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Preface

My motivation for writing this textbook originates from several years teaching
mechanical engineering at British Columbia Institute of Technology (BCIT). Several
references specifically pertinent to the bachelor-level course System Design (MECH
8230) are available, but those existing resources and textbooks fail to fully meet the
course requirement and curriculum—mainly the combination of related fundamentals
and modern engineering software applications. Students at the bachelor level have been
forced to consult with several sources. An opportunity became available through a call
from the government of British Columbia and supported by BCIT to develop textbooks as
open education resources and to make them available to students.

This textbook, Engineering Systems Dynamics: Modelling, Simulation, and Design,
presents effective system modelling methods, mainly bond graph (BG), and the
application of a relevant engineering software tool, 20-sim. As well, we have created an
affordable, open education resource for students and professionals in the field.

This textbook emphasizes the fundamentals of modelling methods—including Lagrangian
and BG—and introduces a software tool for modelling and simulation to support the
design of common engineering systems. In this approach, time-consuming effort of
manipulating and extracting system equations, and writing computer codes for
integrating and finding their solution are secondary. We believe that our approach helps
both students and professionals currently working in the field to become more
productive engineers. Screen-recorded video files of selected worked-out examples help
the reader understand the topic and applications for real-world engineering systems.

This book comprises the following 11 chapters:

Chapter 1: Introduction gives the definition of modelling, some background on the role
of modelling for simulation and design, and the history of BG method.

Chapter 2: Lagrangian Mechanics discusses the background foundation of the energy-
based Lagrangian method of modelling, its formulation, and several worked-out
examples to demonstrate the applications of this method along with their system
equations solutions using 20-sim.
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Chapter 3: Bond Graph Modelling Method gives a full description of the BG method, its
related structure, generalized variables including power variables effort and flow, nine
basic elements, and causality-definition and assignment rules. This chapter is the
foundation for learning BG method and prepares the reader to learn and apply BG
method.

Chapter 4: Building Bond Graph Models: Procedure and Application gives guidelines
and procedure of how to build a BG model and how to assign causalities. A step-by-step
approach with worked-out examples demonstrates application of the procedure.

Chapter 5: Introduction to 20-sim Software Tool introduces the software package
20-sim and details its features for building BG models and simulation for systems. This
chapter includes examples and solutions, including screen-recorded video files of the
solution steps using 20-sim.

Chapter 6: Bond Graph Models for Complex Mechanical Systems gives more worked-
out examples for selected complex mechanical systems including rotational and 2D rigid
body motion. This chapter includes several examples and their solutions including
screen-recorded video files of the solution steps using 20-sim.

Chapter 7: Bond Graph Models for Electrical Systems discusses the application of BG
method to electrical circuits and systems and the related sign convention for current and
voltage. This chapter includes several worked-out examples for selected electrical
systems including screen-recoded video files of the solution steps using 20-sim.

Chapter 8: Bond Graph Models for Hydraulic Systems discusses the application of BG
method to hydraulic systems and the related definitions for effort and flow in these types
of systems. This chapter gives the derivation for hydraulic inertance, capacitance, and
resistance, as well as several worked-out examples for selected hydraulic systems,
including screen-recorded video files of the solution steps using 20-sim.

Chapter 9: Bond Graph Models for Multi-Domain Systems gives several worked-out
examples of the application of BG method to systems consisting of multi-energy
domains, including screen-recorded video files of the solution steps using 20-sim.

Chapter 10: Frequency Analysis: Bode Plots and Transfer Function discusses the
methods of analyzing systems in frequency domain vs. time domain and details the
application of the Bode method for plotting power and phase of selected input/output
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signals related to a given system. This chapter includes several worked-out examples,
including screen-recorded video files of the solution steps using 20-sim.

Chapter 11: Miscellaneous Topics collects all related and supporting topics to help the
reader’s understanding of the subject. The topics include extraction of system equations
from BG models, the derivative and algebraic loop, conjugate variables, and pseudo bond
graph. The chapter also includes worked-out examples where necessary.

Mehrzad Tabatabaian, PhD, PEng

Vancouver, BC

October 2021

The publisher recognises and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.
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1. Introduction

The foundations of engineering practice are mathematical models, the principles of
physics, and empirical results obtained from experiments for defining design criteria. An
engineer must know the laws of physics very well and use the relevant mathematical
models and their solutions, either exact or numerical, to design parts, systems, and
complex machines which function with certain reliability for an assumed lifetime. To help
with this task, an engineer may use modelling tools to simulate the behavior of systems
and their components. Modelling and the application of software tools are becoming
increasingly common in modern engineering practice. As shown in Figure 1‑11

, modeling
and simulation results can help optimize and refine a design before the physical
prototype is built. This minimizes the time required for the design process. In addition,
application of modelling can minimize the final cost of a prototype or a product.

Figure 1-1 Modern design process for a system or component

1. Adapted and modified, with permission from Mercury Learning and Information LLC.
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Isaac Newton (1643–1727)

Modelling has a long history starting from
ancient times when scientists used “equations” to
relate variables or parameters to one another
(e.g., Archimedes, Thales, Khawrazmi). Later,
scientists and mathematicians developed
“equations” which could represent the way that
natural phenomena work and materials behave.
These “equations” are sometimes referred to as
laws of physics and constitutive equations since
they are validated through time and the obtained
results match with what we experience or
measure in the real world with some
approximations, of course. For example, Newton’s
second law is given as a model which predicts the
behaviour of material bodies under given forces applied to them, i.e., the relationship
between forces applied to a body mass and the change of its momentum with respect to
time.

Similarly, Ohm’s law is a model which relates the voltage across a resistor to the electrical
current using the resistor’s material property. These models, and many other similar
ones (e.g., Hooke’s, Fick’s, Fourier’s) related to different engineering disciplines, form the
foundation of engineering. It is through their application that we trust the behavior and
responses of our designs in the real world. Assume that we are flying in an airplane which
is designed based on laws and governing equations or models applied to fluid mechanics
and solid mechanics, among others. If we don’t trust and accept these laws and models,
then it would not be logical to ride in an airplane!

Real-world phenomena are complex and usually involve many types of physics. For
application in engineering, we usually simplify these phenomena and consider the
dominant physics involved. For example, the length of a simple spring linearly changes
under a given load according to Hooke’s law. But it becomes a more complex problem if
the spring’s material behaves non-linearly, or if for example, electrical charges flow
through it. Traditionally, the simplification of a problem is/was due to lack of tools for
finding a solution which could represent more accurately that problem’s real world
behaviour. It is at this point that modelling methods, e.g., Lagrangian and BG, and
advanced modelling software tools, e.g., 20-sim, are valuable resources for finding
solutions to complex engineering systems and optimizing our designs to have more
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Henry Paynter (1923–2002). Courtesy MIT
Museum.

economical, reliable, and durable products as end results. Although this book focuses on
using bond graphs as a modelling method, we also emphasize the importance of learning
and, hence, understanding the foundation and mathematics behind an energy-based
approach for system analysis. For this purpose, we summarize Lagrangian mechanics in
chapter 2 and provide some references for further reading.

The main body of the text is devoted to the BG method. This graphical (i.e., it can be
sketched similar to engineering drawings) method translates the physical laws relevant to
a desired system at hand into graphical interactions of interconnected assigned
elements. The method uses laws of thermodynamics and the principle of cause and effect
(in an acausal

2
way) with the inclusion of constitutive relations relevant to system

components.

In 1959, Henry M. Paynter at the MIT
Department of Mechanical Engineering
developed the bond graph method [1]. This
method has fluctuated in application and
popularity in the industry, with a recent rise
due to its strength in modelling multi-energy-
domain systems and the widespread
availability of economically viable computer
power [2].

In this book, we make use of facilities available
in 20-sim, as a software tool for building,
among others, BG models. 20-sim also offers solvers for finding solutions for the
resulting system equations for simulation and design of systems. We use these solvers,
with the modern script language SIDOPS++ included, to solve system equations as
ordinary differential equations (ODEs). The system equations could be extracted from BG
models or using Lagrangian method. The script language SIDOPS++ is suitable for
complex system modelling and solving the relevant equations [3].

2. Acausal method, like bond graph, allows the user to select input and ouput ports, in contrast to
causal method, for which the ports are fixed in terms of input and output signals, e.g., block diagram
method. Acausal methods can be interpreted as two-way streets vs. causal methods as one-way
streets.
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The reader may come across or already be familiar with other available methods/tools
for modelling engineering systems, including block diagram, a signal processing
graphical method; icon-diagram, a component-iconic graphical method; and advanced
script languages/tools, e.g., Dymola, Smile, and recently Modelica [4], [5], [6].

Media Attributions

• Isaac Newton © J. MacArdell after E. Seeman is licensed under a CC BY (Attribution)
license

• Henry Paynter © MIT Museum is licensed under a All Rights Reserved license
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Joseph-Louis Lagrange (1736–1813)

2. Lagrangian Mechanics

2.1 Overview

In general, it is easier to perform engineering/
technical calculations using a scalar quantity rather
than a tensor/vector type quantity, mainly because
a vector’s components depend on the selected
coordinates system, and hence, more quantities to
deal with. This was the main motivation for
Joseph-Louis Lagrange (1736–1813), [7], [8] to start
looking into the Newtonian mechanics close to a
century after Newton developed his laws.
Consequently, Lagrange developed a new
formulation, so-called Lagrangian mechanics (1788).
Lagrange’s approach has advantages over that of
Newton’s, specifically for analyzing complex multi-
domain, multi-component systems. Lagrange’s
approach releases us from having to consider a single inertia coordinates system and
inter-component constraint forces. In addition, Langrangian method is faster and more
efficient in terms of computation time and effort required to analyze and model
engineering systems.

In Newtonian mechanics, a local condition, e.g., initial position and velocity (or
momentum), is required for calculating the future states of a system. Using Newton’s law
of motion, for a system or components of a system, the sum of forces (both applied,
and constrained/internal, ), is equal to the time rate of change of the momentum, .

(2.1)

In order to identify the constraints, we usually isolate the components one by one from
the rest of the system, while keeping the related dynamical equilibrium intact. This
operation gives us the free-body diagram of each desired component, useful for
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analyzing the system’s motion dynamics and calculating inter-component constraint
forces. However, in the Lagrangian approach, we consider a quantity that is like energy in
dimension, the Lagrangian , and use a set of partial differential equations (PDEs)—Euler-
Lagrange or Lagrange’s equations— to analyze the system dynamics.

The latter is much more effective approach for analyzing the systems with many degrees
of freedom and for dealing with multi-domain systems. In general, L is a function of
coordinates considered and their time derivatives and, as well, could explicitly depend on
time. For example, in a one-dimensional system, with designated coordinate x, the
Lagrangian is written as We can visualize as the topography of a surface
represented by as a function of and , as shown in Figure 2-1. This surface can vary
with time, hence explicit dependence of on time, or it could be stationary. An example
of the former is the motion of a mass particle on the surface of a moving sphere.
Similarly, the Lagrangian of such a system is stationary if the sphere is not moving. The
visualization presented in reference [9] may help readers with understanding Lagrangian
surface.

Figure 2-1 Lagrangian surface visualized in x- space

The foundation of Lagrangian mechanics rests on the principle of stationary action
integral (also referred to as Hamilton’s principle) . This principle simply states that a

6 | Lagrangian Mechanics



system’s motion from a given state to another is such that a specific quantity (i.e., the
system’s Lagrangian function) related to its motion is extremized (i.e., minimized or
maximized); hence, the value of its integral (i.e., the action integral, ) remains invariant
[10].

The motion of a system from to is such that the action integral has a stationary value for the actual
path of the motion

In other words, among all possible paths available for the motion of the system to go
through, there exists one specific path that minimizes/maximizes (for most systems
minimizes; hence, this is also referred to a principle of least action) the integral of the
corresponding Lagrangian with respect to time. Mathematically, the stationary action
integral can be stated as

(2.2)

Using calculus of variations [11], [12], [13] and Equation (2.2) it can be shown (see section
2.5) that L should satisfy Lagrange’s equation, or

(2.3)

where L is defined as , with being the kinetic energy and the potential
energy functions. With reference to Figure 2-1, is the slope at a selected point

on the curve at the cross-section of surface and a plane parallel to -plane at desired ,
and is the rate of change in the slope at the same selected point on the

curve at the cross-section of a plane parallel to -plane drawn from and including the
selected point the same point. In other words, we draw two planes parallel to the and
planes and equate their corresponding slopes at their intersectional point. Therefore, for
a stationary point, these two quantities should be equal, as given by Euler’s equation (2.3).
This is shown in the following sketch, see Figure 2-2.
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Figure 2 2 A sketch for visualizing Euler-Lagrange’s equation

By working out a simple example, we show that the Lagrangian approach is equivalent to
the Newtonian approach in terms of the system’s equation of motion.

2.2 Example: A Mass-Spring System

For this example, we show that Equation (2.3) gives the same results as that of Newton’s
law of motion when applied to a simple mass-spring system, as sketched in Figure 2-3.
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Figure 2-3 A frictionless mass-spring system

The kinetic energy for the mass is and the spring potential energy (i.e. stored

elastic energy) with the spring constant k is . Therefore, using Equation

(2.3), we get , or . Note that for

this analysis we did not need to consider the free-body diagram of mass nor the spring
force as the constraining force acting on it; rather, we used the scalar quantity .
However, the assumption of having a potential function from which we can calculate

the spring force is required (i.e., ), see section 2.7.

In the following sections we expand on the Lagrangian method for discrete systems with
related derivation, constraints and definitions for generalized coordinates, forces, and
momenta.

2.3 Lagrange’s Equations for a Mass System in 3D
Space

We consider a particle with mass in a 3D space , Cartesian
system. By definition, the Lagrangian function is written as
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. We have assumed that the potential energy

function is only a function of the space coordinates, so-called holonomic system. We now
form two sets of derivatives and of the Lagrangian function

. Therefore, e.g., in 1D space, we have and . Hence

is a conservative force (see section 2.7). Now, using Newton’s second law, we can write
the equation of motion, its -component, as or and

Therefore, . Similar derivation can be performed for and components of

the equation of motion. Therefore, we get the Euler-Lagrange equations

(2.4)

The motion of the particle could be considered, in principle, in another coordinate
system, e.g., a cylindrical or spherical system, as well. Therefore, we can define a set of
coordinates to represent arbitrary coordinate systems, including Cartesian
or curvilinear, and write Equation (2.4) in terms of , as well, for generality.

2.4 Generalized Coordinates, Momenta, and Forces

As mentioned previously, one of the advantages of Lagrangian method is that we do not
require consideration of the constrained forces. Therefore, we can include only those
coordinates that correspond to the degrees of freedom related to a system. This
consideration leads us to the concept of generalized coordinates, which is used in
Lagrangian mechanics instead of inertia coordinates used in the Newtonian mechanics.

We now define the generalized coordinates. First, we expand the system discussed in
section 2.3 to include number of particles that move in coordinate space, or

. However, in a real-world system we can have restrictions imposed on
the system’s motion; hence, some of the coordinates are constrained and do not vary
independently. For example, a particle moving in a plane is constrained to move in
-direction . Or, the mass bob of a pendulum moving in plane is restricted to

move out of -plane and if the pendulum rod has a fixed length, then only coordinate
varies during its motion. To capture these constraints, it is common and convenient to
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define generalized coordinates. Assume that for a coordinates system we have
number of constraints. Therefore, the number of independent coordinates defining the
motion is . By definition, for holonomic systems this is equal to the number of
degrees of freedom [13]. Now we define the generalized coordinates as a subset of the
original coordinates, with . Note that is the number of degrees of
freedom which is equal to the number of generalized coordinates, and coordinates of the

system are not necessarily the same as those of the , by one-to-one comparison.

For derivation of the equations of motion of a system, using Lagrangian approach, we can
calculate number of equations for the system, one by one, related to each generalized
coordinate. We can also use the generalized coordinates to define the velocity-phase
space, as the combined set of generalized coordinates and their corresponding time
derivatives. Therefore, the Lagrangian, as a functional, reads

(2.5)

Note that the time dependence of Lagrangian may be explicit for some systems and
implicit for others and that the phase-space coordinates do not necessarily have the
same units/dimensions. For example, could be a displacement and an angle for a
system like a pendulum with moving pivot point.

The fact that we can neglect the constrained coordinates in Lagrangian formulation is an
advantage of this method over Newton’s because we don’t need to calculate the
constrained “forces” in order to derive the equations of motion. Of course, the
constrained forces can be calculated, if required, after having the solution to the system’s
equations of motion.

Like the generalized coordinates, we also define associated generalized momenta and
forces. As mentioned in the previous section, the definition of momentum in Lagrangian
mechanics is more general than that of mass times the velocity. For example, it could be
angular momentum, instead. Similarly, the definition of forces is not limited to
mechanical forces; it can be applied, e.g., to voltage and temperature in electrical and
thermal domains. Therefore, for each generalized coordinate we can define the
corresponding generalized momentum and force. As given by Equation (2.6), we can
write the generalized momenta and generalized force in terms of , as

Lagrangian Mechanics | 11



William Rowan Hamilton
(1805–1865)

(2.6)

Section 2.7 discusses the topic of generalized force in terms of its types: conservative and
non-conservative.

2.5 Hamilton’s Principle and Lagrange’s Equations

Hamilton’s principle, as given by Equation (2.2), is
basically a mathematical expression of calculus of
variations application for a system dynamical motion with
the realization that Lagrangian functional is the function
that should be extremized [12]. Therefore, Lagrange’s
equations are resulted from the related calculations,
naturally. This realization was first expressed by William
Rowan Hamilton (1805-1865), [14], [11], [15].
Equation (2.4) can be written in terms of generalized
coordinates, as

(2.7)

Equation (2.7) shows that Lagrange’s equation is
consequence of, and necessary for, making the action
integral stationary. We assume that variation results from variation in one of the
arbitrarily selected coordinates, (dropping the subscript index for simplicity without
losing the generality) while satisfying the fixed boundary conditions, or .
Obviously, the same operation can be performed for all coordinates involved, .
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Figure 2-4 Sketch for variation of for an arbitrary

Substituting Equation (2.7) into Equation (2.2), after dropping the subscript index and
assuming for simplicity, we get

But and the last term can be written as

and hence, .

Back substituting into action integral expression, we get
.
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But the last integral gives .

Therefore, we have . Since is arbitrarily selected, the

integrand should be equal to zero in order to have the value of the integral null, or
. This concludes the derivation of Lagrange’s equation using Hamilton’s

principle. However, one can derive Lagrange’s equation in a more direct way using
calculus of variations or virtual work principles, see [11], [13], [16].

So far, we have considered systems that do not involve energy dissipation. In practice,
however, we require extra terms in Lagrange’s equation to account for friction existing in
real-world systems. Therefore, we expand the discussion to include non-conservative
forces, e.g., friction and dampers, and find the corresponding Lagrange equation,
including related topics such as cyclic coordinates, symmetry, multi-domain, and higher-
order systems, [8], [13], [17].

2.6 Cyclic Coordinates

From Equation (2.6), it can be shown that if Lagrangian function does not have explicit
dependency on one of the coordinates, say , among all , then the conjugate
momentum is conserved. The proof is as follows. Writing the Lagrange’s equation for
coordinate , we have . Since by definition, is not a function of ,

then . Therefore, , and written in terms of generalized momentum ,

we get , or is invariant with respect to time, hence conserved. It is common to

call the coordinate , cyclic or ignorable.

2.7 Conservative and Non-Conservative Forces

The generalized forces can be conservative or non-conservative. Conservative forces are
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those like gravity, buoyancy, mechanical spring, electrostatic, and magnetic. Non-
conservative forces are those like friction, damping, and resistance.

By definition, a conservative force is curl free, or . Writing this expression in
index notation, we have , where is the permutation symbol [18]. For
example, force under gravity is . Calculating the curl gives

. Each term is identically zero; hence,
the force under gravity field is conservative. Now, using the vector identity
or ; i.e., the curl of a gradient of a scalar function is identically zero, and we can
write a conservative force as the gradient of a scalar, such as potential function V as

. By convention, the negative sign indicates that potential energy increases
when work is done against a force field and vice versa.

We now, write Equation (2.7), after dropping the index for simplicity, for and
. Therefore, , or But , and

we get . This is the equation of motion (i.e. ). We clearly

see that the conservative force is already included in the Lagrange equation given by
Equation (2.7). Now, for the case that we have a non-conservative force, or that the
potential function is a function of velocity and q, (i.e. or ), then we
can write use Equation (2.7) to write Re-arranging the term

in this expression, we get We define the expression on the

right-hand side as the non-conservative force, as Hence,

Again, we have shown that the non-conservative force is already

included in the Lagrange equation given by Equation (2.7), provided a modified potential
function is defined, as given by . See reference listed at [11] for more details.

2.8 Alternative form of Lagrange’s Equation

In section 2.7, we discussed the applicability of Lagrange’s equation given by Equation
(2.7) for conservative and non-conservative forces. In practice, we could benefit from a
more explicit form of the Lagrange equation whose terms can be easily identified for
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Jean le Rond d’Alembert (1717–1783)

different types of forces, including energy dissipation such as damping and resistance. In
this way, we can readily calculate the related terms in the Lagrange equation for
modeling and simulation of a desired system.

There are several possible ways to derive the
Lagrange equation using, e.g., principles of virtual
work and d’Alembert’s principle, directly from
Newton’s second law of motion and first law of
thermodynamics or energy conservation (e.g.,
conservation of sum of kinetic and potential energies)
[8], [11], [13], [15], [17].

We use the conservation of energy approach to derive
the alternative form of Equation (2.7) including its
expansion [17].

We consider the kinetic energy of a system with
generalized coordinates for ) (see
section 2.4) represented by and its
potential energy by . Note that, as we discussed previously, for many
mechanical systems kinetic energy is a function of and potential energy a function of ,
only. Therefore, the resulted Lagrange equation can be simplified, accordingly. Now,
using conservation of total energy of the system, we can write

(2.8)

But and , using their functional relationships. After

substituting into Equation (2.8), we get . Note that the

Einstein summation convention applies, or
. Now, using the relation for the kinetic

energy of the system, or

(2.9)

where is defined as the generalized mass matrix, a diagonally nonzero matrix,
corresponding to the generalized coordinates. Therefore, its diagonal elements could be
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mass or moment of inertia when the generalized coordinates are displacement and angle,
respectively. For example, for a system, we have

With having and , and , particle mass, , inertia, and
we get Now, differentiating T with respect to , we get

and substituting into Equation (2.9), we get Now, we calculate total

change of T using the last expression, or But we had,

Therefore, subtracting these last two relations, gives, after

simplification, But we can manipulate the first term on the right-

hand side as Substituting into the last relation for

dT, we get

(2.10)

Now, substituting Equation (2.10) into (2.8), we get Now, if

i.e. holonomic systems, then we get and, after substitution, we have

This expression is true for any arbitrarily selected ;

therefore, the terms in the bracket should be identically null, or

(2.11)

Equation (2.11), is an alternative form of Lagrange’s equation and holds when forces
associated with the system are conservative, included in the term. Note that using

Lagrangian, and Equation (2.11) we can recover Equation (2.7). The inclusion of
non-conservative generalized forces, (usually the loading associated with each
coordinate) should be added to the right-hand side of Equation (2.11). Also, energy
dissipation due to viscous damping or resistance is usually given as and
contributes to Lagrange equation as . Finally, we get the alternative form of Lagrange

equation, as
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(2.12)

Recall the n is the number of generalized coordinates. In matrix form, Equation (2.12) can
be written as

2.9 Multi-Domain Systems

Lagrangian method can be applied to many kinds of engineering systems, including
mechanical, electrical, thermal, hydraulic, and their possible combinations as multi-
domain systems. As discussed in the previous sections, the established concept of
generalized coordinates, momenta, and force are key tools to model such systems.

2.10 Systems with Higher Order Equations

System equations are mostly second-order differential equations, like Newton’s second
law, and Kirchohff’s law for RCL circuits. Previous sections, e.g., Equation (2.7), presented
Lagrange’s equation for such systems. One may require, mostly in continuous systems, to
build the Lagrangian function for higher-order systems, e.g., fourth-order bi-harmonic
equation for fluid flows or plate displacements. Fortunately, the Lagrangian method can
be easily extended to cover the higher-order systems by considering a Lagrangian
function, as given by Equation (2.13)

(2.13)
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Using the calculus of variations and Hamilton’s principle, we can derive the
corresponding Lagrange’s equation [13], [9]. This s done by:

(2.14)

where m is the differentiation order; e.g., for , we have

Worked-out examples are useful to demonstrate applications of Lagrangian method.
These examples, for mechanical and electrical systems, appear below. Each example
includes numerical values assigned to the parameters and presents simulation results.
Selected examples include accompanying screen-recorded video files demonstrating the
solution steps for related system equations using 20-sim. After learning from the related
video file, the reader can modify the parameters and run the simulation for specific
design cases.

2.11 Example: A Multi-Mass-Spring System

We want to find the equations governing its motion dynamics for the system sketched in
Figure 2-5. For this example, we neglect the effect of gravity.
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Figure 2-5 A mass-spring system with three degrees of freedom

This system has three degrees of freedom associated with three masses
. For three masses, , and each can move vertically; hence, the number of

constraints is for each mass. This gives . The Lagrangian method
is used to find the equations of motion, or three coupled second-order differential
equations. We start by writing the kinetic and potential energy expressions of the system
and forming the corresponding Lagrangian. The kinetic energy of the system is
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. For the potential energy, we should use the difference in

displacements associated with each spring because the neutral position of the
unstressed springs do not contribute to the potential energy. For example, for the spring

, connecting masses and , we should use as the variable, or
. Therefore, the potential energy of the system consisting of the

sum of all springs is .

Note that for this system the kinetic energy is a function of only and potential energy a
function of . Applying Euler-Lagrange equation to each mass, or degree of freedom, we
get a system of ODEs, written in matrix form,

For example, the Euler-Lagrange equation associated with mass reads
. But we have and

. Having information about initial

and boundary conditions for displacements and/or velocities, we can obtain the solution
of the system’s equations using 20-sim. An initial velocity of 0.2 is applied to mass ,
for example. The script code is as follows:

parameters

real m1 = 15.0 {kg};
real m2 = 30.0 {kg};
real m3 = 15.0 {kg};
real k1 = 50.0 {N/m};
real k2 = 100.0 {N/m};
real k3 = 50.0 {N/m};
real k4 = 20.0 {N/m};
real k5 = 70.0 {N/m};
real k6 = 10.0 {N/m};

variables

real x1 {m};
real x2 {m};
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real x3 {m};
real x1_dot {m/s}; // velocity
real x2_dot {m/s}; // velocity
real x3_dot {m/s}; // velocity
real x1_dot_dot {m/s2}; //acceleration
real x2_dot_dot {m/s2}; //acceleration
real x3_dot_dot {m/s2}; //acceleration
real Fk1 {N}; // force spring k1
real Fk2 {N}; // force spring k2
real Fk3 {N}; // force spring k3

equations

x1_dot_dot = -(1/m1)*((k1+k5+k6)*x1-k6*x2-k5*x3);
x2_dot_dot = -(1/m2)*((k2+k4+k6)*x2-k6*x1-k4*x3);
x3_dot_dot = -(1/m3)*((k3+k4+k5)*x3-k4*x2-k5*x1);
x1_dot = int (x1_dot_dot , 0);
x2_dot = int (x2_dot_dot , 0.2); //initial velocity 0.2m/s
x3_dot = int (x3_dot_dot , 0);
x1 = int (x1_dot , 0.2); //initial displacement 0.2m
x2 = int (x2_dot , 0);
x3 = int (x3_dot , -0.1); //initial displacement -0.1m
Fk1 = k1*x1;
Fk2 = k2*x2;
Fk3 = k3*x3;

The results for displacements of the masses and velocities are shown below, see Figure
2-6.
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Figure 2-6 Sample results as output from 20-sim

Here is a video showing how to build and run the model for this example in 20-sim:

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=58

2.12 Example: A System with Energy Dissipation and
Applied External Force

We consider a system with two degrees of freedom, as shown in Figure 2-7. The damping
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coefficients and and spring stiffness and are used to calculate the potential and
damping functions and , respectively.

Figure 2-7 A mass-spring-damper system with two degrees of freedom

The non-conservative Rayleigh energy dissipation function is, .

The derivative of this function with respect to gives the damping forces associated

with mass . The kinetic energy is , and potential energy reads

Lagrange’s equation for motion of mass reads and for mass

is . Performing the derivatives, we get

Using Lagrange’s equation, with , we get the equations of motion of the system
in matrix form as

We use 20-sim to solve the systems equations. A step function is used for applied force.
The script code is as follows:

parameters
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real m1 = 2.0 {kg};
real m2 = 1.0 {kg};
real k1 = 20.0 {N/m};
real k2 = 30.0 {N/m};
real b1 = 0.1 {N.s/m};
real b2 = 0.05 {N.s/m};
real start_time = 10 {s};
real amplitude = 0.5;

variables

real x1 {m};
real x2 {m};
real x1_dot {m/s};
real x2_dot {m/s};
real x1_dot_dot {m/s2};
real x2_dot_dot {m/s2};
real F_applied {N}; // applied force

equations

x1_dot_dot = -(b1+b2)/m1*x1_dot+b2/m1*x2_dot-(k1+k2)/m1*x1+k2/m1*x2;
x2_dot_dot = -(1/m2)*(-b2*x1_dot+b2*x2_dot-k1*x1+k2*x2+F_applied);
x1_dot = int (x1_dot_dot , 0);
x2_dot = int (x2_dot_dot , 0);
x1 = int (x1_dot , 0);
x2 = int (x2_dot , 0);
F_applied = amplitude*step (start_time);

The results for displacements of the masses and applied force are shown below, see
Figure 2-8.
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Figure 2-8 Sample results as output from 20-sim

Here is a video showing how to build and run the model for this example in 20-sim:

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=58

2.13 Example: A Two-Loop Electrical Circuit

For this example, we consider an electrical circuit with two loops/branches. For the
system, we have; electric charges and ; resistors and ; inductors , , and ;

26 | Lagrangian Mechanics



and capacitors and as Figure 2-9 shows. The voltage source is , connected to
loop 1.

Figure 2-9 A two-loop electrical circuit with source

For comparison with a typical mechanical system, the equivalent of mass is an inductor;
for spring, a capacitor; and for damper, a resistor. Therefore, using the Lagrangian
method, we can write the kinetic energy of the system as

. Note that electric charge is analogous to mechanical displacement and electric current
to velocity, or and . Therefore, e.g., the term represents the stored

kinetic energy in the corresponding inductor. Similarly, the potential energy is
. Note that the capacitance is the inverse of stiffness, or . The

energy dissipation function for the system is . Using Langrange’s

equation, , gives the electric circuit system equations

as

One can use rate of charge or the electric current, I as the variable by replacing in
the system’s equations. This gives and

where and are the voltage across the capacitors,
respectively.
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We use 20-sim to solve the system equations. The script code is as follow

parameters

real L1 = 0.15 {H};
real L2 = 0.2 {H};
real L3 = 0.25 {H};
real C1 = 0.05 {F};
real C2 = 0.02 {F};
real R1 = 1 {ohm};
real R2 = 2 {ohm};
real omega = 3 {rad/s};
real amplitude = 1;

variables

real q1 {C};
real q2 {C};
real q1_dot {A};
real q2_dot {A};
real q1_dot_dot ;
real q2_dot_dot ;
real Voltage {V}; // applied voltage

equations // equations are manipulated

q2_dot_dot*(L1*L2+L2*L3+L1*L3)=-L3*R1*q1_dot-(L1+L3)*R2*q2_dot-L3/
C1*q1-(L1+L3)/C2*q2+Voltage*L3;
q1_dot_dot*(L3) = (L2+L3)*q2_dot_dot+R2*q2_dot+(1/C2)*q2;
q1_dot = int (q1_dot_dot , 0);
q2_dot = int (q2_dot_dot , 0);
q1 = int (q1_dot , 0);
q2 = int (q2_dot , 0);
Voltage = amplitude*sin (omega*time);

Typical plots for current in each loop is shown in Figure 2-10 for a sinusoidal voltage.
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Figure 2-10 Sample results as output from 20-sim

2.14 Example: A Compound Atwood’s Machine

Atwood’s machine is a collection of pulleys and masses. This example examines and
models the dynamical behavior of this machine as shown in Figure 2-11.
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Figure 2-11 A compound Atwood’s machine

This system has two degrees of freedom describing the motion of

mass and pulley b. Therefore, two ODEs describe the system dynamical behaviour.
The massless un-stretchable string length hanging over pulley is , and that of pulley
is . We measure the potential energy with reference to the top of pulley with vertical
displacement designated with and similarly from top of pulley with , as shown in
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Figure 2-11. The kinetic energy reads , where , using the

geometrical constraints and string lengths, .
Therefore, . Substituting in kinetic energy relation, gives

. The potential energy reads

. After substituting for , and and algebraic
simplifications we get , where constant C is given
by . The Langrange equations in terms of and are

and

, having

We dropped , since its differentiation is zero. Hence,

Substituting into the corresponding Lagrange equations, we get the system’s equations of
motion as

To simplify the equations, eliminate by multiplying the first equation by and
the second one by . After some manipulations, we get

We use 20-sim to solve these system equations. The script code is as follows:
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parameters

real m1 = 1.0 {kg};
real m2 = 2.0 {kg};
real m3 = 4.0 {kg};
real g = 9.08 {m/s2};

variables

real x {m};
real y {m};
real x_dot {m/s};
real y_dot {m/s};
real x_dot_dot {m/s2};
real y_dot_dot {m/s2};

equations

/* x_dot_dot = (1/(m1+m2+m3))*(-y_dot_dot*(m3-m2)+g*(m1-m2-m3)); */
x_dot_dot = g*(m1-m2-m3)*(m2-m3)/(m1*m2+m1*m3+4*m2*m3);
y_dot_dot = (1/(m3+m2))*((x_dot_dot+g)*(m2-m3));
x_dot = int (x_dot_dot , 0);
y_dot = int (y_dot_dot , 0);
x = int (x_dot , 0);
y = int (y_dot , 0.1);

2.15 Example: Atwood’s Machine with Massive String
and Pulley

In the analysis of Atwood’s machine, the pulley and string are usually considered
massless. In this example, we include these parts, assuming the string having mass ,
total length , and linear mass density and the pulley with mass , radius , and
moment of inertia [19].
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Figure 2-12 Atwood’s machine

2Datum for potential energy is a horizontal plane at the level of the pulley’s centre. From
the datum, the length of hanging string on the two sides of pulley is . The potential
energy is due to the masses and the string mass, or

. Note that x is measured downward from the
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datum toward mass . The kinetic energy is due to the masses, string, and the pulley’s
angular kinetic energy, with angular velocity . Therefore,

. The Lagrangian is written as

The Lagrange is equation reads , or , after

substituting . The result reduces to the familiar result of for

massless string and pulley .

We use 20-sim to solve these system equations. The script code is as follows:

parameters

real Ms = 2.5 {kg}; // string mass
real L = 2.0 {m}; //string length
real M = 3.0 {kg}; //mass of the pulley
real R = 30.0 {cm}; //radius of the pulley
real g = 9.08 {m/s2}; // grav. acceleration
real m1 = 4.0 {kg};
real m2 = 1.5 {kg};

variables

real x {m}; //vertical displacement
real I {kg.m2}; // pulley moment of inertia
real x_dot {m/s}; // vertical velocity
real x_dot_dot {m/s2}; // vertical acceleration

equations

I = 0.5*M*R^2;
x_dot_dot = g*(m1-m2+(Ms/L)*(x-L))/((m1+m2+(Ms/L)*(L+ pi*R)+I/R^2));
x_dot = int (x_dot_dot , 0.0);
x = int (x_dot , 0);
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2.16 Example: A Complex Vibrating Mechanical
System

For this example, we consider a mechanical system with three degrees of freedom,
, associated with three masses, . The arrangement of springs and

dampers is shown, with their coefficients, in Figure 2-13, with corresponding stiffness
and damping coefficients. An applied force, acting on mass and all

wall contact surfaces are considered to have negligible friction.

Figure 2-13 A complex vibrating mechanical system

The kinetic energy of the systems reads and the potential

energy is . Similarly, the damping function reads

. The Lagrange’s equations are

, with

because the applied force is exerted on mass . Performing the differentiations, we can
write the equations of the system, as
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and . In matrix form, the system’s equations are

We use 20-sim to solve these system equations. The applied force is composed of three
impulses applied at 5, 10, and 20 second. The script code is as follows:

parameters

real m1 = 1.0 {kg};
real m2 = 3.0 {kg};
real m3 = 2.0 {kg};
real k1 = 50.0 {N/m};
real k2 = 30.0 {N/m};
real b1 = 0.1 {N.s/m};
real b2 = 0.2 {N.s/m};
real b3 = 0.3 {N.s/m};

variables

real x1 {m};
real x2 {m};
real x3 {m};
real x1_dot {m/s};
real x2_dot {m/s};
real x3_dot {m/s};
real x1_dot_dot {m/s2};
real x2_dot_dot {m/s2};
real x3_dot_dot {m/s2};
real F_applied1 {N};
real F_applied2 {N};
real F_applied3 {N};

equations

x1_dot_dot = -b2/m1*x1_dot+b2/m1*x2_dot-k1/m1*x1;
x2_dot_dot = -(1/m2)*(-
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b2*x1_dot+(b1+b2)*x2_dot+k2*x2-k2*x3+F_applied1+F_applied2+F_applied3);
x3_dot_dot = -(1/m3)*(b3*x3_dot-k2*x2+k2*x3);
x1_dot = int (x1_dot_dot , 0);
x2_dot = int (x2_dot_dot , 0);
x3_dot = int (x3_dot_dot , 0);
x1 = int (x1_dot , 0);
x2 = int (x2_dot , 0);
x3 = int (x3_dot , 0);
F_applied1 = 3*impulse (5,0.1);
F_applied2 = 5*impulse (20,0.2);
F_applied3 = -10*impulse (10,0.2);

Sample results are shown in Figure 2-14.

Figure 2-14 Sample results as output from 20-sim

Here is a video showing how to build and run the model for this example in 20-sim:
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=58

2.17 Example: A Pendulum with Moving Pivot

A simple pendulum with mass hanging from a free-moving pivot with mass . The
system has two degrees of freedom: oscillation of pivot, and pendulum motion
about vertical designated by angle . The pendulum string with length is massless
and unstretchable. We consider the datum at the pivot level and gravitational
acceleration pointing downwards, as in Figure 2-15.
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Figure 2-15 Pendulum with oscillating pivot

Mass coordinates read ; hence, the velocity components are
. We can write kinetic energy of the system as
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Similarly, the potential energy of the systems reads . Note that the
pivot motion is horizontal with coordinates (x, 0). The Lagrange equation for rotational
motion with respect to coordinate reads , or

. After simplification, we get .

Note that for fixed pivot (or ) we get the familiar result for a simple
pendulum. The Lagrange equation for translational motion with respect to coordinate
reads , or . After performing

differentiation, we get . Collectively, the system’s
equations of motion are

We use 20-sim to solve these system equations. An initial velocity of 0.5 rad/s is applied
to the pendulum. The script code is as follows:

parameters

real m = 0.5 {kg}; // pendulum/bob mass
real M = 1.0 {kg}; // pivot mass
real g = 9.08 {m/s2}; //gravity
real L = 30 {cm}; //pendulum length

variables

real x {m};
real x_dot {m/s};
real x_dot_dot {m/s2};
real theta {rad};
real theta_dot {rad/s};
real theta_dot_dot {rad/s2};

equations

x_dot_dot = (1/cos (theta))*((g/L)*sin (theta)-theta_dot_dot);
theta_dot_dot = (1/(m*L*cos (theta)^2-M-m))*(m*L*sin (theta)*cos
(theta)*theta_dot^2-g/L*(m+M)*sin (theta));
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x_dot = int (x_dot_dot , 0);
x = int (x_dot , 0);
theta_dot = int (theta_dot_dot , 0.5);
theta = int (theta_dot , 0);

Sample results are shown in Figure 2-16.

Figure 2-16 Sample results as output from 20-sim

Here is a video showing how to build and run the model for this example in 20-sim:

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=58
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2.18 Example: A Pendulum Attached to a Moving
Mass-Spring-Damper System

In this example we consider a system consisting of a pendulum with its pivot attached to
the centre of a freely moving mass . The mass is connected to a spring with stiffness
and a damper with damping coefficient . The pendulum bob has a mass of and is
attached to a torsional damper with damping coefficient and a torsional spring with
stiffness . The pendulum string is massless and has a length of . We consider the datum
at the pivot level and gravitational acceleration pointing downwards, as in Figure 2-17.
The system has two degrees of freedom; oscillation of pivot, and pendulum
motion about vertical direction designated by angle .

Figure 2-17 A pendulum attached to a mass-spring-damper system
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The coordinates of mass read , and its velocity components are
. We can write kinetic energy of the system as

Similarly, the potential energy of the systems reads . The

damping function of the system is .

The Lagrange equation for rotational motion with respect to coordinate reads
, or . After

simplification, we get . The Lagrange equation for

translational motion with respect to coordinate reads
, or . After performing

differentiation, we get . Collectively, the
system’s equations of motion are

We use 20-sim to solve these system equations. The script code is as follows:

parameters

real m = 0.5 {kg}; // pendulum/bob mass
real M = 1.0 {kg}; // pivot mass
real g = 9.08 {m/s2}; //gravity
real L = 30 {cm}; //pendulum length
real k = 2 {N/m}; // spring stiffness
real kt = 0.5 {N.m/rad}; // torsional stiffness
real bt = 0.5 {N.m.s/rad}; // torsional damping
real b = 0.2 {N.s/m}; // damping
real amplitude = 1; // amplitude of applied force
real omega = 0.5 {rad/s}; // frequency of applied force

variables
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real x {m};
real x_dot {m/s};
real x_dot_dot {m/s2};
real theta {rad};
real theta_dot {rad/s};
real theta_dot_dot {rad/s2};
real F_applied {N};
real F_spring {N}; // linear spring force
real T_spring {N.m}; // torsional spring torque
real y; // aux. variable, to help the solver

equations

x = int (x_dot , 0);
x_dot = int (x_dot_dot , 0);
theta = int (theta_dot , 0);
theta_dot = int (theta_dot_dot , 0);
y = -m*L*cos (theta)*(theta_dot_dot);
x_dot_dot = (1/(m+M))*(m*L*sin (theta)*theta_dot^2 + y -k*x-
b*x_dot+F_applied);
theta_dot_dot = -g/L*sin (theta) -1/L*cos (theta)*x_dot_dot
-1/(m*L^2)*(bt*theta_dot+kt*theta);
F_applied = amplitude*sin (omega*time);
F_spring = k*x;
T_spring = kt*theta;

Cart displacement, pendulum angle, and force and torque of the springs are shown in
Figure 2-18.
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Figure 2-18 Sample results as output from 20-sim

Here is a video showing how to build and run the model for this example in 20-sim:

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=58
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2.19 Example: A Mass Particle Sliding on a Rotating
Circular Ring

Figure 2-19 shows a particle with mass sliding on a circular ring with radius . The ring
itself is rotating about the -axis with a constant angular velocity . We want to find the
equation of motion for the mass particle.

Figure 2-19 A particle moving on a circular ring
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The generalized coordinate is , the polar angle. We can write the coordinates of
the mass particle as , , and . Therefore,

, , and . Therefore, the
kinetic energy reads ) and after substitution of velocities and

simplifications we get . Similarly, the potential energy of the mass

particle reads . Note that the kinetic energy of the particle consists of
those resulted from angular velocity , defined in spherical coordinates in the
plane due to sliding of the mass on the circular ring, and the rotational velocity ,
defined in a plane parallel to the plane at any given time during the motion.

Now we can write the Lagrange’s equations, using Equation (2.12), with the assumption
that no friction and non-conservative forces exist, or . Hence

. But , and . After

substitution and rearranging the terms, we get the equation of motion for the mass
particle as

We use 20-sim to solve these system equations. An initial angular velocity of 0.2 rad/s is
applied to the mass. The script code is as follows:

parameters

real g = 9.08 {m/s2}; //grav. acc.
real R = 40 {cm}; //ring radius
real omega = 0.8 {rad/s}; // ring angular velocity

variables

real theta {rad};
real theta_dot {rad/s};
real theta_dot_dot {rad/s2};

equations

theta_dot_dot= ((1/2)*omega^2*sin (2*theta)+g*sin (theta)/R);
theta_dot = int (theta_dot_dot , 0.2);
theta = int (theta_dot , 0);
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The angular displacement, velocity and acceleration are shown in Figure 2-20.

Figure 2-20 Sample results as output from 20-sim

Here is a video showing how to build and run the model for this example in 20-sim:

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=58
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2.20 Example: An Extensible Robotic Arm Rotating in
a Plane

Figure 2-21 shows a load with mass is carried by a robotic arm in the plane. The
length of the arm and its angle with respect to -axis are functions of time , or
and . The damping coefficients for radial and tangential motions are and ,
respectively.

Figure 2-21 An extensible robotic arm carrying a load
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The generalized coordinates (or degrees of freedom) are , and corresponding
velocities are , for mass . We can write the kinetic energy as ,

due to radial and tangential velocities, respectively. The potential energy, with reference
to the support, is . The damping function is . The conservative

gravity force due to the load mass is accounted for through the potential function . The
force and torque exerted by the robot-arm motor to move the mass are components
of generalized force vector, or . Now, we have , ,

, , , , and . Using Equation (2.12),

we can write the equations of the motion for the mass , as

We use 20-sim to solve the system equations. The script code is as follows:

parameters

real m = 0.5 {kg}; // load mass
real g = 9.08 {m/s2}; //grav. acc.
real bt = 0.5 {N.m.s/rad}; // tangential damping
real br = 0.2 {N.s/m}; // radial damping

variables

real arm {m};
real arm_dot {m/s};
real arm_dot_dot {m/s2};
real theta {rad};
real theta_dot {rad/s};
real theta_dot_dot {rad/s2};
real F {N}; //applied force
real T {N.m}; // applied torque

equations

arm_dot_dot = (arm*theta_dot^2-g*sin (theta)-br*arm_dot/m+F/m);
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theta_dot_dot = (1/(m*arm^2))*(-2*m*arm*arm_dot*theta_dot-m*g*arm*cos
(theta)-bt*theta_dot+T);
arm_dot = int (arm_dot_dot , 0);
arm = int (arm_dot , 0.2);
theta_dot = int (theta_dot_dot , 0);
theta = int (theta_dot , 0);
F = sin (0.2*time);
T = 0.2;

Exercise Problems for Chapter 2

Exercises

1. Using the Equation Model tool in 20-sim, build a model for the example given in section 2.13. Using the
numerical data for the parameters, run simulation and analyze the results.

2. Using the Equation Model tool in 20-sim, build a model for the example given in section 2.14. Using the
numerical data for the parameters, run simulation and analyze the results.

3. Using the Equation Model tool in 20-sim, build a model for the example given in section 2.15. Using the
numerical data for the parameters, run simulation and analyze the results.

4. Using the Equation Model tool in 20-sim, build a model for the example given in section 2.20. Using the
numerical data for the parameters, run simulation and analyze the results.

5. Using Lagrangian method, derive the system equations for the double pendulum system shown below.
Solve the resulting system of ODE’s and draw the angular displacements and velocities and )

of mass and for an initial condition of at . Also draw the phase diagram (i.e., vs. ) for each

mass. Assume that the strings are massless and inextensible.
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6. For the mechanical system given, e.g., an elevator with a mass-spring-damper subsystem, verify the
system equations, using Lagrangian method and solve them with 20-sim. The container could be an
elevator, e.g., with a mass and is supported by a spring and moving vertically, guided by frictionless
rollers under load . The subsystem is composed of a mass m, two springs and , and a damper ,
as shown in the figure below. The gravitational acceleration vector is directed downward, .
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7. Repeat the sliding mass on a rotating circular ring example given in section 2.19 assuming .
Modify the model provided for this example accordingly and run the simulation.

8. Repeat the example given in section 2.16 after adding a mechanical spring between mass and the
wall. Modify the model provided for this example accordingly and run the simulation.
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9. Repeat the example given in section 2.17 after replacing the pendulum with a double pendulum. Modify
the model provided for this example accordingly and run the simulation.
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10. Derive the system equations for the electrical circuit shown in the below sketch. Use Lagrangian method
and solve the resulting system of ODEs with 20-sim.
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Media Attributions

• Joseph Louis Lagrange © Zephirin Belliard is licensed under a CC BY (Attribution)
license

• William Rowan Hamilton adapted by Quikbik is licensed under a Public Domain
license

• Jean le Rond d’Alembert is licensed under a Public Domain license
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3. Bond Graph Modelling Method

3.1 Overview

All engineering systems share the physical phenomenon of the transfer and distribution
of energy among their corresponding components while converting one form of energy
to another. The balance of energy “flowing” through a system should be maintained. The
total amount of energy remains constant—energy is conserved—according to the first
law of thermodynamics. In 1959, Henry Paynter used the first law and common system
features to create a general graphical method for analyzing and modelling multi-domain
engineering systems. His objectives were mainly to have a unified graphical method for
modelling single- and multi-domain systems as well as a common procedural algorithm
to develop such models and obtain their relevant systems’ equations. Hence, the bond
graph (BG) method was created [1], [20], [21], [22].

BG represents a system through graphical modelling. The BG method assigns ports (the
communication point) for each component of a system and connects each port to the
adjacent component through bonds (the communication path and direction) for a two-
way energy/power exchange. At any instant of time, each component either receives
(sends) a quantity called effort and simultaneously sends (receives) another quantity
called flow. The product of the quantities of effort and flow has the dimension of
power—or time rate of energy change. In a mechanical system, force is the effort and
velocity is the flow; in an electrical system, voltage is the effort and current is the flow.
The collection of bonds—with the inclusion of the related system components’
constitutive laws, constraints, and boundary conditions—forms the system BG model.
Building a BG model requires nine basic elements, defined as follows. See section 3.4 for
full description.

The nine basic BG elements, along with the principle of causality, can be employed for
building a BG model representing a given system’s dynamical behaviour (see further
sections for detailed explanation). The resulting BG model, then, would clearly show the
kinematic (i.e., continuous stream of flow) and kinetic (i.e., continuous stream of effort)
of the system and can be used to extract the equations governing the dynamical
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behaviour of the whole system. In addition, the insights provided by a BG model are
valuable for understanding the physics/dynamics of the system and provide a powerful
tool for simulation, design, and optimization of the system. The procedure for building a
BG model is similar for analogous engineering systems. For example, when the
parameters of the pertinent components are used, the BG model for a mechanical mass-
spring-damper system is identical to those of an electrical inductor-capacitor-resistor
(RCL) system.

In this chapter, we discuss, among other topics, the definitions for basic BG elements,
the causality principle and assignments, and the concept of state variables.

3.2 Categorizing System Components—Generalized
Effort and Flow

The components of a system can be categorized according to energy transfer through
the system into three types. These are kinetic energy storages, potential energy storages,
and energy dissipaters. In addition, we have energy source/sink components acting with
the surroundings at the boundary of the system. There may also exist components that
simply transfer energy without storing or dissipating it. Finally, a system may include
components, such as a distributor, that perform as junctions. Figure 3‑1 shows a sketch of
a mechanical system with examples of component categories, as mentioned above. All
these types of components can be modelled using nine basic BG elements, as discussed
in further sections.
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Figure 3-1 Sketch of a mechanical system with components’ category types

The dynamical behaviour of a system changes with time. Therefore, time rate of energy
or power is the quantity of interest in BG models. The relation between energy and
power can mathematically be written as

(3.1)

We can identify the components of a given system as “lumped” entities that exchange
energy with one another. Using the first law of thermodynamics, we can write the
change in energy as the sum of work and heat exchanges, or .
Summing up the energy changes of lumped components in a system gives the total
energy change of the system. For example, without losing generality, we consider a
mechanical system component receiving power and exhibiting a displacement and
velocity . Using Equation (3.1), the amount of energy in terms of work input

can be written as . But the work is also equal to the force times the
displacement; hence, . Substituting for , we get .
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Considering and as the time limits associated with the duration of energy transfer,
we can, after integrating, write the work as

(3.2)

where is mass. In a BG model, each system component is designated by a suitable basic
element and associated port(s). Depending on the type of element used, the number of
ports could be one, two, or more. The power direction is designated by a half-arrow ( )
which shows the direction of power to or from the port for each element. Traditionally,
half-arrows are used in BG models to keep the full-arrow shape for one-way signal data,
as in block diagram graphs.

As mentioned above and by Equation (3.2), for mechanical systems, the power is
composed of two quantities: force and velocity. In BG method, we generalize this
concept and show the power with the product of and , the effort and flow, respectively.
Hence, the product of effort and flow has the dimension of power, or . For
example, for a rotational motion, is the torque and is the angular velocity (see Table
3‑1). In other words, in a BG model, the kinetics of a system is modelled by transfer of the
efforts of its components according to the equilibrium, and the kinematics by transfer of
components’ flows according to compatibility requirement. We will discuss this feature
of BG method, using some examples, in section 4.6.

Figure 3‑2 shows the definition of power direction for element A sending power to B, and
the associated effort, shown above the half-arrow, and flow, shown, by definition, below
the half-arrow.
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Figure 3-2 BG power direction and associated effort and flow definitions: B receives power from A

Table 3‑1 Analogous quantity definitions in BG modelling method related to different systems

Systems Effort ( ) Flow ( ) Displacement Momentum

mechanical-translational force [N] velocity [m/s] distance [m] [kg.m/s]

rotational mechanical torque [N.m] angular
velocity [rad/s] angle [rad]

angular
momentum
[kg.m2/s]

hydraulic pressure [Pa] volume flow
rate [m3/s] volume [m3] hydraulic

momentum [Pa.s]

thermal/
thermodynamics

temperature
[K]

entropy change
rate [J/ K.s]

entropy [J/
K] —

thermo-fluid enthalpy
(specific) [J]

mass flow rate
[kg/s]

mass flow
[kg] flow momentum

electrical voltage [V] current [A] charge [C] flux linkage [V.s]

magnetics magnetic force
[A]

magnetic flux
rate [Wb/s]

magnetic
flux [Wb] —

chemical
chemical
potential [J/
mol]

mole flow rate
[mol/s]

mole flow
[mol] —

3.3 Causality Principle and Assignment

To establish the principle of cause and effect relationship in BG method, we use the
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definition of causality assignment. The cause signal brings all the history data to the
system/element, and through the dynamical behaviour of the system, the present signal
effect is decided and provided as output.

As mentioned, in BG method, the half-arrow indicates the direction of power between
related elements in a BG model. However, the half-arrow does not provide information
about the direction of power constituents, i.e., effort or of the flow. In principle, we can
arbitrarily define these directions. For example, in Figure 3‑2, we can assign direction
pointing from component A to B (hence, should be directing from B to A) or vice versa.
In other words, the causality assignment is a symmetrical one. By definition, a small
transverse/vertical line, a causality stroke, is drawn close to one of the ports at the power
bond to show the direction of effort toward it, hence the direction of flow away from it,
as shown in Figure 3‑3. This operation is critical for building BG models and, in terms of
providing a definite solution, has consequences in the resulting equations of the system.
After the causality is assigned, then the signal received by the element is the cause, and
the returning signal—or the element response—is the effect.

The preferred causality assignment is called integral causality, and the alternative option
is the derivative/differentiate causality. We will discuss the details further in section 3.5.

Figure 3-3 Causality assignment definition and directions of effort and flow between elements A and B

3.4 Nine Basic Elements of Bond Graph Method

As mentioned in the previous section, building a BG model of a physical system involves
consideration of the energy conservation, transfer, and conversion through the system.
In a BG model, we focus on the rate of energy or power as the quantity to deal with.

For energy storage, we define two elements, represented by (inertial element) for
kinetic energy and (capacity element) for potential energy storages. For energy
dissipation, we define one element, represented by (friction or resistor element). We
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Portrait of a Mathematician, thought
to be of Robert Hooke (1635–1703)

represent the energy source/sink acting at the boundary of the system by two elements,
one for effort and one for flow . To manage the distribution of energy through the
system, we define two elements as junctions, represented by junction 1 and junction 0.
For energy transfer/conversion, we define two elements, represented by transformer
and gyrator . Therefore, in total, we have nine elements available and sufficient for
building a BG for any given physical system, with the inclusion of their modulated
versions ( , , etc.) for when a signal is input to the corresponding element from an
external source. Examples of physical/engineering systems are mechanical, electrical,
thermal, hydraulic systems, or some hybrid systems composed of subsystems assembled
of different energy media.

Each one of the BG elements mentioned above should
behave according to the relevant physical laws
represented by their constitutive relations—a
mathematical model. For example, a linear mechanical
spring is modelled by element , whose governing
equation should comply with Hooke’s law. However, a
given spring can go under deformation either by
receiving an effort (i.e., force) or a flow (i.e.,
displacement rate/velocity). Depending on the system
and computational preferences, we can assign
causality strokes to the element to specify that the
desired spring receives effort or flow. This rule, the
causality assignment, must be applied to all bonds in a
BG model. Examples of typical translational
mechanical elements are shown in Table 3‑2.
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Table 3‑2 Typical mechanical components and their corresponding BG elemen

-element
(damper)

-element
(spring)

-element
(mass)

-element
(lever) (gyr

In the next sections, we will define the constitutive equations, preferred causality, and
physical representation examples for all nine BG elements.

3.4.1 Inertia Element I: Kinetic Energy Storage

In BG modelling, the -element is a passive element; it should receive power to return a
signal. This requirement means that the half-arrow power bond should be drawn toward
this element. An -element has only one port for communicating to the rest of the
system. Examples are mass bodies in mechanical systems and inductors in electrical
systems.

As shown in Figure 3‑4, the input quantity for the -element can be either effort ( ) or
flow ( ); consequently, the response is flow or effort, respectively. Note that the causality
stroke (the vertical/transverse line) specifies the direction of effort defined to be toward
the stroke; hence, the direction of flow is to be away from it. We use red colour for
specifying non-integral causality strokes.
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Figure 3-4 Causality assignments for an -element, with preferred integral causality indicated by
dashed circle (left) and derivative causality (right)

Now the question is, how do we choose between these two possible options when
building a BG model? What are the implications when choosing one option versus the
other? The short answer is that both options are legitimate, but there is a preference for
having the -element receiving the effort and sending the flow out—integral
causality—hence, the causality stroke is placed at the half-arrow head at the port close to
the element. The effort is the cause, and the flow is the effect relevant to -element
when it is integrally causalled.

In a bond graph model for an -element, the preferred causality assignment is effort-in, so-called integral
causality.

Mathematically, the statement given in the box can be analyzed as follows. In a
mechanical system, for example, we consider a point mass and apply Newton’s second
law to the motion of that point mass. Therefore, we can write ( is net

applied force, and is the velocity of the mass), or in BG generalized notation,
. Recall that the symbol represents effort (force) and represents flow
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(velocity) in a mechanical system (see Table 3‑1). We also use the symbol , representing
mass , or inductance for electrical systems. Now, for the effort-in option that we have,
since the input should be , or after integration,

Note that the integral of force with respect to time is the

momentum , ( ). The equation is the key point here. Let’s see what it

means. The flow (velocity) is equal to momentum divided by the mass. This is well-
known! In BG method, however, it has an important meaning: for the -element, the
input effort quantity, after being integrated, is divided by the -element parameter ,
and the output quantity is flow or velocity. This can be shown in a block/signal diagram
along with equivalent BG model diagram (see Figure 3‑5). Since the integration of effort is
involved, we call the related causality assignment an integral causality which is preferred
for -elements. From the physical point of view, the integration of effort collects all the
input data and hence represents a more comprehensive description of the system in
terms of modelling. In addition, the resulting system’s equations (see section 3.5) are
first-order ODEs when integral causality is assigned.

Figure 3-5 Block diagram (left) and equivalent bond graph for -element with assigned integral
causality and state variable

The constitutive equation for the -element in a BG model is given as

(3.3)
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The momentum , which is the result of input/effort integration, is a state variable (see
section 3.5).

Now, we consider the second possible option with flow-in signal (see Figure 3‑4). We
have . This equation matches with the input and output data, since the time

derivative of input flow, given on the right-hand side of the relation, multiplied by the
-element parameter is the element output or effort, given on the left-hand side. This is
the derivative causality assignment since the derivative of input data is involved. This
case can be shown in a block diagram along with equivalent BG model diagram (see
Figure 3‑6).

Figure 3-6 Block diagram (left) and equivalent bond graph for an -element with assigned derivative
causality

3.4.2 Capacity Element C: Potential Energy Storage Element

In BG modelling method, the -element is a passive element because it should receive
power to react to. This requirement means that the half-arrow power bond should be
drawn toward this element. A -element has only one port for communicating to the rest
of the system. Examples are springs in mechanical and capacitors in electrical systems.
As shown in Figure 3‑7, the input quantity can be either effort ( ) or flow ( );
consequently, the response is flow or effort, respectively. Note that the causality stroke
(the vertical line) specifies the direction of effort defined to be toward the stroke; hence,
the direction of flow is to be away from it.
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Figure 3-7 Causality assignments for a -element, with preferred one indicated by dashed circle,
integral causality (right) and derivative causality (left)

Now the question is, how do we choose between these two possible options when
building a model? What are the implications when choosing one option versus the other?
The short answer is that both options are legitimate, but there is a preference for having
the -element sending the effort and receiving the flow—integral causality—hence, the
causality stroke is placed at the opposite end of the half-arrow head away from the
element’s port.

In a bond graph model for a -element the preferred causality assignment is effort-out, so-called integral
causality.

Mathematically, the statement given in the box can be analyzed as follows. In a
mechanical system, e.g., we consider a linear mechanical spring with stiffness

1
and

apply Hooke’s law to its motion. Therefore, we can write ( is net applied force,
and is the displacement) or, in generalized BG notation, , where the

1. force per unit displacement of the spring
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spring compliance
2
. Recall that the symbol represents effort (force) and represents

flow (velocity) in, e.g., a mechanical system, (see Table 3‑1). We use the symbol ,
representing spring compliance or capacitance in electrical systems as well.

Now, for the effort-out option having the flow as the input, we can write .

That is, for the -element, the input flow quantity, after integration, is divided by the
-element’s compliance and gives the output quantity as effort . For -element, the
displacement , which is the result of input/flow integration, is the state variable.

(3.4)

This can be shown in a block/signal diagram along with equivalent BG model diagram
(see Figure 3‑8).

Figure 3-8 Block diagram (left) and equivalent bond graph for a -element with assigned integral
causality and state variable

Now, we consider the second possible option with effort-in signal (see Figure 3‑7). We
can write , with effort being the input and displacement as the output data; hence,
the time derivative of output displacement ( ) is required to get the flow/velocity. This is
derivative causality assignment, since the derivative/differential operation is needed to

2. displacement per unit force applied to the spring

Bond Graph Modelling Method | 69



get the output signal involved. This case can be shown in a block diagram along with
equivalent BG model diagram (see Figure 3‑9).

Figure 3-9 Block diagram (left) and equivalent bond graph for a -element with assigned derivative
causality

3.4.3 Friction Element R: Energy Dissipation Element

In BG modelling method, the -element is a passive element since it should receive
power to return a signal. This requirement means that the half-arrow power bond should
be drawn toward this element. An -element has only one port for communicating to the
rest of the system. Examples are dampers in mechanical and resistors in electrical
systems.

As Figure 3‑10 shows, the input quantity for the -element can be either effort ( ) or flow
( ); consequently, the response is flow or effort, respectively. Note that the causality
stroke (the vertical line) specifies the direction of effort defined to be toward the stroke;
hence, the direction of flow is to be away from it.
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Figure 3-10 Causality assignments for an -element

There is no preference for having the -element receiving the effort or the flow.
Therefore, the causality stroke can be placed at either end of the half-arrow power
connection, according to the causality requirement for the adjacent elements.

In a bond graph model for an -element, there is no preferred causality assignment- i.e., it is neutrally
causalled.

Mathematically, the statement given in the box can be analyzed as follows. In a
mechanical system, for example, we consider a damper with viscous damping coefficient

. The constitutive equation gives the force applied on the damper proportional to the
rate of displacement. Hence, we can write ( is net applied force, and is the
velocity). Writing in BG generalized notation, . Now, for the effort-in option we
have, since the input should be ,

Now, we consider the option with flow-in data (see Figure 3‑10). We have . Since
the constitutive equation for a linear viscous damper is algebraic, we do not need to
integrate or differentiate the input signal to obtain the output signal for an -element.
Therefore, there is no preference, and -element is neutrally causalled. Figure 3‑11 shows
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block diagrams along with equivalent BG model diagram with causality assignments for
an -element.

Figure 3-11 Block diagrams (left) and equivalent bond graph for an -element with assigned causality

3.4.4 Source Elements Se and Sf : System Boundary Input
Elements

In BG modelling method, the boundary source elements are of two types. The sources for
effort (such as force, voltage) and flow (such as velocity, current) are represented by
and respectively. These elements are active, and the half-arrow power bond should be
drawn from these sources to the connecting elements in the system. Source elements
have only one port each, for communicating to the rest of the system. As shown in Figure
3‑12, the causality assignments are uniquely assigned for these elements.

Figure 3‑12 BG symbols for effort source (left) and flow source (right) with their assigned causalities
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3.4.5 1- and 0-junctions: Distribution Constraint Elements

In BG modelling method, system-required constraints for distribution of energy are
applied using two elements. These are multi-port elements with symbols “1” and “0” that
can receive or send power to the elements connecting to them. This requirement means
that the half-arrow power bond can be drawn toward or from these elements.

A 1-junction is a flow equalizer or an effort summator element. For example, in a
mechanical system, a common node with connecting system components exhibits the
same value of velocity, or the elements of an electrical circuit experience the same value
of current. The causality assignment for a 1-junction element must comply with its
definition of distributing the flow received through one of the connecting bonds to the
rest of bonds. Therefore, only one bond can send flow to a 1-junction—the strong
bond—and the remaining connecting bonds should send the same flow to connecting
elements; hence, the causalities are assigned accordingly, as shown in Figure 3‑13.
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Figure 3‑13 BG symbol for 1-junction element with four connecting bonds, corresponding
causalities, and strong bond identified with thick half-arrow

After labelling the bonds with arbitrary numbers, we can write the conservation energy
law, in terms of its rate, as . But the 1-junction distributes the
flow received from the strong bond (i.e., the bond labelled “1”) equally to bonds 2, 3, and
4. Hence, . From these relations, after substitution, we get

. Similarly, for number of bonds connecting to a 1-junction, we have
the constraint relations for the 1-junction as

(3.5)
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In Equation (3.5), the summation for efforts received by 1-junction is algebraic, or the
input power is considered to be positive, and the output power has a negative sign.

A 0-junction is an effort equalizer or a flow summator element. For example, in a
mechanical system, a common node with connecting system components experiences
relative velocity values or the nodes in an electrical circuit with common voltage. The
causality assignment for a 0-junction element must comply with its definition of
distributing the effort received through one of the connecting bonds to the rest of
bonds. Therefore, only one bond can send effort to a 0-junction—the strong bond—and
the remaining connecting bonds should send the same effort to connecting elements,
hence, the causalities are assigned accordingly, as shown in Figure 3‑14.

Figure 3‑14 BG symbol for a 0-junction element with four connecting bonds, corresponding
causalities, and strong bond identified with thick half-arrow
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After labelling the bonds with arbitrary numbers, we can write the conservation energy
law, in terms of power or energy rate, as . But the 0-junction
distributes the effort received from the strong bond (i.e., the bond labelled “1”) equally to
bonds 2, 3, and 4. Hence, . From these relations, after substitution, we get

. Similarly, for number of bonds connecting to a 0-junction, we have
the constraint relations for the 0-junction as

(3.6)

In Equation (3.6), the summation for flows received by the 0-junction is algebraic, or the
input power is considered to be positive and the output power has a negative sign.

3.4.6 Transformer TF and Gyrator GY: Energy Conversion
Elements

In physical engineering systems, energy may be converted by some components while its
conservation is maintained. Examples are levers and gearbox in mechanical systems or
electrical transformers and motors in electrical systems. In BG modelling method, there
exist two elements for modelling convertors: transformer and gyrator . These
elements are two-port elements and can receive power through one of their ports as
input and deliver a converted power from the other port as output, in terms of the power
variables effort and flow. The causality assignments determine the directions of flows
and efforts as being inputs or outputs. In this section, we present the details of
-element followed by those of -element.

A transformer element, represents the converter that receives the same type of
physical quantity as the type it delivers, after conversion. For example, a force applied at
one end of a lever is converted to a magnified/reduced force at the other end, or the
velocity of the lever’s end point is converted to another velocity value related to another
point proportional to their distances from the lever’s pivot.

As shown in Figure 3‑15, a -element can have one effort and one flow as inputs, and
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consequently, delivers converted corresponding effort and flow as outputs. The
conversion parameter should be defined, based on the physical system data. For
example, for the case that flow is the input and flow the output, we can write
to define . But from energy conservation we have , or the output effort

. Similarly, for the case that effort is the input and effort the

output, we can write , using . But from energy conservation, we have,
or the output flow .

These relations constitute the -element equations and are shown in Figure 3‑15, for
each case where the inputs to the -element are identified with thick arrows.

Figure 3-15 Block diagrams (left) and equivalent bond graphs for a -element with related assigned
causalities—inputs are shown with thick arrows

Note that the -element should have only one of the two required causality strokes
near it for either cases, as shown in Figure 3‑15.

In a bond graph model for the -element, there should be only one causality stroke close to it and
another one away from it. A -element converts flows to flows and efforts to efforts.

A gyrator element, , represents the converter that receives a type of physical quantity
and delivers a different type after conversion. Examples are a DC motor which converts
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voltage (effort) to angular velocity (flow) of the rotor or the attached shaft. The reverse
operation is that of an electric generator.

As Figure 3‑16 shows, a -element can have one effort and one flow as inputs and,
consequently, delivers corresponding flow and effort as outputs. The conversion
parameter should be defined, based on the physical system data. For example, for the
case with flow as the input and effort being the output, we can write to
define . But from energy conservation we have , or the output effort

. Similarly, for the case with effort as the input and effort being the

output, we can write , using . But from energy conservation we have ,
or the output effort . Similarly, for the case with effort as the input

and effort being the output, we can write , using . But from energy
conservation we have , or the output flow . These relations

constitute the -element equations and are shown for each case where the inputs for
the -element are identified with thick arrows in Figure 3‑16.

Figure 3-16 Block diagrams (left) and equivalent bond graphs for a -element with related assigned
causalities—inputs are shown with thick arrows

Note that the -element should have both required causality strokes near it or away
from it, as shown in Figure 3‑16.
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In a bond graph model for the -element, there should be two causality strokes close to it or both away
from it. A -element converts flows to efforts and efforts to flows.

Now that we have all nine elements of BG method defined, in the following sections we
discuss the state variables, their definitions, and relation with integral causality. State
variables are key quantities in analyzing engineering system dynamics and behaviour and
are a critical part of BG method. A sound understanding of the state variables will help in
developing a high level of competency in BG method and its applications to engineering
systems.

3.5 System State Variables

The main objective of BG models is to derive system equations that describe the
behaviour of the system and to follow up by solving these equations for simulation and
design purposes.

The system equations may be ODEs of second order or higher. However, when writing
these governing system equations in terms of state variables—those variables that
uniquely and sufficiently describe the system dynamics—we end up having first-order
ODEs, a huge advantage when using numerical/analytical solution methods. In addition,
when we extract system equations from the corresponding BG model (see chapter 11),
additional algebraic equations are involved; hence, we have a system of differential-
algebraic equations (DAEs) that could benefit from having the related ODEs written as
first-order equations.

In this section, we define the state variables that relate themselves to the storage
elements in BG method i.e., -element and -element. Other BG elements correspond to
the algebraic equations of the system DAEs and do not possess state variables of their
own.

We now consider the kinetic energy storage element or inertia -element. The energy
stored can be written as the integral of power (i.e., effort multiplied by flow) with respect
to time, or as . But , the generalized momentum
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differential/change. Hence, , or the energy stored in an inertia element
is the integral of flow (e.g., velocity) with respect to momentum as the independent
variable. Therefore, a functional form of the type is required to perform the
integral operation. In other words, the area under the curve of the flow in the
coordinate system is equal to the energy stored. Recall that, e.g., in mechanical systems,
this function (i.e., ), is derived from Newton’s second law, or (the
parameter is mass or inductance, for example). Therefore, we have

, or

(3.7)

Equation (3.7) clearly shows that the energy stored by an -element is uniquely defined
by its generalized momentum. Therefore, the momentum of an -element is identified as
a state variable of the system.

The generalized momentum associated with Inertia element in the bond graph model is a system state
variable, so-called on .

Similarly, we consider the potential energy storage element, or -element. The energy
stored can be written as the integral of power with respect to time, or as

. But , the generalized displacement differential/change. Hence,
or the energy stored in a -element is the integral of effort (e.g., force)

with respect to displacement as the independent variable. Therefore, a functional form of
the type is required to perform the integral operation. In other words, the area
under the curve of as a function of in the coordinate system is equal to the
energy stored. Recall that, e.g., in mechanical systems, this function (i.e., ) is
derived from Hooke’s law, or (the parameter is spring compliance or capacitor

capacitance, for example). Therefore, we have , or

(3.8)

Equation (3.8) clearly shows that the energy related to a -element is uniquely defined
by its generalized displacement. Therefore, the displacement of a -element is identified
as a state variable of the system.
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The generalized displacement associated with a -element in the bond graph model is a system state
variable, so-called on .

These two state variables ( and ) are key variables when extracting system equations
from the corresponding bond graph (see chapter 11). The total number of independent
system equations is equal to the total number of state variables, or on and on .

The reader should also note that the assumed governing equations for these two
elements (i.e., Newton’s second law for -elements and Hooke’s law for -elements)
determine the functional forms of for an -element and for a -element,
respectively. Other constitutive equations: e.g., non-linear relations could be used if
desirable, but the uniqueness of energy stored on the and remains for each of these
two elements.

3.5.1 Integral Causality and State Variables: I– and C-elements

The main objective of assigning a causality stroke to an element is to make the element
definite in terms of its inputs and outputs (i.e., either effort or flow). Since we have two
choices (either effort or flow being the input or the output), the preferred causality is the
one that, when assigned, allows the input to the element such that the element-related
laws of physics are satisfied and the state variable is concluded as well. For example, if an
element receives effort, then it should respond with flow, and the related state variable
should be the outcome of the application of the laws of physics to this element. These
objectives are met when we use the integral causality strokes for -element and
-element. In other words, when the integral of the cause signal is equal to the state
variable of the corresponding storage element, then that element is integrally causalled.

In the previous sections (see sections 3.4.1 and 3.4.2), we discussed the preferred
causalities for – and – elements as being the integral causality types. Having defined
the state variables for – and – elements (see section 3.5), we can expand the discussion
on why the integral causality is the preferred one for these elements.
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Figure 3-17
Consistency of
integral causality
assignment and
state variable for

an -element
with parameter

The state variable corresponding to elements and specifies the assignment of causality strokes for the
integral causality is defined such that the integral of input quantity (either effort or flow) for – or
-elements result in the corresponding state variable.

Recall that generalized momentum is the state variable for an -element. Now, we
consider the choice of having the flow or effort as the input for -element according
to the causality stroke assignment (see Figure 3‑4). When the effort is selected as the
input, we can integrate it (hence, the designation of integral causality for this choice),
and get the momentum, i.e., the state variable, as well as the flow for the element
response. This is consistent with the -element governing equation (i.e., Newton’s second
law). Therefore, having the causality stroke at the port of -element, or the preferred
causality assignment (see Figure 3‑4), satisfies all the mathematical requirements and
provides the flow as the response and the momentum as the state variable. The whole
process is shown in Figure 3‑17. The choice of having flow as the input for -element—the
derivative causality—does not fulfill all the objectives mentioned above; hence, it is not
preferred. Note that when derivative causality is assigned, Newton’s second law still is
satisfied, but the state variable is not explicitly involved.

Similarly, for a -element, we can have a similar argument. Recall that generalized
displacement is the state variable for a -element. Now, we consider the choice of
having the flow or effort as the input for -element according to the causality stroke
assignment (see Figure 3‑7). When the flow is selected as the input, we can integrate it
(hence the designation of integral causality for this choice) and get the displacement, i.e.,
the state variable, as well as the effort as the element’s response. This is consistent with
the -element governing equation, i.e., Hooke’s law. Therefore, having the causality
stroke away from the port of -element, or the preferred causality assignment (see
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Figure 3-18
Consistency of
integral causality
assignment and
state variable for

a -element with
parameter

Figure 3‑7) satisfies all the mathematical requirements and provides the effort as the
response and the displacement as the state variable. The whole process is shown in
Figure 3‑18. The choice of having effort as the input for -element—the derivative
causality—does not fulfill all the objectives mentioned above; hence, it is not preferred.
Note that when derivative causality is assigned Hooke’s law still is satisfied but the state
variable is not explicitly involved.

Exercise Problems for Chapter 3

Exercises

1. Using Figure 3‑1, identify each component in terms of its type related to energy storage, dissipation,
converter, and source.

2. Using Figure 3‑3, explain if the power bond direction and causality stroke assignment are independent
from each other or dependent.

3. List nine basic bond graph elements and sketch them with their preferred causalities, where applicable.
4. For each bond graph sketch, perform the operations given below:

a. Write the energy rate balance equation at each junction
b. Identify strong power bond.
c. Assign all remaining causality strokes, using red colour to distinguish them
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5. The massless lever rotates about the pivot point with angular velocity , as shown in the below sketch.
Draw the bond graph model for each case:

a. Velocity magnitude at point A is given, . Calculate the transformer parameter .
b. Force magnitude at point A is given, . Calculate the transformer parameter
c. Discuss the relation between and .

6. Describe system state variables and explain their significance related to a system’s equations. Identify BG
elements associated with these variables.

7. Discuss the principle of cause and effect in relation to causality assignment in BG method. For the
following elements, assign the causalities and identify the cause and effect for each one. Also identify the
integral vs. the derivative causality.
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4. Building Bond Graph Models:
General Procedure and Application

4.1 Overview

To demonstrate applications of BG method, we discuss the procedure for building BG
models for physical systems, using the material presented in chapter 3. We use examples
related to mechanical systems to establish the guidelines and steps required to build a
BG model. In further chapters, we present more worked-out examples for several
engineering systems and disciplines, including electrical, hydraulic systems.

4.2 Steps for Building Bond Graph Models: General
Guidelines

As mentioned, BG method can be used to build models for single- and multi-domain
physical systems. The building blocks are the nine basic BG elements, including their
modulated versions, and causality assignment rules (see section 3.4). A model for any
specific system also requires definitions of relevant sign conventions for general
displacement and forces. This chapter will discuss the latter and will present some
worked-out examples. The following are the steps for building a BG model, in general,
including for mechanical, electrical, and hydraulic systems:

1. Identify the physical system components in terms of their type (energy storage,
source, dissipater, etc.).

2. Identify the DOF (degrees of freedom) of the system. This step is optional but
recommended.

3. Identify and list the required BG elements.
4. Identify distinct physical points/nodes of the physical systems:
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◦ velocity or force (mechanical systems): translational
◦ angular velocity or torque (mechanical systems): rotational
◦ voltage or current (electrical systems): electrical circuits
◦ pressure or flow rate (hydraulic systems): fluid network

5. Assign proper BG multi-port junction elements
1
to items from step 4:

◦ “1” for velocity, angular velocity, and electrical and flow currents
◦ “0” for force, voltage, and pressure

6. Connect associated elements, using BG elements and power bonds, to the items
from step 5.

7. Assign proper BG multi-port junction elements in between those items from step 5:

◦ “0” for relative velocity and angular velocity
◦ “1” for voltage drop and pressure drop
◦ and for energy conversion

8. Connect associated elements to items from step 7, using BG elements and power
bonds.

9. Define sign convention and connect all remaining power bonds.
10. Apply all causality assignments (integral causalities must be given priority).
11. Draw and build the BG model in 20-sim (when available).
12. Perform simulation and design, using the obtained BG model (when required).

In further sections, we will demonstrate implementation of the procedure/algorithm
mentioned above with some worked-out examples, including power bond direction,
causality assignment, and sign convention.

1. Recall that 1- junction is a flow equalizer (or effort summator) and 0-junction is an effort equalizer (or
flow summator).
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4.2.1 Guidelines for Power Bond Direction

Connecting elements in a BG model with power bonds requires compliance with the
direction of energy flow in the physical system. Therefore, the directions of half-arrows
are critical. The following guidelines may be helpful:

1. Draw power bonds from BG source elements ( and ) toward the system,
connecting to the adjacent elements.

2. Draw power bonds toward BG passive elements (i.e., , , and )
3. Draw power bonds to and from BG junction elements (“1” and “0”) according to a

previously defined sign convention (see section 3.4.5).
4. Draw remaining power bonds to have all BG elements connected.
5. Some simplifications of the BG model may be justified, but not required.

After drawing all power bonds for the model, assign the causality strokes. The next
section provides a list of guidelines for causality assignments.

4.2.2 Guidelines for Assigning Causality Strokes

The assignment of causality strokes is a required step in building any BG model. The
following steps help with achieving this requirement.

1. Assign causality to BG source elements.
2. Assign causality assignments with preferred integral causality strokes to – and –
3. As far as possible, extend the causality assignments to other power bonds, using the

causality requirements for connecting elements (e.g., 1, 0, and )
4. Assign causality assignments to -elements that accept neutral causality stroke

assignment.
5. As far as possible, using the causality requirements for connecting elements, extend

the causality assignments to all remaining power bonds in the model.

If execution of step 5 from the above list cannot be completed, then the BG model
contains some specific mathematical properties—algebraic loop or differential/derivative
causality (see chapter 11). The application 20-sim automatically assigns the causality
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strokes with prioritizing integral causalities, and if present, identifies the derivative or
algebraic loops causalities in the model with red-colour strokes. In further sections, we
will explore these features, with some examples.

4.3 Example: BG Model for a One-DOF
Mass-Spring-Damper Mechanical System

A mechanical system consists of mass [kg], spring [N/m], and damper [N.s/m]. The
applied force on mass is . Build a BG model for this system as shown in Figure 4‑1,
neglecting friction of the rollers.

Figure 4-1 A mass-spring-damper mechanical
system

Solution:

DOF = 1 (1D translational motion of one mass) and the required BG elements are:
(representing the mass), (representing the spring), (representing the damper),
(representing force ) and (representing the wall velocity). Also, we are required to
have junctions “1” and “0.”

1. Distinct velocity nodes are the mass and the wall (although the wall usually is
stationary). Hence, we need two “1” junctions to represent common velocity for all
elements attached to the mass and the wall.

We draw them as

90 | Building Bond Graph Models: General Procedure and Application



As well, for each junction, it is useful to assign a name related to its representation.

2. We draw all elements connecting to the junctions which have the same distinct
velocity values and connect them with power bonds. Therefore, for the wall-velocity
junction, we use flow source and for mass-velocity junction and inertial element ,
representing the mass and a representing the applied force Note that
-element should receive power (passive element), and sources send power to the
system (active elements).

3. The spring and damper experience the same value of relative velocity, | |,
which is represented by 0-junctions. Recall that 0-junction element is a flow
summator. According to the power bonds connecting the spring (or damper) to the
0-junction, we can have ( ) or ( ), considering the -coordinate as
given in Figure 4‑1. Therefore, to specify the associated power bond directions we
should define a sign convention. The common practice is to consider the spring (or
damper) from the BG model and define either tension force as being positive (+T) or
the compression force being positive (+C). For this example, we use the spring
displacement/velocity to demonstrate the sign convention. A similar argument
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applies for the damper’s displacement.

To represent the relative velocity, we add two 0-junctions and – and – elements
to the model and use, e.g., (+T) sign convention, as shown below:

Note that – and – elements are passive and should receive power from the
system. After labelling the bonds connecting to the 0-junction associated with the

– element, we can write the power balance as . But .
Hence, , or where is the spring displacement rate or
velocity equal to the relative velocity. Now, to have the displacement of the spring
in the + direction, we should have or . This implies that the
displacement/velocity of the mass should be larger than that of the wall, for the
spring is experiencing a positive tension force. Therefore, the spring is under
tension and the assigned sign convention (+T) is satisfied, considering the +
direction.
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Now, if we change the power direction of the bonds connecting to the 0-junction,
as shown in the sketch below, we have , or ; hence, we have
the spring under compression. Therefore, the (+C) sign convention is satisfied. Note
that only the power direction of the four bonds associated with the two 0-juctions
can change their directions since the rest are associated with source or passive
elements and are unique in their directions, as shown below.

Both sign conventions are legitimate, but only one should be selected and used
consistently for building a BG model. We continue, using the BG model with (+T)
sign convention.

4. Causality assignments are now applied, according to the rules discussed in chapter
3. Following the guidelines given in section 4.2.2, we start applying the causality to
the source elements, followed by those for – and – elements. Recall that integral
causalities are preferred for elements (i.e., receives effort) and (i.e., C sends
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effort). The causality strokes are shown with transvers lines, as shown below.

5. Extend the causality assignments to the remaining bonds, using the rules for
1-junction (can receive only one flow signal through its strong bond) and 0-junction
(can receive only one effort signal through its strong bond), as shown below in the
model sketch (see Figure 4‑2).
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Figure 4‑2 Bond graph model for a one-DOF mass-spring-damper system

6. To a reasonable extent, we can simplify the BG model such that it clearly resembles
the physical system. The two 0-junctions represent the same value of relative
velocity, . Therefore, we can combine them into a single 0-junction and share
the relative velocity value through a 1-junction element with the – and –
elements. This simplification becomes very useful for building large BG models for
more complex systems. Figure 4‑3 shows the resulting BG model. Note that the
causality strokes should be adjusted after simplifications are made.
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Figure 4‑3 Simplified bond graph model for a one-DOF mass-spring-damper system

4.4 Example: BG Model for a Two-DOF
Mass-Spring-Damper Mechanical System

Build the BG model for the mechanical system as shown in Figure 4-4. Consider the (+C)
to be the sign convention for internal forces.

Figure 4-4 A two-DOF mass-spring-damper mechanical system

Solution:
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This system has two DOF and four distinct velocity points, corresponding to mass and
and the two walls. Therefore, we lay out four 1-junctions to represent them in the

model. The remaining required BG elements are , , , , , and 1- and 0- junctions.

We follow the same guidelines demonstrated in the previous example (see section 4.3)
and build the BG model as shown in Figure 4-5.

Figure 4-5 BG model for a two-DOF
mass-spring-damper mechanical system

The reader is encouraged to build this BG model and to compare the results with those
provided in Figure 4-5. The 20-sim BG model and a screen recording are available as
companion resources describing the process to build the equation model and typical
results for this example.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=62

4.5 Example: BG Model for a Three-DOF
Mass-Spring-Damper Mechanical System

Build the BG model for the mechanical system as shown in Figure 4-6. Consider the (+C)
to be the sign convention for internal forces.

Figure 4-6 A three-DOF mass-spring-damper mechanical system

Solution:

This system has three DOF and five distinct velocity points corresponding to mass , ,
and and the two walls. Therefore, we lay out five 1-junctions to represent them in the
model. The remaining required BG elements are , , , , , and 1- and 0-junctions.
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We follow the same guidelines demonstrated in the previous example (see section 4.3)
and build the BG model, as shown in Figure 4-7.

Figure 4-7 BG model for a three-DOF mass-spring-damper mechanical system

The reader is encouraged to build this BG model and compare the results with those
provided in Figure 4-7. The 20-sim BG model and a screen recording are available as
companion resources describing the process to build the equation model and typical
results for this example.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=62
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4.6 Example: Kinetics and Kinematics of a Mechanical
System Using BG M

As mentioned previously (see section 3.2), one of the advantages of BG modelling method
is that a BG model allows us to gain insights by visual inspection of the BG model. This
can be achieved by drawing the streams of efforts (kinetics) and flows (kinematics) for a
BG model.

In this example, we use the results from the example given in section 4.3 to demonstrate
this property by explicitly drawing the effort and flow associated with each power bond
in the model. First, we look at the kinetics of the system by drawing the efforts, as shown
in Figure 4-8. As shown, the efforts/forces associated with the spring and dumper
are collected as force and transferred to the mass in addition to the applied force
shown as . Clearly, the wall receives the collected force .

Figure 4-8 Kinetics of a one-DOF mechanical system showing the stream of efforts with its BG model
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Similarly, by drawing the flows, as shown in Figure 4-9 the kinematics of the system can
be visualized. As shown, the flows/velocities associated with the mass and wall are
collected as velocity and transferred to the spring and damper. Clearly, these elements
receive the relative velocity due to the motion of mass and the wall (if
stationary, ).

Figure 4-9 Kinematics of a one-DOF mechanical system showing the stream of flows with its BG model

4.7 Modelling and Simulation Approaches in
Engineering: Modern vs. Traditional

Considering BG—our focus in this textbook—as the modelling method, once we have the
corresponding BG model, we can proceed to simulation, and hence, design of a system.
One can take two approaches to perform this task: traditional or modern. As mentioned,
the main objective of modelling and simulation is to help with more effective design of
the systems in terms of their cost, function, material consumption, etc. Therefore, any
modelling method, including bond graph, should result in a mathematical model
consisting of the systems’ equations. The solution of the equations can be used for
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system simulation and analysis to support effective system design. In the following
sections, we briefly describe possible approaches and the reason for choosing the
modern approach over the more traditional one.

4.7.1 Traditional Approach

Once the BG model is available for a system, we can derive/extract the system equations
from the BG model—usually a laborious task—and then using numerical methods, we can
obtain their solutions. This task is usually achieved with the help of computer programs
(usually developed from scratch) based on a selected numerical method. This approach,
along with both its system equation extraction and especially the computer coding, is
limited in practical application, being specific from one problem to another one, and is
laboriously time consuming. Figure 4-10 shows the major steps of the traditional
approach.

Figure 4-10 Traditional approach for system simulation and design

In practice, it is inefficient to develop computer codes for each specific design: the
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amount of person power, computer power, and other resources become overwhelming
for the fast-paced engineering design needs of today’s industries. Therefore, a huge
effort has been made to develop commercially available software tools to help meet these
objectives and to make the whole process of system design more effective, economically
viable, and efficient.

4.7.2 Modern Approach

Alternatively—or rather, preferably—the modern approach in engineering and system
design employs related software tools. These tools provide opportunities to perform
systems simulation immediately after obtaining the BG model. The software tool that we
introduce and use in this textbook, 20-sim, helps with extracting the system equations
from the BG model seamlessly and provides facilities for system simulation and
parametric analysis. This modern approach is more effective in engineering practice and
provides more and quicker insights into engineering systems design. In addition, the
modern approach helps to respond more effectively to the fast-paced engineering
demands in industry and is recommended for engineers in practice. Figure 4-11 shows
the major steps of the modern approach. Note that verification and validation should be
considered in the modelling step as well.

Figure 4‑11 Modern approach for system simulation and design

In the next section, we introduce the 20-sim software package with a focus on bond
graph modelling, simulation, and time and frequency analysis for engineering systems
and design. In further sections, we use 20-sim to build BG models and their simulations
and to study their dynamical behaviour.
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Exercise Problems for Chapter 4

Exercises

1. Build the BG model, including causality assignment, for the example given in section 4.4 considering (+T)
as the sign convention for internal forces.

a. Draw a kinetic map of the system, using the stream of efforts.
b. Draw a kinematic map of the system, using the stream of flows.

2. Build the BG model, including causality assignment, for the example given in section 4.5 considering (+T)
as the sign convention for internal forces.

a. Draw a kinetic map of the system, using the stream of efforts.
b. Draw a kinematic map of the system, using the stream of flows.

3. Discuss the benefits of modern vs. traditional approaches for simulation and design of systems, from a
practical point of view. Include speed of calculations, and economical aspects of the two methods in your
discussion.
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5. Introduction to 20-sim Software Tool

5.1 Overview

In this chapter, we introduce the engineering software tool 20-sim, focusing on its BG
modelling and simulation facilities. Originally developed in the Netherlands at the
University of Twente and released in 1995, 20-sim was the first commercially released
software package for bond graph modelling. 20-sim was further developed and currently
is available through Controllab Products [3].

An advanced modelling and simulation software tool, 20-sim uses Microsoft Windows™
operating system. 20-sim enables users to model the behaviour of systems, such as
mechanical, electrical, hydraulic, thermal, or a combination of these systems (i.e., multi-
domain systems). Below is a list of 20-sim’s modelling and simulation tools. The first four
items in the list are the main tools:

• bond graph
• block diagrams
• iconic diagrams
• equation models
• 3D animation
• 3D mechanics
• code generation
• controller design
• frequency and time domain
• multi-domain systems
• virtual reality: Unity Toolbox

20-sim allows users create models graphically, similar to drawing an engineering sketch.
With these models you can simulate and analyze the behaviour of single-domain and
multi-domain dynamic systems and create control systems. One can even generate C-
code and run this code on hardware for rapid prototyping and hardware-in-the-loop
(HIL) simulation.
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20-sim has two main window interfaces: Editor and Simulator, shown in Figure 5‑1 and
Figure 5‑2, respectively. To open the Simulator window from the keyboard, select Ctrl +
R. To open the Simulator window from the Editor window, choose Tools > Simulator.

Figure 5-1 20-sim Editor interface

Figure 5-2 20-sim Simulator interface
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As described in the manual Getting started with 20-sim 4.8, the Editor consists of four
parts:

• Model tab/Library tab: This is the part at the middle left. The Model tab shows the
model hierarchy, i.e., the hierarchical composition (all the elements) of the model
that is created in the Editor. The Library tab shows the 20-sim library.

• Graphical Editor/Equation Editor: This is the big white space, with or without grids,
at the middle right. The Editor is used to create graphical models and enter
equations.

• Output tab/Process tab/Find tab: This is the part at the bottom right. The Output
tab shows the files that are opened and stored. The Process tab shows the compiler
messages. The Find tab shows the search results.

• Interface tab/Icon tab: This is the part at the bottom left. The Interface tab shows
the interface of a selected model. Double-click to open the Interface Editor.

• The Icon tab shows the icon of a selected model. Double-click to open the Icon
Editor.

Here is a video guiding the reader through the features of 20-sim:

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=64

More information about using 20-sim is available at 20-sim webhelp and at 20-sim Help
Manuals.
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Figure 5‑3 shows the main steps for system design. In further sections, we will follow
these steps with several worked-out examples to demonstrate the application of this
process.

Figure 5-3 Process steps for design of a system using modelling, simulation, and analysis

5.2 Example: BG Model for a Car Seat Mechanical
System

To demonstrate 20-sim application, using the data provided in Table 5‑1, we build a BG
model of a car seat. The car seat system schematic is shown in Figure 5‑4.
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Figure 5-4 Sketch for a mechanical system for a car seat

Table 5‑1 Data for car-seat example and BG model

Component/element Value Unit

Mass, 27 kg

Mass, 80 kg

Spring, 1800 N/m

Spring, 19 x 104 N/m

Damper, 400 N.s/m

Damper, 900 N.s/m

Car floor speed, signal step-function
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Solution:

Here are two videos showing how to build and run the model for this example in 20-sim:

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=64

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=64

Launch 20-sim and follow the solution steps provided in the videos. Figure 5‑5 shows the
resulting BG model.
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Figure 5-5 Bond graph model for a car seat

5.3 Example: BG Model for a Cart Carrying a Load

To demonstrate 20-sim, we build a BG model of a cart carrying a load.

Table 5‑2 shows the data for the system components. Figure 5‑6 shows the cart system
schematic.

Table 5‑2 Data for example of cart with load and BG model

Component/element Value Unit

Mass, 40 kg

Mass, 20 kg

Spring, 2000 N/m

Spring, 1500 N/m

Damper, 400 N.s/m

Damper, 900 N.s/m

Force, signal sinusoidal
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Figure 5‑6 Sketch for a cart system carrying a load

Solution:

The process for building a BG model and related simulation for this example is given
through a screen recording that guides the readers through the whole process. Launch
20-sim, and to build and run the 20-sim model for this example, follow the solution
steps provided in the following video:

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=64

Figure 5‑7 shows the resulting BG model.
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Figure 5‑7 Bond graph model for a cart carrying a load
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Exercise Problems for Chapter 5

Exercises

1. Familiarize yourself with the 20-sim tools and features, using the screen recording in section 5.1.
2. Build the BG model using 20-sim for the example given in section 5.2 considering:.

a. (+T) as the sign convention for internal forces
b. (+C) as the sign convention for internal forces

Run the model for simulation and create and report typical graphs.

3. Build the BG model using 20-sim for the example given in section 5.3 considering:

a. (+T) as the sign convention for internal forces
b. (+C) as the sign convention for internal forces

Run the model for simulation and create and report typical graphs.
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6. Bond Graph Models for Complex
Mechanical Systems

6.1 Overview

In the previous chapters, we established concepts such as the basic elements of bond
graph method and the algorithm for building BG models. We now continue with more
worked-out examples for selected complex mechanical systems. These systems may have
many components, involve many degrees of freedom, and exhibit translational and
rotational motions in one-dimensional (1D) or two-dimensional (2D) space. So far, we
have used translational mechanical systems and demonstrated how to build their related
BG models (see chapters 4 and 5). In this chapter, we expand the discussion to rotational
mechanical systems with rotational and/or 2D/plane rigid-body motions, including their
related BG model examples. First, we establish the theories and related equations and
then use those for building the BG models.

6.2 Mechanical Systems—Rotational

A mechanical system may consist of rotational components, e.g., shafts, discs, gears,
pulleys, and levers. The generalized BG elements and relations apply to the motion of
rotational components in a similar way that the translational motion was treated; i.e.,
they are analogous (see Table 3‑1). In other words, rotation angle is equivalent to the
generalized displacement , angular velocity to the flow , and torque to the
effort . The polar moment of inertia is represented by -element, the shaft by
-element, and bearing by -element. The generalized momentum is the integral of
with respect to time. Therefore, we can write
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where is the rotational momentum or so-called angular momentum. Using the
constitutive relations, for an -element we have or , for a -element we
have or, where represents the torsional compliance or inverse of
torsional stiffness , . Similarly, for an -element we have or
where is the friction of the torsional bearing. The energy associated with storage
elements can be written using Equations (3.7) and (3.8), or for elements and , as

and , respectively. One advantage of bond graph method is its analogous

applicability to different domains using the common constitutive relations, as described
above for rotational motion.

Table 6‑1 shows typical rotational components.
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Table 6-1 Typical rotational mechanical com

-element
(bearings)

-element
(shaft)

-elemen
(disc

6.3 Mechanical Systems—Two-Dimensional Rigid
Plane Motion

The components of mechanical systems that we considered so far are assumed as point
masses. In other words, they are point elements but can have motions either in
translation and/or rotation. However, two-dimensional components such as rigid plates,
car chassis, and thin rods can have relative 2D motion and cannot be treated as point
elements.

In general, a 3D solid component/body has six degrees of freedom; i.e., its centre of mass
can move in three translational directions and through three associated rotational
angles. In many mechanical systems, however, we can assume components as two-
dimensional planes with negligible deformations, or as 2D rigid bodies having three
degrees of freedom: two in-plane translations and one rotation about the perpendicular
axis to the plane of motion.
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Building a BG model requires transforming the velocities and angular velocities
associated with the rigid plane and making them available to the contact points with
other components of the system. For example, a car’s chassis moving forward on a wavy
road may experience rotations like pitch and roll (i.e., rotations about the axes parallel to
the ground) in addition to translational motion. Considering the chassis as a 2D rigid
body, we need to know how the linear and angular velocities are transmitted to the
suspensions connecting to it.

We present here an analysis of 2D rigid-body motion, with focus on applications to BG
modelling. For further readings on this topic, consult with available references [13], [18],
[20], [23].

The general motion of a 2D rigid body can be decomposed into translation of the whole
body and a rotation about a fixed point of the body. This is the result of the principle of
superposition and can be shown using the geometry of the motion. As Figure 6‑1 shows,
we assume a rigid body going through a planar motion with reference to a fixed
coordinate system . We identify a line/vector on the body connecting two arbitrarily
selected points A and B, with point B taken as a reference, usually the centre of mass. We
then capture a picture of the body at a later time, during its motion, and find out the
line BA in its new orientation and position, as shown in the sketch on the right in Figure
6‑1. Since the body does not deform, the length of the line BA (or the magnitude of vector

) remains constant. Using this property, we can draw a circle with
its centre at the new position of point B and radius of BA. Then, we draw the radial line
BA’ parallel to the line BA at its initial position. To orient BA’ according to the new
position of BA, we then rotate BA’ about point B through angle , where is
the magnitude of the angular velocity vector of the rigid body, perpendicular to the plane
of motion. Consequently, we can claim that original point A is translated (not rotated) by
the velocity of point B, from its initial position to a new position A’ and subsequently
rotated about point B by angle to orient in its final new position of point A. The initial
position of point A is arbitrarily selected; therefore, the argument equally applies to all
points of the rigid body.
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Figure 6-1 Decomposition of 2D rigid-body motion into translation and rotation

The general planar motion of a 2D rigid body can be decomposed into the translation of an arbitrary point
on the body followed by a rotation about the point.

Mathematically, we can write . The relative velocity is the
tangential velocity due to rotation and can be written as . Therefore,

. Therefore, we can write the velocity
components of point A resulted from rigid-body motion as

(6.1)

But and where, is the angle between vector and positive
direction of -axis. After substituting, we get

(6.2)

We can use Equations (6.2) for large rotations. However, for small rotations (i.e., ),
we can linearize these relations by substituting for and , or
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(6.3)

For example, for a car chassis, the front and rear ends are moving with the same speed as
that of the centre of mass, and their velocities in the vertical direction are the algebraic
sum of the vertical speed and that of due to the pitch rotation (i.e., rotation about the
axis parallel to the ground and perpendicular to the direction of the motion). See the
example in section 6.7.

In the following sections, we present examples of several mechanical systems along with
their BG models.

6.4 Example: Gear-Shaft Mechanical
System—Rotational

The sketch in Figure 6‑2 shows a system composed of four gears, three shafts, six
bearings, and two discs.

a. Build the BG model for this system, including bearings. Use 20-sim.
b. Identify derivative causalities and the related elements. Discuss the reasoning and

how to remove the derivative causalities.
c. Remove all bearings from the model and perform some analysis using the data

provided.

For gears, use velocity ratio, equal to the inverse ratio of the number of teeth, or
gears’ diameters, given by . Angular velocity of gears is represented

by the symbol . System data is given in Table 6‑2.
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Figure 6-2 Gear and shaft mechanical system

Table 6‑2 Data for the gear-shaft mechanical system

Shaft torsional stiffness
(MN.m/rad)

Gear/disc rotational inertia
(kg.m2) Gear number of teeth

K1=2500
J1=40 N/A

J2=15 120

K2=1000
J3=80 400

J4=20 200

K3=700
J5=25 150

J6=35 N/A

Solution:

This system has six distinct angular velocities related to gears and discs. The torsional
shafts are potential energy storages, and the torsional inertia are kinetic energy storages.
The BG elements required are , , , , , and 1- and 0-junctions.
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The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

The resulted BG models are shown in Figure 6‑3 and Figure 6‑4.
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Figure 6-3 BG model for a gear shaft system, built in 20-sim
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Figure 6-4 BG model for a gear shaft system, derivative causalities removed

6.5 Example: Double Rack-and-Pinion Mechanical
System—Rotational

Figure 6‑5 shows a double rack-and-pinion mechanical system. Build a BG model for this
system using 20-sim. A torque is applied on the disc connected to the two shafts.
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Figure 6-5 A double rack-and-pinion
mechanical system

The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

Figure 6‑6 shows the BG model for this system.
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Figure 6-6 BG model for the double rack-and-pinion system

6.6 Example: Mass-Spring-Damper System on an
Inclined Plane—Translational

Figure 6‑7 show a mass-spring-damper system on an inclined plane. Build a BG model for
this system using 20-sim. Build a BG model for this system using 20-sim.
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Figure 6-7 A mass-spring-damper system on an inclined plane

The following video shows how to build and run the model for this example in 20-sim.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

Figure 6‑8 shows the BG model for this system.

Figure 6-8 BG model for the mass-spring-damper system on an inclined plane
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6.7 Example: 2D Rigid-Body Motion—Half-Car Model

In this example, we demonstrate how to build a BG model for a half-car model as shown
in Figure 6‑9. The chassis of the car is modelled as a rigid body with two degrees of
freedom. The vertical displacement of the centre of mass is the heave, and its angular
velocity is the pitch. In the BG model, transformer elements are used to transfer the
front and rear velocities to the corresponding connecting points between the
suspensions and the chassis. The suspension are modelled as spring-dampers and the
tires as mass-spring subsystems.
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Figure 6-9 Half-car mechanical system sketch

Below are two videos (parts 1 and 2) showing how to build and run the model for this
example in 20-sim, including the implementation of the BG transformer element and the
setup of the equation model.
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Watch the videos and practise building the model on your own, with modified
parameters and input signals.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

Figure 6‑10 shows the corresponding BG model. The compression force is considered to
be positive.

Bond Graph Models for Complex Mechanical Systems | 133



Figure 6-10 BG model for a half-car mechanical system

6.8 Example: Mass-Spring-Damper System Connected
to a Massless Lever

In this example, we demonstrate how to build a BG model for the mechanical system
shown in Figure 6‑11. The lever is represented with a -element.
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Figure 6-11 A mass-spring-damper mechanical system attached to a lever

Below are two videos (parts 1 and 2) showing how to build and run the model for this
example in 20-sim, including the implementation of the BG transformer element and the
setup of the equation model.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

6.9 Example: Mass-Spring-Damper System Connected
to a Lever

For this example we discuss and demonstrate how to build a BG model for the
mechanical system as shown in Figure 6‑12. The lever is represented with a -element.
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Figure 6-12 A mass-spring-damper mechanical system attached to a beam

Below are two videos (parts 1 and 2) showing how to build and run the model for this
example in 20-sim, including the implementation of the BG transformer element and the
setup of the equation model.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

6.10 Example: Inclined Lever and Mass-Spring-Damper
System

In this example, we demonstrate how to build a BG model for a mechanical system
consisting of two moving masses attached to a rod, as shown in Figure 6‑13. The rod can
rotate as a lever and is represented with a -element.

Figure 6-13 Two moving mass-spring system attached to a lever
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The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

6.11 Example: A Pulley-Mass-Spring System

In this example, we demonstrate how to build a BG model for a mechanical system
consisting of two pulleys and three masses, as shown in Figure 6‑14.
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Figure 6-14 A two-pulley mechanical system

The video below shows how to build and run the model for this example in 20-sim.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=66

Exercise Problems For Chapter 6

Exercises

1. Repeat the BG model using 20-sim for the half-car system given in section 6.7, considering:

a. ground velocity signal as a pulse signal with start time at 1.5 sec., stop time at 3 sec., and amplitude
of 10 cm

b. ground velocity signal as a step signal with start time at 1.5 sec. and amplitude of 10 cm
c. ground velocity signal as an impulse signal with minimum width of 1E-7 and start time of 1 sec.
d. ground velocity signal as a pulse wave signal with interval of 1 sec., pulse length of 0.1 sec., and

amplitude of 5 cm

2. Using 20-sim, build a BG model for the mechanical system shown in the sketch below. Use the data to
graph the displacement of the mass , , and spring . Consider the floor velocity input as a pulse
signal with start time of 3 sec., stop time of 4.5 sec., and amplitude of 10 cm. Compression forces are
considered to be positive (+C). Gravity direction and positive displacements are shown in the sketch. For
all inputs, graph the displacements of the tires and the heave and pitch of the car chassis.

Masses (kg) —

Springs (N/m)

Dampers (N.s/m)
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7. Bond Graph Models for Electrical
Systems

7.1 Overview

An electrical system may consist of components such as resistors, inductors, capacitors,
transformers, and batteries/source. The generalized BG elements and relations apply to
the analysis of dynamics of electrical systems and components in a similar way that the
mechanical components were treated; i.e., they are analogous (see Table 3-1). In other
words, electric charge is equivalent to the generalized displacement , electrical
current to to the flow , and voltage to the effort . The inductor (with

inductance ) is analogous to point mass and is represented by -element; the capacitor
(with capacitance ) is analogous to a mechanical spring and is represented by
-element; and resistor (with resistance ) is analogous to mechanical damper and is
represented by -element. The generalized momentum or flux linkage is the integral
of with respect to time. Therefore, we can write

Using the constitutive relations, for an -element we have or , and for a

C-element we have or . Similarly, for an R-element we have or
. The energy associated with storage elements can be written using Equations (3.7)

and (3.8), or for elements I and C, as and , respectively. An

advantage of the bond graph method is its analogous applicability to different domains
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using the common constitutive relations, as described above for electrical systems.
The analogy between mechanical and electrical systems can be summarized as follows:

• For a system with series-connected components, we have equal effort for
mechanical and equal flow for electrical systems. For example, when a spring and a
damper are connected in series, they experience the same force, and when a
capacitor and a resistor are connected in series, they experience the same current.

• For a system with parallel-connected components, we have equal flow for
mechanical and equal effort for electrical systems. For example, when a spring and a
damper are connected in parallel, they experience the same velocity (or rate of
displacement), and when a capacitor and a resistor are connected in parallel, they
experience the same voltage.

In other words, the relations of efforts and flows are swapped according to the type of
the physical system between mechanical and electrical systems.

Table 7-1 shows typical components for resistor/ , capacitor/ , Inductor/ ,
Transformer/ , Electric motor/ .
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Table 7‑1 Typical electrical components and their corr

-Element
(resistor)

-Element
(capacitor)

-Element
(inductor)

-Element
(transformer)

7.2 Example: Sign Convention for Electrical Systems

Like mechanical systems, for which we defined +C and +T sign convention for internal
forces, we require to define a sign convention for electrical systems. It is customary to
use the passive sign convention (PSC) for defining the direction of electrical current (

) passing through the elements of an electrical circuit. The background for the

PSC is to have power being positive when absorbed by passive elements, e.g., -, -, and
-elements in BG method. Therefore, for a typical passive element, by definition, the

electrical current is considered as being positive when input into the element from its
higher-voltage node (i.e., positive voltage/ ) and output from the relatively lower-
voltage node (i.e., negative voltage/ ). Otherwise, the current is negative. See Figure
7‑1.

Bond Graph Models for Electrical Systems | 145



Figure 7-1 Sign convention for electrical current through passive elements, passive sign convention

Using the PSC, we have power defined positive for positive current and negative for
negative current, or when and ; hence, power is absorbed by the
element. Otherwise, power is generated, when when and . Figure
7‑2 shows the electrical power sign convention for passive elements ( , , ) and active
elements (voltage and current sources).

Figure 7‑2 Electrical power sign for several elements according to passive
sign convention

In the next section, we use the PSC for defining the current and voltage signs and discuss
the step-by-step procedure for building BG models for electrical systems.
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Gustav Robert Kirchhoff
(1824–1887)

7.3 Guidelines for Drawing BG for Electrical Systems

As mentioned in chapter 4, the general guidelines for
drawing BG model can be applied to electrical systems
along with causality assignment rules. For electrical
systems, we follow these guidelines, along with Kirchhoff’s
circuit laws [24] and the PSC for building their BG models,
as described in the following steps:

1. Assign voltage polarity ( ) for each element in
the electrical circuit.

2. Assign current direction based on PSC for each
element (see Figure 7‑1 and Figure 7‑2).

3. Assign 0-junction for each distinct voltage node in the
circuit, according to Kirchhoff’s voltage law (KVL)—the
algebraic sum of all voltage drops around a closed
circuit is equal to zero.

4. Assign 1-junction for each element in the circuit, according to Kirchhoff’s current law
(KCL)—the algebraic sum of all electrical currents entering and leaving a node is
equal to zero). This is for taking care of relative voltage or drops related to each
element located between two 0-junctions, since 1-junction is an effort summator.

5. Select a node in the circuit as a reference, i.e., the grounding, with zero voltage.
6. Assign -element for capacitors, -element for resistors, -element for inductors,

for voltage, and for current sources.
7. Assign -element for electrical transformers and -element for electric motors.
8. Connect the elements with power bonds, assign causalities, and simplify by

neglecting the bonds and the 0-junction which are connected to the ground source.

The above steps are based on KVL, and the process starts with assigning 0-junctions for
each distinct voltage node. It is also possible to start with KCL and assign 1-junctions for
the current in each closed-circuit loop and use 0-junctions in between for distribution of
the current to corresponding circuit loops. The latter will result in a more simplified BG
model and is recommended for complex circuits that involve several electric loops. In
practice, we sometimes use a combination of these two approaches for building BG
model for electrical systems.
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In the following sections, we demonstrate the application of the procedure discussed
above, with some worked-out examples.

7.4 Example: An RCL Circuit—in Series

Figure 7‑3 shows an RCL circuit consisting of a resistor, a capacitor, and an inductor
connected in series. To build the BG model, we apply the PSC and use the procedure
listed in section 7.3. The four nodes identified by solid circles have distinct voltages.
Therefore, four 0-junctions are assigned at the four corners of the circuit. For voltage
drop across each element, we assign 1-juction and connect it to the corresponding
element with a power bond. Note that the current direction in the circuit is consistent
with the PSC convention. The resulting BG model is shown in Figure 7‑4 after being
simplified with deleted ground-connecting bonds shown in the dashed circle.
Alternatively, we can simplify the BG model and use a 1-juction for the current in the
circuit loop according to KCL. In other words, the electrical current flowing through all
elements should be identical. The resulting simplified BG model is shown in Figure 7‑5.

It is useful to discuss the analogy between the RCL circuit and mechanical mass-spring-
damper systems (see Figure 4‑1) and their identical BG model. Assuming a ground
connection for the circuit is analogous to a wall with zero velocity for the mass-spring-
damper system, the current through the inductor is analogous to the velocity of the
mass. The same current flows through the resistor and the capacitors, analogous to the
velocity of the spring and damper components. Therefore, the simplified BG model (see
Figure 7‑5) is identical for both electrical and mechanical systems. In other words, the BG
model is identical to the one for a mass-spring-damper connected in parallel.

Figure 7-3 Sketch for a RCL electrical circuit in
series
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Figure 7‑4 BG model for a RCL electrical circuit in series
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Figure 7‑5 Simplified BG model for an RCL electrical circuit in series

7.5 Example: An RCL Circuit—in Parallel

Figure 7‑6 shows an RCL circuit consisting of two inductors, a resistor, and a capacitor
connected in parallel. We use the KCL approach to build the BG model for this example.
Because the voltages across all components are identical, we can, using power bonds,
apply a 0-junction (i.e., voltage equalizer) and connect the , , and components to it.
This can be obtained by simplifying the BG model shown in Figure 7‑7.
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Figure 7‑6 Sketch for a RCL electrical circuit in parallel

The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=68
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Figure 7‑7 BG model for a RCL electrical circuit in parallel

7.6 Example: An Electrical Circuit—Two Loops

Figure 7‑8 shows an RCL two-loop circuit consisting of resistors, inductors, and a
capacitor connected in parallel. We use the KCL approach to build the BG model for this
example.
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Figure 7‑8 A two-loop RCL electrical circuit

The following video shows how to build and run the model for this example in 20-sim.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=68

The simplified BG model with a supplied voltage signal as a square wave is shown in
Figure 7‑9.

Figure 7‑9 BG model for the two-loop RCL electrical circuit

7.7 An Electrical Circuit—Three Loops

Figure 7‑10 shows an RCL three-loop circuit consisting of resistors, inductors, and a
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capacitor connected in parallel. We use the KCL approach to build the BG model for this
example.

Figure 7‑10 A three-loop electrical circuit

The following video shows how to build and run the model for this example in 20-sim.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=68

The simplified BG model with a supplied voltage signal as a block wave is shown in Figure
7‑11.

Figure 7‑11 BG model for the three-loop RCL electrical circuit
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Georg Simon Ohm (1789–1854)

7.8 An Electrical Circuit—Wheatstone Bridge

Figure 7‑12 shows a Wheatstone circuit consisting of
resistors. This circuit is usually used to measure an
unknown resistor, e.g., placed in the system as , by
adjusting the variable such that the current through

is null, i.e., the balanced point. Using Kirchhoff’s and
Ohm’s laws [25], we can calculate the currents going
through the branch as and branch as

Therefore, the voltages at nodes and , with

reference to the ground, are and

, respectively. For having null voltage

across , we let or after some manipulations,
we get . As shown, the balanced point is

independent of the voltage supplied. We use the KCL
approach to build the BG model for this example.

Figure 7‑12 A Wheatstone bridge electrical
circuit

The following video shows how to build and run the model for this example in 20-sim.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=68

The simplified BG model with a supplied voltage is shown in Figure 7‑13.

Figure 7‑13 BG model for the Wheatstone bridge circuit
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7.9 An Electrical Circuit—Multi-loop

Figure 7‑14 shows an RCL multi-loop circuit consisting of resistors, inductors, and
capacitors connected in series and parallel. We use the KCL/KVL approach to build the
BG model for this example.

Figure 7‑14 A multi-loop electrical circuit

The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=68
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The simplified BG model with a supplied voltage is shown in Figure 7‑15.

Figure 7‑15 BG model for the multi-loop electrical circuit

7.10 An Electrical Circuit—Multi-loop with
Transformer

Figure 7‑16 shows an RCL multi-loop circuit consisting of resistors, inductors, capacitors,
and a transformer connected in series and parallel. We use the KCL/KVL approach to
build the BG model for this example.
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Figure 7‑16 A multi-loop electrical circuit with transformer

The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=68

The simplified BG model with a supplied voltage is shown in Figure 7‑17.
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Figure 7‑17 BG model for the multi-loop electric circuit with transformer

Exercise Problems for Chapter 7

Exercises

1. Build the BG model for the electrical system as shown in the sketch. Run the model and report the
following quantities:

a. charge accumulated on capacitors
b. current across resistors
c. voltage drop across resistor
d. momentum (flux linkage) for the inductor.

Use following data: , , , , ,
, , and transformer parameter 2:1.
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2. Build a BG model for the electrical circuit shown. Use , , for simulation.
Report voltages across each element for a direct source voltage of . Also, run the model for a range of
capacitance , , using Parameter Sweep and report the across the inductance for
these values. Draw the sketch.

3. For the electrical system shown in the sketch, build the BG model.
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4. A modified Wheatstone bridge circuit is shown in the sketch. Build a BG model and show that the voltage
across the bridge resistor (R6) is null when the bridge is balanced.
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5. An electrical circuit is shown in the below sketch below. The circuit consists of two capacitors, two
inductors, and one resistor. Build the corresponding BG model.
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6. Modify the example given in section 7.7 by making the components branching from node to be laid out
in parallel. Build the BG model for the modified circuit.

7. For the example given in above section 7-9, use the corresponding BG model and the following data to
simulate the system: , , , , ,

, , , transformer parameter 2:1.
8. Build the BG model for the electrical circuit shown below. After building the model in 20-sim, simplify it

and interpret the simplified model. Perform a parametric sweep analysis for the capacitor and inductor.
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• Gustav Robert Kirchhoff is licensed under a Public Domain license
• Georg Simon Ohm © BerndGehrmann is licensed under a Public Domain license
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8. Bond Graph Models for Hydraulic
Systems

8.1 Overview

The generalized BG elements and relations apply to the modelling of dynamics of
hydraulic systems in a similar way that the mechanical or electrical systems were treated;
i.e.; they are analogous (see Table 3‑1). In this chapter, we define the effort and flow for
hydraulic systems and derive the relations for hydraulic capacitance, inertance, and
resistance corresponding to BG elements , , and , respectively. Note that the
complexity of fluid behaviour in static or dynamic flow conditions require us to pay more
attention to identify these quantities and relations as compared to those for mechanical
and electrical systems.

For modelling hydraulic systems, we are usually interested in having a relationship
between pressure and fluid volume in static conditions and between pressure drop and
fluid volume flow rate in dynamic conditions. For example, we might be interested to
know the pressure drop for a given flow rate in a pipe, or we might want to know the
pressure at a given depth in a storage tank, as sketched in Figure 8‑1.

Figure 8-1 Sketches for pressure drop in a pipe and in a storage tank
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8.2 Definitions of Effort, Flow, and Momentum for
Hydraulic Systems

Recall that power is the quantity of interest in BG method (see section 3.2). Considering a
control volume of an incompressible fluid flowing under pressure , we can write the
power as the product of the force exerting on the fluid, resulted from applied
pressure, and the velocity of the fluid flowing through the volume, or But the
velocity of the fluid can be written as , using the continuity relation, where is
volume flow rate of the fluid and is the cross-sectional area of the control volume.

Therefore, after substitution, we get , or equivalently rate of energy

. Comparing the relation with the BG generalized relation for power, i.e., ,
we can write and . In other words, for hydraulic systems, pressure is
equivalent to BG effort, and fluid volume flow rate is the BG flow. Similarly, we can write
the generalized BG displacement as the volume of the fluid, or .

In BG method, the generalized momentum is the integral of effort. Therefore, we can
write the fluid momentum as the integral of pressure, or . Summarizing
these relations, we have

For hydraulic systems, fluid pressure is equivalent to generalized BG effort, and fluid volume flow rate is the
generalized BG flow.
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8.3 Fluid Compliance: C-element

Fluid compliance or hydraulic capacitance describes potential energy storage with a
fluid, e.g., the height of fluid in a tank. It is equivalent to mechanical spring compliance or
electrical capacitor capacitance. For a -element in BG method, we have . Using
equivalent quantities for hydraulic systems, we can write , or fluid compliance is
volume change per unit of pressure acting on the fluid volume. For an incompressible
fluid with density , the hydrostatic pressure at depth is and the volume of the
fluid is . After substitution, we get , or after rearranging and simplifying, the
hydraulic capacitance for incompressible fluid is

(8.1)

where is the gravitational acceleration. The dimension of fluid compliance can be

worked out as = [ ] = .

Note that the pressure could be replaced by total dynamic pressure for fluid in motion.

If the fluid is compressible, we use the bulk modulus of elasticity for calculating the
change in volume. By definition, is pressure needed to change fluid volume per unit of
volume, or . Therefore, .

(8.2)

For more complex flow and non-uniform, flexible tubes, consult with chapter 4 of Dean,
Karnopp, Margolis, and Rosenberg [20].

Having the hydraulic capacitance, we can write the relation between the flow rate and
the pressure as , useful to calculate the flow rate for given pressure.

Similarly, we can write , useful for calculating pressure for

given flow rates.
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(8.3)

Note the similarity between relations given by Equation (8.3) and those given for
mechanical spring (when pressure is replaced by force and fluid volume flow rate by
velocity) and electrical capacitance (when pressure is replaced by voltage and fluid
volume flow rate by current).

8.4 Fluid Inertia: I-element

Fluid inertia, or hydraulic inertance, describes kinetic energy storage with a fluid or the
inertia, e.g., of a fluid flowing in a pipe. It is equivalent to inertia related to mass in
mechanical or inductance in electrical systems. For an -element in BG method,
describes the relation between generalized momentum and flow. Using equivalent
quantities for hydraulic systems, we can write , or fluid pressure momentum is
the product of fluid inertia by its volume flow rate. To derive the relation for , we
require to have the relationship between the momentum and volume flow rate of the
fluid flow. For derivation, we consider a control volume with length and cross-sectional
area of the fluid with density , as shown in Figure 8-2.
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Figure 8-2 Sketch for a control volume of flowing fluid in a pipe

Assuming a pressure difference between two ends of the control volume acting on

the fluid, we can write Newton’s second law for the fluid motion as .

Rearranging the terms and integrating the pressure, we get the pressure momentum

. But volume is . After substituting, we get the relationship between

pressure momentum and the volume flow rate as

(8.4)

Comparing Equation (8.4) with the generalized momentum equation for -element,
we can write the fluid inertia as

(8.5)

The dimension of fluid inertia can be worked out as .

From Equation (8.5), we can conclude that a fluid has larger inertia when flowing in small
diameter tubes, compared to in larger tubes because is inversely proportional to . This
effect is counterintuitive and is sometimes misinterpreted with the wrong assumption
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that large-size tubes should exhibit larger inertia effects. Note that we consider only
force due to pressure, and not friction due to viscosity, assuming an ideal fluid.

For more complex flow and non-uniform and/or flexible tubes, consult with chapters 4
and 12 of Dean, Karnopp, Margolis, and Rosenberg [20]. For example, if the cross-section
of the pipe and the density of fluid change along its -axis, then we get

(8.6)

Having the hydraulic inertance, we can write the relation between the flow rate and the
pressure as , useful to calculate the flow rate for given

pressure. Similarly, we can write , useful for calculating pressure for

given flow rates.

(8.7)

Note the similarity between relations given by Equation (8.7) and those given for
mechanical systems (when pressure is replaced by force, fluid flow rate by velocity, and
inertance by mass) and electrical systems (when pressure is replaced by voltage, fluid
flow rate by current, and inertance by inductance).
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8.5 Fluid Resistance: R-Element

Fluid, or hydraulic, resistance describes energy dissipation
with a fluid, e.g., friction of a fluid flowing in a pipe. Fluid
resistance is equivalent to dampers in mechanical or
resistors in electrical systems. For an -element in BG
method, we have Using equivalent quantities for
hydraulic systems, we can write

(8.8)

or fluid resistance is equal to pressure change per unit
volume flow rate. This relationship depends on the state of
the flow (e.g., laminar, turbulent) and the fluid properties
(e.g., ideal, viscous,) [26], [27], [28]. Note the similarity
between relations given by Equation (8.8) and those given for mechanical systems (when
pressure is replaced by force and fluid flow rate by velocity) and electrical systems (when
pressure is replaced by voltage and fluid flow rate by current).

To demonstrate the derivation of the relation for , we
consider a laminar flow of a viscous incompressible fluid in a
pipe (so-called Hagen-Poiseuille flow) and write Newton’s
second law for a cylindrical differential control volume of the
fluid with length along the pipe axis and a cross-section
with radius , as shown in Figure 8‑3. This flow is
axisymmetric, and the velocity profile changes along the
radius related to a cylindrical coordinate system
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Figure 8-3 Sketch of velocity profile for a Hager-Poisseville flow in a pipe

For a steady flow (i.e., non-transient), we have . But the forces applied on the
fluid are due to pressures at point and at point and the viscous-
induced shear stress . Hence, where is the radial
dimension in the plane parallel to the pipe cross-section. We need the relation for
fluid friction effect due to viscosity. According to Newton’s law for a viscous fluid, we

have , assuming the shear stress due to the fluid’s viscosity be proportional to

the velocity gradient along the radius with the proportionality constant being the
dynamic viscosity . Note that velocity profile at any cross-section of the pipe is only a
function of radius, or velocity vector is . After substitution, we
have . After simplifying and rearranging the terms, we have

. Integrating the latter relation, noting that velocity is not a function of ,

gives , or . Now, we rearrange the terms and

let , the length of the control volume, and use the pressure difference as a
positive constant quantity in the direction of the fluid flow. Hence,

. Integrating both sides (the left-hand side with respect to and the right-hand

side with respect to ) gives . The constant of integration can be

obtained using the information at the boundary of the pipe assuming the no-slip

condition, or , where D is the pipe diameter. Therefore, .

Hence, after back substitution, we get the velocity profile . This relation
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is the famous parabolic velocity profile for the flow in a pipe and can be written in its
functional form as

(8.9)

Using Equation (8.9), we can calculate the velocity for any given value of , e.g.,

at the centre-line of the pipe or at the interior wall of the pipe.

Now, to find the volume flow rate, we integrate the velocity over the whole cross-
section of the pipe using a differential area element . Or, the volume of the fluid
passing through the whole cross-section of the pipe per unit of time is given by

, or

(8.10)

Comparing Equation (8.10) with Equation (8.8), we can write the fluid resistance as

(8.11)

The fluid resistance can be interpreted as the amount of pressure drop per unit of
volume flow rate of the fluid in the pipe. The dimension of fluid resistance can be worked
out as .

Other BG elements for hydraulic systems are sources of flow (e.g., centrifugal pumps)
and efforts (e.g., reservoirs, tanks, displacement pumps). Pumps provide flow of a fluid at
a certain flow rate according to their types and specifications. Reservoirs or pressure
chambers provide certain pressure to the system as an effort source. The transformers
elements are those like piston-cylinder (plunger), and gyrators are those elements like
reaction turbines or hydraulic motors. Sketches below show some related elements.

Typical hydraulic components are shown in Table 8‑1.
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Table 8-1 Typical hydraulic componen

-element
(valve)

-element
(storage)

-element
(fluid mass)

8.6 Sign Convention for BG Modelling of Hydraulic
Systems

The sign convention for hydraulic systems can be defined by specifying the relative
high/low pressure points in the system and, hence, the positive fluid flow direction
along the pressure drop. The pressure reference is commonly taken to be the
atmospheric pressure (i.e., one atm for absolute and zero for gauge pressures). For BG
modelling, it is recommended to have all pressures in gauge and define a zero-pressure
point for reference atmospheric pressure. If the results are required in absolute pressure
units, then one unit of atmospheric pressure can be added to the obtained values from
the BG model.

8.7 Guidelines for Drawing BG for Hydraulic Systems

As mentioned in chapter 4, the general guidelines for drawing BG models can be applied
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to hydraulic systems, along with causality assignment rules. For hydraulic systems, we
follow the guidelines given for electrical systems (see section 7.3) as described in the
following steps:

1) Assign sign convention for fluid flow directions.

2) Assign 0-junction for each distinct pressure point in the system.

3) Assign 1-junction for each element in the system. This is for taking care of relative
pressure drops related to each element located between two adjacent 0-junctions,
since 1-junction is effort summator.

4) Select a node in the system as a reference, i.e., the atmospheric pressure point,
and assign a 0-junction element to it. If gauge pressures are used, then this
0-junction and all connected power bonds can be eliminated to simplify the model.

5) Assign -element for storage/capacitors, -element for friction, -element for
fluid mass, and for pressure and for flow sources.

6) Assign -element for hydraulic transformers and -element for hydraulic
gyrators.

7) Connect the elements with power bonds and assign causalities. Simplify by
neglecting the bonds and the 0-junction which are connected to the 0-junction
representing the atmospheric pressure.

Similarly, a 1-junction-based approach can be used for distinct flow rates and hence
simplifying the BG model, as we demonstrated in the previous chapter with electrical
systems.

8.8 Example: Hydraulic Reservoir-Valve System

Figure 8‑4 shows a hydraulic system consisting of two tanks, pipes, and valves. Build a BG
model for this system.
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Figure 8-4 Sketch for a two-tank hydraulic system

Solution:

We follow the systematic procedure for building the BG model, listed in section 8.7. For
this system, we can easily identify two pressure points located at the bottom of tanks. We
assign two 0-junctions for each. For flow input, we assign a flow source element, and for
the output, an effort source element to define the atmospheric pressure at that location.
For the tanks, we only consider capacitance, assuming slow fluid motion and neglect
inertia and friction (i.e., no inertance nor resistance). For the pipe sections, we consider
inertance and resistance. As well, we assign 1-junctions for flows in the pipes that
represent the pressure changes for these components. Figure 8-5 shows the resulting BG
model.

Figure 8-5 Bond graph model for a two-tank hydraulic
system
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8.9 Example: Hydraulic Reservoir-Valve System
Simulation

In this example, we use the BG model developed in section 8.8, along with data assigned
to parameters for simulation. Considering water as the fluid ( )
and the data given in Table 8‑2, we can calculate the related , , and of the elements in
the system. The diameter of the pipes is 15 cm, and .

The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=70

Table 8‑2 Data for system components in example 8-9

Component -section area
[ ]

Length
[ ] [ ]

Eq. (8.1)
[ ]
Eq. (8.5)

[ ]
Eq. (8.11)

Storage tanks 2 – – –

Pipe1 0.01767 4 – 226372.4 322

Pipe2 0.01767 2 – 113186.2 161
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8.10 Example: Hydraulic Pump-Reservoir-Valve System

In this example, we use the BG model developed in section 8.8, adding a pump to the
system as shown in Figure 8‑6. In this example we discuss in more detail the BG model of
a pump. For further details related to BG modelling of pumps, consult with references
cited as [21] and [29].

Figure 8-6 A hydraulic system with a pump

The following video shows how to build and run the model for this example in 20-sim.
The resulting BG model is shown in Figure 8‑7.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=70
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Blaise Pascal (1623-1662)

Figure 8-7 Bond graph model for the pump-reservoir-valve hydraulic system

8.11 Example: A Hydraulic Lift System

In this example, we consider a hydraulic lift, as sketched in
Figure 8‑8. We build a BG model for this hydraulic system. The
continuity relation applies to the fluid motion and Pascal’s law
defines the pressure distribution of the fluid in the cylinders.
Two transformer elements are used in the BG model to convert
linear velocities of the pistons to/from volume flow rate and
convert forces to pressures (see Figure 8‑9). The transformers’
parameters are explained in the video clip.
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Figure 8‑8 A hydraulic lift system

The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=70

The BG model is shown in Figure 8‑9, along with the detail of the transformers’ inputs
and outputs.
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Figure 8-9 Bond graph model for hydraulic lift system

Exercise Problems for Chapter 8

Exercises

1. Build the bond graph for a two-way safety valve.
2. Repeat the example in section 8-9 and perform a parametric sweep for some parameters in the

simulation, for example pipe diameters and lengths.
3. Expand the BG model given in section 8.10 with running simulation with some data for the system

parameters, similar to those given in section 8.9. Also, expand the model of the pump using some pump-
chart (H-Q).

4. Use some data and run simulation for the example given in section 8.11, the hydraulic lift.
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9. Bond Graph Models for
Multi-Domain Systems

9.1 Overview

As mentioned in previous sections (see chapter 3), the universality of BG elements for
application to analogous quantities is the main strength of this method for modelling and
simulation of multi-domain systems. In practice, many systems are composed of multi-
energy domains, e.g., an electric motor turning a mechanical shaft, a car engine
generating and transferring power to the torsion shaft, a wind turbine, a robot. The BG
modelling method can serve as a powerful tool for modelling these real-world systems.

In this chapter, we present several examples of multi-domain systems and build their BG
models. We emphasize that the control sub-system is a major part of any engineering
system. In this textbook, however, we focus on BG method and how to build BG models
for systems. The full treatment of the topic of control is left for a possible future volume.
For information about control theory and modelling, consult with references such as
those cited as [20], [21], [30], and [31].

9.2 Example: Car Brake System

For this example we consider a car brake system as shown in Figure 9‑1. The driver
applies a force on the brake pedal, which is transferred to the brake discs through the
hydro-mechanical system. The process of force transfer is modelled with using several
transformer elements ( ).
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Figure 9-1 A car brake hydro-mechanical system

The following video shows how to build and run the model for this example in 20-sim.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=72

The BG model for this system is shown in Figure 9‑2. For further reading, consult with
the reference cited as [32].

Figure 9‑2 BG model for the car brake hydro-mechanical system

9.3 Example: Electro-mechanical Hoist System

For this example, we consider an electro-mechanical hoist system as shown in Figure 9‑3.
The electric motor is connected to a shaft-drum mechanical system. The load is
represented by a mass connected by an elastic extensible string to the hoist drum. A
gyrator ( ) and a transformer ( ) elements are used in this model. The -element
models the electric motor by transforming the motor voltage (current) to the angular
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velocity (torque) of the drum/shaft and the -element transforms the angular velocity
of the drum to the linear velocity of the mass.

Figure 9‑3 An electro-mechanical system with load

The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=72
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Figure 9‑4 shows the BG model for this system. For further reading, consult with the
references cited as [21] and [33].

Figure 9‑4 BG model for an electro-mechanical system

9.4 Example: Drive Shaft-Load Mechanical System

For this example, we consider a mechanical drive shaft system carrying a torsional load
as shown in Figure 9‑5. The applied torque is transferred to the gear-shaft system. The
load can be applied through an electric motor (not shown). This model uses several
transformer elements ( ). The -elements exchange the angular velocity of the gears,
using compatibility requirement.
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Figure 9‑5 A drive shaft mechanical system carrying a torsional load

The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=72

The BG model for this system is shown in Figure 9‑6. For further reading, consult with
the references cited as [20] and [34].
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Figure 9‑6 BG model for drive shaft mechanical system carrying a torsional load

9.5 Example: Inverted Double Pendulum

For this example, we consider an inverted double pendulum system pivoted to a moving
mass, as shown in Figure 9‑7. The rods are pinned together, and each has one
rotational DOF, represented by and . The centre of mass is located at the mid-points

and of each rod, represented by and ; associated mass by and ; and

rotational moment of inertia by and . The motion is measured with reference to a
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fixed coordinate system, , initially at origin. Applied force is exerted on mass ,
moving horizontally with its displacement designated by .

The coordinates of the centre of mass for the rods are given as ,

, and , . Therefore, the

corresponding velocities are , ,

, and . Assuming small angles, or and , we get

and

Figure 9-7 An inverted double pendulum system
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The following video shows how to build and run the model for this example in 20-sim.

A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=72

Figure 9‑8 shows the BG model for this system. For further reading, consult with the
references cited as [20] and [32].
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Figure 9‑8 BG model for the inverted double pendulum

Exercise Problems for Chapter 9
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Exercises

1. Use the BG model given in section 9.2 to complete the following:

a. Build the BG model.
b. Reset the causalities and manually apply them to identify the algebraic loop and related power

bonds. List all the options that might exist.
c. Using some typical numerical values for the car-brake system parameters, build the model and run

some simulation scenarios.

2. Use the BG model given in section 9.3 to complete the following:

a. Build the BG model.
b. Reset the causalities and manually apply them to related power bonds.
c. Draw the arrows for showing the streams of flow and effort in the whole system.
d. Using some typical numerical values (as shown below) for the hoist system parameters, build the

model and run some simulation scenarios. Make graphs of mass velocity and study the effects of
string elasticity and drum moment of inertia using the Parameter Sweep tool in 20-sim.
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10. Frequency Analysis: Bode Plots and
Transfer Function

10.1 Overview

Studying the behaviour of systems with respect to time is the primary approach for
systems modelling and analysis. However, when a system behaves in a repetitive mode
under some applied load and/or boundary conditions—a quasi-static mode—we are
interested in the changes in terms of the inherently-involved frequencies of the system
rather than the details of instantaneous variations with respect to time. Therefore,
transforming the domain of analysis from time to frequency provides us with useful and
important information about the behaviour of systems. For example, identifying
characteristics of a system—such as its natural frequency, behaviour at large and small
frequencies, and magnitude of certain quantities at specific frequencies—provides useful
insights in terms of system analysis, design, and control.

In this section, we present a brief background of frequency analysis and methods with
focus on Bode plot method and transfer function, with worked-out examples. However,
this textbook does not present a full discussion of control theory and related methods for
system analysis.

For further reading, consult with references cited in this chapter. 20-sim has tools for
performing frequency analysis using BG models and for drawing Bode plots for systems.
Through some examples, we will demonstrate how to use these tools.
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Pierre-Simon Laplace (1749 – 1827)

10.2 Background

Performing analysis in frequency domain requires a
transformation from time domain to frequency
domain. Having a mathematical model describing
the behaviour of a system, we can use a transformer
to convert the governing equations from time
domain to frequency domain . Using applied
engineering mathematics, we usually employ
Laplace and/or Fourier transforms for such an
operation. The Laplace transform (defined in
complex -domain) is a more general case of
Fourier’s transform (defined in -domain), as given
below for transforming a function of time , [12],
[35].

(10.1)

where and for these two transforms are comparable. Note that, in
principle, but the real part, of complex variable , is not included here since
we are interested in equilibrium at a steady state in frequency analysis. Application of
these transforms greatly simplifies the solutions of system equations, both for ODEs and
PDEs. The original functions in time domain can be calculated back using the inverse
transforms of Laplace and Fourier, given as
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Jean Baptiste Joseph Fourier
(1768–1830)

(10.2)

In control theory for systems, several methods are
used for studying system behaviour and design,
including Bode and Nichols plots requiring
frequency-domain response representation, root-
locus method requiring complex-domain pole-zero
representation, and polynomial-domain design
requiring transfer-function representation [31], [36].
A transfer function, by definition, is the ratio of the
output signal (i.e., magnitude, power) of a system over selected input signal values.
Among these methods, we focus on Bode plots for application in system design using BG
models. Bode plots are used for linear systems or linearized non-linear systems. For
more detail, see Reference Manual 20-sim 4.6. To access the manual, from the 20-sim
Editor window, go to Help, and then select Manual (PDF).

10.3 Motivational Example: A Linear System

A linear system, or LTI (linear time invariant), is a system for which the linear
combination of output of a set of inputs is equal to the sum of outputs resulting from
each input, e.g., as shown in Figure 10‑1.
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Figure 10-1 Linear system sketch for processing inputs and outputs

Considering a proportional integral (PI) controller (for which the output is equal to the
input multiplied by a constant and added to the integral of the input), we provide a
sinusoidal signal input with frequency of 0.5 rad/s (or ) given as 0.5 . Assuming the

constant multiplier to be 2, we get the output as
). From the output, we observe that the

frequency remains the same as that of the input. Now, by multiplying to the

output, we rewrite it as a single sinusoidal function, or:

Therefore, the input amplitude is magnified by a factor of , frequency remains the
same as mentioned, and a phase change of is introduced to the output signal

by the PI controller. But one can ask the question: what would be the controller response
to a similar signal with a different frequency? For example, if we repeat the same

calculation for an input signal given as , we get the response . To

find the response to a spectrum of input frequencies, in principle we can repeat similar
calculations and analyze the system behaviour. Table 10‑1 shows some typical response
result for input signals of the form into a PI controller.
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Table 10‑1 Response of a PI controller to a sinusoidal signal,

Frequency (rad/s), Response Amplitude Response Phase (deg.)

0.1 10.198 -78.690

0.2 5.385 -68.199

0.3 3.887 -59.036

0.4 3.202 -51.340

0.5 2.828 -45.000

0.6 2.603 -39.806

0.7 2.458 -35.538

0.8 2.358 -32.005

0.9 2.288 -29.055

1 2.236 -26.565

2 2.062 -14.036

3 2.028 -9.462

4 2.016 -7.125

5 2.010 -5.711

6 2.007 -4.764

7 2.005 -4.086

8 2.004 -3.576

9 2.003 -3.180

10 2.002 -2.862

One can make graphs of the response amplitude and phase changes versus input
frequency to study the behaviour of the PI controller used in this example.
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Hendrik Wade Bode
(1905–1982)

10.4 Bode Plots and Cutoff Frequency

The results of the calculations mentioned in section 10.3
motivate us to look for a more general and practical method of
frequency analysis of systems. The calculations presented are
laborious, although new computer tools, e.g., Excel or even
computer coding can speed up the process. However, Hendrik
Wade Bode, working at Bell Labs in the 1930s, suggested a more
practical and now commonly used graphical method—Bode plots,
[21], [31], [37], [38]. This method has a wide range of applications
in system dynamics, control, and design. An important outcome
of having Bode plots for a system is a quick visual insight into the
system’s dynamical behaviour for a wide range of frequencies.

In this section, we present the basic idea and some formulas related to Bode plots and
what they intend to represent when applied to a system.

Following the example presented in section 10.3, we assume, without losing generality, to
have an input sinusoidal signal to the PI controller with frequency given as . The
output is, then, with amplitude and phase . The relations for the output
amplitude and phase angle depend on the PI controller specifications. For our example
having a proportionality factor of two and an integration, using similar manipulations as
those given in section 10.3, we find and . Now, after

transforming the input and output signals to the Laplace -domain, using Laplace
transform (see Equation (10.1)), we get and

. The transfer function (also referred to

as gain function) is defined as the ratio of the output amplitude over input amplitude. For
our examples, we get, after some simplifications, . Having the transfer

function, we can substitute , to transform from -domain to -domain, guided by
Equation (10.1). Therefore, , or the transfer function in frequency

domain. This is a function of a complex variable and can be written, in general, as its real
and imaginary parts or . Therefore, after some manipulations, we get

. This gives the real part and imaginary part .
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Therefore, the magnitude of the transfer function is . The relations for
transfer function including its magnitude and phase are summarized in Equation (10.3).

(10.3)

A set of plots consisting of magnitude and versus logarithm (at base 10) of is
called Bode plots. However, magnitude is traditionally measured in decibel (dB), phase
angle in degrees, and frequency as logarithm of frequency in rad/s (or in Hz).

Recall that dB (one tenth of a bel) is a unit for measuring the power of a signal with
reference to a threshold. For example, the threshold for human hearing is ,
given as power intensity; dB is measured in logarithm of the power ratios at base ten, or

. But since power of a wave signal is proportional to its amplitude

squared, then we get , or

(10.4)

Therefore, Bode plots are composed of two charts: signal gain in dB and phase in degrees
versus logarithm of , usually given in a single graph chart. The graphs in Figure 10‑4
show the Bode plots for the PI controller, generated using 20-sim. The tools available for
drawing Bode plots in 20-sim can also be used when a transfer function is available or
calculated and also after a BG model is built for systems. For this example, we calculated
the transfer function and used it to draw the corresponding Bode plots. For drawing the
corresponding Bode plots, follow these steps:

1. From the Editor window, go to Tools, select Frequency Domain Toolbox, and then
select Linear System Editor. The 20-sim Linear System Editor window opens, as
shown in Figure 10‑2.
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Figure 10‑2 Linear System Editor interface in 20-sim

2. Select Transfer Function and click on the Edit A window opens in which you can
enter the coefficients of the transfer function, as shown in Figure 10‑3.

3. Enter the desired transfer function as a polynomial fraction with numerator and
denominator polynomials with their corresponding coefficients in descending power
of . For this example, having the coefficients for the numerator

polynomial are (2, 1) and for the denominator polynomial are (1, 0). Note the zero
term, i.e., the coefficient for the term , or the constant term. A space can be used
instead of a comma, to separate the coefficients.

4. Click on Apply and then OK This takes you back to the Linear System Editor window
with the transfer function listed. Double check the resulted transfer function to
make sure it is entered correctly into 20-sim.
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Figure 10‑3 Transfer Function Editor interface in 20-sim

5. From the 20-sim System Editor window (see Figure 10‑2) under Plots, select Bode.
The Bode Plot window opens with the corresponding Bode plots, as shown in Figure
10‑4. From these plots, we can conclude that the PI controller is a high-pass filter
system because it passes through the high frequency signals but attenuates low
frequency signals. The gain for low frequency signals decreases linearly with a slope
of 20 dB per decade from 40 dB. The phase change is from close to at low
frequencies to null at high frequencies. Therefore, the PI controller is in phase with
the input signals at high frequencies and out of phase, by about , at low
frequencies.

6. The asymptotes to the high frequency and low frequency gains intersect at a point
defined as the cutoff frequency, (also referred to as corner or break frequency).
This frequency is defined when the output power reaches to 50% of the input signal
power (so-called half-power point), or

.

The 3dB-point is the standard method of finding cut off frequency from the Bode
plot gain chart. For this example, the asymptote to the high frequency gain (i.e., the
horizontal line as the frequency ) is at about 6.02 dB. Hence, the cutoff
frequency corresponds to the point at 6.02+3=9.02 dB, or using
Equation (10.4). This gives the cutoff frequency of rad/s, using

. At the cutoff frequency the phase reads deg, using
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, after conversion.

Figure 10-4 Bode plots for a PI controller

By following the steps presented in the following section, we can also draw Bode plots
using 20-sim when a BG model of a system is available.

10.4.1 Guideline for Drawing Bode Plots for BG Models

After using 20-sim to build a BG model, to draw related Bode plots, click on Tools and
select the options in the Frequency Domain Toolbox to draw related Bode plots. We can
draw Bode plots using transfer function, either manually or using computer graphing
tools. The following steps can be used for drawing Bode plots, by either (A) using 20-sim
software tool or (B) manually:

A. Drawing Bode plots using 20-sim (See the 20-sim Reference Manual.)

1. Build BG model. Include data for related variables.
2. From the Editor window, go to Tools, select Frequency Domain Toolbox,
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and then select Model Linearization. The 20-sim Model Linearization
window opens, as shown in Figure 10‑5.

Figure 10‑5 Model
Linearization interface in
20-sim

2. Select the input and output variables for which you want to draw the Bode plots.
The resulting transfer function is related to this selection. Click on the Variable
Chooser icon to get a list of model variables to choose from. Leave the rest of
options as selected by default. Note that unless output is used as feedback,
usually Open Loop is selected. Select OK.

3. The 20-sim System Editor interface window opens (see Figure 10‑2). The transfer
function, based on input/output selection appears. From the selections under
Plots, choose the Bode The corresponding Bode plots appear in a new window
as shown in Figure 10‑6.
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Figure 10‑6 Typical Bode plots for a system

5. Go to Properties and select Plots to edit plots for title, axes scales, labels,
legends, etc.

A. Manual drawing of Bode plots using transfer function

1. Derive transfer function and transform it to -domain, , using Laplace
transform.

2. Plug in into transfer function, to get .
3. Calculate the real and imaginary parts of the .
4. Calculate magnitude and power, using Equation (10.4).
5. Calculate the phase angle in degrees, using Equation (10.3).

Alternatively, Bode plots can be drawn using 20-sim after having the desired transfer
function from step 1 above, by following the guideline given in section 10.4.
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10.5 Example: Bode Plots Using Transfer Function

A system’s transfer function is given. Find expressions for

magnitude and phase angle and draw the corresponding Bode plots. Consider the
frequency range 0.01–1000 rad/s. Discuss the system dynamical behaviour at low and
high frequencies, including cutoff frequency.

Solution:

Using the guidelines, we substitute in . Therefore,
After multiplying and dividing by the conjugate of

the denominator, we get

. From this expression,

we get the real and imaginary parts as and . Using

the real and imaginary parts and Equation (10.3), we can calculate the magnitude and
phase as and . Note that at and at

. We can draw the Bode plots, manually or using 20-sim, for example. The
cutoff frequency can be calculated as follows. The gain magnitude at reads

. Therefore, the corresponding power is . The
cutoff frequency corresponds to . Therefore, the
corresponding gain is , using . After substituting for and
using , we get cutoff frequency . The phase at the cutoff

frequency can be calculated using or .

Following the steps given in section 10.4, we can use 20-sim and the transfer function
to draw the Bode plots. The coefficients for the polynomials are (1) for

numerator, and (1, 6, 8) for denominator. The resulting Bode plots are shown in Figure
10‑7.

The following video shows how to build and run the model for this example in 20-sim.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=74

Figure 10‑7 Bode plots for the transfer function

10.6 Example: Bode Plots Using a BG Model

Build the BG model and its Bode plots considering transfer function based on force as
input and displacement of the spring as output. Use the mechanical system as shown
in Figure 10‑8 with
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, , , , , ,
, and .

The damper connects mass and the wall at the right side. Repeat the simulation for
the following cases:

a. Use given damper coefficient values to study
its effect on the system with Parameter Sweep tool in 20-sim (available at
the 20-sim Simulator window: select Tools > Time Domain Toolbox
>Parameter Sweep). During the sweep, monitor the displacement of mass

.
b. Use a pulse-type signal as the applied force with amplitude 200 , start time

2 sec, and stop time 3.5 sec.

Figure 10-8 Mechanical system sketch for example given in
section 10-6

Solution:

The following video shows how to build and run the model for this example in 20-sim.
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A Vimeo element has been excluded from this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/engineeringsystems/?p=74

Figure 10‑9 shows the resulting Bode plots. Note that in this video, the force is applied to
mass , in the first try and then moved to mass according to the sketch shown in Figure
10‑8.

Figure 10-9 Bode plots for mechanical system given in section 10-6

Media Attributions

• Pierre Simon Laplace © James Posselwhite is licensed under a Public Domain license
• Jean Baptiste Joseph Fourier © Louis-Léopold Boilly is licensed under a Public

Domain license
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• Hendrik Wade Bode is licensed under a Public Domain license
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11. Miscellaneous Topics

11.1 Overview

This chapter discusses several topics pertinent to modelling and simulation of systems
dynamics with focus on BG method. The reader can consult with these sections as
independent topics or as supplementary to previously discussed topics.

11.2 Energy and Power Conjugate Variables

The product of conjugate variables related to a physical quantity should, by definition,
give the corresponding quantity. In chapter 3, sections 3.2 and 3.5, we discussed the
power variables (effort and flow ) and their relations to the state variables (momentum

and displacement ). The product ( ) is power—so-called power variables—and
integrating them, with respect to time, gives and , respectively. Hence the and are
called energy variables. However, further attention to the dimension of the product of
the variables, i.e., ( ), indicates that the dimension of this quantity is not equivalent to
that of energy. For example, in the SI system of units, we get .
Therefore, we can call and conjugate power variables because the product ( ) is
power. But this definition does not apply to the product ( ). Instead, the product ( ) or
product ( ) can be defined as true conjugate energy variables.

One can ask the question, what is the relationship among these variables? To investigate
further and provide a possible answer, we consider the system energy function .
This functional form is legitimate, since we know that the energy stored, in storage
elements and , is uniquely defined by state variables (see section 3.5). The total
differential change of energy is then . In principle, . But the

partial derivative can be ignored at equilibrium state of the system, or when and
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are kept constant and energy is not changing with time
1
. Now, the total differential

change of power can be written as the time derivative of , or
. But and , the effort and flow in BG method,

respectively. Therefore, we can write

(11.1)

Equation (11.1) clearly defines the relationship among power variables (effort and flow )
and state variables (momentum and displacement ) with respect to the power ( ) and
energy ( ) of the system. Note that for a system, we can write this equation for each
component and sum it up to get the relation for the system.

From Equation (11.1), we can conclude that by dimensional analysis, has the dimension

of flow and the dimension of effort, according to BG terminology. We define these

quantities as system flow and effort, or (note that the partial derivative definition is
explicitly shown here)

(11.2)

For example, considering a mass, represented by an -element, its kinetic energy can be

written as , but , the velocity of the mass or the flow associated

with the -element. Similarly, considering a mechanical spring with stiffness ,
represented by a -element, its potential energy can be written as , but

, the force acting on the spring or the effort associated with the

-element. Equation (11.2) applies analogously to mechanical, electrical, hydraulic, or
thermal systems. Note that the energy function relates to the Hamiltonian of the
system, [13].

1.
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11.3 Including Gravity in BG Models

Forces due to gravitational acceleration can be implemented in a BG model using effort
source element . But it feeds power to the system when the assigned positive direction
of displacement/velocity and the gravitational acceleration vector are in the same
direction. Otherwise, the system feeds power into the gravity field, or loses power. In
manually drawn BG, the direction of the power bond is drawn from toward the system
when the gravity and displacement directions are matched; otherwise, the power bond
should be toward the element. In 20-sim, however, it is not possible to draw a power
bond pointing toward an element because it is defined as a source element. Hence, a
negative value of is assigned to the associated parameter in the corresponding equation
model, i.e., −9.81 (see Figure 11-1).

Figure 11-1 Implementing gravity force for a BG model in 20-sim.

11.4 Extracting System Equations from BG Models

Although graphics of BG models can give us some insights into the dynamics of systems
before actually solving the systems equations, having the mathematical model consisting
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of a system of equations is the ultimate goal resulting from a BG model, or for that
matter, any model. In the previous sections, we discussed that for a BG model with
integral causalities, we can derive a system of ODEs in terms of state variables, i.e., and

(see section 3.5). For such a system, the number of equations, is equal to the sum of
number of associated with – elements and number of associated with the –
elements. In other words, the system equations are coupled first-order ODEs explicitly
given in terms of state variables and can be solved simultaneously using numerical
schemes. The solution of these coupled equations is, obviously, easier to obtain for linear
systems rather than it is for non-linear systems.

In this section we discuss the procedure and guidelines of how to extract system
equations from a BG model. For now, we assume that all storage elements (i.e., – and –
elements) in the system are assigned with integral causality strokes. In the next section,
we discuss cases when derivative causality and/or algebraic-loop situations may exist in
a BG model, along with the definitions and resulting consequences for such systems
equations.

Referring to the energy management of a system, we have already discussed that the
energy input to a system is partially stored in storages and the rest is dissipated through
dissipaters. Therefore, the storage elements are key elements for studying the dynamics
of any system. This principle also applies to the BG models, and we use it to extract
system equations.

The system equations can be given in a general form as where , the
vector representing time derivative of state variables, , the vector representing the
inputs, with indices and . One can expand this functional to get

(11.3)

After building the BG model for a system, we ask the following two key questions, [21]:

Q1: What does each component/element send to the system?

Q2: What does the system send back to the storage components/elements?
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Each question guides us to list the corresponding relations involving the state variables
and performing some manipulations to write the system equations in terms of the state
variables, using the general guideline of on and on . The following steps can be
used to extract the system equations:

1. Build the BG model and assign causalities, with preferred integral causalities.
2. Simplify the BG model, as far as possible.
3. Assign labels as numbers to each power bond in the BG model. The order of

numbering is arbitrary.
4. Answer Q1, in terms of all efforts or flows input into the system.
5. Answer Q2, in terms of all ’s on ’s and all ’s on ’s, or momenta (or their

derivatives) associated with the inertia elements and displacements (or their
derivatives) associated with the capacity elements.

6. Apply constraints implemented by 1- and 0- junction elements and perform algebraic
manipulations to write the system equations only in terms of state variables, as
independent variables with inputs and components’ properties as parameters.

Now, we present some worked-out examples to demonstrate the application of the above
mentioned procedure.

11.4.1 Example: System Equations for a Mechanical System

For this example, we consider a mechanical system as shown in Figure 11-2. This systems
has three DOF associated with three masses. The number of state variables is seven,
associated with the storage elements, three masses, and four springs. The positive
displacements are considered as shown, and tension forces are positive (+T).

Figure 11-2 A mechanical system sketch
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Solution:

We first build the BG model, either manually or using the tools available through 20-sim,
with all power bonds labelled, as shown in Figure 11-3. As mentioned, the labels are
arbitrary; they merely help bookkeeping of the variables involved without affecting final
solution of the system equations. Therefore, the state variables are: associated
with the momenta of the masses and displacements of the mechanical
springs. The corresponding power bonds to these elements are colour coded (see Figure
11-3). The system equations are ODEs consisting of these state variables. To extract the
system equations, we ask two key questions (see section 11.4) and list their corresponding
answers, using the power bond labels and causality assignments in terms of BG symbols
and , as follows:

Figure 11-3 BG model for the mechanical system with labelled power bonds

Q1: What does each component/element send to the system?

The inputs to the system are from elements at the boundary of the system associated
with bonds 1, 2, 4, 6, 10, 11, 13, 15, 17, and 19, as listed in Table 11-1.
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Table 11-1 Inputs to the mechanical system by all elements—Q1 question

Power bond label # System input/relation

1

2

4

6

10

11

13

15

17

19

Next, we list the relations to answer the second question:

Q2: What does the system send back to the storage components/elements?

Here, we are only interested in storage elements, as shown by colour-coded bonds in
Figure 11-3. For example, considering power bond number 2, the system sends an effort
signal (or rate of momentum) to the -element representing the mass . Therefore, we
can write . Similarly, considering power bond number 15, the system sends a
flow signal (or rate of displacement) to the -element representing the spring .
Therefore, we can write . Table 11-2 lists all relations corresponding to storage
elements.
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Table 11-2 Outputs from the mechanical system to all storage elements—Q2 question

Power bond
label

#(element)

Storage
element/
relation

Relations, using constraints

2 ( )

4 ( )

6 ( )

10 ( )

13 ( )

15 ( )

19 ( )

In the relations listed in the third column of Table 11-2, we used the constraints resulted
from 1- and 0-junctions and elements’ constitutive equations, and included the relations
from Table 11-1. The final relations are given in bold. Finally, after some manipulations, we
can write the system equations in terms of seven state variables in matrix form, as given
in Equation (11.4).
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(11.4)

11.4.2 Example: System Equations for an Electrical System

For this example, we consider the electrical system and BG model given in section 7.6
and shown in Figure 7-8. The system has two loops. The number of state variables is
three, associated with the storage elements, two inductors and one capacitor.

Solution:

Figure 11-4 shows the BG model with labelled power bonds for this system. The power
bonds associated with storage elements, hence state variables, are colour coded.
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Figure 11-4 BG model for the electrical system with labelled power
bonds

As mentioned, the labels are arbitrary and they merely help bookkeeping of the variables
involved without affecting final solution of the system equations. The state variables are:

associated with the momenta of the inductors, and , electrical charge of the
capacitor. The system equations are ODEs consisting of these variables. To extract the
system equations, we ask two key questions (see section 11.4) and list their corresponding
answers, using the power bond labels and causality assignments in terms of BG symbols
e and f, as follows:

Q1: What does each component/element send to the system?

The inputs to the system are from elements at the boundary of the system associated
with bonds
1, 2, 3, 4, 5, and 6, as listed in Table 11-3.
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Table 11-3 Inputs to the electrical system by all elements—Q1 question

Power bond label System input/relation

1

2

3

4

5

6

Next, we list the relations to answer the second question:

Q2: What does the system send back to the storage components/elements?

Here, we are only interested in storage elements, as shown by colour-coded bonds in
Figure 11-4. For example, considering power bond number 2, the system sends an effort
signal (or rate of momentum/flux linkage) to the -element representing the inductor .
Therefore, we can write . Similarly, considering power bond number 4, the
system sends a flow signal (i.e., current or rate of charge) to the -element representing
the capacitor . Therefore, we can write . Table 11-4 lists all relations corresponding
to storage elements.

Table 11-4 Outputs from the electrical system to all storage elements—Q2 question

Power
bond
label

(element)

Storage
element/
relation

Relations, using constraints

2 ( )

4 ( )

5 ( )
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Note that . In the relations listed in the third column of

Table 11-4, we use the constraints resulted from 1- and 0-junctions and elements’
constitutive equations, and included the relations from Table 11-3. The final relations are
given in bold. Finally, we can write the system equations, after some manipulations, in
terms of three state variables in matrix form, as given in Equation (11.5).

(11.5)

11.5 Derivative Causality and Algebraic Loop: Implicit
System Equations

When assigning causality strokes to a BG model, three scenarios may occur [20], [21].
These scenarios are:

1. all causality strokes are possible to be assigned as preferred integral causalities;
2. at least one storage element ( – or – element) cannot be assigned with integral

causality; instead derivative causality is forced upon the element; or
3. there is more than one option for having a BG model with assigned integral

causalities for the given system, a so-called algebraic loop.

All of these scenarios are legitimate in terms of BG modelling rules, and with red colour-
coded causality strokes, 20-sim provides warnings, not errors, for scenarios 2 and 3 as
listed above. As mentioned, scenario 1 is desirable and preferred. For this scenario, the
system equations can be derived explicitly in terms of state variables as a system of
coupled first-order ODEs. The solution of the system of equations provides the answers
for the generalized momenta and displacements associated with storage elements. After
having the solutions for system equations, we can calculate other desired quantities
related to the system.
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For the second scenario, the system equations are not independent, i.e., implicit. In other
words, the equations related to the storage elements with integral causalities are
independent; pertinent state variables can be uniquely calculated by solving these
equations, simultaneously. But the equation related to the storage element with
derivative causality is not independent; it relates algebraically to the independent
equations. Therefore, the related state variable for the element with derivative causality
can be calculated using the solution of those of the independent variables. The
mathematical dependence of the equation for the derivatively causalled element
indicates that the dynamics of the element are related to and defined by the other
storage elements in the system. In addition, for the derivative causality case, we may
have to force more
than one element having non-integral causalities.

For the third scenario, after assigning integral causalities for some of the elements in a
definite manner, we face one or more options and have to make choices for one or more
elements and arbitrarily assign them with causalities. The resulting system equations are
again independent coupled ODEs and can be simultaneously solved to find their
solutions. However, during the manipulation, we encounter an implicit equation (or
equations) for a particular state variable (or its derivative) which is a function of inputs
and itself as well—an algebraic loop. For linear systems/elements, the algebraic-loop
situation does not pose a problem; however, for non-linear systems/components, this
makes it more difficult to manipulate the equations to find their solutions.

Note that an algebraic loop may occur at several levels and, hence, make it harder to
manipulate the equations. This is when, after selecting an assigning causality stroke for
an element arbitrarily, further selection(s) should be made to proceed.

For both scenarios, derivative causalities and algebraic loop, the fact that they appear in a
BG model is useful information about the system and/or assumptions made for the
model, even before solving the resulting equations. In many cases, the modeller can
improve the system with additional components, usually of the types of – element.

As mentioned, 20-sim sends warning messages, but no error messages when derivative
causalities and algebraic loop exist. The resulted system equations can be solved by
solvers available, and the system simulation and design can proceed as usual.

In further sections, we present some examples to demonstrate the derivative causality
and algebraic-loop cases.
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11.5.1 Example: BG Model with Derivative Causality

We consider the BG model shown in Figure 11-5. The colour-coded bonds associated with
two inertia -elements are forced, having non-integral causalities or derivative causality.
This can be vividly explored by starting assigning causality from -element sending a
flow signal to the adjacent 1-junction. Therefore, all other connecting bonds to this
1-junction should have their causality strokes at the ports connecting to this 1-junction.
This requirement forces the associated -element to have a derivative causality, or
sending effort signal, instead of receiving it for being integrally causalled, to the
1-junction. Similarly, the -element is forced to have derivative causality. As a result,
the momenta of these two -elements (i.e. and ) will depend on the remaining storage
elements, i.e., -element and -element , and can be calculated having the
corresponding solutions for – and – elements. For further reading, consult with
references cited as [5], [20], [21], and [30].

As mentioned, in 20-sim a warning message appears on the screen when derivative
causality exists in the BG model. But the software solver tools take care of this and solve
the system equations. This capability is useful for practical applications in design of the
systems.

Figure 11-5 A BG model with derivative causality, colour coded
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11.5.2 Example: BG Model with Algebraic Loop

We consider the BG model shown in Figure 11-6. Starting with the process of assigning
causalities, we realize that the colour-coded bonds can’t be integrally assigned and
present options. In other words, to proceed further with assigning causalities to the
whole system’s BG model, we require to make a selection arbitrarily. Usually, the
selection can be more easily made with -elements, since it can be assigned with neutral
causality. For example, if we select the element and assign causality stroke to it
such that it sends a flow signal to the adjacent 1-junction, then the remaining bonds’
causality strokes can be assigned, as shown colour coded in Figure 11-7. Alternatively,
element or could be selected as an option. The corresponding BG models
and related assigned causalities are shown in Figure 11-8 and Figure 11-9, respectively.
For further reading, consult with references cited as [5], [20], [21], and [30].

Figure 11-6 A BG model with algebraic-loop causality

Figure 11-7 The BG model with removed algebraic loop—selecting
R3
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Figure 11-8 The BG model with removed algebraic
loop—selecting R2

Figure 11-9 The BG model with removed algebraic
loop—selecting R1

As mentioned, in 20-sim, a warning message appears on the screen when algebraic loop
causality exists in the BG model. But the software solver tools take care of this and solve
the system equations. This capability is useful for practical applications in design of the
systems.
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11.6 Thermal Systems: Pseudo Bond Graph

Thermal systems are unique in terms of BG modelling. They are closely analogous to
electrical systems. In practice, to analyze thermal systems, we use this analogy to build
models as thermal networks, similar to electrical networks, [39], [40].

Considering heat conduction through a solid slab, e.g., the temperature difference
(analogous to voltage) and heat flow rate (analogous to electrical current) satisfy

. The quantity (analogous to electrical resistance) is thermal

resistance with dimension [K/W], in , where, is the length across which the
applies; is the cross-sectional area for heat flow, and is the thermal conductivity of
the material. Intuitively, this analogy suggests to consider temperature as the effort and
the heat flow rate as the flow when building BG models for thermal systems. With this
assumption at hand, the product ( ) would be considered as power variables, or the
dimension of this quantity should be as of that for power. However, close examination of
the dimension for the product ( ) gives its dimension as , or

. Therefore, according to BG modelling rules, we cannot accept temperature
and heat flow rate as conjugate power variables. This discrepancy leads us to call such a
BG model a pseudo bond graph (pseudo BG), for which temperature is the effort and heat
flow rate is the flow. This is acceptable as far as the thermal system is the only system
involved and the modeller is aware of the fact that the “power” variables are not defined
fully and correctly in the related thermal pseudo BG model. However, for multi-domain
systems, the exchange of power between a thermal sub-system part and other domains
of the system becomes problematic.

The solution to this challenge comes from the second law of thermodynamics, which
guides us to consider the flow in the BG model as the entropy rate, instead of heat flow
rate. Recall that entropy is a state function, and for a reversible system, we have the
relationship for exchange of heat and entropy using temperature ,
[41]. Therefore, the heat flow rate is . The dimension of , the entropy rate,
is then [ ]. Therefore the dimension of the power variables, or ( ) is [ ], as it
should be; hence, we can accept the temperature as the effort and entropy rate as the
flow in BG model for a thermal system. Table 11-5 shows the variables involved in Pseudo
BG and BG models for thermal systems.
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Table 11-5 Definitions for effort and flow for BG and pseudo BG models, thermal systems

Model Effort Flow Power System

Pseudo BG temperature heat flow rate ill-defined single thermal domain

BG temperature entropy rate defined multi-domain
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