on the
truth table where S is false, write down a disjunction (x4, Vv ...V +d,) which
is false on (and only on) that line. Let 6 be the conjunction of all of these
disjuncts; by construction, ‘6 is in CNF and § and 6 are logically equivalent.

Practice exercises

A. Consider the following sentences:

(A - ﬂB)

-(4 < B)

(—|A \Y —l(A A B))
(=(4—->B)A(4—- 0))

(=(4V B) & ((-C A—4) —> —=B))
((=(A A =B) = C) A=(A A D))

ST @ P

For each sentence, find a logically equivalent sentence in DNF and one in CNF.

37-4 The expressive adequacy of TFL

Of our connectives, — attaches to a single sentences, and the others all combine
exactly two sentences. We may also introduce the idea of an n-place connective.
For example, we could consider a three-place connective, ‘©’, and stipulate that
it is to have the following characteristic truth table:
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A B C|94B0C)
T T T F
T T F T
T F T T
T F F F
F T T F
F T F T
F F T F
F F F F

Probably this new connective would not correspond with any natural English ex-
pression (at least not in the way that ‘A’ corresponds with ‘and’). But a question
arises: if we wanted to employ a connective with this characteristic truth table,
must we add a new connective to TFL? Or can we get by with the connectives
we already have?

Let us make this question more precise. Say that some connectives are
JOINTLY EXPRESSIVELY ADEQUATE iff, for any possible truth table, there is a
sentence containing only those connectives with that truth table.

The general point is, when we are armed with some jointly expressively
adequate connectives, no characteristic truth table lies beyond our grasp. And
in fact, we are in luck.

Expressive Adequacy Theorem. The connectives of TFL are jointly ex-
pressively adequate. Indeed, the following pairs of connectives are jointly
expressively adequate:

1. ‘=" and ‘V’
2. ‘=" and ‘A’
3. ‘_|7 and (_>,

Given any truth table, we can use the method of proving the DNF Theorem
(or the CNF Theorem) via truth tables, to write down a scheme which has the
same truth table. For example, employing the truth table method for proving
the DNF Theorem, we find that the following scheme has the same characteristic
truth table as (4, B, C), above:

(AANBA=C)V(AAN-BAC)V(=AABA=-C)

It follows that the connectives of TFL are jointly expressively adequate. We now
prove each of the subsidiary results.

Subsidiary Result 1: expressive adequacy of =’ and “v’. Observe that the scheme
that we generate, using the truth table method of proving the DNF Theorem,
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€% ¢

will only contain the connectives ‘=’, ‘A’ and ‘V’. So it suffices to show that there
is an equivalent scheme which contains only ‘=’ and ‘v’. To show do this, we
simply consider that

(AAB) and —(=oAV —%RB)

are logically equivalent.
Subsidiary Result 2: expressive adequacy of =’ and ‘A’. Exactly as in Subsidiary
Result 1, making use of the fact that

(AVvRB) and —(—-dA A -RB)

are logically equivalent.
Subsidiary Result 3: expressive adequacy of =’ and —’. Exactly as in Subsidiary
Result 1, making use of these equivalences instead:

(AvAB) and (-d — B)
(AANB) and —(d — —RB)

Alternatively, we could simply rely upon one of the other two subsidiary results,
and (repeatedly) invoke only one of these two equivalences.

In short, there is never any need to add new connectives to TFL. Indeed,
there is already some redundancy among the connectives we have: we could
have made do with just two connectives, if we had been feeling really austere.

37-5 Individually expressively adequate connectives

In fact, some two-place connectives are individually expressively adequate.
These connectives are not standardly included in TFL, since they are rather
cumbersome to use. But their existence shows that, if we had wanted to, we
could have defined a truth-functional language that was expressively adequate,
which contained only a single primitive connective.

The first such connective we will consider is ‘)’, which has the following
characteristic truth table.

ERE:
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This is often called ‘the Sheffer stroke’, after Henry Sheffer, who used it to show
how to reduce the number of logical connectives in Russell and Whitehead’s
Principia Mathematica." (In fact, Charles Sanders Peirce had anticipated Sheffer
by about 30 years, but never published his results.)® It is quite common, as well,
to call it ‘nand’, since its characteristic truth table is the negation of the truth
table for ‘A’.

‘T’ is expressively adequate all by itself.

The Expressive Adequacy Theorem tells us that ‘=’ and Vv’ are jointly ex-
pressively adequate. So it suffices to show that, given any scheme which contains
only those two connectives, we can rewrite it as a logically equivalent scheme
which contains only ‘I’. As in the proof of the subsidiary cases of the Expressive
Adequacy Theorem, then, we simply apply the following equivalences:

-1 and (AT
(AvR) and (A Td)T(RBTRB))

to the Subsidiary Result 1.
Similarly, we can consider the connective |:

d B |d|R
T T F
T F F
F T F
F F T

This is sometimes called the ‘Peirce arrow’ (Peirce himself called it ‘ampheck’).
More often, though, it is called ‘nor’, since its characteristic truth table is the

M

negation of ‘V’, that is, of ‘neither ... nor...’.

¢}’ is expressively adequate all by itself. ]

As in the previous result for T, although invoking the equivalences:

- and (o] )
(AANB) and (A |d)](BLRB)

and Subsidiary Result 2.

!Sheffer, ‘A Set of Five Independent Postulates for Boolean Algebras, with application to
logical constants,” (1913, Transactions of the American Mathematical Society 14.4)

2See Peirce, ‘A Boolian Algebra with One Constant’, which dates to ¢.1880; and Peirce’s
Collected Papers, 4.264—5.
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37.6 Failures of expressive adequacy

In fact, the only two-place connectives which are individually expressively ade-
quate are ‘I’ and ‘|’. But how would we show this? More generally, how can we
show that some connectives are not jointly expressively adequate?

The obvious thing to do is to try to find some truth table which we cannot
express, using just the given connectives. But there is a bit of an art to this.

To make this concrete, let’s consider the question of whether ‘v’ is expres-
sively adequate all by itself. After a little reflection, it should be clear that it
is not. In particular, it should be clear that any scheme which only contains
disjunctions cannot have the same truth table as negation, i.e.:

da | -d
T| F
F| T

The intuitive reason, why this should be so, is simple: the top line of the desired
truth table needs to have the value False; but the top line of any truth table for
a scheme which only contains Vv will always be True. The same is true for A, —,
and ©.

V2, ‘N, ‘=, and ‘>’ are not expressively adequate by themselves.

In fact, the following is true:

The only two-place connectives that are expressively adequate by them-
selves are ‘T” and ‘)’.

This is of course harder to prove than for the primitive connectives. For
instance, the “exclusive or” connective does not have a T in the first line of its
characteristic truth table, and so the method used above no longer suffices to
show that it cannot express all truth tables. It is also harder to show that, e.g.,
‘>’ and ‘=’ together are not expressively adequate.
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Symbolic notation

1.1 Alternative nomenclature

Truth-functional logic. TFL goes by other names. Sometimes it is called
sentential logic, because it deals fundamentally with sentences. Sometimes it is
called propositional logic, on the idea that it deals fundamentally with proposi-
tions. We have stuck with truth-functional logic, to emphasize the fact that it deals
only with assignments of truth and falsity to sentences, and that its connectives
are all truth-functional.

First-order logic. FOL goes by other names. Sometimes it is called predicate
logic, because it allows us to apply predicates to objects. Sometimes it is called
quantified logic, because it makes use of quantifiers.

Formulas. Some texts call formulas well-formed formulas. Since ‘well-formed
formula’ is such a long and cumbersome phrase, they then abbreviate this as
wff. This is both barbarous and unnecessary (such texts do not countenance
‘ill-formed formulas’). We have stuck with ‘formula’.

In §6, we defined sentences of TFL. These are also sometimes called ‘formulas’
(or ‘wellformed formulas’) since in TFL, unlike FOL, there is no distinction
between a formula and a sentence.

Valuations. Some texts call valuations truth-assignments, or truth-value assign-
ments.

Expressive adequacy. Some texts describe TFL as truth-functionally complete,
rather than expressively adequate.
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n-place predicates. We have chosen to call predicates ‘one-place’, ‘two-place’,
‘three-place’, etc. Other texts respectively call them ‘monadic’, ‘dyadic’, ‘triadic’,
etc. Still other texts call them ‘unary’, ‘binary’, ‘ternary’, etc.

Names. In FOL, we have used ‘a’, ‘b’, ‘¢’, for names. Some texts call these
‘constants’. Other texts do not mark any difference between names and variables
in the syntax. Those texts focus simply on whether the symbol occurs bound or
unbound.

Domains. Some texts describe a domain as a ‘domain of discourse’, or a
‘universe of discourse’.

1.2 Alternative symbols

In the history of formal logic, different symbols have been used at different times
and by different authors. Often, authors were forced to use notation that their
printers could typeset. This appendix presents some common symbols, so that
you can recognize them if you encounter them in an article or in another book.

Negation. Two commonly used symbols are the /oe, ‘=, and the swung dash or
tilda, ‘~’ In some more advanced formal systems it is necessary to distinguish
between two kinds of negation; the distinction is sometimes represented by using
both ‘=’ and ‘~’. Older texts sometimes indicate negation by a line over the
formula being negated, e.g., A A B. Some texts use ‘x # y’ to abbreviate ‘-x = y’.

Disjunction. The symbol ‘V’ is typically used to symbolize inclusive disjunc-
tion. One etymology is from the Latin word ‘vel’, meaning ‘or’.

Conjunction. Conjunction is often symbolized with the ampersand, ‘&’. The
ampersand is a decorative form of the Latin word ‘et’, which means ‘and’. (Its
etymology still lingers in certain fonts, particularly in italic fonts; thus an italic
ampersand might appear as ‘@’.) This symbol is commonly used in natural
English writing (e.g. ‘Smith & Sons’), and so even though it is a natural choice,
many logicians use a different symbol to avoid confusion between the object and
metalanguage: as a symbol in a formal system, the ampersand is not the English
word ‘&’. The most common choice now is ‘A’, which is a counterpart to the
symbol used for disjunction. Sometimes a single dot, ‘’, is used. In some older
texts, there is no symbol for conjunction at all; ‘4 and B’ is simply written ‘AB’.
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Material Conditional. There are two common symbols for the material con-
ditional: the arrow, ‘—’, and the hook, ‘2’.

Material Biconditional. The double-headed arrow, ‘<>’, is used in systems that
use the arrow to represent the material conditional. Systems that use the hook
for the conditional typically use the ¢riple bar, ‘=’, for the biconditional.

Quantifiers. The universal quantifier is typically symbolized as a rotated ‘A’,
and the existential quantifier as a rotated, ‘E’. In some texts, there is no sepa-
rate symbol for the universal quantifier. Instead, the variable is just written in
parentheses in front of the formula that it binds. For example, they might write
‘(x)Px’ where we would write ‘Vx Px’.

These alternative typographies are summarised below:

negation -, ~
conjunction A, &, .
disjunction Vv
conditional —, D
biconditional <, =

universal quantifier Vx, (x)
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Alternative proof
systems

In formulating our natural deduction system, we treated certain rules of natural
deduction as basic, and others as derived. However, we could equally well have
taken various different rules as basic or derived. We will illustrate this point
by considering some alternative treatments of disjunction, negation, and the
quantifiers. We will also explain why we have made the choices that we have.

2.1 Alternative disjunction elimination

Some systems take DS as their basic rule for disjunction elimination. Such sys-
tems can then treat the VE rule as a derived rule. For they might offer the
following proof scheme:

237
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m AV R
i o

B
k 197
1 3
n d— 6 —li—j
n+1 B — 6 N
n+2 -6
n+3 oA
n+4 6 —En+3,n
n+5 L -En+2 n+4
n+6 - -In+3-n+5
n+7 B DSm,n+6
n+8 6 —»En+7,n+1
n+9 L -En+2,n+8
n+10 |6 IPn+2-n+9

So why did we choose to take VE as basic, rather than DS?* Our reasoning
is that DS involves the use of ‘=’ in the statement of the rule. It is in some
sense ‘cleaner’ for our disjunction elimination rule to avoid mentioning other
connectives.

2.2 Alternative negation rules

Some systems take the following rule as their basic negation introduction rule:

1P.D. Magnus’s original version of this book went the other way.
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m A
n—1 R
n -RB
-9 =I* m—n

and a corresponding version of the rule we called IP as their basic negation
elimination rule:

m -9
n—1 B
n -RB
oA -E* m—n

Using these two rules, we could we could have avoided all use of the symbol ‘1’
altogether.? The resulting system would have had fewer rules than ours.

Another way to deal with negation is to use either LEM or DNE as a basic
rule and introduce IP as a derived rule. Typically, in such a system the rules are
given different names, too. E.g., sometimes what we call —E is called LI, and
what we call X is called LE.3

So why did we chose our rules for negation and contradiction?

Our first reason is that adding the symbol ‘L’ to our natural deduction system
makes proofs considerably easier to work with. For instance, in our system it’s
always clear what the conclusion of a subproof is: the sentence on the last line,
e.g. L in IP or —I. In —I* and —E*, subproofs have two conclusions, so you can’t
check at one glance if an application of them is correct.

Our second reason is that a lot of fascinating philosophical discussion has
focussed on the acceptability or otherwise of indirect proof IP (equivalently,
excluded middle, i.e. LEM, or double negation elimination DNE) and explosion
(i.e. X). By treating these as separate rules in the proof system, you will be in
a better position to engage with that philosophical discussion. In particular:
having invoked these rules explicitly, it would be much easier for us to know
what a system which lacked these rules would look like.

2Again, P.D. Magnus’s original version of this book went the other way.
3The version of this book due to Tim Button goes this route and replaces IP with LEM, which
he calls TND, for “tertium non datur.”
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This discussion, and in fact the vast majority of mathematical study on ap-
plications of natural deduction proofs beyond introductory courses, makes ref-
erence to a different version of natural deduction. This version was invented
by Gerhard Gentzen in 1935 as refined by Dag Prawitz in 1965. Our set of ba-
sic rules coincides with theirs. In other words, the rules we use are those that
are standard in philosophical and mathematical discussion of natural deduction
proofs outside of introductory courses.

2.3 Alternative quantification rules

An alternative approach to the quantifiers is to take as basic the rules for VI
and VE from §32, and also two CQ rule which allow us to move from Ve —d to
—Jad and vice versa.*

Taking only these rules as basic, we could have derived the 3I and JE rules
provided in §32. To derive the 3I rule is fairly simple. Suppose 4 contains the
name <, and contains no instances of the variable «, and that we want to do
the following:

m |d(...c...c...)
k Jxed(...x...c...)

This is not yet permitted, since in this new system, we do not have the 3I rule.
We can, however, offer the following:

m A(...c...¢c...)

m+1 —dxdA(...x...c...)

m+ 2 Ve-d(...x...c...) COm+1

m+ 3 -d(...c...c...) VE m + 2

m+ 4 L -Em+3,m
m+5 | Jxed(...x...c...) IPm+1-m+4

To derive the 3E rule is rather more subtle. This is because the JE rule has an
important constraint (as, indeed, does the VI rule), and we need to make sure
that we are respecting it. So, suppose we are in a situation where we want to do
the following:

4Warren Goldfarb follows this line in Deductive Logic, 2003, Hackett Publishing Co.
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m | Fed(.. ... x..)

i |521(...0...0...)
E

k|3

where ¢ does not occur in any undischarged assumptions, or in %, or in
Jad(... ... a...). Ordinarily, we would be allowed to use the 3E rule; but
we are not here assuming that we have access to this rule as a basic rule. Nev-
ertheless, we could offer the following, more complicated derivation:

m Jred(...x...x...)

i A(...c...¢c...)

J %

k A(...c...¢c...) >R —li—j

k+1 -RB

k+2 -A(...c...c...) MTEk, k+1
k+3 Ve-dA(...x...xc...) VIEk+2
k+4 —FdxdA(...x...x...) CQk+3
k+5 1 -Ek+4,m
k+6 | IPE+1-k+5

We are permitted to use VI on line £ + 3 because ¢ does not occur in any
undischarged assumptions or in 9. The entries on lines £+4 and £+1 contradict
each other, because ¢ does not occur in Jxd(...x...x...).

Armed with these derived rules, we could now go on to derive the two re-
maining CQ rules, exactly as in §35.

So, why did we start with all of the quantifier rules as basic, and then derive
the CQ rules?

Our first reason is that it seems more intuitive to treat the quantifiers as on
a par with one another, giving them their own basic rules for introduction and
elimination.

Our second reason relates to the discussion of alternative negation rules. In
the derivations of the rules of 3I and JE that we have offered in this section,
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we invoked IP. But, as we mentioned earlier, IP is a contentious rule. So, if
we want to move to a system which abandons IP, but which still allows us to
use existential quantifiers, we will want to take the introduction and elimination
rules for the quantifiers as basic, and take the CQ rules as derived. (Indeed, in
a system without IP, LEM, and DNE, we will be unable to derive the CQ rule
which moves from —Va o to Fx—9.)
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Quick reference

3.1 Characteristic Truth Tables

d | s d B|ANB|[AVRB|d—>B|do B

T| F T T| T T T T

F| T T F| F T F F
F T| F T T F
F F| F F T T
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3.2 Symbolization

APPENDIX C. QUICK REFERENCE

SENTENTIAL CONNECTIVES

It is not the case that P
Either P, or Q

Neither P, nor Q

Both P, and Q

If P, then Q

P only if Q

P if and only if Q

P unless Q

-P

(P vQ)

—|(P \Y Q) or (—|P A —|Q)
(P AQ)

P —0)

P —0)

(P < 0)

(PVvQ)

PREDICATES

All Fs are Gs
Some Fs are Gs
Not all Fs are Gs
No Fs are Gs

Vx(Fx — Gx)

Ax(Fx A Gx)

-Vx(Fx — Gx) or Ax(Fx A =Gx)
Vx(Fx — —Gx) or ~3x(Fx A Gx)

IDENTITY

Only cis G

Everything besides c is G

The F is G

It is not the case that the F is G
The F is non-G

Vx(Gx & x =¢)

Vx(—=x = ¢ — Gx)

Ax(Fx AVy(Fy — x = y) A Gx)
—dx(Fx AVy(Fy — x = y) A Gx)
Ax(Fx AVy(Fy — x = ) A =Gx)
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3.3 Using identity to symbolize quantities
There are at least Fs.

one: dxFx
two: Jx1dxo(Fx1 A Fxg A —x1 = x9)
three: Jxi3xoTAxg(Fx1 A Fxg A Fxg A —x1 = x9 A —x1 = X3 A —xg = X3)
four: Jx13xoTxzTng(Fx1 A Fxg A Fxz A Fxy A
—X1 = X9 A X1 = X3 A X = X4 A X9 = X3 A TXg = X4 A X3 = Xy)
n: dxp ... Ax,(Fxr AL AFx, Aax1 =X A ... A—Xy 1 = Xy)

There are at most Fs.

One way to say ‘there are at most n Fs’ is to put a negation sign in front of the
symbolization for ‘there are at least n + 1 Fs’. Equivalently, we can offer:

one: Vxl‘v’xg[(Fxl ANFx9) — x1 = xg]
two: Vx1VaxoVaxs [(Fx1 AFxgANFx3) > (x1 =x3Vx1=x3Vxg= JC3)]
three: Vx1VaoVasVay [(Fx1 AFxog AN Fxg N\ Fxy) —
(x1:xQVxl=x3Vx1:x4Vx2=x3Vx2:x4Vx3=x4)]
n: Vxp.. .Vx,,+1[(Fx1 Ao ANFxp) > (01=x V...V, = xn+1)]

There are exactly Fs.

One way to say ‘there are exactly n Fs’ is to conjoin two of the symbolizations
above and say ‘there are at least n Fs and there are at most n Fs.” The following
equivalent formulae are shorter:

zero: Vx—Fx
one: Jx[Fx AVy(Fy — x = )|
two: 3x13x2[Fx1 A Fxg N —x1 = X9 /\Vy(Fy —(=xVy= xg))]
three: Jx;3dxoTxg [Fx1 ANFxog N Fx3 A—x1=x9A-x1 =x3A—Xx =x3A
Vi(Fy > (g =xVy=xVy=ux)
n: Elxl...Elxn[Fxl/\.../\Fx,,/\—|x1:xg/\.../\—-xn_lzxn/\
Vy(Fy > (y=xmV...Vy=x,)]
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3.4 Basic deduction rules for TFL

Conjunction Indirect proof
m | d
i -
n %
J L
ANB ANlm, n
s IP i—j
m | ANRB
o/} AE m
Explosion
m | ANRB
% AE m
m | L
Conditional o X m
i o/}
Jj R
d— R —lij Disjunction
m | d—RB m |
no | AvE  Vim
B —Em, n
m | d
Negation BV d v m
i o/}
m |dAVAB
j 1
i o/]
6
m | - k B
n | oA l 6
-E m, n @ VE m, i—j, k-l
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Biconditional

i

‘&9 9=

-

A B

oli-j, k-1

—Em, n

oEm, n
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3.5 Derived rules for TFL

Disjunctive syllogism Excluded middle
m |AVR ; o
| £
B DSm, n /c _d
m | AVB ! %
" _%B ] LEM i-j, k-
e/ DS m, n
Reiteration De Morgan Rules
m | A
o R m m | —(dAV B)

-A AR DeM m
Modus Tollens

m A A -%B
m | d—>%B
—(d vV %B) DeM m
n -9
-d MT m, n

m | —(dAAB)

. . . . -d vV ~%B DeM
Double-negation elimination e

m -9 m AV -%B

o DNE m ~(sd A B) DeM m
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3.6 Basic deduction rules for FOL

Universal elimination

m | Vaxd(...x...x...)

A(...c...c...)

Universal introduction

m |A(...c...c...)

Ved(...xc...x...)

< must not occur in any
undischarged assumption

2 must not occur in
A(...c...c...)

Identity introduction

Identity elimination

m |a==6
n A(...a...w...)
dA(...6...a...)

Existential introduction

m |dA(..c...c...)
Jxed(...x...c...) A m

a must not occur in

A(...c...c...)

Existential elimination

m | Jed(...x...x...)
i |sﬁ(...c...c...)
e
RB 3E m, i—j

< must not occur in any undischarged
assumption, in Jxed(...x...x...),
or in %

m | a==8
n | dAl..6...6...)
A(...a...6..) =E m, n
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3.7 Derived rules for FOL

m | Ye-d m | Jax—-dA

| CQ m —~Vadd CQm
m —Jaxd m | “Vaxd

Vool CQm Fx—-d CQm
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Glossary

antecedent The sentence on the left side of a conditional.

argument a connected series of sentences, divided into premises and conclu-
sion.

atomic sentence A sentence used to represent a basic sentence; a single letter
in TFL, or a predicate symbol followed by constants in FOL.

biconditional The symbol <, used to represent words and phrases that func-
tion like the English phrase “if and only if”; or a sentence formed using
this connective..

bound variable an occurrence of a variable in a formula which is in the scope
of a quantifier followed by the same variable.

complete truth table A table that gives all the possible truth values for a sen-
tence of TFL or sentences in TFL, with a line for every possible valua-
tion of all atomic sentences.

completeness A property held by logical systems if and only if F implies F.

conclusion the last sentence in an argument.

conclusion indicator a word or phrase such as “therefore” used to indicate that
what follows is the conclusion of an argument.

conditional The symbol —, used to represent words and phrases that function
like the English phrase “if ... then ...”; a sentence formed by using
this symbol.

conjunct A sentence joined to another by a conjunction.

conjunction The symbol A, used to represent words and phrases that function
like the English word “and”; or a sentence formed using that symbol.

conjunctive normal form (DNF) a sentence which is a conjunction of disjunc-
tions of atomic sentences or negated atomic sentences.

connective A logical operator in TFL used to combine atomic sentences into
larger sentences.
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consequent The sentence on the right side of a conditional.

contingent sentence A sentence that is neither a necessary truth nor a neces-
sary falsehood; a sentence that in some situations is true and in others
false.

contradiction (of FOL) A sentence of FOL that is false in every interpretation.

contradiction (of TFL) A sentence that has only Fs in the column under the
main logical operator of its complete truth table; a sentence that is false
on every valuation.

disjunct A sentence joined to another by a disjunction.

disjunction The connective V, used to represent words and phrases that func-
tion like the English word “or” in its inclusive sense; or a sentence
formed by using this connective.

disjunctive normal form (DNF) a sentence which is a disjunction of conjunc-
tions of atomic sentences or negated atomic sentences.

domain the collection of objects assumed for a symbolization in FOL, or that
gives the range of the quantifiers in an interpretation.

empty predicate a predicate that applies to no object in the domain.

existential quantifier the symbol 3 of FOL used to symbolize existence; 3x Fx
is true iff at least one member of the domain is F.

expressive adequacy property of a collection of connectives which holds iff
every possible truth table is the truth table of a sentence involving only
those connectives.

formula an expression of FOL built according to the recursive rules in §26.2.
free variable an occurrence of a variable in a formula which is not a bound
variable.

interpretation a specification of a domain together with the objects the names
pick out and which objects the predicates are true of.

invalid A property of arguments that holds when it is possible for the premises
to be true without the conclusion being true; the opposite of valid.

joint possibility A property possessed by some sentences when they can all be
true at the same time.

logical consistency (in FOL) A property held by sentence of FOLs if and only
if some interpretation makes all the sentences true.

logical consistency (in TFL) A property held by sentences if and only if the
complete truth table for those sentences contains one line on which all
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the sentences are true, i.e., if some valuation makes all the sentences
true.

logical equivalence (in FOL) A property held by pairs of sentence of FOLs if
and only if the sentences have the same truth value in every interpreta-
tion..

logical equivalence (in TFL) A property held by pairs of sentences if and only
if the complete truth table for those sentences has identical columns
under the two main logical operators, i.e., if the sentences have the
same truth value on every valuation.

logical truth A sentence of FOL that is true in every interpretation.

logical validity (in FOL) A property held by arguments if and only if no
interpretation makes all premises true and the conclusion false.

logical validity (in TFL) A property held by arguments if and only if the com-
plete truth table for the argument contains no rows where the premises
are all true and the conclusion false, i.e., if no valuation makes all
premises true and the conclusion false.

main connective The last connective that you add when you assemble a sen-
tence using the recursive definition..

metalanguage The language logicians use to talk about the object language.
In this textbook, the metalanguage is English, supplemented by certain
symbols like metavariables and technical terms like “valid.”.

metavariables A variable in the metalanguage that can represent any sentence
in the object language..

name a symbol of FOL used to pick out an object of the domain.

necessary equivalence A property held by a pair of sentences that must always
have the same truth value.

necessary falsehood A sentence that must be false.

necessary truth A sentence that must be true.

negation The symbol -, used to represent words and phrases that function like
the English word “not”.

object language A language that is constructed and studied by logicians. In
this textbook, the object languages are TFL and FOL..

predicate a symbol of FOL used to symbolize a property or relation.

premise a sentence in an argument other than the conclusion.

premise indicator a word or phrase such as “because” used to indicate that
what follows is the premise of an argument.
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provable equivalence A property held by pairs of statements if and only if
there is a derivation which takes you from each one to the other one.

provable inconsistency Sentences are provably inconsistent iff a contradiction
can be derived from them.

scope The sentences that are joined by a connective. These are the sentences
the connective was applied to when the sentence was assembled using
a recursive definition..

sentence of FOL a formula of FOL which has no bound variables.

sentence of TFL A string of symbols in TFL that can be built up according to
the recursive rules given on p. 35..

sound A property of arguments that holds if the argument is valid and has all
true premises.

soundness A property held by logical systems if and only if + implies F.

substitution instance the result of replacing every occurrence of a free variable
in a formula with a name.

symbolization key A list that shows which English sentences are represented
by which atomic sentences in TFL.

tautology A sentence that has only Ts in the column under the main logical
operator of its complete truth table; a sentence that is true on every
valuation.

term either a name or a variable.

theorem A sentence that can be proved without any premises.

truth value One of the two logical values sentences can have: True and False.

truth-functional connective an operator that builds larger sentences out of
smaller ones and fixes the truth value of the resulting sentence based
only on the truth value of the component sentences.

universal quantifier the symbol V of FOL used to symbolize generality; Vx Fx
is true iff every member of the domain is F.

valid A property of arguments where it is impossible for the premises to be true
and the conclusion false.

valuation An assignment of truth values to particular atomic sentence of TFLs.

variable a symbol of FOL used following quantifiers and as placeholders in
atomic formulas; lowercase letters between s and z.



In the Introduction to his volume Symbolic
Logic, Charles Lutwidge Dodson advised:
“When you come to any passage you don’t un-
derstand, read it again: if you still don’t under-
stand it, read it again: if you fail, even after three
readings, very likely your brain is getting a lit-
tle tired. In that case, put the book away, and
take to other occupations, and next day, when
you come to it fresh, you will very likely find
that it is quite easy.”

The same might be said for this volume, al-
though readers are forgiven if they take a break
for snacks after two readings.
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