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1. Systems of Linear Equations

1.1 Solutions and Elementary Operations

1. b. Substitute these values of x1, x2, x3 and x4 in the equation

2x1 +5x2 +9x3 +3x4 = 2(2s+12t +13)+5(s)+9(−s−3t−3)+3(t) = −1

x1 +2x2 +4x3 = (2s+12t +13)+2(s)+4(−s−3t−3) = 1

Hence this is a solution for every value of s and t.

2. b. The equation is 2x+ 3y = 1. If x = s then y = 1
3(1− 2s) so this is one form of the general

solution. Also, if y = t then x = 1
2(1−3t) gives another form.

4. Given the equation 4x−2y+0z = 1, take y = s and z = t and solve for x: x = 1
4(2s+3). This is the

general solution.

5. a. If a = 0, no solution if b 6= 0, infinitely many if b = 0.

b. If a 6= 0 unique solution x = b/a for all b.

7. b. The augmented matrix is
[

1 2 0

0 1 1

]

.

d. The augmented matrix is

[

1 1 0 1

0 1 1 0

−1 0 1 2

]

.

8. b. A system with this augmented matrix is

2x − y = −1

−3x + 2y + z = 0

y + z = 3

9. b.
[

1 2 1
3 4 −1

]

→
[

1 2 1
0 −2 −4

]

→
[

1 2 1
0 1 2

]

→
[

1 0 −3
0 1 2

]

.

Hence x =−3, y = 2.

d.
[

3 4 1

4 5 −3

]

→
[

4 5 −3

3 4 1

]

→
[

1 1 −4

3 4 1

]

→
[

1 1 −4

0 1 13

]

→
[

1 0 −17

0 1 13

]

.

Hence x =−17, y = 13.

10. b.

[

2 1 1 −1

1 2 1 0

3 0 −2 5

]

→
[

1 2 1 0

2 1 1 −1

3 0 −2 5

]

→
[

1 2 1 0

0 −3 −1 −1

0 −6 −5 5

]

→
[

1 2 1 0

0 1 1
3

1
3

0 0 −3 7

]

→
[

1 0 1
3 − 2

3

0 1 1
3

1
3

0 0 1 − 7
3

]

→
[

1 0 0 1
9

0 1 0 10
9

0 0 1 − 7
3

]

. Hence x = 1
9 , y = 10

9 , z = −7
3 .

1



2 Systems of Linear Equations

11. b.
[

3 −2 5

−12 8 16

]

→
[

3 −2 5

0 0 36

]

. The last equation is 0x+0y = 36, which has no solution.

14. b. False. The system x+ y = 0, x− y = 0 is consistent, but x = 0 = y is the only solution.

d. True. If the original system was consistent the final system would also be consistent because

each row operation produces a system with the same set of solutions (by Theorem 1.1.1).

16. The substitution gives
3(5x′−2y′)+2(−7x′+3y′) = 5

7(5x′−2y′)+5(−7x′+3y′) = 1

this simplifies to x′ = 5, y′ = 1. Hence x = 5x′−2y′ = 23 and y =−7x′+3y′ =−32.

17. As in the Hint, multiplying by (x2 + 2)(2x− 1) gives x2− x + 3 = (ax+ b)(2x− 1) + c(x2 + 2).
Equating coefficients of powers of x gives equations 2a+ c = 1, −a + 2b = −1, −b + 2c = 3.

Solving this linear system we find a =−1
9 , b =−5

9 , c = 11
9 .

19. If John gets $x per hour and Joe gets $y per hour, the two situations give 2x+3y= 24.6 and 3x+2y=
23.9. Solving gives x = $4.50 and y = $5.20.

1.2 Gaussian Elimination

1. b. No, No; no leading 1.

d. No, Yes; not in reduced form because of the 3 and the top two 1’s in the last column.

f. No, No; the (reduced) row-echelon form would have two rows of zeros.

2. b.

[

0 −1 3 1 3 2 1

0 −2 6 1 −5 0 −1

0 3 −9 2 4 1 −1
0 1 −3 −1 3 0 1

]

→
[

0 1 −3 −1 −3 −2 −1

0 0 0 −1 −11 −4 −3

0 0 0 5 13 7 2
0 0 0 0 6 2 2

]

→
[

0 1 −3 0 8 2 2

0 0 0 1 11 4 3
0 0 0 0 −42 −13 −13

0 0 0 0 6 2 2

]

→
[

0 1 −3 0 8 2 2

0 0 0 1 11 4 3
0 0 0 0 0 1 1

0 0 0 0 3 1 1

]

→
[

0 1 −3 0 8 0 0

0 0 0 1 11 0 −1

0 0 0 0 3 0 0

0 0 0 0 0 1 1

]

→
[

0 1 −3 0 0 0 0

0 0 0 1 0 0 −1

0 0 0 0 1 0 0

0 0 0 0 0 1 1

]

3. b. The matrix is already in reduced row-echelon form. The nonleading variables are parameters;

x2 = r, x4 = s and x6 = t.

The first equation is x1−2x2 +2x4 + x6 = 1, whence x1 = 1+2r−2s− t.

The second equation is x3 +5x4−3x6 =−1, whence x3 =−1−5s+3t.

The third equation is x5 +6x6 = 1, whence x5 = 1−6t.

d. First carry the matrix to reduced row-echelon form.

[

1 −1 2 4 6 2

0 1 2 1 −1 −1
0 0 0 1 0 1

0 0 0 0 0 0

]

→
[

1 0 4 5 5 1

0 1 2 1 −1 −1
0 0 0 1 0 1

0 0 0 0 0 0

]

→
[

1 0 4 0 5 −4

0 1 2 0 −1 −2
0 0 0 1 0 1

0 0 0 0 0 0

]



1.2. Gaussian Elimination 3

The nonleading variables are parameters; x3 = s, x5 = t.

The first equation is x1 +4x3 +5x5 =−4, whence x1 =−4−4s−5t.

The second equation is x2 +2x3− x5 =−2, whence x2 =−2−2s+ t.

The third equation is x4 = 1.

4. b.
[

3 −1 0

2 −3 1

]

→
[

1 2 −1

2 −3 1

]

→
[

1 2 −1

0 −7 3

]

→
[

1 2 −1

0 1 − 3
7

]

→
[

1 0 − 1
7

0 1 − 3
7

]

.

Hence x =−1
7 , y =−3

7 .

d. Note that the variables in the second equation are in the wrong order.
[

3 −1 2

−6 2 −4

]

→
[

3 −1 2

0 0 0

]

→
[

1 − 1
3

2
3

0 0 0

]

.

The nonleading variable y = t is a parameter; then x = 2
3 +

1
3 t = 1

3(t +2).

f. Again the order of the variables is reversed in the second equation.
[

2 −3 5

−2 3 2

]

→
[

2 −3 5

0 0 7

]

. There is no solution as the second equation is 0x+0y = 7.

5. b.

[

−2 3 3 −9
3 −4 1 5

−5 7 2 −14

]

→
[

3 −4 1 5
−2 3 3 −9

−5 7 2 −14

]

→
[

1 −1 4 −4
−2 3 3 −9

−5 7 2 −14

]

→
[

1 −1 4 −4

0 1 11 −17

0 2 22 −34

]

→
[

1 0 15 −21

0 1 11 −17

0 0 0 0

]

.

Take z = t (the nonleading variable). The equations give x =−21−15t, y =−17−11t.

d.

[

1 2 −1 2

2 5 −3 1

1 4 −3 3

]

→
[

1 2 −1 2

0 1 −1 −3

0 2 −2 1

]

→
[

1 2 −1 2

0 1 −1 −3

0 0 0 7

]

.

There is no solution as the third equation is 0x+0y+0z = 7.

f.

[

3 −2 1 −2

1 −1 3 5

−1 1 1 −1

]

→
[

1 −1 3 5

3 −2 1 −2

−1 1 1 −1

]

→
[

1 −1 3 5

0 1 −8 −17

0 0 4 4

]

→
[

1 0 −5 −12

0 1 −8 −17

0 0 1 1

]

→
[

1 0 0 −7

0 1 0 −9

0 0 1 1

]

. Hence x =−7, y =−9, z = 1.

h.

[

1 2 −4 10

2 −1 2 5

1 1 −2 7

]

→
[

1 2 −4 10

0 −5 10 −15

0 −1 2 −3

]

→
[

1 2 −4 10

0 1 −2 3

0 0 0 0

]

→
[

1 0 0 4

0 1 −2 3

0 0 0 0

]

.

Hence z = t, x = 4, y = 3+2t.

6. b. Label the rows of the augmented matrix as R1, R2 and R3, and begin the gaussian algorithm on

the augmented matrix keeping track of the row operations:

[

1 2 −3 −3

1 3 −5 5

1 −2 5 −35

]

R1

R2

R3

→
[

1 2 −5 5

0 1 −2 8

0 −4 8 −32

]

R2

R2−R1

R3−R1

At this point observe that R3−R1 = −4(R2−R1), that is R3 = 5R1− 4R2. This means that

equation 3 is 5 times equation 1 minus 4 times equation 2, as is readily verified. (The solution

is x1 = t−11, x2 = 2t +8 and x3 = t.)

7. b.

[

1 −1 1 −1 0

−1 1 1 1 0
1 1 −1 1 0

1 1 1 1 0

]

→
[

1 −1 1 −1 0

0 0 2 0 0
0 2 −2 2 0

0 2 0 2 0

]

→
[

1 −1 1 −1 0

0 1 −1 1 0
0 0 1 0 0

0 1 0 1 0

]

→
[

1 0 0 0 0
0 1 −1 1 0

0 0 1 0 0

0 0 1 0 0

]

→
[

1 0 0 0 0
0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

]

. Hence x4 = t; x1 = 0, x2 =−t, x3 = 0.
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d.

[

1 1 2 −1 4

0 3 −1 4 2

1 2 −3 5 0

1 1 −5 6 −3

]

→
[

1 1 2 −1 4

0 3 −1 4 2

0 1 −5 6 −4

0 0 −7 7 −7

]

→
[

1 0 7 −7 8

0 0 14 −14 14

0 1 −5 6 −4

0 0 −7 7 −7

]

→
[

1 0 7 −7 8

0 1 −5 6 −4

0 0 14 −14 14

0 0 −7 7 −7

]

→
[

1 0 0 0 1

0 1 −5 6 −4

0 0 1 −1 1

0 0 0 0 0

]

→
[

1 0 0 0 1

0 1 0 1 1

0 0 1 −1 1

0 0 0 0 0

]

.

Hence x4 = t; x1 = 1, x2 = 1− t, x3 = 1+ t.

8. b.
[

1 b −1

a 2 5

]

→
[

1 b −1

0 2−ab 5+a

]

.

Case 1 If ab 6= 2, it continues→
[

1 b −1

0 1 5+a
2−ab

]

→
[

1 0 −2−5b
2−ab

0 1 5+a
2−ab

]

.

The unique solution is x = −2−5b
2−ab

, y = 5+a
2−ab

.

Case 2 If ab = 2, it is
[

1 b −1

0 0 5+a

]

. Hence there is no solution if a 6= −5. If a = −5, then

b = −2
5 and the matrix is

[

1 −2
5 −1

0 0 0

]

. Then y = t, x =−1+ 2
5t.

d.
[

a 1 1

2 1 b

]

→
[

1 1
2

b
2

a 1 1

]

→
[

1 1
2

b
2

0 1− a
2 1− ab

2

]

→
[

1 1
2

b
2

0 2−a 2−ab

]

.

Case 1 If a 6= 2 it continues: →
[

1 1
2

b
2

0 1 2−ab
2−a

]

→
[

1 0 b−1
2−a

0 1 2−ab
2−a

]

.

The unique solution: x = b−1
2−a

, y = 2−ab
2−a

.

Case 2 If a = 2 the matrix is
[

1 1
2

b
2

0 0 2(1−b)

]

. Hence there is no solution if b 6= 1.

If b = 1 the matrix is
[

1 1
2

1
2

0 0 0

]

, so y = t, x = 1
2 − 1

2 t = 1
2(1− t).

9. b.

[

2 1 −1 a

0 2 3 b

1 0 −1 c

]

→
[

1 0 −1 c

0 2 3 b

2 1 −1 a

]

→
[

1 0 −1 c

0 2 3 b

0 1 1 a−2c

]

→
[

1 0 −1 c

0 1 1 a−2c

0 2 3 b

]

→
[

1 0 −1 c

0 1 1 a−2c

0 0 1 b−2a+4c

]

→
[

1 0 0 b−2a+5c

0 1 0 3a−b−6c

0 0 1 b−2a+4c

]

.

Hence, for any values of a, b and c there is a unique solution x =−2a+b+5c, y = 3a−b−6c,

and z =−2a+b+4c.

d.

[

1 a 0 0

0 1 b 0

c 0 1 0

]

→
[

1 a 0 0

0 1 b 0

0 −ac 1 0

]

→
[

1 0 −ab 0

0 1 b 0

0 0 1+abc 0

]

.

Case 1 If abc 6=−1, it continues:→
[

1 0 −ab 0

0 1 b 0

0 0 1 0

]

→
[

1 0 0 0

0 1 0 0

0 0 1 0

]

.

Hence we have the unique solution x = 0, y = 0, z = 0.

Case 2 If abc =−1, the matrix is

[

1 0 −ab 0

0 1 b 0

0 0 0 0

]

, so z = t, x = abt, y =−bt.

Note: It is impossible that there is no solution here: x = y = z = 0 always works.

f.

[

1 a −1 1

−1 a−2 1 −1

2 2 a−2 1

]

→
[

1 a −1 1

0 2(a−1) 0 0

0 2(a−1) a −1

]

→
[

1 a −1 1

0 a−1 0 0

0 0 a −1

]

.

Case 1 If a = 1 the matrix is

[

1 1 −1 1

0 0 0 0

0 0 1 −1

]

→
[

1 1 0 0

0 0 1 −1

0 0 0 0

]

,

so y = t, x =−t, z =−1.

Case 2 If a = 0 the last equation is 0x+0y+0z =−1, so there is no solution.
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Case 3 If a 6= 1 and a 6= 0, there is a unique solution:
[

1 a −1 1

0 a−1 0 0

0 0 a −1

]

→
[

1 a −1 1

0 1 0 0

0 0 1 − 1
a

]

→
[

1 0 0 1− 1
a

0 1 0 0

0 0 1 − 1
a

]

.

Hence x = 1− 1
a
, y = 0, z =−1

a
.

10. b.
[

2 1 −1 3

0 0 0 0

]

→
[

1 1
2 − 1

2
3
2

0 0 0 0

]

; rank is 1.

d. It is in row-echelon form; rank is 3.

f.

[

0 0 1

0 0 1

0 0 1

]

→
[

0 0 1

0 0 0

0 0 0

]

; rank is 1.

11. b.

[

−2 3 3

3 −4 1

−5 7 2

]

→
[

1 −1 4

3 −4 1

−5 7 2

]

→
[

1 −1 4

0 −1 −11

0 2 22

]

→
[

1 −1 4

0 1 11

0 0 0

]

; rank is 2.

d.

[

3 −2 1 −2

1 −1 3 5

−1 1 1 −1

]

→
[

1 −1 3 5

3 −2 1 −2

−1 1 1 −1

]

→
[

1 −1 3 5

0 1 −8 −17

0 0 4 4

]

→
[

1 −1 3 5

0 1 −8 −17

0 0 1 1

]

;

rank is 3.

f.

[

1 1 2 a2

1 1−a 2 0

2 2−a 6−a 4

]

→
[

1 1 2 a2

0 −a 0 −a2

0 −a 2−a 4−2a2

]

→
[

1 1 2 a2

0 a 0 a2

0 0 2−a 4−a2

]

.

If a = 0 we get

[

1 1 2 0

0 0 0 0

0 0 2 4

]

→
[

1 1 2 0

0 0 1 2

0 0 0 0

]

; rank = 2.

If a = 2 we get

[

1 1 2 4

0 2 0 4
0 0 0 0

]

→
[

1 1 2 4

0 1 0 2
0 0 0 0

]

; rank = 2.

If a 6= 0, a 6= 2, we get

[

1 1 2 a2

0 a 0 a2

0 0 2−a 4−a2

]

→
[

1 1 2 a2

0 1 0 a

0 0 1 2+a

]

; rank = 3.

12. b. False. A =

[

1 0 1

0 1 1

0 0 0

]

.

d. False. A =

[

1 0 1

0 1 1

0 0 0

]

.

f. False. The system 2x−y= 0,−4x+2y= 0 is consistent, but the system 2x−y= 1,−4x+2y=
1 is not consistent.

h. True. A has 3 rows so there can be at most 3 leading 1’s. Hence the rank of A is at most 3.

14. b. We begin the row reduction

[

1 a b+ c

1 b c+a

1 c a+b

]

→
[

1 a b+ c

0 b−a a−b

0 c−a a− c

]

. Now one of b− a and c−
a is nonzero (by hypothesis) so that row provides the second leading 1 (its row becomes
[

0 1 −1
]

). Hence further row operations give

→
[

1 a b+ c

0 1 −1
0 0 0

]

→
[

1 0 b+ c+a

0 1 −1
0 0 0

]

which has the given form.

16. b. Substituting the coordinates of the three points in the equation gives

1+1+a+b+ c = 0 a+b+ c =−2

25+9+5a−3b+ c = 0 5a−3b+ c =−34

9+9−3a−3b+ c = 0 3a+3b− c = 18
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[

1 1 1 −2

5 −3 1 −34

3 3 −1 18

]

→
[

1 1 1 −2

0 −8 −4 −24

0 0 −4 24

]

→
[

1 1 1 −2

0 1 1
2 3

0 0 1 −6

]

→
[

1 0 1
2 −5

0 1 1
2 3

0 0 1 −6

]

→
[

1 0 0 −2

0 1 0 6

0 0 1 −6

]

.

Hence a =−2, b = 6, c =−6, so the equation is x2 + y2−2x+6y−6 = 0.

18. Let a, b and c denote the fractions of the student population in Clubs A, B and C respectively. The

new students in Club A arrived as follows: 4
10 of those in Club A stayed; 2

10 of those in Club B go to

A, and 2
10 of those in C go to A. Hence

a = 4
10a+ 2

10b+ 2
10c

Similarly, looking at students in Club B and C.

b = 1
10a+ 7

10b+ 2
10c

c = 5
10a+ 1

10b+ 6
10c

Hence

−6a+2b+2c = 0

a−3b+2c = 0

5a+b−4c = 0

[

−6 2 2 0

1 −3 2 0

5 1 −4 0

]

→
[

1 −3 2 0

0 −16 14 0

0 16 −14 0

]

→
[

1 −3 2 0

0 1 − 7
8 0

0 0 0 0

]

→
[

1 0 − 5
8 0

0 1 − 7
8 0

0 0 0 0

]

.

Thus the solution is a = 5
8t, b = 7

8t, c = t. However a+b+ c = 1 (because every student belongs to

exactly one club) which gives t = 2
5 . Hence a = 5

20 , b = 7
20 , c = 8

20 .

1.3 Homogeneous Equations

1. False. A =
[

1 0 1 0

0 1 1 0

]

.b. False. A =
[

1 0 1 1

0 1 1 0

]

.d.

False. A =
[

1 0 0

0 1 0

]

.f. False. A =

[

1 0 0

0 1 0

0 0 0

]

.h.

2. b.

[

1 2 1 0

1 3 6 0

2 3 a 0

]

→
[

1 2 1 0

0 1 5 0

0 −1 a−2 0

]

→
[

1 0 −9 0

0 1 5 0

0 0 a+3 0

]

.

Hence there is a nontrivial solution when a =−3: x = 9t, y =−5t, z = t.

d.

[

a 1 1 0

1 1 −1 0
1 1 a 0

]

→
[

1 1 −1 0

a 1 1 0
1 1 a 0

]

→
[

1 1 −1 0

0 1−a 1+a 0
0 0 a+1 0

]

.

Hence if a 6= 1 and a 6=−1, there is a unique, trivial solution. The other cases are as follows:
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a = 1 :

[

1 1 −1 0

0 0 2 0

0 0 2 0

]

→
[

1 1 0 0

0 0 1 0

0 0 0 0

]

; x =−t, y = t, z = 0.

a =−1 :

[

1 1 −1 0

0 2 0 0
0 0 0 0

]

→
[

1 0 −1 0

0 1 0 0
0 0 0 0

]

; x = t, y = 0, z = t.

3. b. Not a linear combination. If ax+by+cz = v then comparing entries gives equations 2a+b+
c = 4, a+ c = 3 and −a+b−2c =−4. Now carry the coefficient matrix to reduced form:

[

2 1 1 4
1 0 1 3

−1 1 −2 −4

]

→
[

1 0 1 0
0 1 −1 0

0 0 0 1

]

Hence there is no solution.

d. Here, if aa+by+cz = v then comparing entries gives equations 2a+b+c = 3, a+c = 0 and

−a+b−2c = 3. Carrying the coefficient matrix to reduced form gives

[

2 1 1 3
1 0 1 0

−1 1 −2 3

]

→
[

1 0 1 0
0 1 −1 3

0 0 0 0

]

so the general solution is a =−t, b = 3+ t and c = t. Taking t =−1 gives the linear combina-

tion v = a+2y− z.

4. b. We must determine if x, y and z exist such that y = xa1+ya2+za3. Equating entries here gives

equations −x+3y+ z =−1, 3x+ y+ z = 9, 2y+ z = 2 and x+ z = 6. Carrying the coefficient

matrix to reduced form gives

[ −1 3 1 −1

3 1 1 9

0 2 1 2
1 0 1 6

]

→
[

1 0 0 2

0 1 0 −1

0 0 1 4
0 0 0 0

]

so the unique solution is x = 2, y =−1 and z = 4. Hence y = 2a1−a2 +4a3.

5. b. Carry the augmented matrix to reduced form:

[

1 2 −1 1 1 0

−1 −2 2 0 1 0

−1 −2 3 1 3 0

]

→
[

1 2 0 2 3 0

0 0 1 1 2 0

0 0 0 0 0 0

]

Hence the general solution is x1 = −2r−2s−3t, x2 = r, x3 = −s−2t, x4 = s and x5 = t. In

matrix form, the general solution x =
[

x1 x2 x3 x4 x5

]T
takes the form

x =





−2r−2s−3t

r

−s−2t

s

t



= r





−2

1

0

0

0



+ s





−2

0

−1

1

0



+ t





−3

0

−2

0

1





Hence x is a linear combination of the basic solutions.

d. Carry the augmented matrix to reduced form:

[

1 1 −2 −2 2 0

2 2 −4 −4 1 0

1 −1 2 4 1 0

−2 −4 8 10 1 0

]

→
[

1 0 0 1 0 0

0 1 −2 −3 0 0

0 0 0 0 1 0

0 0 0 0 0 0

]
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Hence the general solution x =
[

x1 x2 x3 x4 x5

]T
is

x =





−t

2s+3t

s

t

0



= s





0

2
1

0

0



+ t





−1

3
0

1

0





Hence x is a linear combination of the basic solutions.

6. b. The system

x+ y = 1

2x+2y = 2

−x− y = −1

has nontrivial solutions with fewer variables than equations.

7. b. There are n− r = 6−1 = 5 parameters by Theorem 1.2.2.

d. The row-echelon form has four rows and, as it has a row of zeros, has at most 3 leading

1’s. Hence rank A = r = 1, 2 or 3 (r 6= 0, because A has nonzero entries). Thus there are

n− r = 6− r = 5, 4 or 3 parameters.

9. b. Insisting that the graph of ax+ by+ cz+ d = 0 (the plane) contains the three points leads to

three linear equations in the four variables a, b, c and d. There is a nontrivial solution by

Theorem 1.3.1.

11. Since the system is consistent there are n−r parameters by Theorem 1.2.2. The system has nontrivial

solutions if and only if there is at least one parameter, that is if and only if n > r.

1.4 An Application to Network Flows

1. b. There are five flow equations, one for each junction:

f1 − f2 = 25

f1 + f3 + f5 = 50

f2 + f4 + f7 = 60

− f3 + f4 + f6 = 75

f5 + f6 − f7 = 40





1 −1 0 0 0 0 0 25

1 0 1 0 1 0 0 50

0 1 0 1 0 0 1 60

0 0 −1 1 0 1 0 75

0 0 0 0 1 1 −1 40



→





1 −1 0 0 0 0 0 25

0 1 1 0 1 0 0 25

0 1 0 1 0 0 1 60

0 0 −1 1 0 1 0 75

0 0 0 0 1 1 −1 40





→





1 0 1 0 1 0 0 50

0 1 1 0 1 0 0 25

0 0 −1 1 −1 0 1 35
0 0 −1 1 0 1 0 75

0 0 0 0 1 1 −1 40



→





1 0 0 1 0 0 1 85

0 1 0 1 0 0 1 60

0 0 1 −1 1 0 −1 −35
0 0 0 0 1 1 −1 40

0 0 0 0 1 1 −1 40





→





1 0 0 1 0 0 1 85
0 1 0 1 0 0 1 60

0 0 1 −1 0 −1 0 −75

0 0 0 0 1 1 −1 40

0 0 0 0 0 0 0 0





If we use f4, f6 , and f7 as parameters, the solution is

f1 = 85− f4− f7
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f2 = 60− f4− f7

f3 =−75+ f4 + f6

f5 = 40− f6 + f7

2. b. The solution to (a) gives f1 = 55− f4, f2 = 20− f4+ f5, f3 = 15− f5. Closing canal BC means

f3 = 0, so f5 = 15. Hence f2 = 35− f4, so f2 ≤ 30 means f4 ≥ 5. Similarly f1 = 55− f4 so

f1 ≤ 30 implies f4 ≥ 25. Hence the range on f4 is 25≤ f4 ≤ 30.

3. b. The road CD.

1.5 An Application to Electrical Networks

2. The junction and circuit rules give:

Left junction I1 − I2 + I3 = 0

Right junction I1 − I2 + I3 = 0

Top circuit 5I1 + 10I2 = 5

Lower circuit 10I2 + 5I3 = 10

[

1 −1 1 0
5 10 0 5

0 10 5 10

]

→
[

1 −1 1 0
0 15 −5 5

0 10 5 10

]

→
[

1 −1 1 0
0 3 −1 1

0 2 1 2

]

→
[

1 −1 1 0
0 1 −2 −1

0 2 1 2

]

→
[

1 0 −1 −1

0 1 −2 −1

0 0 5 4

]

→
[

1 0 −1 −1

0 1 −2 −1

0 0 1 4
5

]

→
[

1 0 0 − 1
5

0 1 0 3
5

0 0 1 4
5

]

.

Hence I1 =−1
5 , I2 =

3
5 and I3 =

4
5 .

4. The equations are:
Lower left junction I1− I5− I6 = 0

Top junction I2− I4 + I6 = 0

Middle junction I2 + I3− I5 = 0

Lower right junction I1− I3− I4 = 0

Observe that the last of these follows from the others (so may be omitted).

Left circuit 10I5−10I6 = 10

Right circuit −10I3 +10I4 = 10

Lower circuit 10I3+10I5 = 20









1 0 0 0 −1 −1 0

0 1 0 −1 0 1 0

0 1 1 0 −1 0 0

0 0 0 0 10 −1 10

0 0 −10 10 0 0 10
0 0 10 0 10 0 20









→









1 0 0 0 −1 −1 0

0 1 0 −1 0 1 0

0 0 1 1 −1 −1 0

0 0 0 0 1 −1 1

0 0 −1 1 0 0 1
0 0 1 0 1 0 2









→









1 0 0 0 −1 −1 0

0 1 0 −1 0 1 0

0 0 1 1 −1 −1 0

0 0 0 0 1 −1 1

0 0 0 2 −1 −1 1

0 0 0 −1 2 1 2









→









1 0 0 0 −1 −1 0

0 1 0 0 −2 0 −2

0 0 1 0 1 0 2

0 0 0 0 1 −1 1

0 0 0 0 3 1 5

0 0 0 1 −2 −1 −2








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→









1 0 0 0 −1 −1 0
0 1 0 0 −2 0 −2

0 0 1 0 1 0 2

0 0 0 1 −2 −1 −2

0 0 0 0 1 −1 1

0 0 0 0 3 1 5









→









1 0 0 0 0 −2 1
0 1 0 0 0 −2 0

0 0 1 0 0 1 1

0 0 0 1 0 −3 0

0 0 0 0 1 −1 1

0 0 0 0 0 4 2









→















1 0 0 0 0 0 2

0 1 0 0 0 0 1

0 0 1 0 0 0 1
2

0 0 0 1 0 0 3
2

0 0 0 0 1 0 3
2

0 0 0 0 0 1 1
2















. Hence I1 = 2, I2 = 1, I3 =
1
2 , I4 =

3
2 , I5 =

3
2 , I6 =

1
2 .

1.6 An Application to Chemical Reactions

2. Suppose xNH3 + yCuO→ zN2 +wCu+ vH2O where x, y, z, w and v are positive integers. Equating

the number of each type of atom on each side gives

N : x = 2z Cu : y = w

H : 3x = 2v O : y = v

Taking v = t these give y = t, w = t, x = 2
3 t and z = 1

2x = 1
3 t. The smallest value of t such that there

are all integers is t = 3, so x = 2, y = 3, z = 1 and v = 3. Hence the balanced reaction is

2NH3 +3CuO→ N2 +3Cu+3H2O

4. 15Pb(N3)2 +44Cr(MnO4)2→ 22Cr2O3 +88MnO2 +5Pb3O4 +90NO

Supplementary Exercises: Chapter 1

1. b. No. If the corresponding planes are parallel and distinct, there is no solution. Otherwise they

either coincide or have a whole common line of solutions.

2. b.

[

1 4 −1 1 2

3 2 1 2 5

1 −6 3 0 1
1 14 −5 2 3

]

→
[

1 4 −1 1 2

0 −10 4 −1 −1

0 −10 4 −1 −1
0 10 −4 1 1

]

→







1 0 6
10

6
10

16
10

0 1 − 4
10

1
10

1
10

0 0 0 0 0

0 0 0 0 0






.

Hence x3 = s, x4 = t are parameters, and the equations give x1 = 1
10(16− 6s− 6t) and x2 =

1
10(1+4s− t).

3. b.

[

1 1 3 a

a 1 5 4

1 a 4 a

]

→
[

1 1 3 a

0 1−a 5−3a 4−a2

0 a−1 1 0

]

→
[

1 1 3 a

0 1−a 5−3a 4−a2

0 0 3(2−a) 4−a2

]

.

If a = 1 the matrix is

[

1 1 3 1

0 0 2 3

0 0 3 3

]

→
[

1 1 3 0

0 0 1 1

0 0 0 1

]

, so there is no solution.
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If a = 2 the matrix is

[

1 1 3 2

0 −1 −1 0

0 0 0 0

]

→
[

1 0 2 2

0 1 1 0

0 0 0 0

]

, so x = 2−2t, y =−t, z = t.

If a 6= 1 and a 6= 2 there is a unique solution.
[

1 1 3 a

0 1−a 5−3a 4−a2

0 0 3(2−a) 4−a2

]

→
[

1 1 3 a

0 1 3a−5
a−1

a2−4
a−1

0 0 1 a+2
3

]

→
[

1 0 2
a−1

−a+4
a−1

0 1 3a−5
a−1

a2−4
a−1

0 0 1 a+2
3

]

→





1 0 0 −5a+8
3(a−1)

0 1 0 −a−2
3(a−1)

0 0 0 a+2
3



.

Hence x = 8−5a
3(a−1)

, y = −a−2
3(a−1)

, z = a+2
3 .

4. If R1 and R2 denote the two rows, then the following indicate how they can be interchanged using

row operations of the other two types:

[

R1

R2

]

→
[

R1 +R2

R2

]

→
[

R1 +R2

−R1

]

→
[

R2

−R1

]

→
[

R2

R1

]

Note that only one row operation of Type II was used — a multiplication by −1.

6. Substitute x = 3, y =−1 and z = 2 into the given equations. The result is

3−a+2c = 0

3b− c−6 = 1

3a−2+2b = 5

that is

a − 2c = 3

3b − c = 9

3a + 2b = 7

This system of linear equations for a, b and c has unique solution:
[

1 0 −2 3

0 3 −1 7

3 2 0 7

]

→
[

1 0 −2 3

0 3 −1 7

0 2 6 −2

]

→
[

1 0 −2 3

0 1 −7 9

0 2 6 −2

]

→
[

1 0 −2 3

0 1 −7 9

0 0 20 −20

]

→
[

1 0 0 1

0 1 0 2

0 0 1 −1

]

.

Hence a = 1, b = 2, c =−1.

8.

[

1 1 1 5

2 −1 −1 1
−3 2 2 0

]

→
[

1 1 1 5

0 −3 −3 −9
0 5 5 15

]

→
[

1 1 1 5

0 1 1 3
0 0 0 0

]

→
[

1 0 0 2

0 1 1 3
0 0 0 0

]

.

Hence the solution is x = 2, y = 3− t, z = t. Taking t = 3− i gives x = 2, y = i, z = 3− i, as required.

If the real system has a unique solution, the solution is real because all the calculations in the

gaussian algorithm yield real numbers (all entries in the augmented matrix are real).





2. Matrix Algebra

2.1 Matrix Addition, Scalar Multiplication, and

Transposition

1. b. Equating entries gives four linear equations: a−b = 2, b− c = 2, c−d =−6, d−a = 2. The

solution is a =−2+ t, b =−4+ t, c =−6+ t, d = t.

d. Equating coefficients gives: a = b, b = c, c = d, d = a. The solution is a = b = c = d = t, t

arbitrary.

2. b. 3
[

3

−1

]

−5
[

6

2

]

+7
[

1

−1

]

=
[

9

−3

]

−
[

30

10

]

+
[

7

−7

]

=
[

9−30+7

−3−10−7

]

=
[

−14

−20

]

d. [ 3 −1 2 ]−2 [ 9 3 4 ]+ [ 3 11 −6 ] = [ 3 −1 2 ]− [ 18 6 8 ]+ [ 3 11 −6 ]
= [ 3−18+3 −1−6+11 2−8−6 ] = [ −12 4 −12 ]

f.

[

0 −1 2

1 0 −4

−2 4 0

]T

=

[

0 1 −2

−1 0 4

2 −4 0

]

h. 3
[

2 1

−1 0

]T

−2
[

1 −1

2 3

]

= 3
[

2 −1

1 0

]

−2
[

1 −1

2 3

]

=
[

6 −3

3 0

]

−
[

2 −2

4 6

]

=
[

4 −1

−1 −6

]

3. b. 5C−5
[

3 −1

2 0

]

=
[

15 −5

10 0

]

d. B+D is not defined as B is 2×3 while D is 3×2.

f. (A+C)T =
[

2+3 1−1

0+2 −1+0

]T

=
[

5 0

2 −1

]T

=
[

5 2

0 −1

]

h. A−D is not defined as A is 2×2 while D is 3×2.

4. b. Given 3A+
[

2

1

]

= 5A−2
[

3

0

]

, subtract 3A from both sides to get
[

2

1

]

= 2A−2
[

3

0

]

. Now

add 2
[

3

0

]

to both sides: 2A =
[

2

1

]

+ 2
[

3

0

]

=
[

8

1

]

. Finally, multiply both sides by 1
2 :

A = 1
2

[

8

1

]

=
[

4
1
2

]

.

5. b. Given 2A−B = 5(A+2B), add B to both sides to get

2A = 5(A+2B)+B = 5A+10B+B = 5A+11B

Now subtract 5A from both sides: −3A = 11B. Multiply by −1
3 to get A =−11

3 B.

13
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6. b. Given
4X +3Y = A

5X +4Y = B
, subtract the first from the second to get X +Y = B−A. Now subtract 3

times this equation from the first equation: X = A−3(B−A) = 4A−3B. Then X +Y = B−A

gives Y = (B−A)−X = (B−A)− (4A−3B) = 4B−5A.

Note that this also follows from the Gaussian Algorithm (with matrix constants):

[

4 3 A

5 4 B

]

→
[

5 4 B

4 3 A

]

→
[

1 1 B−A

4 3 A

]

→
[

1 1 B−A

0 −1 5A−4B

]

→
[

1 0 4A−3B

0 1 4B−5A

]

7. b. Given 2X −5Y =
[

1 2
]

let Y = T where T is an arbitrary 1×2 matrix. Then 2X = 5T +
[

1 2
]

so X = 5
2T + 1

2

[

1 2
]

, Y = T . If T =
[

s t
]

, this gives X =
[

5
2s+ 1

2
5
2t +1

]

,

Y =
[

s t
]

, where s and t are arbitrary.

8. b. 5[3(A−B+2C)−2(3C−B)−A]+2[3(3A−B+C)+2(B−2A)−2C]
= 5[3A−3B+6C−6C+2B−A]+2[9A−3B+3C+2B−4A−2C]
= 5[2A−B]+2[5A−B+C]
= 10A−5B+10A−2B+2C

= 20A−7B+2C

9. b. Write A =
[

a b

c d

]

. We want p, q, r and s such that

[

a b

c d

]

= p
[

1 0

0 1

]

+q
[

1 1

0 0

]

+ r
[

1 0

1 0

]

+ s
[

0 1

1 0

]

=
[

p+q+ r q+ s

r+ s p

]

Equating components give four linear equations in p, q, r and s:

p + q + r = a

q + s = b

r + s = c

p = d

The solution is p = d, q = 1
2(a+b− c−d), r = 1

2(a−b+ c−d), s = 1
2(−a+b+ c+d).

11. b. A+A′ = 0

−A+(A+A′) = −A+0 (add −A to both sides)

(−A+A)+A′ = −A+0 (associative law

0+A′ = −A+0 (definition of −A)

A′ = −A (property of 0)

13. b. If A =





a1 0 · · · 0

0 a2 · · · 0

.

.

.
.
.
.

.

.

.

0 0 · · · an



 and B =





b1 0 · · · 0

0 b2 · · · 0

.

.

.
.
.
.

.

.

.

0 0 · · · bn



,

then A−B =





a1−b1 0 · · · 0

0 a2−b2 · · · 0

.

.

.
.
.
.

.

.

.

0 0 · · · an−bn



 so A−B is also diagonal.

14. b.
[

s t

st 1

]

is symmetric if and only if t = st; that is t(s−1) = 0; that is s = 1 or t = 0.
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d. This matrix is symmetric if and only if 2s = s, 3 = t, 3 = s+ t; that is s = 0 and t = 3.

15. b.
[

8 0

3 1

]

=
(

3AT +2
[

1 0

0 2

])T

= (3AT )T +
(

2
[

1 0

0 2

])T

= 3A+
[

2 0

0 4

]

.

Hence 3A =
[

8 0

3 1

]

−
[

2 0

0 4

]

=
[

6 0

3 −3

]

, so A = 1
3

[

6 0

3 −3

]

=
[

2 0

1 −1

]

.

d. 4A−9
[

1 1

−1 0

]

= (2AT )T −
(

5
[

1 0

−1 2

])T

= 2A−5
[

1 −1

0 2

]

.

Hence 2A =
[

9 9

−9 0

]

−
[

5 −5

0 10

]

=
[

4 14

−9 −10

]

.

Finally A = 1
2

[

4 14

−9 10

]

=
[

2 7

− 9
2 −5

]

.

16. b. We have AT = A as A is symmetric. Using Theorem 2.1.2: (kA)T = kAT = kA; so kA is

symmetric.

19. b. False. Take B =−A for any A 6= 0.

d. True. The entries on the main diagonal do not change when a matrix is transposed.

f. True. Assume that A and B are symmetric, that is AT = A and BT = B. Then Theorem 2.1.2

gives

(kA+mB)T = (kA)T +(mB)T = kAT +mBT = kA+mB

for any scalars k and m. This shows that the matrix kA+mB is symmetric.

20. c. If A = S+W as in (b), then AT = ST +W T = S−W . Hence A+AT = 2S and A−AT = 2W ,

so S = 1
2(A+AT ) and W = 1

2(A−AT ).

22. b. If A = [ai j] then (kp)A = [(kp)ai j] = [k(pai j)] = k[pai j] = k(pA).

2.2 Matrix-Vector Multiplication

1. b. x1 − 3x2 − 3x3 + 3x4 = 5

8x2 + 2x4 = 1

x1 + 2x2 + 2x3 + = 2

x2 + 2x3 − 5x4 = 0

2. b. x1

[

1

−1

2

3

]

+ x2

[ −2

0

−2

−4

]

+ x3

[ −1

1

7

9

]

+ x4

[

1

−2

0

−2

]

=

[

5

−3

8

12

]

3. b. By Definition 2.4:

Ax =
[

1 2 3

0 −4 5

]

[

x1

x2

x3

]

= x1

[

1

0

]

+ x2

[

2

−4

]

+ x3

[

3

5

]

=
[

x1 +2x2 +3x3

−4x2 +5x3

]

By Theorem 2.2.5: Ax =
[

1 2 3

0 −4 5

]

[

x1

x2

x3

]

=
[

1 ·x1 +2 ·x2 +3 ·x3

0 ·x1 +(−4) ·x2 +5 ·x3

]

=
[

x1 +2x2 +3x3

−4x2 +5x3

]
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d. By Definition 2.4:

Ax =

[

3 −4 1 6

0 2 1 5

−8 7 −3 0

]

[

x1

x2

x3

x4

]

= x1

[

3

0

−8

]

+ x2

[

−4

2

7

]

+ x3

[

1

1

−3

]

+ x4

[

6

5

0

]

=

[

3x1−4x2 + x3 +6x4

2x2 + x3 +5x4

−8x1 +7x2−3x3

]

By Theorem 2.2.5:

Ax =

[

3 −4 1 6

0 2 1 5

−8 7 −3 0

]

[

x1

x2

x3

x4

]

=

[

3 ·x1 +(−4) ·x2 +1 ·x3 +6 ·x4

0 ·x1 +2 ·x2 +1 ·x3 +5 ·x4

(−8) ·x1 +7 ·x2 +(−3) ·x3 +0 ·x4

]

=

[

3x1−4x2 + x3 +6x4

2x2 + x3 +5x4

−8x1 +7x2−3x3

]

5. b.

[

1 −1 −4 −4

1 2 5 2
1 1 2 0

]

→
[

1 −1 −4 −4

0 3 9 6
0 2 6 4

]

→
[

1 0 −1 −2

0 1 3 2
0 0 0 0

]

. Hence x = t − 2, y = 2− 3t,

z = t; that is

[

x

y

z

]

=

[

−2+ t

2−3t

t

]

=

[

−2

2

0

]

+ t

[

1

−3

1

]

.

Observe that

[

−2

2

0

]

is a solution to the given system of equations, and

[

1

−3

1

]

is a solution to

the associated homogeneous system.

d.

[

2 1 −1 −1 −1

3 1 1 −2 −2

−1 −1 2 1 2

−2 −1 0 2 3

]

→
[

1 1 −2 1 −2

0 −1 3 1 3

0 −2 7 1 4

0 1 −4 0 −1

]

→
[

1 0 1 0 1

0 1 −3 −1 −3

0 0 1 −1 −2

0 0 −1 1 2

]

→
[

1 0 0 1 3

0 1 0 −4 −9

0 0 1 −1 −2

0 0 0 0 0

]

.

Hence x1 = 3− t, x2 = 4t−9, x3 = t−2, x4 = t,

so

[

x1

x2

x3

x4

]

=

[

3− t

−9+4t

−2+ t

t

]

=

[

3

−9
−2

0

]

+ t

[ −1

4
1

1

]

.

Here

[

3

−9

−2

0

]

is a solution to the given equations, and

[ −1

4

1

1

]

is a solution to the associated

homogeneous equations.

6. To say that x0 and x1 are solutions to the homogeneous system Ax = 0 of linear equations means

simply that Ax0 = 0 and Ax1 = 0. If sx0 + tx1 is any linear combination of x0 and x1, we compute:

A(sx0 + tx1) = A(sx0)+A(tx1) = s(Ax0)+ t(Ax1) = s0+ t0 = 0

using Theorem 2.2.2. This shows that sx0 + tx1 is also a solution to Ax = 0.

8. b. The reduction of the augmented matrix is
[

1 −2 1 2 3 −4
3 6 −2 −3 −11 11

−2 4 −1 1 −8 7

−1 2 0 3 −5 3

]

→
[

1 −2 0 0 5 −3
0 0 1 0 −2 −1

0 0 0 1 0 0

0 0 0 0 0 0

]

so x =





−3+2s−5t

s

−1+2t

0

t





is the general solution. Hence x =





−3
0

−1

0

0



+



s





2
1

0

0

0



+ t





−5
0

2

0

1







 is the desired expression.

10. b. False.
[

1 2

2 4

][

2

−1

]

=
[

0

0

]

has a zero entry, but
[

1 2

2 4

]

has no zero row.

d. True. The linear combination x1a1 + · · ·+ xnan equals Ax where, by Theorem 2.2.1,

A =
[

a1 · · · an

]

is the matrix with these vectors ai as its columns.
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f. False. If A =
[

1 1 −1

2 2 0

]

and x =

[

2

0

1

]

then Ax =
[

1

4

]

, and this is not a linear combination

of
[

1

2

]

and
[

1

2

]

because it is not a scalar multiple of
[

1

2

]

.

h. False. If A =
[

1 −1 1

−1 1 −1

]

, there is a solution

[

1

2
1

]

for b =
[

0

0

]

. But there is no solution

for b =
[

1

0

]

. Indeed, if
[

1 −1 1

−1 1 −1

]

[

x

y

z

]

=
[

1

0

]

then x− y+ z = 1 and −x+ y− z = 0.

This is impossible.

11. b. If
[

x

y

]

is reflected in the line y = x the result is
[

y

x

]

; see the diagram for Example 2.4.12. In

other words, T
[

x

y

]

=
[

y

x

]

=
[

0 1

1 0

][

x

y

]

. So T has matrix
[

0 1

1 0

]

.

d. If
[

x

y

]

is rotated clockwise through π
2 the result is

[

y

−x

]

; see Example 2.2.14. Hence

T
[

x

y

]

=
[

y

−x

]

=
[

0 1

−1 0

][

x

y

]

so T has matrix
[

0 1

−1 0

]

.

13. b. The reflection of

[

x

y

z

]

in the yz-plane keeps y and z the same and negates x. Hence

T

[

x

y

z

]

=

[

−x

y

z

]

=

[

−1 0 0

0 1 0

0 0 1

][

x

y

z

]

, so the matrix is

[

−1 0 0

0 1 0

0 0 1

]

.

16. Write A =
[

a1 a2 · · · an

]

where ai is column i of A for each i. If b = x1a1 + x2a2 + · · ·+ xnan

where the xi are scalars, then Ax = b by Theorem 2.2.1 where x =
[

x1 x2 · · · xn

]T
; that is x is

a solution to the system Ax = b.

18. b. We are given that x1 and x2 are solutions to Ax = 0; that is Ax1 = 0 and Ax2 = 0. If t is any

scalar then, by Theorem 2.2.2, A(tx1) = t(Ax1) = t0 = 0. That is, tx1 is a solution to Ax = 0.

22. Let A =
[

a1 a2 · · · an

]

where ai is column i of A for each i, and write x=
[

x1 x2 · · · xn

]T

and y =
[

y1 y2 · · · yn

]T
. Then

x+y =
[

x1 + y1 x2 + y2 · · · xn + yn

]T

Hence we have

A(x+y) = (x1 + y1)a1 +(x2 + y2)a2 + · · ·+(xn + yn)an Definition 2.4

= (x1a1 + y1a1)+(x2a2 + y2a2)+ · · ·+(xnan + ynan) Theorem 2.1.1

= (x1a1 + x2a2 + · · ·+ xnan)+(y1a1 + y2a2 + · · ·+ ynan) Theorem 2.1.1

= Ax + Ay Definition 2.4
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2.3 Matrix Multiplication

1. b.
[

1 −1 2

2 0 4

]

[

2 3 1

1 9 7

−1 0 2

]

=
[

2−1−2 3−9+0 1−7+4

4+0−4 6+0+0 2+0+8

]

=
[

−1 −6 −2

0 6 10

]

d. [ 1 3 −3 ]

[

3 0

−2 1

0 6

]

= [ 3−6+0 0+3−18 ] = [ −3 −15 ]

f. [ 1 −1 3 ]

[

2

1

−8

]

= [ 2−1−24 ] = [ −23 ]

h.
[

3 1

5 2

][

2 −1

−5 3

]

=
[

6−5 −3+3

10−10 −5+6

]

=
[

1 0

0 1

]

j.

[

a 0 0

0 b 0

0 0 c

][

a′ 0 0

0 b′ 0

0 0 c′

]

=

[

aa′+0+0 0+0+0 0+0+0

0+0+0 0+bb′+0 0+0+0

0+0+0 0+0+0 0+0+ cc′

]

=

[

aa′ 0 0

0 bb′ 0

0 0 cc′

]

2. b. A2, AB, BC and C2 are all undefined. The other products are

BA =
[

−1 4 −10

1 2 4

]

, B2 =
[

7 −6

−1 6

]

, CB =

[

−2 12

2 −6

1 6

]

, AC =
[

4 10

−2 −1

]

,

CA =

[

2 4 8

−1 −1 −5

1 4 2

]

.

3. b. The given matrix equation becomes
[

2a+a1 2b+b1

−a+2a1 −b+2b1

]

=
[

7 2

−1 4

]

.

Equating coefficients gives linear equations

2a+a1 = 7 2b+b1 = 2

−a+2a1 =−1 −b+2b1 = 4

The solution is: a = 3, a1 = 1; b = 0, b1 = 2.

4. b. A2−A−6I =
[

8 2

2 5

]

−
[

2 2

2 −1

]

−
[

6 0

0 6

]

=
[

0 0

0 0

]

5. b. A(BC) =
[

1 −1
0 1

][

−9 −16
5 1

]

=
[

−14 −17
5 1

]

=
[

−2 −1 −2
3 1 0

]

[

1 0

2 1

5 8

]

= (AB)C

6. b. If A =
[

a b

c d

]

then A
[

0 0

1 0

]

=
[

0 0

1 0

]

A becomes
[

b 0

d 0

]

=
[

0 0

a b

]

whence b = 0 and

a = d. Hence A has the form A =
[

a 0

c a

]

, as required.

7. b. If A is m×n and B is p×q then n = p because AB can be formed and q = m because BA can

be formed. So B is n×m, A is m×n.

8. b.
[

1 0

0 1

]

,
[

1 0

0 −1

]

,
[

1 1

0 −1

]

(i)
[

1 0

0 0

]

,
[

1 0

0 1

]

,
[

1 1

0 0

]

(ii)

12. b. Write A =
[

P X

0 Q

]

where P
[

1 −1

0 1

]

, X =
[

2 −1

0 0

]

, and Q =
[

−1 1

0 1

]

. Then PX +XQ =
[

2 −1

0 0

]

+
[

−2 1

0 0

]

= 0, so A2 =
[

P2 PX +XQ

0 Q2

]

=
[

P2 0

0 Q2

]

. Then
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A4 =
[

P2 0

0 Q2

][

P2 0

0 Q2

]

=
[

P4 0

0 Q4

]

, A6 = A4A2 =
[

P6 0

0 Q6

]

, . . . ; in general we claim that

A2k =
[

P2k 0

0 Q2k

]

for k = 1, 2, . . . (∗)

This holds for k = 1; if it holds for some k ≥ 1 then

A2(k+1) = A2kA2 =
[

P2k 0

0 Q2k

][

P2 0

0 Q2

]

=
[

P2(k+1) 0

0 Q2(k+1)

]

Hence (∗) follows by induction in k.

Next P2 =
[

1 −2

0 1

]

, P3 =
[

1 −3

0 1

]

, and we claim that

Pm =
[

1 −m

0 1

]

for m = 1, 2, . . . (∗∗)

It is true for m = 1; if it holds for some m≥ 1, then

Pm+1 = PmP =
[

1 −m

0 1

][

1 −1

0 1

]

=
[

1 −(m+1)
0 1

]

which proves (∗∗) by induction.

As to Q, Q2 = I so Q2k = I for all k. Hence (∗) and (∗∗) gives

A2k =
[

P2k 0

0 I

]

=

[

1 −2k 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]

for k ≥ 1

Finally

A2k+1 = A2k ·A =
[

P2k 0

0 I

][

P X

0 Q

]

=
[

P2k+1 P2kX

0 Q

]

=

[

1 −(2k+1) 2 −1

0 1 0 0

0 0 −1 1

0 0 0 1

]

13. b.
[

I X

0 I

][

I −X

0 I

]

=
[

I2 +X0 −IX +XI

0I + I0 −0X + I2

]

=
[

I 0

0 I

]

= I2k

d. [ I XT ] [ −X I ]T = [ I XT ]
[

−XT

I

]

=−IXT +XT I = Ok

f.
[

0 X

I 0

]2
=
[

0 X

I 0

][

0 X

I 0

]

=
[

X 0

0 X

]

[

0 X

I 0

]3
=
[

0 X

I 0

][

X 0

0 X

]

=
[

0 X2

X 0

]

[

0 X

I 0

]4
=
[

0 X

I 0

][

0 X2

X 0

]

=
[

X2 0

0 X2

]

Continue. We claim that
[

0 X

I 0

]2m

=
[

Xm 0

0 Xm

]

for m≥ 1. It is true if m = 1 and, if it holds

for some m, we have

[

0 X

I 0

]2(m+1)
=
[

0 X

I 0

]2m [
0 X

I 0

]2
=
[

Xm 0

0 Xm

][

X 0

0 X

]

=
[

Xm+1 0

0 Xm+1

]

Hence the result follows by induction on m. Now

[

0 X

I 0

]2m+1
=
[

0 X

I 0

]2m [
0 X

I 0

]

=
[

Xm 0

0 Xm

][

0 X

I 0

]

=
[

0 Xm+1

Xm 0

]

for all m≥ 1. It also holds for m = 0 if we take X0 = I.
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14. b. If YA = 0 for all 1×m matrices Y , let Yi denote row i of Im. Then row i of ImA = A is YiA = 0.

Thus each row of A is zero, so A = 0.

16. b. A(B+C−D)+B(C−A+D)− (A+B)C +(A−B)D = AB+AC−AD+BC−BA+BD−
AC−BC+AD−BD = AB−BA.

d. (A−B)(C−A)+(C−B)(A−C)+(C−A)2 = [(A−B)− (C−B)+(C−A)](C−A) = 0(C−
A) = 0.

18. b. We are given that AC =CA, so (kA)C = k(AC) = k(CA) =C(kA), using Theorem 2.3.3. Hence

kA commutes with C.

20. Since A and B are symmetric, we have AT = A and BT = B. Then Theorem 2.3.3 gives (AB)T =
BT AT = BA. Hence (AB)T = AB if and only if BA = AB.

22. b. Let A =

[

a x y

x b z

y z c

]

. Then the entries on the main diagonal of A2 are a2+x2 +y2, x2+b2 +z2,

y2 + z2 + c2. These are all zero if and only if a = x = y = b = z = c = 0; that is if and only if

A = 0.

24. If AB = 0 where A 6= 0, suppose BC = I for some matrix C. Left multiply this equation by A to get

A = AI = A(BC) = (AB)C = 0C = 0, a contradiction. So no such matrix C exists.

26. We have A =

[

1 0 1 0

1 0 0 1

0 0 0 1

1 1 0 0

]

, and hence A3 =

[

2 1 1 1

3 0 2 2

2 0 1 1

3 1 2 1

]

. Hence there are 3 paths of length 3

from v1 to v4 because the (4, 1)-entry of A3 is 3. Similarly, the fact that the (3, 2)-entry of A3 is 0

means that there are no paths of length 3 from v2 to v3.

27. b. False. If A =
[

1 0

0 0

]

= J then AJ = A, but J 6= I.

d. True. Since A is symmetric, we have AT =A. Hence Theorem 2.1.2 gives (I+A)T = IT +AT =
I +A. In other words, I +A is symmetric.

f. False. If A =
[

0 1

0 0

]

then A 6= 0 but A2 = 0.

h. True. We are assuming that A commutes with A+B, that is A(A+B) = (A+B)A. Multiplying

out each side, this becomes A2+AB = A2+BA. Subtracting A2 from each side gives AB = BA;

that is A commutes with B.

j. False. Let A =
[

2 4
1 2

]

and B =
[

1 −2
−2 4

]

. Then AB = 0 is the zero matrix so both columns

are zero. However B has no zero column.

l. False. Let A =
[

1 −2

−2 4

]

and B =
[

2 4

1 2

]

as above. Again AB = 0 has both rows zero, but A

has no row of zeros.

28. b. If A = [ai j] the sum of the entries in row i is ∑n
j=1 ai j = 1. Similarly for B = [bi j]. If AB =

C = [ci j] then ci j is the dot product of row i of A with column j of B, that is ci j = ∑n
k=1 aikbk j.

Hence the sum of the entries in row i of C is

n

∑
j=1

ci j =
n

∑
j=1

n

∑
k=1

aikbk j =
n

∑
k=1

aik

(

n

∑
j=1

bk j

)

=
n

∑
k=1

aik ·1 = 1
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Easier Proof: Let X be the n×1 column matrix with every entry equal to 1. Then the entries

of AX are the row sums of A, so these all equal 1 if and only if AX = X . But if also BX = X

then (AB)X = A(BX) = AX = X , as required.

30. b. If A = [ai j] then the trace of A is the sum of the entries on the main diagonal, that is tr A =
a11 +a22 + · · ·+ann. Now the matrix kA is obtained by multiplying every entry of A by k, that

is kA = [kai j]. Hence

tr (kA) = ka11 + ka22 + · · ·+ kann = k(a11 +a22 + · · ·+ann) = k tr A

e. If A = [ai j] the transpose AT is obtained by replacing each entry ai j by the entry a ji directly

across the main diagonal. Hence, write AT = [a′i j] where a′i j = a ji for all i and j. Let bi denote

the (i, i)-entry of AAT . Then bi is the dot product of row i of A and column i of AT , that is

bi = ∑n
k=1 aika′ki = ∑n

k=1 aikaik = ∑n
k=1 a2

ik. Hence we obtain

tr (AAT ) =
n

∑
i=1

bi =
n

∑
i=1

(

n

∑
k=1

a2
ik

)

=
n

∑
i=1

n

∑
k=1

a2
ik

This is what we wanted.

32. e. We have Q = P+AP−PAP so, since P2 = P,

PQ = P2 +PAP−P2AP = P+PAP−PAP = P

Hence Q2 = (P+AP−PAP)Q = PQ+APQ−PAPQ = P+AP−PAP = Q.

34. b. We always have

(A+B)(A−B) = A2 +BA−AB−B2

If AB = BA, this gives (A+B)(A−B) = A2−B2. Conversely, suppose that (A+B)(A−B) =
A2−B2. Then

A2−B2 = A2 +BA−AB−B2

Hence 0 = BA−AB, whence AB = BA.

35. b. Denote B =
[

b1 b2 · · · bn

]

=
[

b j

]

where b j is column j of B. Then Definition 2.9

asserts that

AB =
[

Ab1 Ab2 · · · Abn

]

=
[

Ab j

]

,

that is column j of AB is Ab j for each j. Note that multiplying a matrix by a scalar a is the

same as multiplying each column by a. This, with Definition 2.9 and Theorem 2.2.2, gives

a(AB) = a[Ab j] Definition 2.9

= [a(Ab j)] Scalar Multiplication

= [A(ab j)] Theorem 2.2.2

= A(aB) Definition 2.9

Similarly,

a(AB) = a[Ab j] Definition 2.9
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= [a(Ab j)] Scalar Multiplication

= [(aA)b j)] Theorem 2.2.2

= (aA)B Definition 2.9

This proves that a(AB) = A(aB) = (aA)B, as required.

36. See the article in the mathematics journal Communications in Algebra, Volume 25, Number 7

(1997), pages 1767 to 1782.

2.4 Matrix Inverses

2. In each case we need row operations that carry A to I; these same operations carry I to A−1. In short
[

A I
]

→
[

I A−1
]

. This is called the matrix inversion algorithm.

b. We begin by subtracting row 2 from row 1.
[

4 1

3 2 |
1 0

0 1

]

→
[

1 −1 1 −1

3 2 0 1

]

→
[

1 −1 1 −1

0 5 −3 4

]

→
[

1 −1 1 −1

0 1 − 3
5

4
5

]

→
[

1 0 2
5 − 1

5

0 1 − 3
5

4
5

]

. Hence the inverse is 1
5

[

2 −1

−3 4

]

.

d.

[

1 −1 2 1 0 0

−5 7 −11 0 1 0

−2 3 −5 0 0 1

]

→
[

1 −1 2 1 0 0

0 2 −1 5 1 0

0 1 −1 2 0 1

]

→
[

1 0 1 3 0 1

0 1 −1 2 0 1

0 0 1 1 1 −2

]

→
[

1 0 0 2 −1 3

0 1 0 3 1 −1

0 0 1 1 1 −2

]

. So A−1 =

[

2 −1 3

3 1 −1

1 1 −2

]

.

f.

[

3 1 −1 1 0 0

2 1 0 0 1 0

1 5 −1 0 0 1

]

→
[

1 0 −1 1 −1 0

2 1 0 0 1 0

1 5 −1 0 0 1

]

→
[

1 0 −1 1 −1 0

0 1 2 −2 3 0

0 5 0 −1 1 1

]

→
[

1 0 −1 1 −1 0
0 1 2 −2 3 0

0 0 −10 9 −14 1

]

→
[

1 0 0 1
10 − 4

10
1
10

0 1 0 − 2
10

2
10

2
10

0 0 1 − 9
10

14
10 − 1

10

]

. Hence A−1 = 1
10

[

1 4 −1
−2 2 2

−9 14 −1

]

.

h. We begin by subtracting row 2 from twice row 1:
[

3 1 −1 1 0 0

5 2 0 0 1 0

1 1 −1 0 0 1

]

→
[

1 0 −2 2 −1 0

5 2 0 0 1 0

1 1 −1 0 0 1

]

→
[

1 0 −2 2 −1 0

0 2 10 −10 6 0

0 1 1 −2 1 1

]

→
[

1 0 −2 2 −1 0

0 1 5 −5 3 0

0 0 −4 3 −2 1

]

→
[

1 0 −2 2 −1 0

0 1 5 −5 3 0

0 0 1 − 3
4

2
4 − 1

4

]

→
[

1 0 0 2
4 0 − 2

4

0 1 0 − 5
4

2
4

5
4

0 0 1 − 3
4

2
4 − 1

4

]

.

Hence A−1 = 1
4

[

2 0 −2

−5 2 5

−3 2 −1

]

.

j.

[ −1 4 5 2 1 0 0 0

0 0 0 −1 0 1 0 0

1 −2 −2 0 0 0 1 0

0 −1 −1 0 0 0 0 1

]

→
[

1 −4 −5 −2 −1 0 0 0

0 0 0 1 0 −1 0 0

0 2 3 2 1 0 1 0

0 1 1 0 0 0 0 −1

]

→
[

1 −4 −5 −2 −1 0 0 0

0 1 1 0 0 0 0 −1

0 2 3 2 1 0 1 0

0 0 0 1 0 −1 0 0

]

→
[

1 0 −1 −2 −1 0 0 −4

0 1 1 0 0 0 0 −1

0 0 1 2 1 0 1 2

0 0 0 1 0 −1 0 0

]
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→
[

1 0 0 0 0 0 1 −2

0 1 0 −2 −1 0 −1 −3

0 0 1 2 1 0 1 2

0 0 0 1 0 −1 0 0

]

→
[

1 0 0 0 0 0 1 −2

0 1 0 0 −1 −2 −1 −3

0 0 1 0 1 2 1 2

0 0 0 1 0 −1 0 0

]

.

Hence A−1 =

[

0 0 1 −2

−1 −2 −1 −3

1 2 1 2

0 −1 0 0

]

.

l.





1 2 0 0 0 1 0 0 0 0

0 1 3 0 0 0 1 0 0 0

0 0 1 5 0 0 0 1 0 0

0 0 0 1 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1



→





1 0 0 0 0 1 −2 6 −30 210

0 1 0 0 0 0 1 −3 15 −105

0 0 1 0 0 0 0 1 −5 35

0 0 0 1 0 0 0 0 1 −7

0 0 0 0 1 0 0 0 0 1



.

Hence A−1 =





1 −2 6 −30 210

0 1 −3 15 −105

0 0 1 −5 35
0 0 0 1 −7

0 0 0 0 1



.

3. b. The equations are Ax = b where A =
[

2 −3

1 −4

]

, x =
[

x

y

]

, b =
[

0

1

]

. We have (by the algo-

rithm or Example 2.4.4) A−1 = 1
5

[

4 −3

1 −2

]

. Left multiply Ax = b by A−1 to get

x = A−1Ax = A−1b = 1
5

[

4 −3

1 −2

][

0

1

]

= 1
5

[

−3

−2

]

Hence x =−3
5 and y =−2

5 .

d. Here A =

[

1 4 2
2 3 3

4 1 4

]

, x =

[

x

y

z

]

, b =

[

1
−1

0

]

.

By the algorithm, A−1 = 1
5

[

9 −14 6

4 −4 1

−10 15 −5

]

.

1
5

[

9 −14 6

4 −4 1

−10 15 −5

][

1

−1

0

]

=

[

23
5
8
5

−5

]

The equations have the form Ax = b, so left multiplying by A−1 gives

x = A−1(Ax) = A−1b = 1
5

[

9 −14 6
9 −4 1

−10 15 −5

][

1
−1

0

]

= 1
5

[

23
8

−25

]

Hence x = 23
5 , y = 8

5 , and z =−25
5 =−5.

4. b. We want B such that AB = P where P =

[

1 −1 2

0 1 1

1 0 0

]

. Since A−1 exists left multiply this

equation by A−1 to get B = A−1(AB) = A−1P. [This B will satisfy our requirements because

AB = A(A−1P) = IP = P]. Explicitly

B = A−1P =

[

1 −1 3

2 0 5

−1 1 0

][

1 −1 2

0 1 1

1 0 0

]

=

[

4 −2 1

7 −2 4

−1 2 −1

]

5. b. By Example 2.4.4, we have (2A)T =
[

1 −1
2 3

]−1
= 1

5

[

3 1
−2 1

]

. Since (2A)T = 2AT , we get

2AT = 1
5

[

3 1

−2 1

]

so AT = 1
10

[

3 1

−2 1

]

. Finally

A = (AT )T = 1
10

[

3 1
−2 1

]T

= 1
10

[

3 −2
1 1

]
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d. We have (I−2AT )−1 =
[

2 1

1 1

]

so (because (U−1)−1 =U for any invertible matrix U )

(I−2AT ) =
[

2 1

1 1

]−1
=
[

1 −1

−1 2

]

Thus 2AT = I−
[

1 −1

−1 2

]

=
[

1 0

0 1

]

−
[

1 −1

−1 2

]

=
[

0 1

1 −1

]

.

This gives AT = 1
2

[

0 1

1 −1

]

, so

A = (AT )T = 1
2

[

0 1

1 −1

]T

= 1
2

[

0 1

1 −1

]

f. Given
([

1 0

2 1

]

A
)−1

=
[

1 0

2 2

]

, take inverses to get

[

1 0

2 1

]

A =
[

1 0

2 2

]−1
= 1

2

[

2 0

−2 1

]

Now
[

1 0

2 1

]−1
=
[

1 0

−2 1

]

, so left multiply by this to obtain

A =
[

1 0

−2 1

](

1
2

[

2 0

−2 1

])

= 1
2

[

2 0

−6 1

]

h. Given (A−1−2I)T =−2
[

1 1

1 0

]

, take transposes to get

A−1−2I =
(

−2
[

1 1

1 0

])T

=−2
[

1 1

1 0

]T

=−2
[

1 1

1 0

]

Hence A−1 = 2I−2
[

1 1

1 0

]

=
[

2 0

0 2

]

−2
[

1 1

1 0

]

=
[

0 −2

−2 2

]

= 2
[

0 −1

−1 1

]

. Finally

A = (A−1)−1 =
(

2
[

0 −1
−1 1

])−1
= 1

2

[

0 −1
−1 1

]−1
= 1

2

(

1
−1

[

1 1
1 0

])

= −1
2

[

1 1
1 0

]

6. b. Have A = (A−1)−1 =

[

0 1 −1

1 2 1

1 0 1

]−1

= 1
2

[

2 −1 3

0 1 −1

−2 1 −1

]

by the algorithm.

8. b. The equations are A
[

x

y

]

=
[

7
1

]

and
[

x

y

]

= B
[

x′

y′

]

where A =
[

3 4
4 5

]

and B =
[

−5 4
4 −3

]

.

Thus B = A−1 (by Example 2.4.4) so the substitution gives
[

7

1

]

= A
[

x

y

]

= AB
[

x′

y′

]

=

I
[

x′

y′

]

=
[

x′

y′

]

. Thus x′ = 7, y′ = 1 so
[

x

y

]

= B
[

7

1

]

=
[

−5 4

4 −3

][

7

1

]

=
[

−31

25

]

.

9. b. False. A =
[

1 0
0 1

]

and B =
[

1 0
0 −1

]

are both invertible, but A+B =
[

2 0
0 0

]

is not.

d. True. If A4 = 3I then A(1
3A3) = I = (1

3A3)A, so A−1 = 1
3A3.

f. False. Take A =
[

1 0

0 0

]

and B =
[

1 0

0 0

]

. Then AB = B and B 6= 0, but A is not invertible by

Theorem 2.4.5 since Ax = 0 where x =
[

0
1

]

.



2.4. Matrix Inverses 25

h. True. Since A2 is invertible, let (A2)B = I. Thus A(AB) = I, so AB is the inverse of A by

Theorem 2.4.5.

10. b. We are given C−1 = A, so C = (C−1)−1 = A−1. Hence CT = (A−1)T . This also has the form

CT = (AT )−1 by Theorem 2.4.4. Hence (CT )−1 = AT .

11. b. If a solution x to Ax = b exists, it can be found by left multiplication by C: CAx=Cb, Ix=Cb,

x =Cb.

(i) x =Cb =
[

3

0

]

here but x =
[

3

0

]

is not a solution. So no solution exists.

(ii) x =Cb =
[

2

−1

]

in this case and this is indeed a solution.

15. b. B2 =
[

0 −1
1 0

][

0 −1
1 0

]

=
[

−1 0
0 −1

]

so B4 = (B2)2 =
[

1 0
0 1

]

= I.

Thus B ·B3 = I = B3B, so B−1 = B3 = B2B =
[

−1 0

0 −1

][

0 −1

1 0

]

=
[

0 1

−1 0

]

.

16. We use the algorithm:
[

1 0 1 1 0 0

c 1 c 0 1 0

3 c 2 0 0 1

]

→
[

1 0 1 1 0 0

0 1 0 −c 1 0

0 c −1 −3 0 1

]

→
[

1 0 1 1 0 0

0 1 0 −c 1 0

0 0 −1 c2−3 −c 1

]

→
[

1 0 0 c2−2 −c 1

0 1 0 −c 1 0

0 0 1 3− c2 c −1

]

. Hence

[

1 0 1

c 1 c

3 c 2

]−1

=

[

c2−2 −c 1

−c 1 0

3− c2 c −1

]

for all values of c.

18. b. Suppose column j of A consists of zeros. Then Ay = 0 where y is the column with 1 in the

position j and zeros elsewhere. If A−1 exists, left multiply by A−1 to get A−1Ay = A−10, that

is Iy = 0; a contradiction. So A−1 does not exist.

d. If each column of A sums to 0, then xA = 0 where x is the row of 1s. If A−1 exists, right

multiply by A−1 to get xAA−1 = 0A−1, that is xI = 0, x = 0, a contradiction. So A−1 does not

exist.

19. b. (ii) Write A =

[

2 1 −1
1 1 0

1 0 −1

]

. Observe that row 1 minus row 2 minus row 3 is zero. If x =
[

1 −1 −1
]

, this means xA = 0. If A−1 exists, right multiply by A−1 to get xAA−1 =

0A−1, xI = 0, x = 0, a contradiction. So A−1 does not exist.

20. b. If A is invertible then each power Ak is also invertible by Theorem 2.4.4. In particular, Ak 6= 0.

21. b. If A and B both have inverses, so also does AB (by Theorem 2.4.4). But AB = 0 has no inverse.

22. If a > 1, the x-expansion T : R2 → R2 is given by T
[

x

y

]

=
[

ax

y

]

=
[

a 0

0 1

][

x

y

]

. We have
[

a 0

0 1

]−1
=
[

1
a

0

0 1

]

, and this is an x-compression because 1
a
< 1.

24. b. The condition can be written as A(A3 + 2A2− I) = 4I, whence A[1
4(A

3 + 2A2− I)] = I. By

Corollary 2.4.1 of Theorem 2.4.5, A is invertible and A−1 = 1
4(A

3 + 2A2− I). Alternatively,

this follows directly by verifying that also [1
4(A

3 +2A2− I)]A = I.

25. b. If Bx = 0 then (AB)x = 0 so x = 0 because AB is invertible. Hence B is invertible by Theorem

2.4.5. But then A = (AB)B−1 is invertible by Theorem 2.4.4 because both AB and B−1 are

invertible.
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26. b. As in Example 2.4.11,−B−1YA−1 =−(−1)−1
[

1 3
]

[

2 −1

−5 3

]

= [ −13 8 ], so

[

3 1 0

5 2 0

1 3 −1

]−1

=





[

3 1

5 2

]−1
0

0
[

−13 8
]

(−1)−1



=

[

2 −1 0

−5 3 0

−13 8 −1

]

d. As in Example 2.4.11,−A−1XB−1 =−
[

1 −1

−1 2

][

5 2

−1 0

][

−2 1

−1 1

]

=
[

−14 8

16 −9

]

, so





2 1 5 2

1 1 −1 0

0 0 1 −1

0 0 1 −2





−1

=







[

2 1

1 1

]−1 [

−14 8

16 −9

]

[

0 0

0 0

] [

1 −1

1 −2

]−1






=





1 −1 −14 8

−1 2 16 −9

0 0 2 −1

0 0 1 −1





28. d. If An = 0 write B = I +A+A2 + · · ·+An−1. Then

(I−A)B = (I−A)(I+A+A2 + · · ·+An−1)

= (I +A+A2 + · · ·+An−1)−A−A2−A3−·· ·−An

= I−An

= I

Similarly B(I−A) = I, so (I−A)−1 = B.

30. b. Assume that AB and BA are both invertible. Then

AB(AB)−1 = I so AX = I where X = B(AB)−1

(BA)−1BA = I so YA = I where Y = (BA)−1B

But then X = IX = (YA)X =Y (AX) =Y I =Y , so X = Y is the inverse of A.

Different Proof. The fact that AB is invertible gives A[B(AB)−1] = I. This shows that A is

invertible by the Corollary 2.4.1 to Theorem 2.4.5. Similarly B is invertible.

31. b. If A= B then A−1B= A−1A= I. Conversely, if A−1B= I left multiply by A to get AA−1B= AI,

IB = A, B = A.

32. a. Since A commutes with C, we have AC =CA. Left-multiply by A−1 to get C = A−1CA. Then

right-multiply by A−1 to get CA−1 = A−1C. Thus A−1 commutes with C too.

33. b. The condition (AB)2 = A2B2 means ABAB = AABB. Left multiplication by A−1 gives BAB =
ABB, and then right multiplication by B−1 yields BA = AB.

34. Assume that AB is invertible; we apply Part 2 of Theorem 2.4.5 to show that B is invertible. If

Bx = 0 then left multiplication by A gives ABx = 0. Now left multiplication by (AB)−1 yields

x = (AB)−10 = 0. Hence B is invertible by Theorem 2.4.5. But then we have A = (AB)B−1 so A is

invertible by Theorem 2.4.4 (B−1 and AB are both invertible).

35. b. By the hint, Bx = 0 where x =

[

−1

3

−1

]

so B is not invertible by Theorem 2.4.5.
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36. Assume that A can be left cancelled. If Ax = 0 then Ax = A0 so x = 0 by left cancellation. Thus

A is invertible by Theorem 2.4.5. Conversely, if A is invertible, suppose that AB = AC. Then left

multiplication by A−1 yields A−1AB = A−1AC, IB = IC, B =C.

38. b. Write U = In−2XXT . Then U is symmetric because

UT = IT
n −2(XXT )T = In−2XT T XT = In−2XXT =U

Moreover U−1 =U because (since XT X = In)

U2 = (In−2XXT )(I−2XXT )

= In−2XXT −2XXT +4XXT XXT

= In−4XXT +4XImXT

= In

39. b. If P2 = P then I−2P is self-inverse because

(I−2P)(I−2P) = I−2P−2P+4P2 = I

Conversely, if I−2P is self-inverse then

I = (I−2P)2 = I−4P+4P2

Hence 4P = 4P2; so P = P2.

41. b. If A and B are any invertible matrices (of the same size), we compute:

A−1(A+B)B−1 = A−1AB−1 +A−1BB−1 = B−1 +A−1 = A−1 +B−1

Hence A−1 + B−1 is invertible by Theorem 2.4.4 because each of A−1, A + B, and B−1 is

invertible. Furthermore

(A−1+B−1)−1 = [A−1(A+B)B−1]−1 = (B−1)−1(A+B)−1(A−1)−1 = B(A+B)−1A

gives the desired formula.

2.5 Elementary Matrices

1. b. Interchange rows 1 and 3 of I, E−1 = E.

d. Add (−2) times row 1 of I to row 2. E−1 =

[

1 0 0

2 1 0

0 0 1

]

.

f. Multiply row 3 of I by 5. E−1 =

[

1 0 0

0 1 0

0 0 1
5

]

.
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2. b. A→ B is accomplished by negating row 1, so E =
[

−1 0

0 0

]

.

d. A→ B is accomplished by subtracting row 2 from row 1, so E =
[

1 −1

0 1

]

.

f. A→ B is accomplished by interchanging rows 1 and 2, so E =
[

0 1

1 0

]

.

3. b. The possibilities for E are
[

0 1
1 0

]

,
[

k 0
0 1

]

,
[

1 0
0 k

]

,
[

1 k

0 1

]

and
[

1 0
k 1

]

. In each case EA

has a row different from C.

4. If E is Type I, EA and A differ only in the interchanged rows.

If E is of Type II, EA and A differ only in the row multiplied by a nonzero constant.

If E is of Type II, EA and A differ only in the row to which a multiple of a row is added.

5. b. No. The zero matrix 0 is not invertible.

6. b.
[

1 2 1 1 0

5 12 −1 0 1

]

→
[

1 2 1 1 0

0 2 −6 −5 1

]

→
[

1 2 1 1 0

0 1 −3 − 5
2

1
2

]

→
[

1 0 7 12
2 −1

0 1 −3 − 5
2

1
2

]

so

UA=R=
[

1 0 7

0 1 −3

]

where U = 1
2

[

12 −2

−5 1

]

. This matrix U is the product of the elementary

matrices used at each stage:

[

1 2 1

5 12 −1

]

= A

↓
[

1 2 1

0 2 −6

]

= E1A where E1 =
[

1 0

−5 1

]

↓
[

1 2 1

0 1 −3

]

= E2E1A where E2 =
[

1 0

0 1
2

]

↓
[

1 0 7

0 1 −3

]

= E3E2E1A where E3 =
[

1 −2

0 1

]

d. Just as in (b), we get UA = R where R is reduced row-echelon, and

U =

[

1 2 0

0 1 0

0 0 1

][

1 0 0

0 1
5 0

0 0 1

][

1 0 0

0 1 0

0 −1 1

][

1 0 0

0 1 0

−2 0 1

][

1 0 0

−3 1 0

0 0 1

][

0 0 1

0 1 0

1 0 0

]

is a product of elementary matrices.

7. b.
[

2 −1 0 1 0

1 1 1 0 1

]

E1→
[

1 1 1 0 1

2 −1 0 1 0

]

E2→
[

3 0 1 1 1

2 −1 0 1 0

]

. So U =
[

1 1

1 0

]

.

Then E1 =
[

0 1
1 0

]

and E2 =
[

1 1
0 1

]

, so U = E2E1.
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8. b.
[

2 3

1 2

]

= A

↓
[

1 2

2 3

]

= E1A where E1 =
[

0 1

1 0

]

↓
[

1 2

0 −1

]

= E2E1A where E2 =
[

1 0

−2 1

]

↓
[

1 2

0 1

]

= E3E2E1A where E3 =
[

1 0

0 −1

]

↓
[

1 0

0 1

]

= E4E3E2E1A where E4 =
[

1 −2

0 1

]

Thus E4E3E2E1A = I so

A = (E4E3E2E1)
−1

= E−1
1 E−2

2 E−1
3 E−1

4

=
[

0 1
1 0

][

1 0
2 1

][

1 0
0 −1

][

1 2
0 1

]

Of course a different sequence of row operations yields a different factorization of A.

d. Analogous to (b), A =

[

1 0 0

0 1 0

−2 0 1

][

1 0 0

0 1 0

0 2 1

][

1 0 −3

0 1 0

0 0 1

][

1 0 0

0 1 4

0 0 1

]

.

10. By Theorem 2.5.3, UA = R for some invertible matrix U . Hence A =U−1R where U−1 is invertible.

12. b.
[

A I
]

=
[

3 2 1 0

2 1 0 1

]

→
[

1 1 1 −1

2 1 0 1

]

→
[

1 1 1 −1

0 −1 −2 3

]

→
[

1 0 −1 2

0 1 2 −3

]

so U =
[

−1 2
2 −3

]

. Hence, UA = R = I2 in this case so U = A−1. Thus, r = rank A = 2 and,

taking V = I2, UAV =UA = I2.

d.
[

A I
]

=

[

1 1 0 −1 1 0 0

3 2 1 1 0 1 0

1 0 1 3 0 0 1

]

→
[

1 1 0 −1 1 0 0

0 −1 1 4 −3 1 0

0 −1 1 4 −1 0 1

]

→
[

1 0 1 3 −2 1 0

0 1 −1 −4 3 −1 0

0 0 0 0 2 −1 1

]

.

Hence, UA = R where U =

[

−2 1 0

3 −1 0
2 −1 1

]

and R =

[

1 0 1 3

0 1 −1 −4
0 0 0 0

]

. Note that rank A = 2.

Next,

[

RT I
]

=

[

1 0 0 1 0 0 0

0 1 0 0 1 0 0

1 −1 0 0 0 1 0

3 −4 0 0 0 0 1

]

→
[

1 0 0 1 0 0 0

0 1 0 0 1 0 0

0 0 0 −1 1 1 0

0 0 0 −3 4 0 1

]

so V T =

[

1 0 0 0

0 1 0 0

−1 1 1 0

−3 4 0 1

]

.

Hence, (UAV)T = (RV )T =V T RT =

[

1 0 0

0 1 0

0 0 0

0 0 0

]

, so UAV =

[

1 0 0 0

0 1 0 0

0 0 0 0

]

.

16. We need a sequence of elementary operations to carry
[

U A
]

to
[

I U−1A
]

. By Lemma 2.5.1

these operations can be achieved by left multiplication by elementary matrices. Observe

[

I U−1A
]

=
[

U−1U U−1A
]

=U−1
[

U A
]

(2.1)
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Since U−1 is invertible, it is a product of elementary matrices (Theorem 2.5.2), say U−1 =E1E2 · · ·Ek

where the Ei are elementary. Hence (2.1) shows that
[

I U−1A
]

= E1E2 · · ·Ek

[

U A
]

, so a se-

quence of k row operations carries
[

U A
]

to
[

I U−1A
]

. Clearly
[

I U−1A
]

is in reduced

row-echelon form.

17. b. A
r∼ A because A = IA. If A

r∼ B, let A = UB, U invertible. Then B = U−1A so B
r∼ A.

Finally if A
r∼ B and B

r∼ C, let A = UB and B = VC where U and V are invertible. Hence

A =U(VC) = (UV )C so A
r∼C.

19. b. The matrices row-equivalent to A =
[

0 0 0
0 0 1

]

are the matrices UA where U is invertible. If

U =
[

a b

c d

]

then UA =
[

0 0 b

0 0 d

]

where b and d are not both zero (as U is invertible). Every

such matrix arises — use U =
[

a b

−b a

]

— it is invertible as a2 +b2 6= 0 (Example 2.3.5).

22. b. By Lemma 2.5.1, B = EA where E is elementary, obtained from I by multiplying row i by

k 6= 0. Hence B−1 = A−1E−1 where E−1 is elementary, obtained from I by multiplying row i

by 1
k
. But then forming the product A−1E−1 is obtained by multiplying column i of A−1 by 1

k
.

2.6 Matrix Transformations

1. b. Write a =

[

3
2

−1

]

, b =

[

2
0

5

]

and x =

[

5
6

−13

]

. We are given T (a) and T (b), and are asked to

find T (x). Since T is linear it is enough (by Theorem 2.6.1) to express x as a linear combination

of a and b. If we set x = ra+ sb, equating entries gives equations 3r + 2s = 5, 2r = 6 and

−r+5s = −13. The (unique) solution is r = 3, s = −2, so x = 3a−2b. Since T is linear we

have

T (x) = 3T (a)−2T (b) = 3
[

3
5

]

−2
[

−1
2

]

=
[

11
11

]

2. b. Let a =

[

1

1

1
1

]

, b =

[ −1

1

2
−4

]

and x =

[

5

−1

2
4

]

. We know T (a) and T (b); to find T (x) we express

x as a linear combination of a and b, and use the assumption that T is linear. If we write

x = ra+ sb, equate entries, and solve the linear equations, we find that r = 2 and s = −3.

Hence x = 2a−3b so, since T is linear,

T (x) = 2T (a)−3T (b) = 2

[

5

1

−3

]

−3

[

2

0

1

]

=

[

4

2

−9

]

3. b. In R2, we have e1 =
[

1

0

]

and e2 =
[

0

1

]

. We are given that T (x) = −x for each x in R2. In

particular, T (e1) =−e and T (e2) =−e2. Since T is linear, Theorem 2.6.2 gives

A =
[

T (e1) T (e2)
]

=
[

−e1 −e2

]

=
[

−1 0
0 −1

]
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Of course, T
[

x

y

]

= −
[

x

y

]

=
[

−x

−y

]

=
[

−1 0

0 −1

][

x

y

]

for all
[

x

y

]

in R
2, so in this case

we can easily see directly that T has matrix
[

−1 0

0 −1

]

. However, sometimes Theorem 2.6.2 is

necessary.

d. Let e1 =
[

1

0

]

and e2 =
[

0

1

]

. If these vectors are rotated counterclockwise through π
4 , some

simple trigonometry shows that T (e1) =

[ √
2

2√
2

2

]

and T (e2) =

[

−
√

2
2√
2

2

]

. Since T is linear, the

matrix A of T is A =
[

T (e1) T (e2)
]

= 1
2

[ √
2 −

√
2√

2
√

2

]

.

4. b. Let e1 =

[

1
0

0

]

, e2 =

[

0
1

0

]

and e3 =

[

0
0

1

]

denote the standard basis of R3. Since T : R3→R
3

is reflection in the uz-plane, we have:

T (e1) =−e1 because e1 is perpendicular to the uz-plane; while

T (e2) = e2 and T (e3) = e3 because e2 and e3 are in the uz-plane.

So A =
[

T (e1) T (e2) T (e3)
]

=
[

−e1 e2 e3

]

=

[

−1 0 0

0 1 0

0 0 1

]

.

5. b. Since y1 and y2 are both in the image of T , we have y1 = T (x1) for some x1 in Rn, and

y2 = T (x2) for some x2 in Rn. Since T is linear, we have

T (ax1 +bx2) = aT (x1)+bT (x2) = ay1 +by2

This shows that ay1 +by2 = T (ax1 +bx2) is also in the image of T .

7. b. It turns out that T 2 fails for T : R2→ R
2. T 2 requires that T (ax) = aT (x) for all x in R

2 and

all scalars a. But if a = 2 and x =
[

0

1

]

then

T
(

2
[

0

1

])

= T
[

0

2

]

=
[

0

4

]

, while 2T
([

0

1

])

= 2
[

0

1

]

=
[

0

2

]

Note that T 1 also fails for this transformation T , as you can verify.

8. b. We are given T
[

x

y

]

= 1√
2

[

x+ y

−x+ y

]

= 1√
2

[

1 1

−1 1

][

x

y

]

for all
[

x

y

]

, so T is the matrix

transformation induced by the matrix A = 1√
2

[

1 1

−1 1

]

=

[

1√
2

1√
2

− 1√
2

1√
2

]

. By Theorem 2.6.4

we recognize this as the matrix of the rotation R−π
4

. Hence T is rotation through θ =−π
4 .

d. Here T
[

x

y

]

= − 1
10

[

8x+6y

6x−8y

]

= 1
10

[

−8 −6

−6 8

][

x

y

]

for all
[

x

y

]

, so T is the matrix transfor-

mation induced by the matrix A = 1
10

[

−8 −6

−6 8

]

. Looking at Theorem 2.6.5, we see that A is

the matrix of Q−3. Hence T = Q−3 is reflection in the line y =−3x.

10. b. Since T is linear, we have T

[

x

y

z

]

= T

[

0
y

0

]

+T

[

x

0

z

]

. Since T is rotation about the y axis,

we have T

[

0

y

0

]

=

[

0

y

0

]

because

[

0

y

0

]

is on the y axis. Now observe that T is rotation of the
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xz-plane through the angle θ from the x axis to the z axis. By Theorem 2.6.4 the effect of T on

the xz-plane is given by
[

x

z

]

→
[

cosθ −sinθ
sinθ cosθ

][

x

z

]

=
[

xcosθ − zsinθ
xsinθ + zcosθ

]

Hence T

[

x

0

z

]

=

[

xcosθ − zsinθ
0

xsinθ + zcosθ

]

, and so

T

[

x

y

z

]

= T

[

0

y

0

]

+T

[

x

0

z

]

=

[

0

y

0

]

+

[

xcosθ − zsinθ
0

xsinθ + zcosθ

]

=

[

xcosθ − zsinθ
y

xsinθ + zcosθ

]

=

[

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

][

x

y

z

]

Hence the matrix of T is

[

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

]

.

12. b. Let Q0 denote reflection in the x axis, and let Rπ denote rotation through π . Then Q0 has

matrix A =
[

1 0
0 −1

]

, and Rπ has matrix B =
[

−1 0
0 −1

]

. Then Rπ followed by Q0 is the

transformation Q0 ◦Rπ , and this has matrix AB =
[

−1 0

0 1

]

by Theorem 2.6.3. This is the

matrix of reflection in the y axis.

d. Let Q0 denote reflection in the x axis, and let Rπ
2

denote rotation through π
2 . Then Q0 has

matrix A =
[

1 0

0 −1

]

, and Rπ
2

has matrix B =
[

0 −1

1 0

]

. Then Q0 followed by Rπ
2

is the

transformation Rπ
2
◦Q0, and this has matrix BA =

[

0 1

1 0

]

by Theorem 2.6.3. This is the

matrix of reflection Q1 in the line with equation y = x.

f. Let Q0 denote reflection in the x axis, and let Q1 denote reflection in the line y = x. Then

Q0 has matrix A =
[

1 0

0 −1

]

, and Q1 has matrix B =
[

0 1

1 0

]

. Then Q0 followed by Q1 is

the transformation Q1 ◦Q0, and this has matrix BA =
[

0 −1

1 0

]

by Theorem 2.6.3. This is the

matrix of rotation Rπ
2

about the origin through the angle π
2 .

13. b. Since R has matrix A, we have R(x) = Ax for all x in Rn. By the definition of T we have

T (x) = aR(x) = a(Ax) = (aA)x

for all x in Rn. This shows that the matrix of T is aA.

14. b. We use Axiom T 2: T (−x) = T [(−1)x] = (−1)T (x) =−T (x).

17. b. The matrix of T is B, so T (x) = Bx for all x in Rn. Let B2 = I. Then

T 2(x) = T [T (x)] = B[Bx] = B2x = Ix = x = 1R2(x) for all x in R
n.

Hence T 2 = 1Rn since they have the same effect on every column x.

Conversely, if T 2 = 1Rn then

B2x = B(Bx) = T (T (x)) = T 2(x) = 1R2(x) = x = Ix for all x in R
n.

This implies that B2 = I by Theorem 2.2.6.
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18. The matrices of Q0, Q1, Q−1 and Rπ
2

are
[

1 0

0 −1

]

,
[

0 1

1 0

]

,
[

0 −1

−1 0

]

and
[

0 −1

1 0

]

, respectively.

We use Theorem 2.6.3 repeatedly: If S has matrix A and T has matrix B then S ◦T has matrix AB.

b. The matrix of Q1 ◦Q0 is
[

0 1

1 0

][

1 0

0 −1

]

=
[

0 −1

1 0

]

, which is the matrix of Rπ
2

.

d. The matrix of Q0 ◦Rπ
2

is
[

1 0

0 −1

][

0 −1

1 0

]

=
[

0 −1

−1 0

]

which is the matrix of Q−1.

19. b. We have Pm[Qm(x)] = Pm(x) for all x in R2 because Qm(x) lies on the line y = mx. This means

Pm ◦Qm = Pm.

20. To see that T is linear, write x =
[

x1 x2 · · · xn

]T
and y =

[

y1 y2 · · · yn

]T
. Then:

T (x+y) = T
(

[

x1 + y1 x2 + y2 · · · xn + yn

]T
)

= (x1 + y1)+(x2 + y2)+ · · ·+(xn + yn)

= (x1 + x2 + · · ·+ xn)+(y1 + y2 + · · ·+ yn)

= T (x)+T (y)

T (ax) = T (
[

ax1 ax2 · · · axn

]T
)

= ax1 +ax2 + · · ·+axn

= a(x1 + x2 + · · ·+ xn)

= aT (x)

Hence T is linear, so its matrix is A =
[

T (e1) T (e2) · · · T (en)
]

=
[

1 1 · · · 1
]

by Theorem

2.6.2.

Note that this can be seen directly because

T





x1

x2

.

.

.

xn



= x1 + · · ·+ xn =
[

1 1 · · · 1
]





x1

x2

.

.

.

xn





so we see immediately that T is the matrix transformation induced by
[

1 1 · · · 1
]

. Note that

this also shows that T is linear, and so avoids the tedious verification above.

22. b. Suppose that T : Rn→ R is linear. Let e1, e2, . . . , en be the standard basis of Rn, and write

T (e j) = w j for each j = 1, 2, . . . , n. Note that each w j is in R. As T is linear, Theorem 2.6.2

asserts that T has matrix A =
[

T (e1) T (e2) · · · T (en)
]

=
[

w1 w2 · · · wn

]

.

Hence, given x =





x1

x2

.

.

.

xn



 in R
n, we have

T (x) = Ax =
[

w1 w2 · · · wn

]





x1

x2

.

.

.

xn



= w1x1 +w2x2 + · · ·+wnxn = w ·x = Tw(x)
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for all x in Rn where w =
[

w1 w2 · · · wn

]T
. This means that T = Tw. This can also be

seen without Theorem 2.6.2: We have x = x1e1 + x2e2 + · · ·+ xnen so, since T is linear,

T (x) = T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1)+ x2T (e2)+ · · ·+ xnT (en)

= x1w1 + x2w2 + · · ·+ xnwn

= w ·x
= Tw(x)

for all x in Rn. Thus T = Tw.

24. b. Given linear transformations Rn T→ Rm S→ Rk we are to show that (S ◦T )(ax) = a(S ◦T )(x)
for all x in Rn and all scalars a. The proof is a straight forward computation:

(S ◦T )(ax) = S[T (ax)] Definition of S ◦T

= S[aT (x)] T is linear

= a[S[T (x)]] S is linear

= a[(S ◦T)(x)] Definition of S ◦T

2.7 LU-factorization

1. b.

[

2 4 2

1 −1 3

−1 7 −7

]

→
[

1 2 1

1 −1 3

−1 7 −7

]

→
[

1 2 1

0 −3 2

0 9 −6

]

→
[

1 2 1

0 1 − 2
3

0 0 0

]

=U .

Hence A = LU where U is above and L =

[

2 0 0
1 −3 0

−1 9 1

]

.

d.

[ −1 −3 1 0 −1

1 4 1 1 1

1 2 −3 −1 1

0 −2 −4 −2 0

]

→
[

1 3 −1 0 1

0 1 2 1 0

0 −1 −2 −1 0

0 −2 −4 −2 0

]

→
[

1 3 −1 0 1

0 1 2 1 0

0 0 0 0 0

0 0 0 0 0

]

=U .

Hence A = LU where U is as above and L =

[ −1 0 0 0

1 1 0 0

1 −1 1 0

0 −2 0 1

]

.

f.

[

2 2 −2 4 2

1 −1 0 2 1

3 1 −2 6 3

1 3 −2 2 1

]

→
[

1 1 −1 2 1

0 −2 1 0 0

0 −2 1 0 0

0 2 −1 0 0

]

→
[

1 1 −1 2 1

0 1 − 1
2 0 0

0 0 0 0 0

0 0 0 0 0

]

=U .

Hence A = LU where U is above and L =

[

2 0 0 0

1 −2 0 0

3 −2 1 0

1 2 0 1

]

.

2. b. The reduction to row-echelon form requires two row interchanges:

[

0 −1 2

0 0 4

−1 2 1

]

→
[

0 −1 2

0 0 4

−1 2 1

]

→
[

−1 2 1

0 −1 2

0 0 4

]

→ ·· ·
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The elementary matrices corresponding (in order) to the interchanges are

P1 =

[

1 0 0

0 0 1

0 1 0

]

and P2 =

[

0 1 0

1 0 0

0 0 1

]

, so take P = P2P1 =

[

0 0 1

1 0 0

0 1 0

]

.

We apply the LU -algorithm to PA:

PA =

[

−1 2 1

0 −1 2

0 0 4

]

→
[

1 −2 −1

0 −1 2

0 0 4

]

→
[

1 −2 −1

0 1 −2

0 0 4

]

→
[

1 −2 −1

0 1 −2

0 0 1

]

=U

Hence PA = LU where U is as above and L =

[

−1 0 0

0 −1 0

0 0 4

]

.

d. The reduction to row-echelon form requires two row interchanges:
[ −1 −2 3 0

2 4 −6 5

1 1 −1 3

2 5 −10 1

]

→
[

1 2 −3 0

0 0 0 5

0 −1 2 3

0 1 −4 1

]

→
[

1 2 −3 0

0 0 0 5

0 1 −2 −3

0 0 −2 4

]

→
[

1 2 −3 0

0 1 −2 −3

0 0 0 5

0 0 −2 4

]

→
[

1 2 −3 0

0 1 −2 −3

0 0 −2 4

0 0 0 5

]

The elementary matrices corresponding (in order) to the interchanges are

P1 =

[

1 0 0 0
0 0 1 0

0 1 0 0

0 0 0 1

]

and P2 =

[

1 0 0 0
0 1 0 0

0 0 0 1

0 0 1 0

]

so P = P2P1 =

[

1 0 0 0
0 0 1 0

0 0 0 1

0 1 0 0

]

.

We apply the LU -algorithm to PA:

PA =

[ −1 −2 3 0

1 1 −1 3
2 5 −10 1

2 4 −6 5

]

→
[

1 2 −3 0

0 −1 2 3
0 1 −4 1

0 0 0 5

]

→
[

1 2 −3 0

0 1 −2 −3
0 0 −2 4

0 0 0 5

]

→
[

1 2 −3 0
0 1 −2 −3

0 0 1 −2

0 0 0 5

]

→
[

1 2 −3 0
0 1 −2 −3

0 0 1 −2

0 0 0 1

]

=U

Hence PA = LU where U is as above and L̇ =

[ −1 0 0 0

1 −1 0 0

2 1 −2 0

2 0 0 5

]

.

3. b. Write L =

[

2 0 0

1 3 0

−1 2 1

]

, U =

[

1 1 0 −1

0 1 0 1

0 0 0 0

]

, x =

[

x1

x2

x3

x4

]

, y =

[

y1

y2

y3

]

. The system Ly = b

is

2y1 = −2

y1 + 3y2 = −1

−y1 + 2y2 + y3 = 1

and we solve this by forward substitution: y1 =−1, y2 =

1
3(−1−y1)= 0, y3 = 1+y1−2y2 = 0. The system Ux= y is

x1 + x2 − x4 = −1

x2 + x4 = 0

0 = 0

and

we solve this by back substitution: x4 = t, x3 = 5, x2 =−x4 =−t, x1 =−1+x4−x2 =−1+2t.

d. Analogous to (b). The solution is: y =

[

2

8
−1

0

]

, x =

[

8−2t

6− t

−1− t

t

]

, t arbitrary.

5. If the rows in question are R1 and R2, they can be interchanged thus:
[

R1

R2

]

→
[

R1 +R2

R2

]

→
[

R1 +R2

−R1

]

→
[

R1

−R1

]

→
[

R2

R1

]

6. b. Let A = LU = L1U1 be LU -factorizations of the invertible matrix A. Then U and U1 have

no row of zeros so (being row-echelon) are upper triangular with 1’s on the main diagonal.

Thus L−1
1 L = U1U−1 is both lower triangular (L−1

1 L) and upper triangular (U1U−1) and so is

diagonal. But it has 1’s on the diagonal (U1 and U do) so it is I. Hence L1 = L and U1 =U .
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7. We proceed by induction on n where A and B are n× n. It is clear if n = 1. In general, write

A =
[

a 0

X A1

]

and B =
[

b 0

Y B1

]

where A1 and B1 are lower triangular. Then AB =
[

ab 0

Xb+A1Y A1B1

]

by Theorem 2.2.5, and A1B1 is upper triangular by induction. Hence AB is upper triangular.

9. b. Let A = LU = L1U1 be two such factorizations. Then UU−1
1 = L−1L1; write this matrix as

D =UU−1
1 = L−1L1. Then D is lower triangular (apply Lemma 2.7.1 to D = L−1L1), and D is

also upper triangular (consider UU−1
1 ). Hence D is diagonal, and so D = I because L−1 and L1

are unit triangular. Since A = LU , this completes the proof.

2.8 An Application to Input-Output Economic Models

1. b. I−E =

[

.5 0 −.5

−.1 .1 −.2

−.4 −.1 .7

]

→
[

1 0 −1

0 1 −3

0 −1 3

]

→
[

1 0 −1

0 1 −3

0 0 0

]

. The equilibrium price structure p

is the solution to (I−E)p = 0; the general solution is p =
[

t 3t t
]T

.

d. −E =

[

.5 0 −.1 −.1

−.2 .3 0 −.1

−.1 −.2 .2 −.2

−.2 −.1 −.1 .4

]

→
[

1 2 −2 2

5 0 −1 −1

−2 3 0 −1

−2 −1 −1 4

]

→
[

1 2 −2 2

0 −10 9 −11

0 7 −4 3

0 3 −5 8

]

.

Now add 3 times row 4 to row 2 to get:
[

1 2 −2 2

0 −1 −6 13

0 7 −4 3

0 3 −5 8

]

→
[

1 0 −14 28

0 1 6 −13

0 0 −46 94

0 0 −23 47

]

→





1 0 −14 28

0 1 6 −13

0 0 1 − 47
23

0 0 0 0



→







1 0 0 − 14
23

0 1 0 − 17
23

0 0 1 − 47
23

0 0 0 0







The equilibrium price structure p is the solution to (I−E)p = 0. The solution is

p =
[

14t 17t 47t 23t
]T

.

2. Here the input-output matrix is E =

[

0 0 1

1 0 0

0 1 0

]

so we get

I−E =

[

1 0 −1

−1 1 0

0 −1 1

]

→
[

1 0 −1

0 1 −1

0 −1 1

]

→
[

1 0 −1

0 1 −1

0 0 0

]

Thus the solution to (I−E)p is p1 = p2 = p3 = t. Thus all three industries produce the same output.

4. I−E =
[

1−a −b

−1+a b

]

→
[

1−a −b

0 0

]

so the possible equilibrium price structures are p =
[

bt

(1−a)t

]

,

t arbitrary. This is nonzero for some t unless b = 0 and a = 1, and in that case p=
[

1

1

]

is a solution.

If the entries of A are positive then p =
[

b

1−a

]

has positive entries.

7. b. One such example is E =
[

.4 .8

.7 .2

]

, because (I−E)−1 =−5
4

[

8 8

7 6

]

.

8. If E =
[

a b

c d

]

then I − E =
[

1−a −b

−c 1−d

]

. We have det (I − E) = (1− a)(1− d)− bc = 1−
(a+ d)+ (ad− bc) = 1− tr E + det E. If det (I−E) 6= 0 then Example 2.3.5 gives (I−E)−1 =

1
det (I−E)

[

1−d b

c 1−a

]

. The entries 1−d, b, c, and 1−a are all between 0 and 1 so (I−E)−1 ≥ 0 if

det (I−E)> 0, that is if tr E < 1+ det E.
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9. b. If p =

[

3

2

1

]

then p > Ep so Theorem 2.8.2 applies.

d. If p =

[

3

2

2

]

then p > Ep so Theorem 2.8.2 applies.

2.9 An Application to Markov Chains

1. b. Not regular. Every power of P has the (1, 2)- and (3, 2)-entries zero.

2. b. I−P =
[

1
2 −1

− 1
2 1

]

→
[

1 −2

0 0

]

so (I−P)s = 0 has solutions s =
[

2t

t

]

. The entries of s sum

to 1 if t = 1
3 , so s =

[

2
3
1
3

]

is the steady state vector. Given s0 =
[

1

0

]

, we get s1 = Ps0 =

[

1
2
1
2

]

,

s2 = Ps1

[

3
4
1
4

]

, s3 = Ps2 =

[

5
8
3
8

]

. So it is in state 2 after three transitions with probability 3
8 .

d. I−P =

[

.6 −.1 −.5

−.2 .4 −.2

−.4 −.3 .7

]

→
[

1 −2 1

0 11 −11

0 −11 11

]

→
[

1 0 −1

0 1 −1

0 0 0

]

so (I−P)s = 0 has solution s =

[

t

t

t

]

. The entries sum to 1 if t = 1
3 so the steady state vector is s =

[

1
3
1
3
1
3

]

. Given s0 =

[

1

0

0

]

,

s1 = Ps0 =

[

.4

.2

.4

]

, s2 = Ps1 =

[

.38

.28

.34

]

, s3 = Ps2 =

[

.350

.312

.338

]

. Hence it is in state 2 after three

transitions with probability .312.

f. I−P =

[

.9 −.3 −.3

−.3 .9 −.6

−.6 −.6 .9

]

→
[

1 −3 2

0 24 −21

0 −24 21

]

→
[

1 0 − 5
8

0 1 − 7
8

0 0 0

]

, so (I−P)s = 0 has solution s =

[

5t

7t

8t

]

. The entries sum to 1 if t = 1
20 so the steady state vector is s =

[

5
20
7

20
8

20

]

. Given s0 =

[

1

0

0

]

,

s1 = Ps0 =

[

.1

.3

.6

]

, s2 = Ps1 =

[

.28

.42

.30

]

, s3 = Ps1 =

[

.244

.306

.450

]

. Hence it is in state 2 after three

transitions with probability .306.

4. b. The transition matrix is P =

[

.7 .1 .1

.1 .8 .3

.2 .1 .6

]

where the columns (and rows) represent the up-

per, middle and lower classes respectively and, for example, the last column asserts that, for

children of lower class people, 10% become upper class, 30% become middle class and 60%

remain lower class. Hence I−P =

[

.3 −.1 −.1

−.1 .2 −.3

−.2 −.1 −.4

]

→
[

1 −2 3

0 5 −10

0 −5 10

]

→
[

1 0 −1

0 1 −2

0 0 0

]

. Thus

the general solution to (I−P)s = 0 is s =

[

t

2t

t

]

, so s =

[

1
4
1
2
1
4

]

is the steady state solution.

Eventually, upper, middle and lower classes will comprise 25%, 50% and 25% of this society

respectively.
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6. Let States 1 and 2 be “late” and “on time” respectively. Then the transition matrix is P =

[

1
3

1
2

2
3

1
2

]

.

Here column 1 describes what happens if he was late one day: the two entries sum to 1 and the top

entry is twice the bottom entry by the information we are given. Column 2 is determined similarly.

Now if Monday is the initial state, we are given that s0 =

[

3
4
1
4

]

. Hence s1 = Ps0 =
[

3
8
5
8

]

and

s2 = Ps1 =

[

7
16
9
16

]

. Hence the probabilities that he is late and on time Wednesdays are 7
16 and 9

16

respectively.

8. Let the states be the five compartments. Since each tunnel entry is equally likely,

P =









0 1
2

1
5 0 1

2
1
3 0 0 1

4 0
1
3 0 2

5
1
4

1
2

0 1
2

1
5

2
4 0

1
3 0 1

5 0 0









a. Since he starts in compartment 1,

s0 =





1

0

0
0

0



 , s1 = Ps0 =









0
1
3
1
3

0
1
3









, s2 = Ps1 =









2
5

0
3

10
7

30
1

15









, s3 = Ps2 =









7
75
23
120
69
200
53
300
29
150









Hence the probability that he is in compartment 1 after three moves is 7
75 .

b. The steady state vector s satisfies (I−P)s = 0. As

(I−P) =









1 − 1
2 − 1

5 0 − 1
2

− 1
3 1 0 − 1

4 0

− 1
3 0 3

5 − 1
4 − 1

2

0 − 1
2 − 1

5
1
2 0

− 1
3 0 − 1

5 0 1









→









1 0 0 0 − 3
2

0 1 0 0 −1

0 0 1 0 − 5
2

0 0 0 1 −2

0 0 0 0 0









so the steady state is s = 1
16





3

2

5

4
2



. Hence, in the long run, he spends most of his time in

compartment 3 (in fact 5
16 of his time).

12. a.
[

1− p q

p 1−q

]

· 1
p+q

[

q

p

]

= 1
p+q

[

(1− p)q+qp

pq+(1−q)p

]

= 1
p+q

[

q

p

]

. Since the entries of 1
p+q

[

q

p

]

add

to 1, it is the steady state vector.

b. If m = 1

1
p+q

[

q q

p p

]

+ 1−p−q
p+q

[

p −q

−p q

]

= 1
p+q

[

q+ p− p2− pq q−q+ pq+q2

p− p_p2 + pq p+q− pq−q2

]

= 1
p+q

[

(p+q)(1− p) (p+q)q
(p+q)p (p+q)(1−q)

]

= P
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In general, write X =
[

q q

p p

]

and Y =
[

p −q

−p q

]

. Then PX = X and PY = (1− p− q)Y .

Hence if Pm = 1
p+q

X + (1−p−q)m

p+q
Y for some m≥ 1, then

Pm+1 = PPm = 1
p+q

PX +
(1−p−q)m

p+q
PY

= 1
p+q

X + (1−p−q)m

p+q
(1− p−q)Y

= 1
p+q

X + (1−p−q)m+1

p+q
Y

Hence the formula holds for all m≥ 1 by induction.

Now 0 < p < 1 and 0 < q < 1 imply 0 < p+q < 2, so that −1 < (p+q−1)< 1. Multiplying

through by −1 gives 1 > (1− p−q)>−1, so (1− p−q)m converges to zero as m increases.

Supplementary Exercises: Chapter 2

2. b. We have 0= p(U)=U3−5U2+11U−4I so that U(U2−5U+11I)= 4I =(U2−5U+11I)U .

Hence U−1 = 1
4(U

2−5U +11I).

4. b. If xh = xm, then y = k(y− z) = y+m(y− z), whence (k−m)(y− z) = 0. But the matrix

y− z 6= 0 (because y 6= z) so k−m = 0 by Example 2.1.7.

6. d. Using (c), IpqAIrs = ∑n
i=1 ∑n

j=1 ai jIpqIi jIrs. Now (b) shows that IpqIi jIrs = 0 unless i = q and

j = r, when it equals Ips. Hence the double sum for IpqAIrs has only one nonzero term — the

one for which i = q, j = r. Hence IpqAIrs = aqrIps.

7. b. If n = 1 it is clear. If n > 1, Exercise 6(d) gives

aqrIps = IpqAIrs = IpqIrsA

because AIrs = IrsA. Hence aqr = 0 if q 6= r by Exercise 6(b). If r = q then aqqIps = IpsA is the

same for each value of q. Hence a11 = a22 = · · ·= ann, so A is a scalar matrix.





3. Determinants and Diagonalization

3.1 The Cofactor Expansion

If A is a square matrix, we write det A = |A| for convenience.

1. b. Take 3 out of row 1, then subtract 4 times row 1 from row 2:
∣

∣

∣

6 9
8 12

∣

∣

∣
= 3

∣

∣

∣

2 3
8 12

∣

∣

∣
= 3

∣

∣

∣

2 3
0 0

∣

∣

∣
= 0

d. Subtract row 2 from row 1:
∣

∣

∣

a+1 a

a a−1

∣

∣

∣
=
∣

∣

∣

1 1

a a−1

∣

∣

∣
= (a−1)−a =−1

f. Subtract 2 times row 2 from row 1, then expand along row 2:
∣

∣

∣

∣

2 0 −3
1 2 5

0 3 0

∣

∣

∣

∣

=

∣

∣

∣

∣

0 −4 −13
1 2 5

0 3 0

∣

∣

∣

∣

=−
∣

∣

∣

−4 −13

3 0

∣

∣

∣
=−39

h. Expand along row 1:

∣

∣

∣

∣

0 a 0

b c d

0 e 0

∣

∣

∣

∣

=−a

∣

∣

∣

b d

0 0

∣

∣

∣
=−a(0) = 0

j. Expand along row 1:
∣

∣

∣

∣

0 a b

a 0 c

b c 0

∣

∣

∣

∣

=−a

∣

∣

∣

a c

b 0

∣

∣

∣
+b

∣

∣

∣

a 0

b c

∣

∣

∣
=−a(−bc)+b(ac) = 2abc

l. Subtract multiples of row 1 from rows 2, 3 and 4, then expand along column 1:
∣

∣

∣

∣

∣

1 0 3 1

2 2 6 0

−1 0 −3 1

4 1 12 0

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 0 3 1

0 2 0 −2

0 0 0 2

0 1 0 −4

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

2 0 −2

0 0 2

1 0 −4

∣

∣

∣

∣

= 0

n. Subtract multiples of row 4 from rows 1 and 2, then expand along column 1:
∣

∣

∣

∣

∣

4 −1 3 −1

3 1 0 2

0 1 2 2
1 2 −1 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

0 −9 7 −5

0 −5 3 −1

0 1 2 2
1 2 −1 1

∣

∣

∣

∣

∣

=−
∣

∣

∣

∣

−9 7 −5

−5 3 −1

1 2 2

∣

∣

∣

∣

Again, subtract multiples of row 3 from rows 1 and 2, then expand along column 1:
∣

∣

∣

∣

∣

4 −1 3 −1
3 1 0 2

0 1 2 2

1 2 −1 1

∣

∣

∣

∣

∣

=−
∣

∣

∣

∣

0 25 13

0 13 9

1 2 2

∣

∣

∣

∣

=
∣

∣

∣

25 13

13 9

∣

∣

∣
=−

∣

∣

∣

−1 −5

13 9

∣

∣

∣
=−(−9+65) =−56

p. Keep expanding along row 1:
∣

∣

∣

∣

∣

0 0 0 a

0 0 b p

0 c q k

d s t u

∣

∣

∣

∣

∣

=−a

∣

∣

∣

∣

0 0 b

0 v q

d s t

∣

∣

∣

∣

=−a
(

b

∣

∣

∣

0 c

d s

∣

∣

∣

)

=−ab(−cd) = abcd

5. b.

∣

∣

∣

∣

−1 3 1

2 5 3

1 −2 1

∣

∣

∣

∣

=

∣

∣

∣

∣

−1 3 1

0 11 5

0 1 2

∣

∣

∣

∣

=−
∣

∣

∣

∣

−1 3 1

0 1 2

0 11 5

∣

∣

∣

∣

=−
∣

∣

∣

∣

−1 3 1

0 1 2

0 0 −17

∣

∣

∣

∣

=−(17) =−17

41
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d.

∣

∣

∣

∣

∣

2 3 1 1

0 2 −1 3

0 5 1 1

1 1 2 5

∣

∣

∣

∣

∣

=−
∣

∣

∣

∣

∣

1 1 2 5

0 2 −1 3

0 5 1 1

2 3 1 1

∣

∣

∣

∣

∣

=−
∣

∣

∣

∣

∣

1 1 2 5

0 2 −1 3

0 5 1 1

0 1 −3 −9

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 1 2 5

0 1 −3 −9

0 5 1 1

0 2 −1 3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 1 2 5

0 1 −3 −9
0 0 16 46

0 0 5 21

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 1 2 5

0 1 −3 −9
0 0 1 −17

0 0 0 106

∣

∣

∣

∣

∣

= 106

6. b. Subtract row 1 from row 2:

∣

∣

∣

∣

a b c

a+b 2b c+b

2 2 2

∣

∣

∣

∣

=

∣

∣

∣

∣

a b c

b b b

2 2 2

∣

∣

∣

∣

= 0 by Theorem 3.1.2(4).

7. b. Take −2 and 3 out of rows 1 and 2, then subtract row 3 from row 2, then take 2 out of row 2:

∣

∣

∣

∣

−2a −2b −2c

2p+ x 2q+ y 2r+ z

3x 3y 3z

∣

∣

∣

∣

=−6

∣

∣

∣

∣

a b c

2p+ x 2q+ y 2r+ z

x y z

∣

∣

∣

∣

=−6

∣

∣

∣

∣

a b c

2p 2q 2r

x y z

∣

∣

∣

∣

=−12

∣

∣

∣

∣

a b c

p q r

x y z

∣

∣

∣

∣

= 12

8. b. First add rows 2 and 3 to row 1:
∣

∣

∣

∣

2a+ p 2b+q 2c+ r

2p+ x 2q+ y 2r+ z

2x+a 2y+b 2z+ c

∣

∣

∣

∣

=

∣

∣

∣

∣

3a+3p+3x 3b+3q+3y 3c+3r+3z

2p+ x 2q+ y 2r+ z

2x+a 2y+b 2z+ c

∣

∣

∣

∣

= 3

∣

∣

∣

∣

a+ p+ x b+q+ y c+ r+ z

2p+ x 2q+ y 2r+ z

2x+a 2y+b 2z+ c

∣

∣

∣

∣

Now subtract row 1 from rows 2 and 3, and then add row 2 plus twice row 3 to row 1, to get

= 3

∣

∣

∣

∣

a+ p+ x b+q+ y c+ r+ z

p−a q−b r− c

x− p y−q z− r

∣

∣

∣

∣

= 3

∣

∣

∣

∣

3x 3y 3z

p−a q−b r− c

x− p y−q z− r

∣

∣

∣

∣

Next take 3 out of row 1, and then add row 3 to row 2, to get

= 9

∣

∣

∣

∣

x y z

p−a q−b r− c

−p −q −r

∣

∣

∣

∣

= 9

∣

∣

∣

∣

x y z

−a −b −c

−p −q −r

∣

∣

∣

∣

Now use row interchanges and common row factors to get

=−9

∣

∣

∣

∣

−p −q −r

−a −b −c

x y z

∣

∣

∣

∣

= 9

∣

∣

∣

∣

−a −b −c

−p −q −r

x y z

∣

∣

∣

∣

= 9

∣

∣

∣

∣

a b c

p q r

x y z

∣

∣

∣

∣

9. b. False. The matrix A =
[

1 1

2 2

]

has zero determinant, but no two rows are equal.

d. False. The reduced row-echelon form of A =
[

2 0

0 1

]

is R =
[

1 0

0 1

]

, but det A = 2 while

det R = 1.

f. False. A =
[

1 1

0 1

]

, det A = 1 = det AT .

h. False. If A =
[

1 1

0 1

]

and B =
[

1 0

1 1

]

then det A = det B = 1. In fact, it is a theorem that

det A = det AT holds for every square matrix A.

10. b. Partition the matrix as follows and use Theorem 3.1.5:
∣

∣

∣

∣

∣

∣

1 2

−1 3

0 0

0 0

0 0

∣

∣

∣

∣

∣

∣

0 3 0

1 4 0

2 1 1

−1 0 2

3 0 1

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

1 2

−1 3

∣

∣

∣

∣

∣

∣

∣

2 1 1
−1 0 2

3 0 1

∣

∣

∣

∣

= 5
(

−1
∣

∣

∣

−1 2

3 1

∣

∣

∣

)

=−5(−7) = 35
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11. b. Use Theorem 3.1.5 twice:
∣

∣

∣

∣

A 0

X B

Y Z

∣

∣

∣

∣

0

0

C

∣

∣

∣

∣

= det
[

A 0

X B

]

det C = (det A det B) det C = 2(−1)3 =−6

d.

∣

∣

∣

∣

A X

0 B

Y Z

∣

∣

∣

∣

0

0

C

∣

∣

∣

∣

= det
[

A X

0 B

]

det C = (det A det B) det C = 2(−1)3 =−6

14. b. Follow the Hint, take out the common factor in row 1, subtract multiples of column 1 from

columns 2 and 3, and expand along row 1:

det

∣

∣

∣

∣

x−1 −3 1

2 −1 x−1

−3 x+2 −2

∣

∣

∣

∣

=

∣

∣

∣

∣

x−2 x−2 x−2

2 −1 x−1

−3 x+2 −2

∣

∣

∣

∣

= (x−2)

∣

∣

∣

∣

1 1 1

2 −1 x−1

−3 x+2 −2

∣

∣

∣

∣

= (x−2)

∣

∣

∣

∣

1 0 0

2 −3 x−3

−3 x+5 1

∣

∣

∣

∣

= (x−2)
∣

∣

∣

−3 x−3
x+5 1

∣

∣

∣

= (x−2)(−x2−2x+12) =−(x−2)(x2 +2x−12)

15. b. If we expand along column 2, the coefficient of z is −
∣

∣

∣

2 −1

1 3

∣

∣

∣
=−(6+1) =−7. So c =−7.

16. b. Compute det A by adding multiples of row 1 to rows 2 and 3, and then expanding along column

1:

det A =

∣

∣

∣

∣

1 x x

−x −2 x

−x −x −3

∣

∣

∣

∣

=

∣

∣

∣

∣

1 x x

0 x2−2 x2 + x

0 x2− x x2−3

∣

∣

∣

∣

=
∣

∣

∣

x2−2 x2 + x

x2− x x2−3

∣

∣

∣

= (x2−2)(x2−3)− (x2 + x)(x2− x) = (x4−5x2 +6)− x2(x2−1) = 6−4x2

Hence det A = 0 means x2 = 3
2 = 6

4 , so x =±
√

6
2 .

d. Expand along column 1, and use Theorem 3.1.4:

det A =

∣

∣

∣

∣

∣

x y 0 0

0 x y 0
0 0 x y

y 0 0 x

∣

∣

∣

∣

∣

= x

∣

∣

∣

∣

x y 0

0 x y

0 0 x

∣

∣

∣

∣

− y

∣

∣

∣

∣

y 0 0

x y 0

0 x y

∣

∣

∣

∣

= x · x3− y · y3

= x4− y4 = (x2− y2)(x2 + y2) = (x− y)(x+ y)(x2 + y2)

Hence det A = 0 means x = y or x =−y (x2 + y2 = 0 only if x = y = 0).

21. Let x =





x1

x2

.

.

.

xn



, y =





y1

y2

.

.

.

yn



, and A =
[

c1 · · · x+y · · · cn

]

where x+ y is in column j. Ex-

panding det A along column j we obtain

T (x+y) = det A =
n

∑
i=1

(xi + yi)ci j(A)

=
n

∑
i=1

xici j(A)+
n

∑
i=1

yici j(A)

= T (x)+T (y)

where the determinant at the second step is expanded along column 1. Similarly, T (ax) = aT (x) for

any scalar a.
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24. Suppose A is n×n. B can be found from A by interchanging the following pairs of columns: 1 and

n, 2 and n−1, . . . . There are two cases according as n is even or odd:

Case 1. n = 2k. Then we interchange columns 1 and n, 2 and n−1, . . . , k and k+1, k interchanges

in all. Thus det B = (−1)k det A in this case.

Case 2. n = 2k+ 1. Now we interchange columns 1 and n, 2 and n− 1, . . . , k and k+ 2, leaving

column k fixed. Again k interchanges are used so det B = (−1)k det A.

Thus in both cases: det B = (−1)k det A where A is n×n and n = 2k or n = 2k+1.

Remark: Observe that, in each case, k and 1
2n(n− 1) are both even or both odd, so (−1)k =

(−1)
1
2 n(n−1). Hence, if A is n×n, we have det B = (−1)

1
2 n(n−1) det A.

3.2 Determinants and Matrix Inverses

1. b. The cofactor matrix is













∣

∣

∣

∣

1 0

−1 1

∣

∣

∣

∣

−
∣

∣

∣

∣

3 0

0 1

∣

∣

∣

∣

∣

∣

∣

∣

3 1

0 −1

∣

∣

∣

∣

−
∣

∣

∣

∣

−1 2

−1 1

∣

∣

∣

∣

∣

∣

∣

∣

1 2

0 1

∣

∣

∣

∣

−
∣

∣

∣

∣

1 −1

0 −1

∣

∣

∣

∣

∣

∣

∣

∣

−1 2
1 0

∣

∣

∣

∣

−
∣

∣

∣

∣

1 2
3 0

∣

∣

∣

∣

∣

∣

∣

∣

1 −1
3 1

∣

∣

∣

∣













=

[

1 −3 −3

−1 1 1

−2 6 4

]

.

The adjugate is the transpose of the cofactor matrix: adj A =

[

1 −1 −2

−3 1 6

−3 1 4

]

.

d. In computing the cofactor matrix, we use the fact that det
[

1
3M
]

= 1
9 det M for any 2×2 matrix

M. Thus the cofactor matrix is












1
9

∣

∣

∣

∣

−1 2

2 −1

∣

∣

∣

∣

− 1
9

∣

∣

∣

∣

2 2

2 −1

∣

∣

∣

∣

1
9

∣

∣

∣

∣

2 −1

2 2

∣

∣

∣

∣

− 1
9

∣

∣

∣

∣

2 2

2 −1

∣

∣

∣

∣

1
9

∣

∣

∣

∣

−1 2

2 −1

∣

∣

∣

∣

− 1
9

∣

∣

∣

∣

−1 2

2 2

∣

∣

∣

∣

1
9

∣

∣

∣

∣

2 2

−1 2

∣

∣

∣

∣

− 1
9

∣

∣

∣

∣

−1 2

2 2

∣

∣

∣

∣

1
9

∣

∣

∣

∣

−1 2

2 −1

∣

∣

∣

∣













= 1
9

[

−3 6 6

6 −3 6

6 6 −3

]

= 1
3

[

−1 2 2

2 −1 2

2 2 −1

]

The adjugate is the transpose of the cofactor matrix: adj A = 1
3

[

−1 2 2

2 −1 2
2 2 −1

]

. Note that the

cofactor matrix is symmetric here. Note also that the adjugate actually equals the original

matrix in this case.

2. b. We compute the determinant by first adding column 3 to column 2:
∣

∣

∣

∣

0 c −c

−1 2 −1

c −c c

∣

∣

∣

∣

=

∣

∣

∣

∣

0 0 −c

−1 1 −1

c 0 c

∣

∣

∣

∣

= (−c)
∣

∣

∣

−1 1

c 0

∣

∣

∣
= (−c)(−c) = c2

This is zero if and only if c = 0, so the matrix is invertible if and only if c 6= 0.

d. Begin by subtracting row 1 from row 3, and then subtracting column 1 from column 3:
∣

∣

∣

∣

4 c 3

c 2 c

5 c 4

∣

∣

∣

∣

=

∣

∣

∣

∣

4 c 3

c 2 c

1 0 1

∣

∣

∣

∣

=

∣

∣

∣

∣

4 c −1

c 2 0

1 0 0

∣

∣

∣

∣

= 1
∣

∣

∣

c −1

2 0

∣

∣

∣
= 2

This is nonzero for all values of c, so the matrix is invertible for all c.
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f. Begin by subtracting c times row 1 from row 2:
∣

∣

∣

∣

1 c −1

c 1 1
0 1 c

∣

∣

∣

∣

=

∣

∣

∣

∣

1 c −1

0 1− c2 1+ c

0 1 c

∣

∣

∣

∣

=
∣

∣

∣

1− c2 1+ c

1 c

∣

∣

∣
=
∣

∣

∣

(1+ c)(1− c) 1+ c

1 c

∣

∣

∣

Now take the common factor (1+ c) out of row 1:
∣

∣

∣

∣

1 c −1
c 1 1

0 1 c

∣

∣

∣

∣

= (1+ c)
∣

∣

∣

1− c 1

1 c

∣

∣

∣
= (1+ c)[c(1− c)−1] =−(1+ c)(c2− c+1) =−(c3 +1)

This is zero if and only if c = −1 (the roots of c2− c+ 1 are not real). Hence the matrix is

invertible if and only if c 6=−1.

3. b. det (B2C−1AB−1CT ) = det B2 det C−1 det A det B−1 det CT

= (det B)2 1
det C

det A 1
det B

det C

= det B det A

= −2

4. b. det (A−1B−1AB) = det A−1 det B−1 det A det B = 1
det A

1
det B

det A det B = 1.

Note that the following proof is wrong:

det (A−1B−1AB) = det (A−1AB−1B) = det (I · I) = det I = 1

The reason is that A−1B−1AB may not equal A−1AB−1B because B−1A need not equal AB−1.

6. b. Since C is 3× 3, the same is true for C−1, so det (2C−1) = 23 · det C−1 = 8
det C

. Now we

compute det C by taking 2 and 3 out of columns 2 and 3, subtracting column 3 from column

2:

det C =

∣

∣

∣

∣

2p −a+u 3u

2q −b+ v 3v

2r −c+w 3w

∣

∣

∣

∣

= 6

∣

∣

∣

∣

p −a+u u

q −b+ v v

r −c+w w

∣

∣

∣

∣

= 6

∣

∣

∣

∣

p −a u

q −b v

r −c w

∣

∣

∣

∣

Now take −1 from column 2, interchange columns 1 and 2, and apply Theorem 3.2.3:

det C =−6

∣

∣

∣

∣

p a u

q b v

r c w

∣

∣

∣

∣

= 6

∣

∣

∣

∣

a p u

b q v

c r w

∣

∣

∣

∣

= 6

∣

∣

∣

∣

a b c

p q r

u v w

∣

∣

∣

∣

= 6 ·3 = 18

Finally det 2C−1 = 8
det C

= 8
18 = 4

9 .

7. b. Begin by subtracting row 2 from row 3, and then expand along column 2:

∣

∣

∣

∣

2b 0 4d

1 2 −2
a+1 2 2(c−1)

∣

∣

∣

∣

=

∣

∣

∣

∣

2b 0 4d

1 2 −2
a 0 2c

∣

∣

∣

∣

= 2
∣

∣

∣

2b 4d

a 2c

∣

∣

∣
= 4

∣

∣

∣

b 2d

a 2c

∣

∣

∣
= 8

∣

∣

∣

b d

a c

∣

∣

∣

Interchange rows and use Theorem 3.2.3, to get

=−8
∣

∣

∣

a c

b d

∣

∣

∣
=−8

∣

∣

∣

a b

c d

∣

∣

∣
=−8(−2) = 16

8. b. x =

∣

∣

∣

∣

9 4

−1 −1

∣

∣

∣

∣

∣

∣

∣

∣

3 4

2 −1

∣

∣

∣

∣

= −5
−11 = 5

11 , y =

∣

∣

∣

∣

3 9

2 −1

∣

∣

∣

∣

∣

∣

∣

∣

3 4

2 −1

∣

∣

∣

∣

= −21
−11 = 21

11
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d. The coefficient matrix has determinant:
∣

∣

∣

∣

4 −1 3

6 2 −1

3 3 2

∣

∣

∣

∣

=

∣

∣

∣

∣

0 −1 0

14 2 5

15 3 11

∣

∣

∣

∣

=−(−1)
∣

∣

∣

14 5
15 11

∣

∣

∣
= 79

Hence Cramer’s rule gives

x = 1
79

∣

∣

∣

∣

1 −1 3

0 2 −1

−1 3 2

∣

∣

∣

∣

= 1
79

∣

∣

∣

∣

1 −1 3

0 2 −1

0 2 5

∣

∣

∣

∣

= 1
79

∣

∣

∣

2 −1

2 5

∣

∣

∣
= 12

79

y = 1
79

∣

∣

∣

∣

4 1 3
6 0 −1

3 −1 2

∣

∣

∣

∣

= 1
79

∣

∣

∣

∣

4 1 3
6 0 −1

7 0 5

∣

∣

∣

∣

=− 1
79

∣

∣

∣

6 −1

7 5

∣

∣

∣
=−37

79

z = 1
79

∣

∣

∣

∣

4 −1 1

6 2 0

3 3 −1

∣

∣

∣

∣

= 1
79

∣

∣

∣

∣

4 −1 1

6 2 0

7 2 0

∣

∣

∣

∣

= 1
79

∣

∣

∣

6 2

7 2

∣

∣

∣
=− 2

79

9. b. A−1 = 1
det A

adj A = 1
det A

[

Ci j

]T
where

[

Ci j

]

is the cofactor matrix. Hence the (2, 3)-entry of

A−1 is 1
det A

C32. Now C32 = −
∣

∣

∣

1 −1

3 1

∣

∣

∣
= −4. Since det A =

∣

∣

∣

∣

1 2 −1

3 1 1

0 4 7

∣

∣

∣

∣

=

∣

∣

∣

∣

1 2 −1

0 −5 4

0 4 7

∣

∣

∣

∣

=
∣

∣

∣

−5 4

4 7

∣

∣

∣
=−51, the (2, 3) entry of A−1 is −4

−51 = 4
51 .

10. b. If A2 = I then det A2 = det I = 1, that is (det A)2 = 1. Hence det A = 1 or det A =−1.

d. If PA = P, P invertible, then det PA = det P, that is det P det A = det P. Since det P 6= 0 (as

P is invertible), this gives det A = 1.

f. If A =−AT , A is n×n, then AT is also n×n so, using Theorem 3.1.3 and Theorem 3.2.3,

det A = det (−AT ) = det [(−1)AT ] = (−1)n det AT = (−1)n det A

If n is even this is det A = det A and so gives no information about det A. But if n is odd it

reads det A =− det A, so det A = 0 in this case.

15. Write d = det A, and let C denote the cofactor matrix of A. Here

AT = A−1 = 1
d

adj A = 1
d
CT

Take transposes to get A = 1
d
C, whence C = dA.

19. b. Write A =

[

0 c −c

−1 2 −1

c −c c

]

. Then det A = c2 (Exercise 2) and the cofactor matrix is

[

Ci j

]

=













∣

∣

∣

∣

2 −1
−c c

∣

∣

∣

∣

−
∣

∣

∣

∣

−1 −1
c c

∣

∣

∣

∣

∣

∣

∣

∣

−1 2
c −c

∣

∣

∣

∣

−
∣

∣

∣

∣

c −c

−c c

∣

∣

∣

∣

∣

∣

∣

∣

0 −c

c c

∣

∣

∣

∣

−
∣

∣

∣

∣

0 c

c −c

∣

∣

∣

∣

∣

∣

∣

∣

c −c

2 −1

∣

∣

∣

∣

−
∣

∣

∣

∣

0 −c

−1 −1

∣

∣

∣

∣

∣

∣

∣

∣

0 c

−1 2

∣

∣

∣

∣













=

[

c 0 −c

0 c2 c2

c c c

]

Hence A−1 = 1
det A

adj A = 1
c2

[

Ci j

]T
= 1

c2

[

c 0 c

0 c2 c

−c c2 c

]

= 1
c

[

1 0 1

0 c 1

−1 c 1

]

for any c 6= 0.
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d. Write A =

[

4 c 3

c 2 c

5 c 4

]

. Then det A = 2 (Exercise 2) and the cofactor matrix is

[Ci j] =













∣

∣

∣

∣

2 c

c 4

∣

∣

∣

∣

−
∣

∣

∣

∣

c c

5 4

∣

∣

∣

∣

∣

∣

∣

∣

c 2

5 c

∣

∣

∣

∣

−
∣

∣

∣

∣

c 3

c 4

∣

∣

∣

∣

∣

∣

∣

∣

4 3

5 4

∣

∣

∣

∣

−
∣

∣

∣

∣

4 c

5 c

∣

∣

∣

∣

∣

∣

∣

∣

c 3

2 c

∣

∣

∣

∣

−
∣

∣

∣

∣

4 3

c c

∣

∣

∣

∣

∣

∣

∣

∣

4 c

c 2

∣

∣

∣

∣













=

[

8− c2 c c2−10

−c 1 c

c2−6 −c 8− c2

]

Hence A−1 = 1
det A

adj A = 1
2

[

Ci j

]T
= 1

2

[

8− c2 −c c2−6
c 1 −c

c2−10 c 8− c2

]

.

f. Write A =

[

1 c −1

c 1 1

0 1 c

]

. Then det A = −(c3 +1) (Exercise 2) so det A = 0 means c 6= −1 (c

is real). The cofactor matrix is

[

Ci j

]

=













∣

∣

∣

∣

1 1
1 c

∣

∣

∣

∣

−
∣

∣

∣

∣

c 1
0 c

∣

∣

∣

∣

∣

∣

∣

∣

c 1
0 1

∣

∣

∣

∣

−
∣

∣

∣

∣

c −1

1 c

∣

∣

∣

∣

∣

∣

∣

∣

1 −1

0 c

∣

∣

∣

∣

−
∣

∣

∣

∣

1 c

0 1

∣

∣

∣

∣

∣

∣

∣

∣

c −1

1 1

∣

∣

∣

∣

−
∣

∣

∣

∣

1 −1

c 1

∣

∣

∣

∣

∣

∣

∣

∣

1 c

c 1

∣

∣

∣

∣













=

[

c−1 −c2 c

−(c2 +1) c −1

c+1 −(1+ c) 1− c2

]

Hence A−1 = 1
det A

adj A= −1
c3+1

[Ci j]
T = −1

c3+1

[

c−1 −(c2 +1) c+1

−c2 c −(c+1)
c −1 1− c2

]

= 1
c3+1

[

1− c c2 +1 −c−1

c2 −c c+1

−c 1 c2−1

]

,

where c 6=−1.

20. b. True. Write d = det A, so that d ·A−1 = adj A. Since adj A = A−1 by hypothesis, this gives

dA−1 = A−1, that is (d− 1)A−1 = 0. It follows that d = 1 because A−1 6= 0 (see Example

2.1.7).

d. True. Since AB = AC we get A(B−C) = 0. As A is invertible, this means B = C. More

precisely, left multiply by A−1 to get A−1A(B−C) = A−10 = 0; that is I(B−C) = 0; that is

B−C = 0, so B =C.

f. False. If A =

[

1 1 1

1 1 1

1 1 1

]

then adj A = 0. However A 6= 0.

h. False. If A =
[

1 1

0 0

]

then adj A =
[

0 −1

0 1

]

, and this has no row of zeros.

j. False. If A =
[

−1 1
1 −1

]

then det (I+A) =−1 but 1+ det A = 1.

l. False. If A =
[

1 1

0 1

]

then det A = 1, but adj A =
[

1 −1

0 1

]

6= A.

22. b. If p(x) = r0 + r1x+ r2x2, the conditions give linear equations for r0, r1 and r2:

r0 = p(0) = 5

r0 + r1 + r2 = p(1) = 3

r0 + 2r1 + 4r2 = p(2) = 5

The solution is r0 = 5, r1 =−4, r2 = 2, so p(x) = 5−4x+2x2.
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23. b. If p(x) = r0 + r1x+ r2x2 + r3x3, the conditions give linear equations for r0, r1, r2 and r3:

r0 = p(0) = 1

r0 + r1 + r2 + r3 = p(1) = 1

r0 − r1 + r2 − r3 = p(−1) = 2

r0 − 2r1 + 4r2 − 8r3 = p(−2) = −3

The solution is r0 = 1, r1 =
−5
3 , r2 =

1
2 , r3 =

7
6 , so p(x) = 1− 5

3x+ 1
2x2 + 7

6x3.

24. b. If p(x) = r0 + r1x+ r2x2 + r3x3, the conditions give linear equations for r0, r1, r2 and r3:

r0 = p(0) = 1

r0 + r1 + r2 + r3 = p(1) = 1.49

r0 + 2r1 + 4r2 + 8r3 = p(2) = −0.42

r0 + 3r1 + 9r2 + 27r3 = p(3) = −11.33

The solution is r0 = 1, r1 =−0.51, r2 = 2.1, r3 =−1.1, so

p(x) = 1−0.51x+2.1x2−1.1x3

The estimate for the value of y corresponding to x = 1.5 is

y = p(1.5) = 1−0.51(1.5)+2.1(1.5)2−1.1(1.5)3 = 1.25

to two decimals.

26. b. Let A be an upper triangular, invertible, n× n matrix. We use induction on n. If n = 1 it is

clear (every 1×1 matrix is upper triangular). If n > 1 write A =
[

a X

0 B

]

and A−1 =
[

b Y

Z C

]

in block form. Then
[

1 0

0 I

]

= AA−1 =
[

ab+XZ aY +XC

BZ BC

]

So BC = I, BZ = 0. Thus C = B−1 is upper triangular by induction (B is upper triangular

because A is) and BZ = 0 gives Z = 0 because B is invertible. Hence A−1 =
[

b Y

0 C

]

is upper

triangular.

28. Write d = det A. Then 1
d
= det (A−1) = det

[

3 0 1

0 2 3

3 1 −1

]

=−21. Hence d = −1
21 . By Theorem 3.2.4,

we have A · adj A = dI, so adj A = A−1(dI) = dA−1 = −1
21

[

3 0 1

0 2 3
3 1 −1

]

.

34. b. Write d = det A so det A−1 = 1
d

. Now the adjugate for A−1 gives

A−1(adj A−1) = 1
d

I

Take inverses to get (adj A−1)−1A = dI. But dI = (adj A)A by the adjugate formula for A.

Hence

(adj A−1)−1A = (adj A)A

Since A is invertible, we get
[

adj A−1
]−1

= adj A, and the result follows by taking inverses

again.
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d. The adjugate formula gives

AB adj (AB) = det AB · I = det A · det B · I

On the other hand

AB adj B · adj A = A[(det B)I] adj A

= A · adj A · (det B)I

= (det A)I · (det B)I

= det A det B · I

Thus AB adj (AB) = AB · adj B · adj A, and the result follows because AB is invertible.

3.3 Diagonalization and Eigenvalues

1. b. cA(x) =
∣

∣

∣

x−2 4
1 x+1

∣

∣

∣
= x2− x− 6 = (x− 3)(x+ 2); hence the eigenvalues are λ1 = 3, and

λ2 =−2. Take these values for x in the matrix xI−A for cA(x):

λ1 = 3:
[

1 4

1 4

]

→
[

1 4

0 0

]

; x1 =
[

4

−1

]

.

λ2 =−2:
[

−4 4
1 −1

]

→
[

1 −1
0 0

]

; x2 =
[

1
1

]

.

So P =
[

x1 x2

]

=
[

4 1

−1 1

]

has P−1AP =
[

3 0

0 −2

]

.

d. To compute cA(x) we first add row 1 to row 3:

cA(x) =

∣

∣

∣

∣

x−1 −1 3

−2 x −6

−1 1 x−5

∣

∣

∣

∣

=

∣

∣

∣

∣

x−1 −1 3

−2 x −6

x−2 0 x−2

∣

∣

∣

∣

=

∣

∣

∣

∣

x−1 −1 −x+4

−2 x −4

x−2 0 0

∣

∣

∣

∣

= (x−2)
∣

∣

∣

−1 −x+4

x −4

∣

∣

∣
= (x−2)[x2−4x+4] = (x−2)3

So the eigenvalue is λ1 = 2 of multiplicity 3. Taking x = 3 in the matrix xI−A for cA(x):

[

1 −1 3

−2 2 6

−1 1 −3

]

→
[

1 −1 3

0 0 0

0 0 0

]

, x =

[

s−3t

s

t

]

;x1 =

[

1

1

0

]

; x2 =

[

−3

0

1

]

.

Hence there are not n = 3 basic eigenvectors, so A is not diagonalizable.

f. Here cA(x) =

∣

∣

∣

∣

x −1 0

−3 x −1

−2 0 x

∣

∣

∣

∣

= x3 − 3x− 2. Note that −1 is a root of cA(x) so x + 1 is a

factor. Long division gives cA(x) = (x+ 1)(x2− x− 2). But x2− x− 2 = (x+ 1)(x− 2), so

cA(x) = (x+1)2(x−2). Hence, the eigenvalues are λ1 = −1 and λ2 = 2. Substitute λ1 = −1

in the matrix xI− cA(x) gives

[

−1 −1 0

−3 −1 −1

−2 0 −1

]

→
[

1 0 1
2

0 1 − 1
2

0 0 0

]
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so the solution involves only 1 parameter. As the multiplicity of λ1 is 2, A is not diagonaliz-

able by Theorem 3.3.5. Note that this matrix and the matrix in Example 3.3.9 have the same

characteristic polynomial but the matrix in Example 3.3.9 is diagonalizable, while this one is

not.

h. cA(x) =

∣

∣

∣

∣

x−2 −1 −1

0 x−1 0

−1 1 x−2

∣

∣

∣

∣

= (x−1)
∣

∣

∣

x−2 −1

−1 x−2

∣

∣

∣
= (x−1)2(x−3). Hence the eigenvalues are

λ1 = 1, λ2 = 3. Take these values for x in the matrix xI−A for cA(x):

λ1 = 1:

[

−1 −1 −1

0 0 0

−1 1 −1

]

→
[

1 1 1

0 2 0

0 0 0

]

→
[

1 0 1

0 1 0

0 0 0

]

; x1 =

[

−1

0

1

]

λ2 = 3:

[

1 −1 −1
0 2 0

−1 1 1

]

→
[

1 0 −1
0 1 0

0 0 0

]

; x2 =

[

1
0

1

]

Since n = 3 and there are only two basic eigenvectors, A is not diagonalizable.

2. b. As in Exercise 1, we find λ1 = 2 and λ2 = −1; with corresponding eigenvectors x1 =
[

2
1

]

and x2 =
[

1

2

]

, so P =
[

2 1

1 2

]

satisfies P−1AP = D =
[

2 0

0 −1

]

. Next compute

b =
[

b1

b2

]

= P−1
0 v = 1

3

[

2 −1

−1 2

][

3

−1

]

= 1
3

[

7

−5

]

Hence b1 =
7
3 so, as λ1 is dominant, xk

∼= b1λ k
1 x1 =

7
32k
[

2

1

]

.

d. Here λ1 = 3, λ2 = −2 and λ3 = 1; x1 =

[

1

0

1

]

, x2 =

[

1

1

−3

]

and x3 =

[

1

−2

3

]

, and P =
[

1 1 1

0 1 −2
1 −3 3

]

. Now P−1 = 1
6

[

3 6 3

2 −2 −2
1 −4 −1

]

, so P−1
0 v0 = 1

6

[

9

2
1

]

and hence b1 = 3
2 . Hence

vk
∼= 3

23k

[

1

0

1

]

.

4. If λ is an eigenvalue for A, let Ax = λx, x 6= 0. Then

A1x = (A−αI)x = Ax−αx = λx−αx = (λ −α)x

So λ −α is an eigenvalue of A1 = A−αI (with the same eigenvector). Conversely, if λ −α is

an eigenvalue of A1, then A1y = (λ −α)y for some y 6= 5. Thus, (A−αI)y = (λ −α)y, whence

Ay−αy = λy−αy. Thus Ay = λy so λ is an eigenvalue of A.

8. b. Direct computation gives P−1AP =
[

1 0

0 2

]

. Since
[

1 0

0 2

]n

=
[

1 0

0 2n

]

, the hint gives An =

P
[

1 0
0 2n

]

P−1 =
[

9−8 ·2n 12(1−2n)
6(2n−1) 9 ·2n−8

]

.

9. b. A =
[

0 1

0 2

]

. We have cA(x) = x(x− 2) so A has eigenvalues λ1 = 0 and λ2 = 2 with basic

eigenvectors x1 =
[

1
0

]

and x2 =
[

1
2

]

. Since
[

x1 x2

]

=
[

1 1
0 2

]

is invertible, it is a diag-

onalizing matrix for A. On the other hand, D+A =
[

1 1

0 1

]

is not diagonalizable by Example

3.3.10.

11. b. Since A is diagonalizable, let P−1AP = D be diagonal. Then P−1(kA)P = k(P−1AP) = dD is

also diagonal, so kA is diagonalizable too.
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d. Again let P−1AP = D be diagonal. The matrix Q =U−1P is invertible and

Q−1(U−1AU)Q = P−1U(U−1AU)U−1P = P−1AP = D is diagonal.

This shows that U−1AU is diagonalizable with diagonalizing matrix Q =U−1P.

12.
[

1 1

0 1

]

=
[

2 1

0 −1

]

+
[

−1 0

0 2

]

and both
[

2 1

0 −1

]

and
[

−1 0

0 2

]

are diagonalizable. However,
[

1 1
0 1

]

is not diagonalizable by Example 3.3.10.

14. If A is n× n, let λ1, λ2, . . . , λn be the eigenvalues, all either 0 or 1. Since A is diagonalizable

(by hypothesis), we have P−1AP = D where D = diag (λ1, . . . , λn) is the diagonal matrix with

λ1, . . . , λn down the main diagonal. Since each λi = 0, 1 it follows that λ 2
i = λi for each i. Thus

D2 = diag (λ 2
1 , . . . , λ 2

n ) = diag (λ1, . . . , λn) = D. Since P−1AP = D, we have A = PDP−1. Hence

A2 = (PDP−1)(PDP−1) = PD2P−1 = PDP−1 = A

18. b. Since r 6= 0 and A is n×n, we have

crA(x) = det [xI− rA] = det [r
(

x
r
I−A

)

] = rn det
[

x
r
I−A

]

As cA(x) = det [xI−A], this shows that crA(x) = rncA

(

x
r

)

.

20. b. If µ is an eigenvalue of A−1 then A−1x = µx for some column x 6= 0. Note that µ 6= 0 because

A−1 is invertible and x 6= 0. Left multiplication by A gives x = µAx, whence Ax = 1
µ x. Thus,

1
µ is an eigenvalue of A; call it λ = 1

µ . Hence, µ = 1
λ

as required. Conversely, if λ is any

eigenvalue of A then λ 6= 0 by (a) and we claim that 1
λ

is an eigenvalue of A−1. We have

Ax = λx for some column x 6= 0. Multiply on the left by A−1 to get x = λA−1x; whence

A−1x = 1
λ

x. Thus 1
λ

is indeed an eigenvalue of A−1.

21. b. We have Ax = λx for some column x 6= 0. Hence, A2x = λAx = λ 2x, A3 = λ 2Ax = λ 3x, so

(A3−2A+3I)x = A3x−2Ax+3x = λ 3x−2λx+3x = (λ 3−2λ +3)x

23. b. If λ is an eigenvalue of A, let Ax = λx for some x 6= 0. Then A2x = λAx = λ 2x, A3x = λ 2Ax =
λ 3x, . . . . We claim that Akx = λ kx holds for every k ≥ 1. We have already checked this for

k = 1. If it holds for some k ≥ 1, then Akx = λ kx, so

Ak+1x = A(Akx) = A(λ kx) = λ kAx = λ k(λx) = λ k+1x

Hence, it also holds for k+ 1, and so Akx = λ kx for all k ≥ 1 by induction. In particular, if

Am = 0, m≥ 1, then λ mx = Amx = 0x = 0. As x 6= 0, this implies that λ m = 0, so λ = 0.

24. a. Let A be diagonalizable with Am = I. If λ is any eigenvalue of A, say Ax= λx for some column

x 6= 0, then (see the solution to 23(b) above) Akx = λ kx for all k ≥ 1. Taking k = m we have

x = Amx = λ mx, whence λ m = 1. Thus λ is a complex mth root of unity and so lies on the unit

circle by Theorem A.3. But we are assuming that λ is a real number so λ = ±1, so λ 2 = 1.

Also A is diagonalizable, say P−1AP = D = diag (λ1, . . . , λn) where the λi are the eigenvalues

of A. Hence D2 = diag (λ 2
1 , . . . , λ 2

n ) = I because λ 2
i = 1 for each i. Finally, since A = PDP−1

we obtain A2 = PD2P−1 = PIP−1 = I.
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27. a. If A is diagonalizable and has only one eigenvalue λ , then the diagonalization algorithm asserts

that P−1AP = λ I. But then A = P(λ I)P−1 = λ I, as required.

b. Here the characteristic polynomial is cA(x) = (x−1)2, so the only eigenvalue is λ = 1. Hence

A is not diagonalizable by (a).

31. b. The matrix in Example 3.3.1 is
[

1
2

1
4

2 0

]

. In this case A =
[

1
4

1
4

3 0

]

so

cA(x) = det
[

x− 1
4 − 1

4
−3 x

]

= x2− 1
4x− 3

4 = (x−1)(x+ 3
4)

Hence the dominant eigenvalue is λ = 1, and the population stabilizes.

d. In this case A =
[

3
5

1
5

3 0

]

so cA(x) = det
[

x− 3
5 − 1

5
−3 x

]

= x2− 3
5x− 3

5 . By the quadratic for-

mula, the roots are 1
10 [3±

√
69], so the dominant eigenvalue is 1

10 [3+
√

69]≈ 1.13 > 1, so the

population diverges.

34. Here the matrix A in Example 3.3.1 is A =
[

α 2
5

2 0

]

where α is the adult reproduction rate. Hence

cA(x) = det
[

x−α − 2
5

−2 x

]

= x2−αx− 4
5 , and the roots are 1

2

[

α±
√

α2 + 16
5

]

. Thus the dominant

eigenvalue is λ1 = 1
2

[

α +
√

α2 + 16
5

]

, and this equals 1 if and only if α = 1
5 . So the population

stabilizes if α = 1
5 . In fact it is easy to see that the population becomes extinct (λ1 < 1) if and only

if α < 1
5 , and the population diverges (λ1 > 1) if and only if α > 1

5 .

3.4 An Application to Linear Recurrences

1. b. In this case xk+2 = 2xk−xk+1, so vk+1 =
[

xk+1

2xk− xk+1

]

=
[

0 1

2 −1

][

xk

xk+1

]

=Avk. Diagonalizing

A gives P =
[

1 1

1 −2

]

and D =
[

1 0

0 −2

]

. Hence

b =
[

b1

b2

]

= P−1
0 v0 =

1
3

[

2 1
1 −1

][

1
2

]

=
[

4
3

− 1
3

]

Thus
[

xk

xk+1

]

= 4
31k
[

1

1

]

− 1
3(−2)k

[

1

−2

]

for each k. Comparing top entries gives

xk =
4
3 − 1

3(−2)k = 1
3 [4− (−2)k] =

(−2)k

3

[

1−4
(

1
−2

)k
]

≈− (−2)k

3 for large k.

Here −2 is the dominant eigenvalue, so xk =
1
3(−2)k[ 4

(−2)k −1]≈−1
3(−2)k if k is large.

d. Here xk+2 = 6xk− xk+1, so vk+1 =
[

xk+1

6xk− xk+1

]

=
[

0 1

6 −1

][

xk

xk+1

]

= Avk.

Diagonalizing A gives P =
[

1 1

2 −3

]

and D =
[

2 0

0 −3

]

. Hence

b =
[

b1

b2

]

= P−1
0 v = 1

5

[

3 1

2 −1

][

1

1

]

=

[

4
5
1
5

]
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Now
[

xk

xk+1

]

= 4
52k
[

1

2

]

+ 1
5(−3)k

[

1

−3

]

, and so, looking at the top entries we get

xk =
4
52k + 1

5(−3)k = 1
5 [2

k+2 +(−3)k]

Here xk =
(−3)k

5

[

1+ r
(

2
−3

)k
]

≈ (−3)k

5 for large k, so −3 is dominant.

2. b. Let vk =

[

xk

xk+1

xk+2

]

. Then A =

[

0 1 0

0 0 1

2 1 −2

]

, and diagonalization gives P =

[

1 1 1

−1 −2 1

1 4 1

]

and

D =

[

−1 0 0

0 −2 0

0 0 1

]

. Then

[

b1

b2

b3

]

= P−1
0 v0 =

[

1 − 1
2 − 1

2

− 1
3 0 1

3
1
3

1
2

1
6

][

1

0

1

]

=

[

1
2

0
1
2

]

,

giving the general formula

vk =
1
2(−1)1k

[

1

−1

1

]

+(0)(−2)k

[

1

−2

4

]

+ 1
21k

[

1

1

1

]

Thus equating first entries give

xk =
1
2(−1)k + 1

21k = 1
2 [(−1)k +1]

Note that the sequence xk here is 0, 1, 0, 1, 0, 1, . . . which does not converge to any fixed

value for large k.

3. b. If a bus is parked at one end of the row, the remaining spaces can be filled in xk ways to fill it in;

if a truck is at the end, there are xk+2 ways; and if a car is at the end, there are xk+3 ways. Since

one (and only one) of these three possibilities must occur, we have xk+4 = xk + xk+2 + xk+3

must hold for all k ≥ 1. Since x1 = 1, x2 = 2 (cc or t), x3 = 3 (ccc, ct or tc) and x4 = 6 (cccc,

cct, ctc, tcc, tt, b), we get successively, x5 = 10, x6 = 18, x7 = 31, x8 = 55, x9 = 96, x10 = 169.

5. Let xk denote the number of ways to form words of k letters. A word of k+ 2 letters must end in

either a or b. The number of words that end in b is xk+1 — just add a b to a (k+ 1)-letter word.

But the number ending in a is xk since the second-last letter must be a b (no adjacent a’s) so we

simply add ba to any k-letter word. This gives the recurrence xk+2 = xk+1 + xk which is the same as

in Example 3.4.2, but with different initial conditions: x0 = 1 (since the “empty” word is the only

one formed with no letters) and x1 = 2. The eigenvalues, eigenvectors, and diagonalization remain

the same, and so

vk = b1λ k
1

[

1

λ1

]

+b2λ k
2

[

1

λ2

]

where λ1 =
1
2(1+

√
5) and λ2 =

1
2(1−

√
5). Comparing top entries gives

xk = b1λ k
1 +b2λ k

2

By Theorem 2.4.1, the constants b1 and b2 come from
[

b1

b2

]

=P−1
0 v0. However, we vary the method

and use the initial conditions to determine the values of b1 and b2 directly. More precisely, x0 = 1

means 1 = b1 + b2 while x1 = 2 means 2 = b1λ1 + b2λ2. These equations have unique solution

b1 =
√

5−3

2
√

5
and b2 =

√
5−3

2
√

5
. It follows that

xk =
1

2
√

5

[

(3+
√

5)
(

1+
√

5
2

)k

+(−3+
√

5)
(

1−
√

5
2

)k
]

for each k ≥ 0
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7. In a stack of k + 2 chips, if the last chip is gold then (to avoid having two gold chips together)

the second last chip must be either red or blue. This can happen in 2xk ways. But there are xk+1

ways that the last chip is red (or blue) so there are 2xk+1 ways these possibilities can occur. Hence

xk+2 = 2xk + 2xk+1. The matrix is A =
[

0 1

2 2

]

with eigenvalues λ1 = 1+
√

3 and λ2 = 1−
√

3

and corresponding eigenvectors x1 =
[

1

λ1

]

and x2 =
[

1

λ2

]

. Given the initial conditions x0 = 1 and

x1 = 3, we get

[

b1

b2

]

= P−1
0 v0 =

1√
3

[

λ2 −1

−λ1 1

][

1

3

]

= 1

−2
√

3

[

−2−
√

3

2−
√

3

]

= 1

2
√

3

[

2+
√

3

−2+
√

3

]

Since Theorem 2.4.1 gives

vk = b1λ k
1

[

1

λ1

]

+b2λ k
2

[

1

λ2

]

comparing top entries gives

xk = b1λ k
1 +b2λ k

2 = 1
2
√

3

[

(2+
√

3)(1+
√

3)k +(−2+
√

3)(1−
√

3)k
]

9. Let yk be the yield for year k. Then the yield for year k+ 2 is yk+2 =
yk+yk+1

2 = 1
2yk +

1
2yk+1. The

eigenvalues are λ1 = 1 and λ2 =−1
2 , with corresponding eigenvectors x1 =

[

1

1

]

and x2 =
[

−2

1

]

.

Given that k = 0 for the year 1990, we have the initial conditions y0 = 10 and y1 = 12. Thus

[

b1

b2

]

= P−1
0 v0 =

1
3

[

1 2
−1 1

][

10
12

]

= 1
3

[

34
2

]

Since

vk =
34
3 (1)

k
[

1
1

]

+ 2
3

(

−1
2

)k
[

−2
1

]

then

yk =
34
3 (1)

k + 2
3(−2)

(

−1
2

)k
= 34

3 − 4
3

(

−1
2

)k

For large k, yk ≈ 34
3 so the long term yield is 111

3 million tons of wheat.

11. b. We have A =

[

0 1 0

0 0 1

a b c

]

so cA(x) = x3− (a+bx+ cx2). If λ is any eigenvalue of A, and we

write x =

[

1

λ
λ 2

]

, we have

Ax =

[

0 1 0
0 0 1

a b c

][

1

λ
λ 2

]

=

[

λ
λ 2

a+bλ + cλ 2

]

=

[

λ
λ 2

λ 3

]

= λx

because cA(λ ) = 0. Hence x is a λ -eigenvector.

12. b. We have p = 5
6 from (a), so yk = xk +

5
6 satisfies yk+2 = yk+1 + 6yk with y0 = y1 = 11

6 . Here

A =
[

0 1

6 1

]

with eigenvalues 3 and −2, and diagonalizing matrix P =
[

1 −1

3 2

]

. This gives

yk =
11
30

[

3k+1− (−2)k+1
]

, so xk =
11
30

[

3k+1− (−2)k+1
]

− 5
6 .
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13. a. If pk is a solution of (3.12) and qk is a solution of (3.13) then

qk+2 = aqk+1 +bqk

pk+2 = apk+1 +bpk + c(k)

for all k. Adding these equations we obtain

pk+2 +qk+2 = a(pk+1 +qk+1)+b(pk +qk)+ c(k)

that is pk +qk is also a solution of (3.12).

b. If rk is any solution of (3.12) then rk+2 = ark+1 +brk + c(k). Define qk = rk− pk for each k.

Then it suffices to show that qk is a solution of (3.13). But

qk+2 = rk+2− pk+2 = (ark+1 +brk + c(k))− (apk+1 +bpk + c(k)) = aqk+1 +bqk

which is what we wanted.

3.5 An Application to Systems of Differential Equations

1. b. The matrix of the system is A =
[

−1 5

1 3

]

so cA(x) =
∣

∣

∣

x+1 −5

−1 x−3

∣

∣

∣
= (x−4)(x+2).

λ1 = 4:
[

5 −5

−1 1

]

→
[

1 −1

0 0

]

; an eigenvector is x1 =
[

1

1

]

.

λ2 =−2:
[

−1 −5

−1 −5

]

→
[

1 5

0 0

]

; an eigenvector is x2 =
[

5

−1

]

.

Thus P−1AP =
[

4 0

0 −2

]

where P =
[

1 5

1 −1

]

. The general solution is

f = c1x1eλ1x + c2x2eλ2x = c1

[

1
1

]

e4x + c2

[

5
−1

]

e−2x

Hence, f1(x) = c1e4x +5c2e−2x, f2(x) = c1e4x−c2e−2x. The boundary condition is f1(0) = 1,

f2(0) =−1; that is
[

1

−1

]

= f(0) = c1

[

1

1

]

+ c2

[

5

−1

]

Thus c1 +5c2 = 1, c1− c2 =−1; the solution is c1 =−2
3 , c2 =

1
3 , so the specific solution is

f1(x) =
1
3(5e−2x−2e4x), f2(x) =−1

3(2e4x + e−2x)

d. Now A =

[

2 1 2

2 2 −2

3 1 1

]

. To evaluate cA(x), first subtract row 1 from row 3:

cA(x) =

∣

∣

∣

∣

x−2 −1 −2

−2 x−2 2

−3 −1 x−1

∣

∣

∣

∣

=

∣

∣

∣

∣

x−2 −1 −2

−2 x−2 2

−x−1 0 x+1

∣

∣

∣

∣

=

∣

∣

∣

∣

x−4 −1 −2

0 x−2 2

0 0 x+1

∣

∣

∣

∣

= (x+1)(x−2)(x−4)
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λ1 =−1:

[

−3 −1 −2

−2 −3 2

−3 −1 −2

]

→
[

1 5 −6

2 3 −2

0 0 0

]

→
[

1 0 8
7

0 1 − 10
7

0 0 0

]

; x1 =

[

−8

10

7

]

λ2 = 2:

[

0 −1 −2

−2 0 2

−3 −1 1

]

→
[

1 0 −1

0 1 2

0 −1 −2

]

→
[

1 0 −1

0 1 2

0 0 0

]

; x2 =

[

1

−2

1

]

λ3 = 4:

[

2 −1 −2

−2 2 2

−3 −1 3

]

→
[

2 −1 −2

0 2 0

−3 −1 3

]

→
[

1 0 −1

0 1 0

0 0 0

]

; x3 =

[

1

0

1

]

Thus P−1AP =

[

−1 0 0

0 2 0

0 0 4

]

where P =

[

−8 1 1

10 −2 0

7 1 1

]

. The general solution is

f = c1x1e−x + c2x2e2x + c3x3e4x = c1

[

−8

10

7

]

e−x + c2

[

1

−2

1

]

e2x + c3

[

1

0

1

]

e4x

That is

f1(x) =−8c1e−x + c2e2x + c3e4x

f2(x) = 10c1e−x−2c2e2x

f3(x) = 7c1e−x + c2e2x + c3e4x

If we insist on the boundary conditions f1(0) = f2(0) = f3(0) = 1, we get

−8c1 + c2 + c3 = 1

10c1 − 2c2 = 1

2c1 + c2 + c3 = 1

The coefficient matrix is P is invertible, so the solution is unique: c1 = 0, c2 = −1
2 , c3 = 3

2 .

Hence

f1(x) =
1
2(3e4x− e2x)

f2(x) = e2x

f3(x) =
1
2(3e4x− e2x)

Note that f1(x) = f3(x) happens to hold.

3. b. Have m′(t) = km(t), so m(t) = cekt by Theorem 3.5.1. Then the requirement that m(0) = 10

gives c = 10. Also we ask that m(3) = 8, whence 10e3k = 8, e3k = 4
5 . Hence (ek)3 = 4

5 , so

(ek) = (4
5)

1/3. Thus m(t) = 10(4
5)

t/3. Now, we want the half-life t0 satisfying m(t0) =
1
2m(0),

that is 10(4
5)

t0/3 = 5 so t0 =
3ln(1/2)
ln(4/5) = 9.32 hours.

5. a. Assume that a g′ = Ag where A is n× n. Put f = g−A−1b where b is a column of constant

functions. Then f′ = g′ = Ag = A(f+A−1b) = Af+b, as required.

6. b. Assume that f ′1 = a1 f1+ f2 and f ′2 = a2 f1. Differentiating gives f ′′1 = a1 f ′1+ f ′2 = a1 f ′1+a2 f1.

This shows that f1 satisfies (∗).
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3.6 Proof of the Cofactor Expansion Theorem

2. Consider the rows Rp, Rp+1, . . . , Rq−1, Rq. Using adjacent interchanges we have















Rp

Rp+1
...

Rq−1

Rq















−−−−−−−−−→

q− p

interchanges















Rp+1
...

Rq−1

Rq

Rp















−−−−−−−−−→

q− p−1

interchanges















Rq

Rp+1
...

Rq−1

Rp















Hence 2(q− p)−1 interchanges are used in all.

Supplementary Exercises: Chapter 3

2. b. Proceed by induction on n where A is n× n. If n = 1, AT = A. In general, induction and (a)

give

det [Ai j] = det [
(

Ai j

)T
] = det [(AT )i j]

Write AT = [a′i j] where a′i j = a ji, and expand det (AT ) along column 1:

det (AT ) =
n

∑
j=1

a′j1(−1) j+1 det [(AT ) j1] =
n

∑
j=1

a1 j(−1)1+ j det [A1 j] = det A

where the last equality is the expansion of det A along row 1.





4. Vector Geometry

4.1 Vectors and Lines

1. b.

∥

∥

∥

∥

[

1

−1
2

]∥

∥

∥

∥

=
√

12 +(−1)2 +22 =
√

6

d.

∥

∥

∥

∥

[

−1
0

2

]∥

∥

∥

∥

=
√

(−1)2 +02 +22 =
√

5

f.

∥

∥

∥

∥

−3

[

1
1

2

]∥

∥

∥

∥

= |−3|
√

12 +12 +22 = 3
√

6

2. b. A vector u in the direction of

[

−2

−1

2

]

must have the form u = t

[

−2

−1

2

]

for a scalar t > 0. Since

u is a unit vector, we want ‖u‖ = 1; that is 1 = |t|
√

(−2)2 +(−1)2 +22 = 3t, which gives

t = 1
3 . Hence u = 1

3

[

−2
−1

2

]

.

4. b. Write u=

[

2

−1

2

]

and v=

[

2

0

1

]

. The distance between u and v is the length of their difference:

‖u−v‖=
∥

∥

∥

∥

[

0

−1

1

]∥

∥

∥

∥

=
√

02 +(−1)2 +12 =
√

2.

d. As in (b), the distance is

∥

∥

∥

∥

[

4

0

−2

]

−
[

3

2

0

]∥

∥

∥

∥

=

∥

∥

∥

∥

[

1

−2

−2

]∥

∥

∥

∥

=
√

12 +(−2)2 +(−2)2 = 3.

6. b. In the diagram, let E and F be the midpoints of sides BC and AC respectively. Then
−→
FC = 1

2

−→
AC

and
−→
CE = 1

2

−→
CB. Hence

−→
FE =

−→
FC+

−→
CE = 1

2

−→
AC+ 1

2

−→
CB = 1

2(
−→
AC+

−→
CB) = 1

2

−→
AB

7. Two nonzero vectors are parallel if and only if one is a scalar multiple of the other.

b. Yes, they are parallel: u = (−3)v.

d. Yes, they are parallel: v = (−4)u.

8. b.
−→
QR = p because OPQR is a parallelogram (where O is the origin).

d.
−→
RO =−(p+q) because

−→
OR = p+q.

59
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9. b.
−→
PQ =

[

1

−1

6

]

−
[

2

1

0

]

=

[

−1

−1

5

]

, so
∥

∥

∥

−→
PQ

∥

∥

∥
=
√

(−1)2 +(−1)2 +52 =
√

27 = 3
√

3.

d. Here P = Q are equal points, so
−→
PQ = 0. Hence

∥

∥

∥

−→
PQ

∥

∥

∥
= 0.

f.
−→
PQ =

[

1

1

4

]

−
[

3

−1

6

]

=

[

−2

2

−2

]

= 2

[

−1

1

−1

]

. Hence
∥

∥

∥

−→
PQ

∥

∥

∥
= |2|

√

(−1)2 +12 +(−1)2 = 2
√

3.

10. b. Given Q(x, y, z) let q =

[

x

y

z

]

and p =

[

3

0
−1

]

be the vectors of Q and P. Then
−→
PQ = q−p.

Let v =

[

2

−1

3

]

.

(i) If
−→
PQ = v then q−p = v, so q = p+v =

[

5

−1

2

]

. Thus Q = Q(5, −1, 2).

(ii) If
−→
PQ =−v then q−p =−v, so q = p−v =

[

1

1

−4

]

. Thus Q = Q(1, 1, −4).

11. b. If 2(3v−x) = 5w+u−3x then 6v−2x = 5w+u−3x, so

x = 5w+u−6v =

[

−5

5

25

]

+

[

3

−1

0

]

−
[

24

0

6

]

=

[

−26

4

19

]

12. b. We have au+bv+ cw =

[

a

a

2a

]

+

[

0

b

2b

]

+

[

c

0

−c

]

=

[

a+ c

a+b

2a+2b− c

]

. Hence setting

au+bv+ cw = x =

[

1
3

0

]

gives equations

a + c = 1

a + b = 3

2a + 2b − c = 0

The solution is a =−5, b = 8, c = 6.

13. b. Suppose

[

5

6

−1

]

= au+ bv+ cw =

[

3a+4b+ c

−a+ c

b+ c

]

. Equating coefficients gives linear equations

for a, b, c:
3a + 4b + c = 5

−a + c = 6

b + c = −1

This system has no solution, so no such a, b, c exist.

14. b. Write P = P(x, y, z) and let p =

[

x

y

z

]

, p1 =

[

2

1

−2

]

and p2 =

[

1

−2

0

]

be the vectors of P, P1

and P2 respectively. Then

p−p2 =
−→
P2P = p2 +

1
4(
−−→
P2P1) = p2 +

1
4(p1−p2) =

1
4p1 +

3
4p2
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Since p1 and p2 are known, this gives

p = 1
4

[

2

1

−2

]

+ 3
4

[

1

−2

0

]

= 1
4

[

5

−5

−2

]

Hence P = P
(

5
4 , −5

4 , −1
2

)

.

17. b. Let p =
−→
OP and q =

−→
OQ denote the vectors of the points P and Q respectively. Then q−p =

−→
PQ =

[

−1

4

7

]

and p =

[

1

3

−4

]

, so q = (q−p)+p =

[

−1

4

7

]

+

[

1

3

−4

]

=

[

0

7

3

]

.

Hence Q = Q(0, 7, 3).

18. b. We have ‖u‖2 = 20, so the given equation is 3u+7v = 20(2x+v). Solving for x gives

40x = 3u−13v =

[

6
0

−12

]

−
[

26
13

−26

]

=

[

−20
−13

14

]

Hence x = 1
40

[

−20
−13

14

]

.

20. b. Let S denote the fourth point. We have
−→
RS =

−→
PQ, so

−→
OS =

−→
OR+

−→
RS =

−→
OR+

−→
PQ =

[

3

−1
0

]

+

[

−4

4
2

]

=

[

−1

3
2

]

Hence S = S(−1, 3, 2).

21. b. True. If ‖v−w‖= 0 then v−w = 0 by Theorem 4.1.1, so v = w.

d. False. ‖v‖= ‖−v‖ for all v but v =−v only holds if v = 0.

f. False. If t < 0 they have opposite directions.

h. False. By Theorem 4.1.1, ‖−5v‖= |−5|‖v‖= 5‖v‖ so it fails if v 6= 0.

j. False. If w =−v where v 6= 0, then ‖v+w‖= 0 but ‖v‖+‖w‖= 2‖v‖ 6= 0.

22. b. One direction vector is d =
−→
QP =

[

2

−1

5

]

. Let p0 =

[

3

−1

4

]

be the vector of P. Then the vector

equation of the line is

p = p0 + td =

[

3
−1

4

]

+ t

[

2
−1

5

]

when p =

[

x

y

z

]

is the vector of an arbitrary point on the line. Equating coefficients gives the parametric equa-

tions of the line

x = 3+2t

y =−1− t

z = 4+5t
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d. Now p0 =

[

1

1

1

]

because P1(1, 1, 1) is on the line, and take d =

[

1

1

1

]

because the line is to

be parallel to d. Hence the vector equation is p = p0+ td =

[

1

1
1

]

+ t

[

1

1
1

]

. Taking p =

[

x

y

z

]

,

the scalar equations are

x = 1+ t

y = 1+ t

z = 1+ t

.

f. The line with parametric equations

x = 2− t

y = 1

z = t

has direction vector d =

[

−1

0

1

]

— the compo-

nents are the coefficients of t. Since our line is parallel to this one, d will do as direction vector.

We are given the vector p0 =

[

2

−1

1

]

of a point on the line, so the vector equation is

p = p0 + td =

[

2

−1

1

]

+ t

[

−1

0

1

]

The scalar equations are

x = 2− t

y =−1

z = 1+ t

23. b. P(2, 3, −3) lies on the line

[

x

y

z

]

=

[

4− t

3

1−2t

]

since it corresponds to t = 2. Similarly Q(−1, 3, −9)

corresponds to t = 5, so Q lies on the line too.

24. b. If P = P(x, y, z) is a point on both lines then

x = 1− t

y = 2+2t for some t because P lies on the first line.

z =−1+3t

x = 2s

y = 1+ s for some s because P lies on the second line.

z = 3

If we eliminate x, y, and z we get three equations for s and t:

1− t = 2s

2+2t = 1+ s

−1+3t = 3

The last two equations require t = 4
3 and s= 11

3 , but these values do not satisfy the first equation.

Hence no such s and t exist, so the lines do not intersect.
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d. If

[

x

y

z

]

is the vector of a point on both lines, then

[

x

y

z

]

=

[

4

−1

5

]

+ t

[

1

0

1

]

for some t (first line)

[

x

y

z

]

=

[

2
−7

12

]

+ s

[

0
−2

3

]

for some s (second line).

Eliminating

[

x

y

z

]

gives

[

4

−1

5

]

+t

[

1

0

1

]

=

[

2

−7

12

]

+s

[

0

−2

3

]

. Equating coefficients gives three

equations for s and t:

4+ t = 2

−1 =−7−2s

5+ t = 12+3s

This has a (unique) solution t =−2, s =−3 so the lines do intersect. The point of intersection

has vector
[

4
−1

5

]

+ t

[

1
0

1

]

=

[

4
−1

5

]

−2

[

1
0

1

]

=

[

2
−1

3

]

(equivalently

[

2

−7

12

]

+ s

[

0

−2

3

]

=

[

2

−7

12

]

−3

[

0

−2

3

]

=

[

2

−1

3

]

).

29. Let a =

[

1

−1

2

]

and b =

[

2

0

1

]

be the vectors of A and B. Then d = b− a =

[

1

1

−1

]

is a direction

vector for the line through A and B, so the vector c of C is given by c = a+ td for some t. Then

∥

∥

∥

−→
AC

∥

∥

∥
= ‖c−a‖= ‖td‖= |t| ‖d‖ and

∥

∥

∥

−→
BC

∥

∥

∥
= ‖c−b‖= ‖(t−1)d‖= |t−1|‖d‖

Hence
∥

∥

∥

−→
AC

∥

∥

∥
= 2
∥

∥

∥

−→
BC

∥

∥

∥
means |t|= 2 |t−1|, so t2 = 4(t−1)2, whence 0= 3t2−8t+4= (t−2)(3t−

2). Thus t = 2 or t = 2
3 . Since c = a+ td, this means c =

[

3

1

0

]

or c =

[

5
3

− 1
3

4
3

]

.

31. b. If there are 2n points, then Pk and Pn+k are opposite ends of a diameter of the circle for each

k = 1, 2, . . . . Hence
−→
CPk =−

−→
CPn+k so these terms cancel in the sum

−→
CP1+

−→
CP2+ · · ·+

−→
CP2n.

Thus all terms cancel and the sum is 0.

33. We have 2
−→
EA =

−→
DA because E is the midpoint of side AD, and 2

−→
AF =

−→
FC because F is 1

3 the way

from A to C. Finally
−→
DA =

−→
CB because ABCD is a parallelogram. Thus

2
−→
EF = 2(

−→
EA+

−−→
AF) = 2

−→
EA+2

−→
AF =

−→
DA+

−→
FC =

−→
CB+

−→
FC =

−→
FB

Hence
−→
EF = 1

2

−→
FB so F is in the line segment EB, 1

3 the way from E to B. Hence F is the trisection

point of both AC and EB.
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4.2 Projections and Planes

1. b. u ·v = u ·u = 12 +22 +(−1)2 = 6

d. u ·v = 3 ·6+(−1)(−7)+5(−5) = 18+7−25 = 0

f. v = 0 so u ·v = a ·0+b ·0+ c ·0 = 0

2. b. cosθ = u·v
‖u‖‖v‖ =

−18−2+0√
10
√

40
= −20

20 =−1. Hence θ = π .

d. cosθ = u·v
‖u‖‖v‖ =

6+6−3√
6(3
√

6)
= 1

2 . Hence θ = π
3 .

f. cosθ = u·v
‖u‖‖v‖ =

0−21−4√
25
√

100
=−1

2 . Hence θ = 2π
3 .

3. b. Writing u =

[

2

−1

1

]

and v =

[

1

x

2

]

, the requirement is

1
2 = cos π

3 = u·v
‖u‖‖v‖ =

2−x+2√
6
√

x2+5

Hence 6(x2 +5) = 4(4− x)2, whence x2 +16x−17 = 0. The roots are x =−17 and x = 1.

4. b. The conditions are u1 ·v = 0 and u2 ·v = 0, yielding equations

3x − y + 2z = 0

2x + z = 0

The solutions are x =−t, y = t, z = 2t, so v = t

[

−1

1

2

]

.

d. The conditions are u1 ·v = 0 and u2 ·v = 0, yielding equations

2x− y+3z = 0

0 = 0

The solutions are x = s, y = 2s+3t, z = t, so v = s

[

1

2
0

]

+ t

[

0

3
1

]

.

6. b.
∥

∥

∥

−→
PQ

∥

∥

∥

2
=

∥

∥

∥

∥

[

3

−2

4

]∥

∥

∥

∥

2

= 9+4+16 = 29

∥

∥

∥

−→
QR

∥

∥

∥

2
=

∥

∥

∥

∥

[

2

7
2

]∥

∥

∥

∥

2

= 4+49+4 = 57

∥

∥

∥

−→
PR

∥

∥

∥

2
=

∥

∥

∥

∥

[

5

5

6

]∥

∥

∥

∥

2

= 25+25+36 = 86

Hence
∥

∥

∥

−→
PR

∥

∥

∥
=
∥

∥

∥

−→
PQ

∥

∥

∥

2
+
∥

∥

∥

−→
QR

∥

∥

∥

2
. Note that this implies that the triangle is right angled, that

PR is the hypotenuse, and hence that the angle at Q is a right angle. Of course, we can confirm

this latter fact by computing
−→
PQ ·−→QR = 6−14+8 = 0.
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8. b. We have
−→
AB =

[

2

1

1

]

and
−→
AC =

[

1

2

−1

]

so the angle α at A is given by

cosα =
−→
AB·−→AC

∥

∥

∥

−→
AB

∥

∥

∥

∥

∥

∥

−→
AC

∥

∥

∥

= 2+2−1√
6
√

6
= 1

2

Hence α = π
3 or 60◦. Next

−→
BA =

[

−2

−1
−1

]

and
−→
BC =

[

−1

1
−2

]

so the angle β at B is given by

cosβ =
−→
BA·−→BC

∥

∥

∥

−→
BA

∥

∥

∥

∥

∥

∥

−→
BC

∥

∥

∥

= 2−1+2√
6
√

6
= 1

2

Hence β = π
3 . Since the angles in any triangle add to π , the angle γ at C is π − π

3 − π
3 = π

3 .

However,
−→
CA =

[

−1

−2

1

]

and
−→
CB =

[

1

−1

2

]

, this can also be seen directly from

cosγ =
−→
CA·−→CB

∥

∥

∥

−→
CA

∥

∥

∥

∥

∥

∥

−→
CB

∥

∥

∥

= −1+2+2√
6
√

6
= 1

2

10. b. projv u = u·v
‖v‖2 v = 12−2+1

16+1+1

[

4
1

1

]

= 11
18

[

4
1

1

]

d. projv u = u·v
‖v‖2 v = −18−8−2

36+16+4

[

−6

4

2

]

=−1
2

[

−6

4

2

]

=

[

3

−2

−1

]

11. b. Take u1 = projv u= u·v
‖v‖2 v= −6+1+0

4+1+16

[

−2

1
4

]

= −5
21

[

−2

1
4

]

. Then u2 =u−u1 =

[

3

1
0

]

+ 5
21

[

−2

1
4

]

=

1
21

[

53

26

20

]

. As a check, verify that u2 ·v = 0, that is u2 is orthogonal to v.

d. Take u1 = projv u = u·v
‖v‖2 v = −18−8−1

36+16+1

[

−6

4

−1

]

= 27
53

[

6

−4

1

]

. Then u2 is given by u2 = u−u1 =
[

3

−2

1

]

− 27
53

[

6

−4

1

]

= 1
53

[

−3

2

26

]

. As a check, verify that u2 ·v = 0, that is u2 is orthogonal to v.

12. b. Write p0 =

[

1

0

−1

]

, d =

[

3

1

4

]

, p =

[

1

−1

3

]

and write u =
−→
P0P = p− p0 =

[

0

−1

4

]

. Write

u1 =
−−→
P0Q and compute it as u1 = projd

−→
P0P = 0−1+16

9+1+16

[

3

1

4

]

= 15
26

[

3

1

4

]

. Then the distance

from P to the line is
∥

∥

∥

−→
QP

∥

∥

∥
= ‖u−u1‖=

∥

∥

∥

∥

1
26

[

−45

−41

44

]∥

∥

∥

∥

= 1
26

√
5642. To compute Q let q be its

vector. Then

q = p0 +u1 =

[

1

0

−1

]

+ 15
26

[

3

1

4

]

= 1
26

[

71

15

34

]

Hence Q = Q(71
26 , 15

26 , 34
26).

13. b. u×v = det

[

i 3 −6

j −1 2

k 0 0

]

= 0i−0j+0k =

[

0

0

0

]

= 0
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d. u×v = det

[

i 2 1

j 0 4

k −1 7

]

= 4i−15j+8k =

[

4

−15

8

]

14. b. A normal is n =
−→
AB×−→AC =

[

−1

1

−5

]

×
[

3

8

−17

]

= det

(

i −1 3

j 1 8

k −5 −17

)

=

[

23

−32

−11

]

.

Since the plane passes through B(0, 0, 1) the equation is

23(x−0)−32(y−0)−11(z−1) = 0, that is −23x+32y+11z = 11

d. The plane with equation 2x− y+ z = 3 has normal n =

[

2

−1

1

]

. Since our plane is parallel

to this one, n will serve as normal. The point P(3, 0, −1) lies on our plane, the equation is

2(x−3)− (y−0)+(z− (−1) = 0, that is 2x− y+ z = 5.

f. The plane contains P(2, 1, 0) and P0(3, −1, 2), so the vector u =
−→
PP0 =

[

1

−2

2

]

is parallel

to the plane. Also the direction vector d =

[

1

0

−1

]

of the line is parallel to the plane. Hence

n = u×d = det

[

i 1 1
j −2 0

k 2 −1

]

=

[

2
3

2

]

is perpendicular to the plane and so serves as a normal.

As P(2, 1, 0) is in the plane, the equation is

2(x−2)+3(y−1)+2(z−0) = 0, that is 2x+3y+2z = 7

h. The two direction vectors d1 =

[

1

−1

3

]

and d2 =

[

2

1

−1

]

are parallel to the plane, so

n = d1×d2 = det

[

i 1 2
j −1 1

k 3 −1

]

=

[

−2
7

3

]

will serve as normal. The plane contains P(3, 1, 0)

so the equation is

−2(x−3)+7(y−1)+3(z−0) = 0, that is −2x+7y+3z = 1

Note that this plane contains the line

[

x

a

z

]

=

[

3

1

0

]

+ t

[

1

−1

3

]

by construction; it contains the

other line because it contains P(0, −2, 5) and is parallel to d2. This implies that the lines

intersect (both are in the same plane). In fact the point of intersection is P(4, 0, 3) [t = 1 on

the first line and t = 2 on the second line].

j. The set of all points R(x, y, z) equidistant from both P(0, 1, −1) and Q(2, −1, −3) is deter-

mined as follows: The condition is
∥

∥

∥

−→
PR

∥

∥

∥
=
∥

∥

∥

−→
QR

∥

∥

∥
, that is

∥

∥

∥

−→
PR

∥

∥

∥

2
=
∥

∥

∥

−→
QR

∥

∥

∥

2
, that is

x2 +(y−1)2 +(z+1)2 = (x−2)2 +(y+1)2 +(z+3)2

This simplifies to x2+y2+z2−2y+2z+2 = x2+y2+z2−4x+2y+6z+14; that is 4x−4y−
4z = 12; that is x− y− z = 3.

15. b. The normal n =

[

2

1

0

]

to the given plane will serve as direction vector for the line. Since the

line passes through P(2, −1, 3), the vector equation is

[

x

y

z

]

=

[

2

−1

3

]

+ t

[

2

1

0

]

.
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d. The given lines have direction vectors d1 =

[

1

1

−2

]

and d2 =

[

1

2

−3

]

, so

d = d1×d2 = det

[

i 1 1
j 1 2

k −2 −3

]

=

[

1
1

1

]

is perpendicular to both lines.

Hence d is a direction vector for the line we seek. As P(1, 1, −1) is on the line, the vector

equation is
[

x

y

z

]

=

[

1

1

−1

]

+ t

[

1

1

1

]

f. Each point on the given line has the form Q(2+ t, 1+ t, t) for some t. So
−→
PQ =

[

1+ t

t

t−2

]

. This

is perpendicular to the given line if
−→
PQ ·d = 0 (where d =

[

1

1

1

]

is the direction vector of the

given line). This condition is (1+ t)+ t +(t− 2) = 0, that is t = 1
3 . Hence the line we want

has direction vector

[

4
3
1
3

− 5
3

]

. For convenience we use d =

[

4
1

−5

]

. As the line we want passes

through P(1, 1, 2), the vector equation is

[

x

y

z

]

=

[

1

1

2

]

+ t

[

4

1

−5

]

. [Note that Q
(

7
3 , 4

3 , 1
3

)

is

the point of intersection of the two lines.]

16. b. Choose a point P0 in the plane, say P0(0, 6, 0), and write u =
−→
P0P =

[

3

−5

−1

]

. Now write

n =

[

2

1

−1

]

for the normal to the plane. Compute

u1 = projn u = u·n
‖n‖2 n = 2

6

[

2

1

−1

]

The distance from P to the plane is ‖u1‖= 1
3

√
6.

Since p0 =

[

0

6

0

]

and q are the vectors of P0 and Q, we get

q = p0 +(u−u1) =

[

0
6

0

]

+

[

3
−5

−1

]

− 1
3

[

2
1

−1

]

= 1
3

[

7
2

−2

]

Hence Q = Q
(

7
3 , 2

3 , −2
3

)

.

17. b. A normal to the plane is given by

n =
−→
PQ×−→PR =

[

−2

2

−4

]

×
[

−3

−1

−3

]

= det

[

i −2 −3

j 2 −1

k −4 −3

]

=

[

−10

6

8

]

Thus, as P(4, 0, 5) is in the plane, the equation is

−10(x−4)+6(y−0)+8(z−5) = 0; that is 5x−3y−4z = 0.

The plane contains the origin P(0, 0, 0).
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19. b. The coordinates of points of intersection satisfy both equations:

3x+ y−2z = 1

x+ y+ z = 5

Solve
[

3 1 −2 1

1 1 1 5

]

→
[

1 1 1 5

0 −2 −5 −14

]

→
[

1 0 − 3
2 −2

0 1 5
2 7

]

Take z = 2t, to eliminate fractions, whence x =−2+3t and y = 7−5t. Thus

[

x

y

z

]

=

[

−2+3t

7−5t

2t

]

=

[

−2

7

0

]

=+t

[

3

−5

2

]

is the line of intersection.

20. b. If P(x, y, z) is an intersection point, then x = 1+2t, y = −2+5t, z = 3− t since P is on the

line. Substitution in the equation of the plane gives 2(1+2t)− (−2+5t)− (3− t)= 5, that is

1 = 5. Thus there is no such t, so the line does not intersect the plane.

d. If P(x, y, z) is an intersection point, then x = 1+2t, y =−2+5t and z = 3− t since P is on the

line. Substitution in the equation of the plane gives −1(1+ 2t)− 4(−2+ 5t)− 3(3− t) = 6,

whence t = −8
19 . Thus

[

x

y

z

]

=

[

3
19

− 78
19

65
19

]

so P
(

3
19 , −78

19 , 65
19

)

is the point of intersection.

21. b. The line has direction vector d =

[

3
0

2

]

which is a normal to all such planes. If P0(x0, y0, z0)

is any point, the plane 3(x− x0) = 0(y− y0)+2(z− z0) = 0 is perpendicular to the line. This

can be written 3x+2z = 3x0 +2z0, so 3x+2z = d, d arbitrary.

d. If the normal is n =

[

a

b

c

]

6= 0, the plane is a(x−3)+b(y−2)+ c(z+4) = 0, where a, b and

c are not all zero.

f. The vector u =
−→
PQ =

[

−1

1

−1

]

is parallel to these planes so the normal n =

[

a

b

c

]

is orthogonal

to u. Thus 0 = u ·n =−a+b−c. Hence c = b−a and n =

[

a

b

b−a

]

. The plane passes through

Q(1, 0, 0) so the equation is a(x−1)+b(y−0)+(b−a)(z−0) = 0, that is ax+by+(b−a)z =
a. Here a and b are not both zero (as n 6= 0). As a check, observe that this plane contains

P(2, −1, 1) and Q(1, 0, 0).

h. Such a plane contains P0(3, 0, 2) and its normal n =

[

a

b

c

]

must be orthogonal to the direction

vector d=

[

1
−2

−1

]

of the line. Thus 0 = d ·n= a−2b−c, whence c = a−2b and n =

[

a

b

a−2b

]

(where a and b are not both zero as n 6= 0). Thus the equation is

a(x−3)+b(y−0)+(a−2b)(z−2) = 0, that is ax+by+(a−2b)z = 5a−4b

where a and b are not both zero. As a check, observe that the plane contains every point

P(3+ t, −2t, 2− t) on the line.
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23. b. Choose P1(3, 0, 2) on the first line. The distance in question is the distance from P1 to the

second line. Choose P2(−1, 2, 2) on the second line and let u =
−−→
P2P1 =

[

4

−2

0

]

. If d =

[

3

1

0

]

is the direction vector for the line, compute

u1 = projd u = u·d
‖d‖2 d = 10

10

[

3 1 0
]T

=
[

3 1 0
]T

then the required distance is ‖u−u1‖=
∥

∥

∥

[

3 1 0
]T
∥

∥

∥
=
√

10.

24. b. The cross product n=

[

1
1

1

]

×
[

3
1

0

]

=

[

−1
3

−2

]

of the two direction vectors serves as a normal to

the plane. Given P1(1, −1, 0) and P2(−2, −1, 3) on the lines, let u =
−−→
P1P2 =

[

1

0

3

]

. Compute

u1 = projn u = −7
14

[

−1

3

−2

]

= 1
2

[

1

−3

2

]

The required distance is ‖u1‖= 1
2

√
1+9+4 = 1

2

√
14.

Now let A = A(1+ s, −1+ s, s) and B = B(2+3t, −1+ t, 3) be the points on the two lines

that are closest together. Then
−→
AB =

[

1+3t− s

t− s

3− s

]

is orthogonal to both direction vectors d1 =
[

1

1

1

]

and d2 =

[

3

1

0

]

. By Theorem 4.2.3 this means d1 ·
−→
AB = 0 = d2 ·

−→
AB, giving equations

4t−3s =−4, 10t−4s =−3. The solution is t = 1
2 , s = 2, so the points are A = A(3, 1, 2) and

B = B
(

7
2 , −1

2 , 3
)

.

d. Analogous to (b). The distance is
√

6
6 , and the points are A(19

3 , 2, 1
3) and B = B

(

37
6 , 13

6 , 0
)

.

26. b. Position the cube with one vertex at the origin and sides along the positive axes. Assume

each side has length a and consider the diagonal with direction d =

[

a

a

a

]

. The face diagonals

that do not meet d are: ±
[

a

−a

0

]

, ±
[

a

0

−a

]

and ±
[

0

a

−a

]

, and all are orthogonal to d (the dot

product is 0).

28. Position the solid with one vertex at the origin and sides, of lengths a, b, c, along the positive x, y

and z axes respectively. The diagonals are ±
[

a

b

c

]

, ±
[

−a

b

c

]

, ±
[

a

−b

c

]

and ±
[

a

b

−c

]

. The possible

dot products are ±(−a2 +b2 + c2), ±(a2−b2 + c2), ±(a2 +b2− c2) and one of these is zero if and

only if the sum of two of a2, b2 and c2 equals the third.

34. b. The sum of the squares of the lengths of the diagonals equals the sum of the squares of the

lengths of the four sides.

38. b. The angle θ between u and u+v+w is given by

cosθ =
u·(u+v+w)
‖u‖‖u+v+w‖ =

u·u+u·v+u·w
‖u‖‖u+v+w‖ =

‖u‖2+0+0
‖u‖‖u+v+w‖ =

‖u‖
‖u+v+w‖
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Similarly the angles ϕ , ψ between v and w and u+v+w are given by

cosϕ =
‖v‖

‖u+v+w‖ and cosψ =
‖w‖

‖u+v+w‖

Since ‖u‖= ‖v‖= ‖w‖ we get cosθ = cosϕ = cosψ , whence θ = ϕ = ψ .

NOTE: ‖u+v+w‖=
√

‖u‖2 +‖v‖2 +‖w‖2 = ‖u‖
√

3 by part (a), so cosθ = cosϕ = cosψ =
1√
3
. Thus, in fact θ = ϕ = ψ = .955 radians, (54.7◦).

39. b. If P1(x, y) is on the line then ax+by+ c = 0. Hence u =
−−→
P1P0 =

[

x0− x1

y0− y1

]

so the distance is

‖projn u‖=
∥

∥

∥

u·n
‖n‖2 n

∥

∥

∥
= |u·n|
‖n‖ = |a(x0−x)+b(y0−y)|√

a2+b2
= |ax0+by0+c|√

a2+b2

41. b. This follows from (a) because ‖v‖2 = a2 +b2 + c2.

44. d. Take x1 = z2 = x, y1 = x2 = y and z1 = y2 = z in (c).

4.3 More on the Cross Product

3. b. One vector orthogonal to u and v is u× v = det

[

i 1 3

j 2 1

k −1 2

]

=

[

5

−5

−5

]

. We have ‖u×v‖ =

5

∥

∥

∥

∥

[

1
−1

−1

]∥

∥

∥

∥

= 5
√

3. Hence the unit vectors parallel to u×v are ± 1

5
√

3

[

5
−5

−5

]

=±
√

3
3

[

1
−1

−1

]

.

4. b. The area of the triangle is 1
2 the area of the parallelogram ABCD. By Theorem 4.3.4,

Area of triangle = 1
2

∥

∥

∥

−→
AB×−→AC

∥

∥

∥
= 1

2

∥

∥

∥

∥

[

2

1
−1

]

×
[

4

2
−2

]∥

∥

∥

∥

= 1
2

∥

∥

∥

∥

[

0

0
0

]∥

∥

∥

∥

= 0

Hence
−→
AB and

−→
AC are parallel.

d. Analogous to (b). Area =
√

5.

5. b. We have u× v =

[

−4
5

1

]

so w · (u× v) = −7. The volume is |w · (u×v)| = |−7| = 7 by

Theorem 4.3.5.

6. b. The line through P0 perpendicular to the plane has direction vector n, and so has vector

equation p = p0 + tn where p =
[

x y z
]T

. If P(x, y, z) also lies in the plane, then

n ·p = ax+by+ cz = d. Using p = p0 + tn we find

d = n ·p = n ·p0 + t(n ·n) = n ·p0 + t ‖n‖2

Hence t =
d−n·p0

‖n‖2 , so p = p0 +
(

d−n·p0

‖n‖2

)

n. Finally, the distance from P0 to the plane is

∥

∥

∥

−→
PP0

∥

∥

∥
= ‖p−p0‖=

∥

∥

∥

(

d−n·p0

‖n‖2

)

n

∥

∥

∥
=
|d−n·p0|
‖n‖
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10. The points A, B and C are all on one line if and only if the parallelogram they determine has area

zero. Since this area is ‖−→AB×−→AC‖, this happens if and only if
−→
AB×−→AC = 0.

12. If u and v are perpendicular, Theorem 4.3.4 shows that ‖u×v‖ = ‖u‖‖v‖. Moreover, if w is

perpendicular to both u and v, it is parallel to u×v so w ·(u×v) =±‖w‖‖u×v‖ because the angle

between them is either 0 or π . Finally, the rectangular parallepiped has volume

|w · (u×v)|= ‖w‖‖u×v‖= ‖w‖(‖u‖‖v‖)

using Theorem 4.3.5.

15. b. If u =

[

x

y

z

]

, v =

[

p

q

r

]

and w =

[

l

m

n

]

then, by the row version of Exercise 3.1.19 Section 3.1,

we get

u× (v+w) = det

[

i x l + p

j y m+q

k z n+ r

]

= det

[

i x p

j y q

k z r

]

+ det

[

i x l

j y m

k z n

]

= u×v+u×w

16. b. Let v =

[

v1

v2

v3

]

, w =

[

w1

w2

w3

]

and u =

[

u1

u2

u3

]

. Compute

v · [(u×v)+(v×w)+(w×u)] = v · (u×v)+v · (v×w)+v · (w×u)

= 0+0+ det

[

v1 w1 u1

v2 w2 u2

v3 w3 u3

]

by Theorem 4.3.1. Similarly

w · [[(u×v)+(v×w)+(w×u)]] = w · (u×v) = det

[

w1 u1 v1

w2 u2 v2

w3 u3 v3

]

These determinants are equal because each can be obtained from the other by two column

interchanges. The result follows because (v−w) ·x = v ·x−w ·x for any vector x.

22. If v1 and v2 are vectors of points in the planes (so v1 ·n = d1 and v2 ·n = d2), the distance is the

length of the projection of v2−v1 along n; that is

‖projn (v2−v1)‖=
∥

∥

∥

(

(v2−v1)·n
‖n‖2

)

n

∥

∥

∥
=
|(v2−v1)·n|
‖n‖ =

|d2−d1|
‖n‖

4.4 Linear Operators on R3

1. b. By inspection, A = 1
2

[

1 −1

−1 1

]

; by the formulas preceding Theorem 4.4.2, this is the matrix

of projection on y =−x.
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d. By inspection, A = 1
5

[

−3 4

4 3

]

; by the formulas precedinging Theorem 4.4.2, this is the matrix

of reflection in y = 2x.

f. By inspection, A = 1
2

[

1 −
√

3√
3 1

]

; by Theorem 2.6.4 this is the matrix of rotation through π
3 .

2. b. For any slope m, projection on the line y = mx has matrix 1
1+m2

[

1 m

m m2

]

(see the discussion

preceding Theorem 4.4.2). Hence the projections on the lines y = x and y =−x have matrices
1
2

[

1 1

1 1

]

and 1
2

[

1 −1

−1 1

]

, respectively, so the first followed by the second has matrix (note

the order)
1
2

[

1 −1

−1 1

]

1
2

[

1 1

1 1

]

= 1
4

[

0 0

0 0

]

= 0

It follows that projection on y = x followed by projection on y =−x is the zero transformation.

Note that this conclusion can also be reached geometrically. Given any vector v, its projection

p on the line y = x points along that line. But the line y =−x is perpendicular to the line y = x,

so the projection of p along y = −x will be the zero vector. Since v was arbitrary, this shows

again that projection on y = x followed by projection on y =−x is the zero transformation.

3. b. By Theorem 4.4.3: 1
21

[

17 2 −8

2 20 4

−8 4 5

][

0

1

−3

]

= 1
21

[

26

8

−11

]

d. By Theorem 4.4.3: 1
30

[

22 −4 20
−4 28 10

20 10 −20

][

0
1

−3

]

= 1
15

[

−32
−1

35

]

f. By Theorem 4.4.2: 1
25

[

9 0 12

0 0 0

12 0 16

][

1

−1

7

]

= 1
25

[

93

0

124

]

h. By Theorem 4.4.2: 1
11

[

−9 2 −6

2 −9 −6

−6 −6 7

][

2

−5

0

]

= 1
11

[

−28

49

18

]

4. b. This is Example 4.4.1 with θ = π
6 . Since cos π

6 =
√

3
2 and sin π

6 = 1
2 , the matrix is

[ √
3

2 − 1
2 0

1
2

√
3

2 0

0 0 1

]

=

1
2

[ √
3 −1 0

1
√

3 0

0 0 2

]

. Hence the rotation of v =

[

1
0

3

]

is 1
2

[ √
3 −1 0

1
√

3 0
0 0 2

][

1
0

3

]

= 1
2

[ √
3

1

6

]

.

6. Denote the rotation by RL, θ . Here the rotation takes place about the y-axis, so RL, θ (j) = j. In the xz-

plane the effect of RL, θ is to rotate counterclockwise through θ , and this has matrix
[

cosθ −sinθ
sinθ cosθ

]

Theorem 2.6.4. So, in the xz-plane, RL, θ

[

1
0

]

=
[

cosθ
sinθ

]

and RL, θ

[

0
1

]

=
[

−sinθ
cosθ

]

. Hence

RL, θ (i) =

[

cosθ
0

sinθ

]

and RL, θ (k) =

[

−sinθ
0

cosθ

]

. Finally, the matrix of

RL, θ is
[

RL, θ (i) RL, θ (j) RL, θ (k)
]

=

[

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

]

.

9. a. Write v =
[

x y
]T

.

Then PL(v)= projd v=
(

v·d
‖d‖2

)

d=
(

ax+by

a2+b2

)[

a

b

]

= 1
a2+b2

[

a2x+aby

abx+b2y

]

= 1
a2+b2

[

a2 ab

ab b2

][

x

y

]

.
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Hence the matrix of PL is 1
a2+b2

[

a2 ab

ab b2

]

. Note that if the line L has slope m this retrieves

the formula 1
1+m2

[

1 m

m m2

]

preceding Theorem 4.4.2. However the present matrix works for

vertical lines, where d =
[

1

0

]

.

4.5 An Application to Computer Graphics

1. b. Translate to the origin, rotate and then translate back. As in Example 4.5.1, we compute

[

1 0 1

0 1 2

0 0 1

]

[ √
2

2 −
√

2
2 0√

2
2

√
2

2 0

0 0 1

][

1 0 −1

0 1 −2

0 0 1

][

0 6 5 1 3

0 0 3 3 9

1 1 1 1 1

]

= 1
2

[ √
2+2 7

√
2+2 3

√
2+2 −

√
2+2 −5

√
2+2

−3
√

2+4 3
√

2+4 5
√

2+4
√

2+4 9
√

2+4

2 2 2 2 2

]

5. b. The line has a point w =
[

0

1

]

, so we translate by −w, then reflect in y = 2x, and then trans-

late back by w. The line y = 2x has matrix 1
5

[

−3 4

4 3

]

. Thus the matrix (for homogeneous

coordinates) is
[

1 0 0

0 1 1

0 0 1

]

1
5

[

−3 4 0

4 3 0

0 0 5

][

1 0 0

0 1 −1

0 0 1

]

= 1
5

[

−3 4 −4

4 3 2

0 0 5

]

Hence for w =

[

1

4

1

]

we get 1
5

[

−3 4 −4

4 3 2

0 0 5

][

1

4

1

]

= 1
5

[

9

18

5

]

. Hence the point is P
(

9
5 , 18

5

)

.

Supplementary Exercises: Chapter 4

4. Let p and w be the velocities of the airplane and the wind. Then ‖p‖ = 100 knots and ‖w‖ = 75

knots and the resulting actual velocity of the airplane is v = w+p. Since w and p are orthogonal.

Pythagoras’ theorem gives ‖v‖2 = ‖w‖2 + ‖p‖2 = 752 + 1002 = 252(32 + 42) = 252 · 52. Hence

‖v‖= 25 ·5 = 125 knots. The angle θ satisfies cosθ = ‖w‖
‖v‖ =

75
125 = 0.6 so θ = 0.93 radians or 53◦.

6. Let v =
[

x y
]T

denote the velocity of the boat in the water. If c is the current velocity then

c = (0, −5) because it flows south at 5 knots. We want to choose v so that the resulting actual

velocity w of the boat has easterly direction. Thus w =
[

z

0

]

for some z. Now w = v + c so
[

z

0

]

=
[

x

y

]

+
[

0

−5

]

=
[

x

y−5

]

. Hence z= x and y = 5. Finally, 13= ‖v‖=
√

x2 + y2 =
√

x2 +25

gives x2 = 144, x =±12. But x > 0 as w heads east, so x = 12. Thus he steers v =
[

12 5
]T

, and

the resulting actual speed is ‖w‖= z = 12 knots.





5. The Vector Space R
n

5.1 Subspaces and Spanning

1. b. Yes. In fact, U = span

{[

0
1

0

]

,

[

0
0

1

]}

so Theorem 5.1.1 applies.

d. No.

[

2

0

0

]

is in U but 2

[

2

0

0

]

=

[

4

0

0

]

is not in U .

f. No.

[

0

−1

0

]

is in U but (−1)

[

0

−1

0

]

=

[

0

1

0

]

is not in U .

2. b. No. If x = ay+bz equating first and third components gives 1 = 2a+b, 15 = −3b; whence

a = 3, b =−5. This does not satisfy the second component which requires that 2 =−a−b.

d. Yes. x = 3y+4z.

3. b. No. Write these vectors as a1, a2, a3 and a4, and let A =
[

a1 a2 a3 a4

]

be the matrix

with these vectors as columns. Then det A = 0, so A is not invertible. By Theorem 2.4.5, this

means that the system Ax = b has no solution for some column b. But this says that b is not a

linear combination of the ai by Definition 2.5. That is, the ai do not span R
4.

For a more direct proof,

[

1

0

0

0

]

is not a linear combination of a1, a2, a3 and a4.

10. Since aixi is in span {xi} for each i, Theorem 5.1.1 shows that span {aixi} ⊆ span {xi}. Since

xi = a−1
i (aixi) is in span {aixi}, we get span {xi} ⊆ span {aixi}, again by Theorem 5.1.1.

12. We have U = span{x1, . . . , xk} so, if y is in U , write y = t1x1 + · · ·+ tkxk where the ti are in R.

Then Ay = t1Ax1 + · · ·+ t1Axk = t10+ · · ·+ tk0 = 0.

15. b. x = (x+y)−y is in U because x+y and −y = (−1)y are both in U and U is a subspace.

16. b. True. If we take r = 1 we see that x = 1x is in U .

d. True. We have span {y, z} ⊆ span {x, y, z} by Theorem 5.1.1 because both y and z are in

span {x, y, z}. In other words, U ⊆ span {x, y, z}. For the other inclusion, it is clear that y

and z are both in U = span {y, z}, and we are given that x is in U . Hence span {x, y, z} ⊆U

by Theorem 5.1.1.

f. False. Every vector in span
{[

1

0

]

,
[

2

0

]}

has second component zero.

75
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20. If U is a subspace then S2 and S3 certainly hold. Conversely, suppose that S2 and S3 hold. It is here

that we need the condition that U is nonempty. Because we can then choose some x in U , and so

0 = 0x is in U by S3. So U is a subspace.

22. b. First, 0 is in U +W because 0 = 0+0 (and 0 is in both U and W ). Now suppose that P and Q

are both in U +W , say p = x1 +y1 and q = x2 +y2 where x1 and x2 are in U , and y1 and y2

are in W . Hence

p+q = (x1 +y1)+(x2 +y2) = (x1 +x2)+(y1 +y2)

so p+q is in U +W because x1 + x2 is in U (both x1 and x2 are in U ), and y1 + y2 is in W .

Similarly

aP = a(x1 +y1) = ax1 +ay1

is in p+q because ax1 is in p and ay1 is in Q. Hence U +W is a subspace.

5.2 Independence and Dimension

1. b. Yes. The matrix with these vectors as columns has determinant −2 6= 0, so Theorem 5.2.3

applies.

d. No. (1, 1, 0, 0)− (1, 0, 1, 0)+(0, 0, 1, 1)− (0, 1, 0, 1) = (0, 0, 0, 0) is a nontrivial linear

combination that vanishes.

2. b. Yes. If a(x+y)+b(y+z)+c(z+x) = 0 then (a+c)x+(a+b)y+(b+c)z = 0. Since we are

assuming that {x, y, z} is independent, this means a+ c = 0, a+b = 0, b+ c = 0. The only

solution is a = b = c = 0.

d. No. (x+y)− (y+ z)+(z+w)− (w+x) = 0 is a nontrivial linear combination that vanishes.

3. b. Write x1 =(2, 1, 0, −1), x2 =(−1, 1, 1, 1), x3 =(2, 7, 4, 1), and write U = span{x1, x2, x3}.
Observe that x3 = 3x1+4x2 so U = {x1, x2}. This is a basis because {x1, x2} is independent,

so the dimension is 2.

d. Write x1 = (−2, 0, 3, 1), x2 = (1, 2, −1, 0), x3 = (−2, 8, 5, 3), x4 = (−1, 2, 2, 1) and write

U = span{x1, x2, x3, x4}. Then x3 = 3x1+4x2 and x4 = x1+x2 so the space is span{x1, x2}.
As this is independent, it is a basis so the dimension is 2.

4. b. (a+b, a−b, b, a)= a(1, 1, 0, 1)+b(1, −1, 1, 0) so U = span {(1, 1, 0, 1), (1, −1, 1, 0)}.
This is a basis so dim U = 2.

d. (a− b, b + c, a, b + c) = a(1, 0, 1, 0) + b(−1, 1, 0, 1) + c(0, 1, 0, 1). Hence U =
span {(1, 0, 1, 0), (−1, 1, 0, 1), (0, 1, 0, 1)}. This is a basis so dim U = 3.

f. If a+ b = c+ d then a = −b+ c+ d. Hence U = {(−b+ c+ d, b, c, d) | b, c, d in R} so

U = span {(−1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}. This is a basis so dim U = 3.
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5. b. Let a(x+w)+b(y+w)+ c(z+w)+dw = 0, that is ax+by+ cz+(a+b+ c+d)w = 0. As

{x, y, z, w} is independent, this implies that a = 0, b = 0, c = 0 and a+b+c+d = 0. Hence

d = 0 too, proving that {x+w, y+w, z+w, w} is independent. It is a basis by Theorem 5.2.7

because dim R4 = 4.

6. b. Yes. They are independent (the matrix with them as columns has determinant −2) and so are

a basis of R3 by Theorem 5.2.7 (since dim R3 = 3).

d. Yes. They are independent (the matrix with them as columns has determinant −6) and so are

a basis of R3 by Theorem 5.2.7 (since dim R
3 = 3).

f. No. The determinant of the matrix with these vectors as its columns is zero, so they are not

independent (by Theorem 5.2.3). Hence they are not a basis of R4 because dim R4 = 4.

7. b. True. If sy+ tz = 0 then 0x+ sy+ tz = 0, so s = t = 0 by the independence of {x, y, z}.
d. False. If x 6= 0 let k = 2, x1 = x and x2 =−x. Then each xi 6= 0 but {x1, x2} is not independent.

f. False. If y =−x and z = 0 then 1x+1y+1z = 0, but {x, y, z} is certainly not independent.

h. True. The xi are not independent so, by definition, some nontrivial linear combination vanishes.

10. If rx2+sx3+ tx5 = 0 then 0x1+rx2+sx3+0x4+ tx5+0x6 = 0. Since the larger set is independent,

this implies r = s = t = 0.

12. If t1x1 + t2(x1 +x2)+ · · ·+ tk(x1 +x2 + · · ·+xk) = 0 then, collecting terms in x1, x2, . . . ,

(t1+ t2 + · · ·+ tk)x1 +(t2+ · · ·+ tk)x2 + · · ·+(tk−1 + tk)xk−1 + tkxk = 0

Since {x1, x2, . . . , xk} is independent we get

t1 + t2 + · · ·+ tk = 0

t2 + · · ·+ tk = 0

...

tk−1 + tk = 0

tk = 0

The solution (from the bottom up) is tk = 0, tk−1 = 0, . . . , t2 = 0, t1 = 0.

16. b. We show that AT is invertible. Suppose AT x = 0x in R2. By Theorem 2.4.5, we must show that

x = 0. If x =
[

s

t

]

then AT x = 0 gives as+ ct = 0, bs+dt = 0. But then s(ax+by)+ t(cx+

dy) = (sa+ tc)x+(sb+ td)y = 0. Hence s = t = 0 because {ax+by, cx+dy} is independent.

17. b. Note first that each V−1xi is in null (AV ) because (AV )(V−1xi) = Axi = 0. If t1V
−1x1 + · · ·+

tkV
−1xk = 0 then V−1(t1x1 + · · ·+ tkxk) = 0 so t1x1 + · · ·+ tkxk = 0 (by multiplication by

V ). Thus t1 = · · · = tk = 0 because {x1, . . . , xk} is independent. So
{

V−1x1, . . . , V−1xk

}

is independent. To see that it spans null (AV ), let y be in null (AV ), so that AVy = 0. Then

V y is in null A so V y = s1x1 + · · ·+ snxn because {x1, . . . , xn} spans null A. Hence y =
s1V−1x1 ++skV

−1xk, as required.

20. We have {0} ⊆U ⊆W where dim{0}= 0 and dim W = 1. Hence dim U is an integer between 0

and 1 (by Theorem 5.2.8), so dim U = 0 or dim U = 1. If dim U = 0 then U = {0} by Theorem

5.2.8 (because {0} ⊆ U and both spaces have dimension 0); if dim U = 1 then U = W again by

Theorem 5.2.8 (because U ⊆W and both spaces have dimension 1).
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5.3 Orthogonality

1. b.
{

1√
3
(1, 1, 1), 1√

42
(4, 1, −5), 1√

14
(3, −3, 1)

}

where in each case we divide by the norm of

the vector.

3. b. Write e1 = (1, 0, −1), e2 = (1, 4, 1), e3 = (2, −1, 2). Then

e1 · e2 = 1+0−1 = 0, e1 · e3 = 2+0−2 = 0, e2 · e3 = 2−4+2 = 0

so {e1, e2, e3} is orthogonal and hence a basis of R3. If x = (a, b, c), Theorem 5.3.6 gives

x = x·e1

‖e1‖2 e1 +
x·e2

‖e2‖2 e2 +
x·e3

‖e3‖2 e3 =
a−c

2 e1 +
a+4b+c

18 e2 +
2a−b+2c

9 e3

d. Write e1 = (1, 1, 1), e2 = (1, −1, 0), e3 = (1, 1, −2). Then

e1 · e2 = 1−1+0 = 0, e1 · e3 = 1+1−2 = 0, and e2 · e3 = 1−1+0 = 0

Hence {e1, e2, e3} is orthogonal and hence is a basis of R3. If x = (a, b, c), Theorem 5.3.6

gives

x = x·e1

‖e1‖2 e1 +
x·e2

‖e2‖2 e2 +
x·e3

‖e3‖2 e3 =
a+b+c

3 e1 +
a−b

2 e2 +
a+b−2c

6 e3

4. b. If e1 = (2, −1, 0, 3) and e2 = (2, 1, −2, −1) then {e1, e2} is orthogonal because e1 · e2 =
4− 1+ 0− 3 = 0. Hence {e1, e2} is an orthogonal basis of the space U it spans. If x =
(14, 1, −8, 5) is in U , Theorem 5.3.6 gives

x = x·e1

‖e1‖2 e1 +
x·e2

‖e2‖2 e2 =
42
14e1 +

40
10e2 = 3e1 +4e2

We check that these are indeed equal. [We shall see in Section 8.1 that in any case,

x−
(

x·e1

‖e1‖2 e1 +
x·e2

‖e2‖2 e2

)

is orthogonal to every vector in U .]

5. b. The condition that (a, b, c, d) is orthogonal to each of the other three vectors gives the fol-

lowing equations for a, b, c, and d.

a − c + d = 0

2a + b + c − d = 0

a − 3b + c = 0

Solving we get:
[

1 0 −1 1 0

2 1 1 −1 0

1 −3 1 0 0

]

→
[

1 0 −1 1 0

0 1 3 −3 0

1 −3 2 −1 0

]

→
[

1 0 −1 1 0

0 1 3 −3 0

0 0 11 −10 0

]

→
[

1 0 0 1
11 0

0 1 0 − 3
11 0

0 0 1 − 10
11 0

]

The solution is (a, b, c, d) = t(−1, 3, 10, 11), t in R.
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6. b. ‖2x+7y‖2 = (2x+7y) · (2x+7y)
= 4(x ·x)+14(x ·y)+14(y ·x)+49(y ·y)
= 4‖x‖2 +28(x ·y)+49‖y‖2

= 36−56+49

= 29

d. (x−2y) · (3x+5y) = 3(x ·x)+5(x ·y)−6(y ·x)−10(y ·y)
= 3‖x‖2− (x ·y)−10‖y‖2

= 27+2−10

= 19

7. b. False. For example, if x = (1, 0) and y = (0, 1) in R2, then {x, y} is orthogonal but x+y =
(1, 1) is not orthogonal to x.

d. True. Let x and y be distinct vectors in the larger set. Then either both are xi’s, both are yi’s, or

one is an xi and one is a yi. In the first two cases x ·y = 0 because {xi} and {y j} are orthogonal

sets; in the last case x ·y = 0 by the given condition.

f. True. Every pair of distinct vectors in {x} are orthogonal (there are no such pairs). As x 6= 0,

this shows that {x} is an orthogonal set.

9. Row i of AT is cT
i so the (i, j) entry of AT A is cT

i c j = ci · c j. This is 0 if i 6= j, and 1 if i = j. That is

AT A = I.

11. b. Take x = (1, 1, 1) and y = (r1, r2, r3). Then |x ·y| ≤ ‖x‖‖y‖ by Theorem 5.3.2; that is

|r1 + r2 + r3| ≤
√

3
√

r2
1 + r2

2 + r2
3. Squaring both sides gives

r2
1 + r2

2 + r2
3 +2(r1r2 + r1r3 + r2r3)≤ 3(r2

1 + r2
2 + r2

3)

Simplifying we obtain r1r2 + r1r3 + r2r3 ≤ r2
1 + r2

2 + r2
3, as required.

12. b. Observe first that

(x+y) · (x−y) = ‖x‖2−‖y‖2 (∗)

holds for all vectors x and y in Rn.

If x+ y and x− y are orthogonal then (x+ y) · (x− y) = 0, so ‖x‖2 = ‖y‖2 by (∗). Taking

positive square roots gives ‖x‖= ‖y‖.
Conversely, if ‖x‖ = ‖y‖ then certainly ‖x‖2 = ‖y‖2, so (∗) gives (x+ y) · (x− y) = 0. This

means that x+y and x−y are orthogonal.

15. If λ is an eigenvalue of AT A, let (AT A)x = λx where x 6= 0 in Rn. Then:

‖Ax‖2 = (Ax)T (Ax) = (xT AT )Ax = xT (AT Ax) = xT (λx) = λ‖x‖2

Since ‖x‖ 6= 0 (because x 6= 0), this gives λ = ‖Ax‖2

‖x‖2 ≥ 0.
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5.4 Rank of a Matrix

1. b.

[

2 −1 1

−2 1 1

4 −2 3
−6 3 0

]

→
[

2 −1 1

0 0 2

0 0 1
0 0 3

]

→





1 − 1
2

1
2

0 0 1

0 0 0

0 0 0



.

Hence, rank A = 2 and
{

[

1 −1
2

1
2

]T
,
[

0 0 1
]T
}

is a basis of row A. Thus
{

[

2 −1 1
]T

,
[

0 0 1
]T
}

is also a basis of row A. Since the leading 1’s are in columns

1 and 3, columns 1 and 3 of A are a basis of col A.

d.
[

1 2 −1 3

−3 −6 3 −2

]

→
[

1 2 −1 3

0 0 0 7

]

→
[

1 2 −1 3

0 0 0 1

]

.

Hence, rank A = 2 and
{

[

1 2 −1 3
]T

,
[

0 0 0 1
]T
}

is a basis of row A. Since the

leading 1’s are in columns 1 and 4, columns 1 and 4 of A are a basis of col A.

2. b. Apply the gaussian algorithm to the matrix with these vectors as rows:

[

1 −1 2 5 1

3 1 4 2 7
1 1 0 0 0

5 1 6 7 8

]

→
[

1 1 0 0 0

0 −2 2 5 1
0 −2 4 2 7

0 −4 6 7 8

]

→





1 1 0 0 0

0 1 −1 − 5
2 − 1

2

0 0 1 − 3
2 3

0 0 0 0 0





Hence,
{

[

1 1 0 0 0
]T

,
[

0 2 −2 −5 −1
]T

,
[

0 0 2 −3 6
]T
}

is a basis

of U (where we have cleared fractions using scalar multiples).

d. Write these columns as the rows of the following matrix:

[

1 5 −6

2 6 −8

3 7 −10

4 8 12

]

→
[

1 5 −6

0 −4 4

0 −8 8

0 −12 36

]

→
[

1 5 −6

0 1 −1

0 0 24

0 0 0

]

→
[

1 5 −6

0 1 −1

0 0 1

0 0 0

]

Hence,

{[

1

5

−6

]

,

[

0

1

−1

]

,

[

0

0

1

]}

is a basis of U .

3. b. No. If the 3 columns were independent, the rank would be 3.

No. If the 4 rows were independent, the rank would be 4, a contradiction here as the rank

cannot exceed the number of columns.

d. No. Suppose that A is m×n. If the rows are independent then rank A = dim ( row A) = m (the

number of rows). Similarly if the columns are independent then rank A = n (the number of

columns). So if both the rows and columns are independent then m = rank A = n, that is A is

square.

f. No. Then dim (null A) = n− r = 4−2 = 2, contrary to null (A) = Rx where x 6= 0.

4. Let c j denote column j of A. If x =
[

x1 · · · xn

]T ∈Rn then Ax = x1c1+ · · ·+xncn by Definition

2.5. Hence

col A = span{c1, . . . , cn}= {x1c1 + · · ·+ xncn | x j ∈ R}= {Ax | x ∈ R
n}
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7. b. The null space of A is the set of columns x such that Ax = 0. Applying gaussian elimination to

the augmented matrix gives:
[

3 5 5 2 0 0

1 0 2 2 1 0

1 1 1 −2 −2 0
−2 0 −4 −4 −2 0

]

→
[

1 0 2 2 1 0

0 5 −1 −4 −3 0

0 1 −1 −4 −3 0
0 0 0 0 0 0

]

→
[

1 0 2 2 1 0

0 1 −1 −4 −3 0

0 0 4 16 12 0

0 0 0 0 0 0

]

→
[

1 0 0 −6 −5 0

0 1 0 0 0 0

0 0 1 4 3 0

0 0 0 0 0 0

]

Hence, the set of solutions is null A =











6s+5t

0

−4s−3t

s

t



 | s, t in R







= span B where

B =











6

0
−4

1

0



 ,





5

0
−3

0

1











. Since B is independent, it is the required basis of null A. We have

r = rank A = 3 by the above reduction, so n− r = 5−3 = 2. This is the dimension of null A,

as Theorem 5.4.3 asserts.

8. b. Since A is m×n, dim (null A) = n− rank A. To compute rank A, let R =
[

r1 r2 · · · rn

]

.

Then A =CR =
[

r1C r2C · · · rnC
]

by block multiplication, so

col A = span{r1C, r2C, . . . , rnC}= span{C}

because some ri 6= 0. Hence rank A = 1, so dim (null A) = n− rank A = n−1.

9. b. Let A =
[

c1 · · · cn

]

where c j is the jth column of A; we must show that {c1, . . . , cn} is

independent. Suppose that x1c1 + · · ·+ xncn = 0, xi in R. If we write x =
[

x1 · · · xn

]T
,

this reads Ax = 0 by Definition 2.5. But then x is in null A, and null A = 0 by hypothesis. So

x = 0, that is each xi = 0. This shows that {c1, . . . , cn} is independent.

10. b. If A2 = 0 then A(Ax) = 0 for all x in Rn, that is {Ax | x in Rn} ⊆ null A. But col A = {Ax | x
in R

n}, so this shows that col A ⊆ null A. If we write r = rank A, taking dimensions gives

r = dim (col A)≤ dim (null A) = n−r by Theorem 5.4.3. It follows that 2r≤ n; that is r≤ n
2 .

12. We have rank (A) = dim [col (A)] and rank (AT ) = dim [ row (AT )]. Let {c1, c2, . . . , ck} be a basis

of col(A); it suffices to show that {cT
1 , cT

2 , . . . , cT
k } is a basis of row (AT ). But if t1cT

1 + t2cT
2 +

· · ·+ tkcT
k = 0, t j in R, then (taking transposes) t1c1 + t2c2 + · · ·+ tkck = 0 so each t j = 0. Hence

{cT
1 , cT

2 , . . . , cT
k } is independent. Given v in row (AT ) then vT is in col (A), say vT = s1c1 + s2c2 +

· · ·+ skck, s j in R. Hence v = s1cT
1 + s2cT

2 + · · ·+ skcT
k so {cT

1 , cT
2 , . . . , cT

k } spans row (AT ), as

required.

15. b. Let {c1, . . . , cr} be a basis of col A where r = rank A. Since Ax = b has no solution, b is not

in col A = span{c1, · · · , cr} by Exercise 12. It follows that {c1, . . . , cr, b} is independent

[If a1c1 + · · ·+arcr +ab = 0 then a = 0 (since b is not in col A), whence each ai = 0 by the

independence of the ci]. Hence, it suffices to show that col [A, B] = span {c1, · · · , cr, b}. It

is clear that b is in col [A, b], and each c j is in col [A, b] because it is a linear combination of

columns of A (and so those of [A, b]). Hence

span {c1, . . . , cr, b} ⊆ col [A, b]
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On the other hand, each column x in col [A, b] is a linear combination of b and the columns

of A. Since these columns are themselves linear combinations of the c j, so x is a linear combi-

nation of b and the c j. That is, x is in span {c1, . . . , cr, b}.

5.5 Similarity and Diagonalization

1. b. det A =−5, det B =−1 (so A and B are not similar). However, tr A = 2 = tr B, and rank A =
2 = rank B (both are invertible).

d. tr A = 5, tr B = 4 (so A and B are not similar). However, det A = 7 = det B, so rank A = 2 =
rank B (both are invertible).

f. tr A = −5 = tr B; det A = 0 = det B; however rank A = 2, rank B = 1 (so A and B are not

similar).

3. b. We have A∼ B, say B = P−1AP. Hence B−1 = (P−1AP)−1 = P−1A−1(P−1)−1, so A−1 ∼ B−1

because P−1 is invertible.

4. b. cA(x) =

∣

∣

∣

∣

x−3 0 −6

0 x+3 0

−5 0 x−2

∣

∣

∣

∣

= (x+ 3)(x2− 5x− 24) = (x+ 3)2(x− 8). So the eigenvalues are

λ1 =−3, λ2 = 8. To find the associated eigenvectors:

λ1 =−3:

[

−6 0 −6

0 0 0

−5 0 −5

]

→
[

1 0 1

0 0 0

0 0 0

]

; basic eigenvectors

[

−1

0

1

]

,

[

0

1

0

]

.

λ2 = 8:

[

5 0 −6

0 11 0

−5 0 6

]

→
[

1 0 − 6
5

0 1 0

0 0 0

]

; basic eigenvector

[

6

0

5

]

.

Since

{[

−1

0

1

]

,

[

0

1

0

]

,

[

6

0

5

]}

is a basis of eigenvectors, A is diagonalizable and

P =

[

−1 0 6

0 1 0

1 0 5

]

will satisfy P−1AP =

[

−3 0 0

0 −3 0

0 0 8

]

.

d. cA(x) =

∣

∣

∣

∣

x−4 0 0

0 x−2 −2

2 −3 x−1

∣

∣

∣

∣

= (x−4)2(x+1). For λ = 4,

[

0 0 0

0 2 −2

2 −3 3

]

→
[

1 0 0

0 1 −1

0 0 0

]

;

E1 =

[

0

1
1

]

. Hence A is not diagonalizable by Theorem 5.5.6 because the dimension of E4(A)=

1 while the eigenvalue 4 has multiplicity 2.

8. b. If B = P−1AP and Ak = 0, then Bk = (P−1AP)k = P−1AkP = P−10P = 0.

9. b. Let the diagonal entries of A all equal λ . If A is diagonalizable then P−1AP = λ I by Theorem

5.5.3 for some invertible matrix P. Hence A = P(λ I)P−1 = λ (PIP−1) = λ I.

10. b. Let P−1AP = D = diag {λ1, λ2, . . . , λn}. Since A and D are similar matrices, they have the

same trace by Theorem 5.5.1. That is

tr A = tr (P−1AP) = tr D = λ1 +λ2 + · · ·+λn

12. b. TP(A)TP(B) = (P−1AP)(P−1BP) = P−1AIBP = P−1ABP = TP(AB)
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13. b. Assume that A is diagonalizable, say A ∼ D where D is diagonal, say D = diag (λ1, . . . , λn)
where λ1, · · · , λn are the eigenvalues of A. But A and AT have the same eigenvalues (Example

3.3.5) so AT ∼ D also. Hence A∼ D∼ AT , so A∼ AT as required.

17. b. We use Theorem 5.5.7. The characteristic polynomial of B is computed by first adding rows 2

and 3 to row 1. For convenience, write s = a+b+ c, k = a2 +b2 + c2− (ab+ac+bc).

cB(x) =

∣

∣

∣

∣

x− c −a −b

−a x−b −c

−b −c x−a

∣

∣

∣

∣

=

∣

∣

∣

∣

x− s x− s x− s

−a x−b −c

−b −c x−a

∣

∣

∣

∣

=

∣

∣

∣

∣

x− s 0 0

−a x+(a−b) a− c

−b b− c x− (a−b)

∣

∣

∣

∣

= (x− s)
[

x2− (a−b)2− (a− c)(b− c)
]

= (x− s)(x2− k)

Hence, the eigenvalues of B are s,
√

k and −
√

k. These must be real by Theorem 5.5.7, so

k ≥ 0. Thus a2 +b2 + c2 ≥ ab+ac+bc.

20. b. To compute cA(x) = det (xI−A), add x times column 2 to column 1, and expand along row 1:

cA(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x −1 0 0 · · · 0 0

0 x −1 0 · · · 0 0

0 0 x −1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 · · · −1 0
0 0 0 0 · · · x −1

−r0 −r1 −r2 −r3 · · · −rk−2 x− rk−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −1 0 0 · · · 0 0

x2 x −1 0 · · · 0 0

0 0 x −1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 · · · −1 0

0 0 0 0 x −1

−r0− r1x −r1 −r2 −r3 −rk−2 x− rk−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Now expand along row 1 to get

cA(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 −1 · · · 0 0

0 x −1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · −1 0

0 0 0 · · · x −1
−r0− r1x −r2 −r3 · · · −rk−2 x− rk−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

This matrix has the same form as xI−A, so repeat this procedure. It leads to the given expres-

sion for det (xI−A).

5.6 Best Approximation and Least Squares

1. b. Here A =

[

3 1 1

2 3 −1

2 −1 1

3 −3 3

]

, b =

[

6

1

0

8

]

, x =

[

x

y

z

]

. Hence, AT A =

[

26 −2 12

−2 20 −12

12 −12 12

]

.
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This is invertible and the inverse is

(AT A)−1 = 1
144

[

96 −120 −216

−120 168 288

−216 288 516

]

= 1
36

[

24 −30 −54

−30 42 72

−54 72 129

]

Here the (unique) best approximation is

z = (AT A)−1AT b = 1
36

[

24 −30 −54
−30 42 72

−54 72 129

][

44
−15

29

]

= 1
36

[

−60
138

285

]

= 1
12

[

−20
46

95

]

Of course this can be found more efficiently using gaussian elimination on the normal equa-

tions for z.

2. b. Here MT M =
[

1 1 1 1

2 4 7 8

]

[

1 2

1 4

1 7

1 8

]

=
[

4 21

21 133

]

, MT
y =
[

1 1 1 1

2 4 7 8

]

[

4

3

2

1

]

=
[

10

42

]

. We

solve the normal equation (MT M)A = MT y by inverting MT M:

A = (MT M)−1MT y = 1
91

[

133 −21

−21 4

][

10

42

]

= 1
91 ·
[

448

−42

]

= 1
13

[

64

−6

]

Hence the best fitting line has equation y = 64
13 − 6

13x.

d. Analogous to (b). The best fitting line is y =− 4
10 − 17

10x.

3. b. Now

MT M =

[

1 1 1 1
−2 0 3 4

4 0 9 16

]

[

1 −2 4

1 0 0

1 3 9

1 4 16

]

=

[

4 5 29
5 29 83

29 83 353

]

MT y =

[

1 1 1 1

−2 0 3 4

4 0 9 16

]

[

1

0

2
3

]

=

[

6

16

70

]

We use (MMT )−1 to solve the normal equations even though it is more efficient to solve them

by gaussian elimination.

A = (MT M)−1(MT y) = 1
4248

[

3348 642 −426

642 571 −187

−426 −187 91

][

6

16

70

]

= 1
4248

[

540

−102

822

]

=

[

.127

−.024

.194

]

Hence the best fitting quadratic has equation y = .127− .024x+ .194x2.

4. b. In the notation of Theorem 5.6.3: y =

[

1

1

5

10

]

, M =

[

0 02 20

1 12 21

2 22 22

3 32 23

]

=

[

0 0 1

1 1 2

2 4 4

3 9 8

]

.

Hence, MT M =

[

14 36 34
36 98 90

34 90 85

]

, and (MT M)−1 = 1
92

[

230 0 −92
0 34 −36

−92 −36 76

]

= 1
46

[

115 0 −46
0 17 −18

−46 −18 38

]

.

Thus, the (unique) solution to the normal equation is

z = (MT M)−1MT y = 1
46

[

115 0 −46

0 17 −18

−46 −18 38

][

41

111

103

]

= 1
46

[

−23

33

30

]

The best fitting function is thus 1
46 [−23x+33x2 +30(2)x].
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5. b. Here y =





1
2

1

5

9



, M =





1 (−1)2 sin
(

− π
2

)

1 02 sin(0)

1 22 sin(π)

1 32 sin
(

3π
2

)



=





1 1 −1

1 0 0

1 4 0

1 9 −1



. Hence

MT M =

[

4 14 0

14 98 −10
0 −10 2

]

and (MT M)−1 = 1
2

[

−24 7 35

7 −2 −10
35 −10 −49

]

Thus, the (unique) solution to the normal equations is

z = (MT M)−1MT y = 1
40

[

24 −2 14

−2 12 3

14 3 49

]

[

31
2

203
2

− 19
2

]

= 1
20

[

18

21

28

]

Hence, the best fitting functions

1
20 [18+21x2 +28sin

(

πx
2

)

]

7. To fit s = a+bx where x = t2, we have

MT M =
[

1 1 1

1 4 9

]

[

1 1
1 4

1 9

]

=
[

3 14

14 98

]

MT y =
[

1 1 1

1 4 9

]

[

95

80

56

]

=
[

231

919

]

Hence A= (MT M)−1MT y= 1
98

[

98 −14

−14 3

][

231

919

]

= 1
98

[

9772

−477

]

=
[

99.71

−4.87

]

to two decimal places.

Hence the best fitting equation is

y = 99.71−4.87x = 99.71−4.87t2

Hence the estimate for g comes from −1
2g =−4.87, g = 9.74 (the true value of g is 9.81).

Now fit s = a+bt + ct2. In this case

MT M =

[

1 1 1

1 2 3

1 4 9

][

1 1 1

1 2 4

1 3 9

]

=

[

3 6 14

6 14 36

14 36 98

]

MT y =

[

1 1 1

1 2 3

1 4 9

][

95

80

56

]

=

[

231

423

919

]

Hence

A = (MT M)−1(MT y) = 1
4

[

76 −84 20

−84 98 −24
20 −24 6

][

231

423
919

]

= 1
4

[

404

−6
−18

]

=

[

101

− 3
2

− 9
2

]

so the best quadratic is y = 101− 3
2 t− 9

2t2. This gives −9
2 = −1

2g so the estimate for g is g = 9 in

this case.

9. We want r0, r1, r2, and r3 to satisfy

r0 +50r1 +18r2 +10r3 = 28

r0 +40r1 +20r2 +16r3 = 30

r0 +35r1 +14r2 +10r3 = 21
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r0 +40r1 +12r2 +12r3 = 23

r0 +30r1 +16r2 +14r3 = 23

We settle for a best approximation. Here

A =





1 50 18 10

1 40 20 16
1 35 14 10

1 40 12 12

1 30 16 14



 b =





28

30
21

23

23





AT A =

[

5 195 80 62
195 7825 3150 2390

80 3150 1320 1008

62 2390 1008 796

]

(AT A)−1 = 1
50160

[

1035720 −16032 10080 −45300

−16032 416 −632 800

10080 −632 2600 −2180

−45300 800 −2180 3950

]

So the best approximation

z = (AT A)−1(AT b) = 1
50160

[

1035720 −16032 10080 −45300

−16032 416 −632 800

10080 −632 2600 −2180
−45300 800 −2180 3950

][

125

4925

2042
1568

]

=

[ −5.19

0.34

0.51
0.71

]

The best fitting function is

y =−5.19+0.34x1 +0.51x2 +0.71x3

10. b. f (x) = a0 here so the sum of squares is

s = (y1−a0)
2 +(y2−a0)

2 + · · ·+(yn−a0)
2

=
n

∑
i=1

(yi−a0)
2

=
n

∑
i=1

(a2
0−2a0yi + y2

i )

= na2
0−
(

2∑yi

)

a0 +
(

∑y2
i

)

— a quadratic in a0. Completing the square gives

s = n
[

a0− 1
n ∑yi

]2−
[

∑y2
i − 1

n

(

∑yi

)2
]

This is minimal when a0 =
1
n ∑yi.

13. b. It suffices to show that the columns of M =

[

1 ex1

.

.

.
.
.
.

1 exn

]

are independent. If r0

[

1

.

.

.

1

]

+r1

[

ex1

.

.

.

ex2

]

=

[

0

.

.

.
0

]

, then r0 + r1exi = 0 for each i. Thus, r1(e
xi − ex j) = 0 for all i and j, so r1 = 0 because

two xi are distinct. Then r0 = r1ex1 = 0 too.
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5.7 An Application to Correlation and Variance

2. Let x =
[

x1 x2 · · · x10

]

=
[

12 16 13 · · · 14
]

denote the number of years of education.

Then x = 1
10 ∑xi = 15.3, and s2

x =
1

n−1 ∑(xi− x)2 = 9.12 (so sx = 3.02).

Let y =
[

y1 y2 · · · y10

]

=
[

31 48 35 · · · 35
]

denote the number of dollars (in thou-

sands) of yearly income. Then y = 1
10 ∑ ti = 40.3, and s2

y =
1

n−1 ∑(yi−y)2 = 114.23 (so sy = 10.69).

The correlation is r = x·y−10xy
9sxsy

= 0.599.

4. b. We have zi = a+bxi for each i, so

z = 1
n ∑(a+bxi) =

1
n

(

na+b∑xi

)

= a+b
(

1
n ∑xi

)

= a+bx

Hence

s2
z =

1
n−1 ∑(zi− z)2 = 1

n−1 ∑[(a+bxi)− (a+bx)]2 = 1
n−1 ∑b2(xi− x)2 = b2s2

x

The result follows because
√

b2 = |b|.

Supplementary Exercises: Chapter 5

1. b. False. If r = 0 then rx is in U for any x.

d. True. If x is in U then −x = (−1)x is also in U by axiom S3 in Section 5.1.

f. True. If rx+ sy = 0 then rx+ sy+0z = 0 so r = s = 0 because {x, y, z} is independent.

h. False. Take n = 2, x1 =
[

1

1

]

and x2 =
[

−1

−1

]

. Then both x1 and x2 are nonzero, but {x1, x2}
is not independent.

j. False. If a = b = c = 0 then ax+by+ cz = 0 for any x, y and z.

l. True. If t1x1 + t2x2 + · · ·+ tnxn = 0 implies that each ti = 0, then {x1, x2, . . . , xn} is indepen-

dent, contrary to assumption.

n. False.

{[

1

0

0

0

]

,

[ −1

0

0

0

]

,

[

0

0

1

0

]

,

[

0

0

0

1

]}

is not independent.

p. False. {x, x+ y, y} is never independent because 1x+(−1)(x+ y)+ 1y = 0 is a nontrivial

vanishing linear combination.

r. False. Every basis of R3 must contain exactly 3 vectors (by Theorem 5.2.5). Of course a

nonempty subset of a basis will be independent, but it will not span R3 if it contains fewer than

3 vectors.





6. Vector Spaces

6.1 Examples and Basic Properties

1. b. No: S5 fails 1(x, y, z) = (1x, 0, 1z) = (x, 0, z) 6= (x, y, z) for all (x, y, z) in V . Note that the

other nine axioms do hold.

d. No: S4 and S5 fail: S5 fails because 1(x, y, z) = (2x, 2y, 2z) 6= (x, y, z); and S4 fails because

a[b(x, y, z)] = a(2bx, 2by, 2bz) = (4abx, 4aby, 4abz) 6= (2abx, 2aby, 2abz) = ab(x, y, z).
Note that the eight other axioms hold.

2. b. No: A1 fails — for example (x3 + x+1)+(−x3 + x+1) = 2x+2 is not in the set.

d. No: A1 and S1 both fail. For example x+x2 and 2x are not in the set. Hence none of the other

axioms make sense.

f. Yes. First verify A1 and S1. Suppose A =
[

a b

c d

]

and B =
[

x y

z w

]

are in V , so a+c = b+d

and x+ z = y+w. Then A+B =
[

a+ x b+ y

c+ z d+w

]

is in V because

(a+ x)+(c+ z) = (a+ c)+(x+ z) = (b+d)+(y+w) = (b+ y)+(d+w)

Also rA =
[

ra rb

rc rd

]

is in V for all r in R because ra+ rc = r(a+ c) = r(b+d) = rb+ rd.

A2, A3, S2, S3, S4, S5. These hold for matrices in general.

A4.
[

0 0

0 0

]

is in V and so serves as the zero of V .

A5. Given A=
[

a b

c d

]

with a+c= b+d, then−A=
[

−a −b

−c −d

]

is also in V because−a−c=

−(a+ c) =−(b+d) =−b−d. So −A is the negative of A in V .

h. Yes. The vector space axioms are the basic laws of arithmetic.

j. No. S4 and S5 fail. For S4, a(b(x, y)) = a(bx, −by) = (abx, aby), and this need not equal

ab(x, y) = (abx, −aby); as to S5, 1(x, y) = (x, −y) 6= (x, y) if y 6= 0.

Note that the other axioms do hold here:

A1, A2, A3, A4 and A5 hold because they hold in R2.

S1 is clear; S2 and S3 hold because they hold in R
2.

l. No. S3 fails: Given f : R→ R and a, b in R, we have

[(a+b) f ](x) = f ((a+b)x) = f (ax+bx)

(a f +b f )(x) = (a f )(x)+(b f )(x) = f (ax)+ f (bx)

These need not be equal: for example, if f is the function defined by f (x) = x2;

Then f (ax+bx) = (ax+bx)2 need not equal (ax)2 +(bx)2 = f (ax)+ f (bx).

89



90 Vector Spaces

Note that the other axioms hold. A1-A4 hold by Example 6.1.7 as we are using pointwise

addition.

S2. a( f +g)(x) = ( f +g)(ax) definition of scalar multiplication in V

= f (ax)+g(ax) definition of pointwise addition

= (a f )(x)+(ag)(x) definition of scalar multiplication in V

= (a f +ag)(x) definition of pointwise addition

As this is true for all x, a( f +g) = a f +ag.

S4. [a(b f )](x) = (b f )(ax) = f [b(ax)] = f [(ba)x] = [(ba) f ](x) = [ab f ](x) for all x,

so a(b f ) = (ab) f .

S5. (1 f )(x) = f (1x) = f (x) for all x, so 1 f = f .

n. No. S4, S5 fail: a∗ (b∗X) = a∗ (bXT ) = a(bXT )T = abXTT = abX , while (ab)∗X = abXT .

These need not be equal. Similarly: 1∗X = 1XT = XT need not equal X .

Note that the other axioms do hold:

A1-A5. These hold for matrix addition generally.

S1. a∗X = aXT is in V .

S2. a∗ (X +Y ) = a(X +Y )T = a(XT +Y T ) = aXT +aY T = a∗X +a∗Y .

S3 (a+b)∗X = (a+b)XT = aXT +bXT = a∗X +b∗X .

4. A1. (x, y)+(x1, y1) = (x+ x1, y+ y1 +1) is in V for all (x, y) and (x1, y1) in V .

A2. (x, y)+(x1, y1) = (x+ x1, y+ y1 +1) = (x1 + x, y1 + y+1) = (x1, y1)+(x1, y).
A3. (x, y)+((x1, y1)+(x2, y2)) = (x, y)+(x1 + x2, y1 + y2 +1)

= (x+(x1 + x2), y+(y1 + y2 +1)+1)
= (x+ x1 + x2, y+ y1 + y2 +2)

((x, y)+(x1, y1))+(x2, y2) = (x+ x1, y+ y1 +1)+(x2, y2)
= ((x+ x1)+ x2, (y+ y1 +1)+ y2 +1)
= (x+ x1 + x2, y+ y1 + y2 +2)

These are equal for all (x, y), (x1, y1) and (x2, y2) in V .

A4. (x, y)+(0, −1) = (x+0, y+(−1)+1) = (x, y) for all (x, y), so (0, −1) is the zero of V .

A5. (x, y)+(−x, −y−2) = (x+(−x), y+(−y−2)+1) = (0, −1) is the zero of V (from A4) so

the negative of (x, y) is (−x, −y−2).
S1. a(x, y) = (ax, ay+a−1) is in V for all (x, y) in V and a in R.

S2. a[(x, y)+(x1, y1)] = a(x+ x1, y+ y1 +1) = (a(x+ x1), a(y+ y1 +1)+a−1)
= (ax+ax1, ay+ay1 +2a−1)

a(x, y)+a(x1, y1) = (ax, ay+a−1)+(ax1, ay1−a−1)
= ((ax+ax1), (ay+a−1)+(ay1 +a−1)+1)
= (ax+ax1, ay+ay1 +2a−1)

These are equal.

S4. a[b(x, y)] = a(bx, by + b− 1) = (a(bx), a(by + b− 1) + a− 1) = (abx, aby + ab− 1) =
(ab)(x, y).
S5. 1(x, y) = (1x, 1y+1−1) = (x, y) for all (x, y) in V .

5. b. Subtract the first equation from the second to get x−3y = v−u, whence x = 3y+v−u.

Substitute in the first equation to get

3(3y+v−u)−2y = u

7y = 4u−3v
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y = 4
7u− 3

7v

Substitute this in the first equation to get x = 5
7u− 2

7v.

It is worth noting that these equations can also be solved by gaussian elimination using u and

v as the constants.

6. b. au+bv+ cw = 0 becomes
[

a 0

0 a

]

+
[

0 b

b 0

]

+
[

c c

c −c

]

=
[

0 0

0 0

]

.

Equating corresponding entries gives equations for a and b.

a+ c = 0, b+ c = 0, b+ c = 0, a− c = 0

The only solution is a = b = c = 0.

d. au+bv+ cw = 0 means asinx+bcosx+ c1 = 0 for all choices of x. If x = 0, π
2 , π , we get,

respectively, equations b+c = 0, a+c = 0, and−b+c = 0. The only solution is a= b= c= 0.

7. b. 4(3u−v+w)−2[(3u−2v)−3(v−w)]+6(w−u−v)
= (12u−4v+4w)−2[3u−2v−3v+3w]+(6w−6u−6v)
= (12u−4v+4w)− (6u−10v+6w)+(6w−6u−6v)
= 4w

10. Suppose that a vector z has the property that z+v = v for all v in V . Since 0+v = v also holds for

all v, we obtain z+v = 0+v, so z = 0 by cancellation.

12. b. (−a)v+av=(−a+a)v= 0v= 0. Since also−(av)+av= 0 we get (−a)v+av=−(av)+av.

Thus (−a)v =−(av) by cancellation.

Alternatively: (−a)v = [(−1)a]v = (−1)(av) =−av using part 4 of Theorem 6.1.3.

13. b. We proceed by induction on n (see Appendix A). The case n = 1 is clear. If the equation holds

for some n≥ 1, we have

(a1 +a2 + · · ·+an +an+1)v = [(a1 +a2 + · · ·+an)+an+1]v
= (a1 +a2 + · · ·+an)v+an+1v by S3

= (a1v+a2v+ · · ·+anv)+an+1v by induction

= a1v+a2v+ · · ·+anv+an+1v

Hence it holds for n+1, and the induction is complete.

15. c. Since a 6= 0, a−1 exists in R. Hence av = aw gives a−1av = a−1aw; that is 1v = 1w, that is

v = w.

Alternatively: av = aw gives av−aw = 0, so a(v−w) = 0. As a 6= 0, it follows that v−w = 0

by Theorem 6.1.3, that is v = w.
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6.2 Subspaces and Spanning Sets

1. b. Yes. U is a subset of P3 because xg(x) has degree one more than the degree of g(x). Clearly

0 = x ·0 is in U . Given u = xg(x) and v = xh(x) in U (where g(x) and b(x) are in P2) we have

u+v = x(g(x)+h(x)) is in U because g(x)+h(x) is in P2

ku = x(kg(x)) is in U for all k in R because kg(x) is in P2

d. Yes. As in (b), U is a subset of P3. Clearly 0 = x · 0+(1− x) · 0 is in U . If u = xg(x)+ (1−
x)h(x) and v = xg1(x)+(1− x)h1(x) are in U then

u+v = x[g(x)+g1(x)]+(1− x) [h(x)+h1(x)]

ku = x[kg(x)]+(1− x)[kh(x)]

both lie in U because g(x)+g1(x) and h(x)+h1(x) are in P2.

f. No. U is not closed under addition (for example u = 1+ x3 and v = x− x3 are in U but

u+v = 1+ x is not in U ). Also, the zero polynomial is not in U .

2. b. Yes. Clearly 0 =
[

0 0

0 0

]

is in U . If u =
[

a b

c d

]

and u1 =
[

a1 b1

c1 d1

]

are in U then u+u1 =
[

a+a1 b+b1

c+ c1 d+d1

]

is in U because

(a+a1)+(b+b1) = (a+b)+(a1+b1)
= (c+d)+(c1 +d1)
= (c+ c1)+(d+d1)

ku =
[

ka kb

kc kd

]

is in U because ka+ kb = k(a+b) = k(c+d) = kc+ kd.

d. Yes. Here 0 is in U as 0B = 0. If A and A1 are in U then AB = 0 and A1B = 0, so (A+A1)B =
AB+A1B = 0+0 = 0 and (kA)B = k(AB) = k0 = 0 for all k in R. This shows that A+A1 and

kA are also in U .

f. No. U is not closed under addition. In fact, A =
[

1 0

0 0

]

and A1 =
[

0 0

0 1

]

are both in U , but

A+A1 =
[

1 0

0 1

]

is not in U .

3. b. No. U is not closed under addition. For example if f and g are defined by f (x) = x+ 1 and

g(x) = x2 +1, then f and g are in U but f +g is not in U because ( f +g)(0) = f (0)+g(0) =
1+1 = 2.

d. No. U is not closed under scalar multiplication. For example, if f is defined by f (x) = x, then

f is in U but (−1) f is not in U (for example [(−1) f ](1
2) =−1

2 so is not in U ).

f. Yes. 0 is in U because 0(x+ y) = 0 = 0+0 = 0(x)+0(y) for all x and y in [0, 1]. If f and g

are in U then, for all k in R:

( f +g)(x+ y) = f (x+ y)+g(x+ y)

= ( f (x)+ f (y))+(g(x)+g(y))
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= ( f (x)+g(x))+( f (y)+g(y))

= ( f +g)(x)+( f +g)(y)

(k f )(x+ y) = k[ f (x+ y)] = k[ f (x)+ f (y)] = k[ f (x)]+ k[ f (y)]

= (k f )(x)+(k f )(y)

Hence f +g and k f are in U .

5. b. Suppose x =

[

x1

.

.

.

xn

]

6= 0, say xk 6= 0. Given y =

[

y1

.

.

.

yn

]

let A be the m× n matrix with kth

column x−1
k y and the other columns zero. Then y = Ax by matrix multiplication, so y is in U .

Since y was an arbitrary column in Rn, this shows that U = Rm.

6. b. We want r, s and t such that 2x2−3x+1= r(x+1)+s(x2+x)+t(x2+2). Equating coefficients

of x2, x and 1 gives s+ t = 2, r+ s = −3, r+ 2t = 1. The unique solution is r = −3, s = 0,

t = 2.

d. As in (b), x = 2
3(x+1)+ 1

3(x
2 + x)− 1

3(x
2 +2).

7. b. If v = su+ tw then x = s(x2 + 1) + t(x+ 2). Equating coefficients gives 0 = s, 1 = t and

0 = s+2t. Since there is no solution to these equations, v does not lie in span {u, w}.
d. If v = su+ tw, then

[

1 −4

5 3

]

= s
[

1 −1

2 1

]

+ t
[

2 1

1 0

]

. Equating corresponding entries gives

s+2t = 1,−s+ t =−4, 2s+ t = 5 and s = 3. These equations have the unique solution t =−1,

s = 3, so v is in span {u, w}; in fact v = 3u−w.

8. b. Yes. The trigonometry identity 1= sin2 x+cos2 x for all x means that 1 is in span
{

sin2 x, cos2 x
}

.

d. Suppose 1+ x2 = ssin2 x+ t cos2 x for some s and t. This must hold for all x. Taking x = 0

gives 1 = t; taking x = π gives 1+π2 = −t. Thus 2+π2 = 0, a contradiction. So no such s

and t exist, that is 1+ x2 is not in span
{

sin2 x, cos2 x
}

.

9. b. Write U = span
{

1+2x2, 3x, 1+ x
}

, then successively

x = 1
3(3x) is in U

1 = (1+ x)− x is in U

x2 = 1
2 [(1+2x2)−1] is in U

Since P2 = span
{

1, x, x2
}

, this shows that P2 ⊆U . Clearly U ⊆ P2, so U = P2.

11. b. The vectors u−v= 1u+(−1)v, u+v, and w are all in span {u, v, w} so span {u−v, u+w, w}⊆
span {u, v, w} by Theorem 6.2.2. The other inclusion also follows from Theorem 6.2.2 be-

cause

u = (u+w)−w

v =−(u−v)+(u+w)−w

w = w

show that u, v and w are all in span {u−v, u+v, w}.
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14. No. For example (1, 1, 0) is not even in span {(1, 2, 0), (1, 1, 1)}. Indeed (1, 1, 0) = s(1, 2, 0)+
t(1, 1, 1) requires that s+ t = 1, 2s+ t = 1, t = 0, and this has no solution.

18. Write W = span {u, v2, . . . , vn}. Since u is in V we have W ⊆V . But the fact that a1 6= 0 means

v1 =
1
a1

u− a2
a1

v2−·· ·− an

a1
vn

so v1 is in W . Since v2, . . . , vn are all in W , this shows that V = span {v1, v2, . . . , vn} ⊆W . Hence

V =W .

21. b. If u and u+ v are in U then v = (u+ v)−u = (u+ v)+ (−1)u is in U because U is closed

under addition and scalar multiplication.

22. If U is a subspace then, u1+au2 is in U for any ui in U and a in R by the subspace test. Conversely,

assume that this condition holds for U . Then, in the subspace test, conditions (2) and (3) hold for

U (because 1v = v for all v in V ), so it remains to show that 0 is in U . This is where we use

the assumption that U is nonempty because, if u is any vector in U then u+ (−1)u is in U by

assumption, that is 0 ∈U .

6.3 Linear Independence and Dimension

1. b. Independent. If rx2 + s(x+1)+ t(1−x−x2) = 0 then, equating coefficients of x2, x and 1, we

get r− t = 0, s− t = 0, s+ t = 0. The only solution is r = s = t = 0.

d. Independent. If r
[

1 1

1 0

]

+ s
[

0 1

1 1

]

+ t
[

1 0

1 1

]

+u
[

1 1

0 1

]

=
[

0 0

0 0

]

, then r+ t +u = 0,

r+ s+u = 0, r+ s+ t = 0, s+ t +u = 0. The only solution is r = s = t = u = 0.

2. b. Dependent. 3(x2− x+3)−2(2x2 + x+5)+(x2 +5x+1) = 0

d. Dependent. 2
[

−1 0

0 −1

]

+
[

1 −1

−1 1

]

+
[

1 1

1 1

]

+0
[

0 −1

−1 0

]

=
[

0 0

0 0

]

.

f. Dependent. 5
x2+x−6

+ 1
x2−5x+6

− 6
x2−9

= 0.

3. b. Dependent. 1− sin2 x− cos2 x = 0 for all x.

4. b. If r(2, x, 1)+ s(1, 0, 1)+ t(0, 1, 3) = (0, 0, 0) then, equating components:

2r + s = 0

xr + t = 0

r + s + 3t = 0

Gaussian elimination gives

[

2 1 0 0

x 0 1 0

1 1 3 0

]

→
[

1 1 3 0

2 1 0 0

x 0 1 0

]

→
[

1 1 3 0

0 1 6 0

0 −x 1−3x 0

]

→
[

1 1 3 0

0 1 6 0

0 0 1+3x 0

]
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This has only the trivial solution r = s = t = 0 if and only if x 6= −1
3 . Alternatively, the coeffi-

cient matrix has determinant

det

[

2 1 0

x 0 1

1 1 3

]

= det

[

2 1 0

x 0 1

−1 0 3

]

=− det
[

x 1

−1 3

]

=−(1+3x)

This is nonzero if and only if x 6=−1
3 .

5. b. Independence: If r(−1, 1, 1)+ s(1, −1, 1)+ t(1, 1, −1) = (0, 0, 0) then −r + s+ t = 0,

r− s+ t = 0, r+ s− t = 0. The only solution is r = s = t = 0.

Spanning: Write U = span {(−1, 1, 1), (1, −1, 1), (1, 1, −1)}.
Then (1, 0, 0) = 1

2 [(1, 1, −1)+(1, −1, 1)] is in U ; similarly (0, 1, 0) and (0, 0, 1) are in U .

As R3 = span {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, we have R3 ⊆U . Clearly U ⊆ R3, so we have

R3 =U .

d. Independence: If r(1+ x)+ s(x+ x2)+ t(x2+ x3)+ux3 = 0 then

r+(r+ s)x+(s+ t)x2+(t +u)x3 = 0

so r = 0, r+ s = 0, s+ t = 0, t +u = 0. The only solution is r = s = t = u = 0.

Spanning: Write U = span
{

1+ x, x+ x2, x2 + x3, x3
}

. Then x3 is in U ; whence x2 = (x2 +

x3)− x3 is in U ; whence x = (x+ x2)− x2 is in U ; whence 1 = (1+ x)− x is in U . Hence

P3 = span
{

1, x, x2, x3
}

is contained in U . As U ⊆ P3, we have U = P3.

6. b. Write U =
{

a+b(x+ x2) | a, b in R
}

= span B where B =
{

1, x+ x2
}

. But B is independent

because s+ t(x+ x2) = 0 implies s = t = 0. Hence B is a basis of U , so dim U = 2.

d. Write U = {p(x) | p(x) = p(−x)}. As U ⊆ P2, write p(x) = a + bx+ cx2 be any member

of U . The condition p(x) = p(−x) becomes a + bx + cx2 = a− bx+ cx2, so b = 0. Thus

U =
{

a+bx2 | a, b in R
}

= span
{

1, x2
}

. As
{

1, x2
}

is independent (s+ tx2 = 0 implies

s = 0 = t), it is a basis of U , so dim U = 2.

7. b. Write U =
{

A | A
[

1 1

−1 0

]

=
[

1 1

−1 0

]

A
}

. If A =
[

x y

z w

]

, A is in U if and only if
[

x y

z w

][

1 1

−1 0

]

=
[

1 1

−1 0

][

x y

z w

]

, that is
[

x− y x

z−w z

]

=
[

x+ z y+w

−x −y

]

.

This holds if and only if x = y+w and z =−y, that is

A =
[

y+w y

−y w

]

= y
[

1 1

−1 0

]

+w
[

1 0

0 1

]

Hence U = span B where B =
{[

1 1

−1 0

]

,
[

1 0

0 1

]}

. But B is independent here because

s
[

1 1

−1 0

]

+ t
[

1 0

0 1

]

=
[

0 0

0 0

]

means s+ t = 0, s = 0, −s = 0, t = 0, so s = t = 0. Thus B

is a basis of U , so dim U = 2.

d. Write U =
{

A | A
[

1 1

−1 0

]

=
[

0 1

−1 1

]

A
}

. If A =
[

x y

z w

]

then A is in U if and only if
[

x y

z w

][

1 1

−1 0

]

=
[

0 1

−1 1

][

x y

z w

]

; that is
[

x− y x

z−w z

]

=
[

z w

z− x w− y

]

.

This holds if and only if z = x− y and x = w; that is

A =
[

x y

x− y x

]

= x
[

1 0
1 1

]

+ y
[

0 1
−1 0

]
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Thus U = span B where B=
{[

1 0

1 1

]

,
[

0 1

−1 0

]}

. But B is independent because s
[

1 0

1 1

]

+

t
[

0 1

−1 0

]

=
[

0 0

0 0

]

implies s = t = 0. Hence B is a basis of U , so dim U = 2.

8. b. If X =
[

x y

z w

]

the condition AX = X is
[

x+ z y+w

0 0

]

=
[

x y

z w

]

and this holds if and only

if z = w = 0. Hence X =
[

x y

0 0

]

= x
[

1 0
0 0

]

+ y
[

0 1
0 0

]

. So U = span B where B =
{[

1 0

0 0

]

,
[

0 1

0 0

]}

. As B is independent, it is a basis of U , so dim U = 2.

10. b. If the common column sum is m, V has the form

V =

{[

a q r

b p s

m−a−b m− p−q m− r− s

]

| a, b, p, q, r, s, m in R

}

= span B where

B =

{[

0 0 0

0 0 0

1 1 1

]

,

[

1 0 0

0 0 0

−1 0 0

]

,

[

0 0 0

1 0 0

−1 0 0

]

,

[

0 1 0

0 0 0

0 −1 0

]

,

[

0 0 0

0 1 0

0 −1 0

]

,

[

0 0 1

0 0 0

0 0 −1

]

,

[

0 0 0

0 0 1

0 0 −1

]}

.

The set B is independent (a linear combination using coefficients a, b, p, q, r, s, and m yields

the matrix in V , and this is 0 if and only if a = b = p = q = r = s = m = 0). Hence B is a basis

of B, so dim V = 7.

11. b. A general polynomial in P3 has the form p(x) = a+bx+ cx2 +dx3, so

V =
{

(x2− x)(a+bx+ cx2 +dx3) | a, b, c, d in R
}

=
{

a(x2− x)+bx(x2− x)+ cx2(x2− x)+dx3(x2− x) | a, b, c, d in R
}

= span B

where B =
{

(x2− x), x(x2− x), x2(x2− x), x3(x2− x)
}

. We claim that B is independent. For

if a(x2−x)+bx(x2−x)+cx2(x2−x)+dx3(x2−x) = 0 then (a+bx+cx2+dx3)(x2−x) = 0,

whence a+bx+ cx2 +dx3 = 0 by the hint in (a). Thus a = b = c = d = 0. [This also follows

by comparing coefficients.] Thus B is a basis of V , so dim V = 4.

12. b. No. If P3 = span { f1(x), f2(x), f3(x), f4(x)}where fi(0) = 0 for each i, then each polynomial

p(x) in P3 is a linear combination

p(x) = a1 f1(x)+a2 f2(x)+a3 f3(x)+a4 f4(x)

when the ai are in R. But then

p(0) = a1 f1(0)+a2 f2(0)+a3 f3(0)+a4 f4(0) = 0

for every p(x) in P3. This is not the case, so no such basis of P3 can exist. [Indeed, no such

spanning set of P3 can exist.]

d. No. B =
{[

1 0

0 1

]

,
[

1 1

0 1

]

,
[

1 0

1 1

]

,
[

0 1

1 1

]}

is a basis of invertible matrices.

Independent: r
[

1 0

0 1

]

+ s
[

1 1

0 1

]

+ t
[

1 0

1 1

]

+u
[

0 1

1 1

]

=
[

0 0

0 0

]

gives

r+ s+ t = 0, s+u = 0, t +u = 0, r+ s+ t +u = 0. The only solution is r = s = t = u = 0.



6.3. Linear Independence and Dimension 97

Spanning:
[

0 1

0 0

]

=
[

1 1

0 1

]

−
[

1 0

0 1

]

is in span B

[

0 0

1 0

]

=
[

1 0

1 1

]

−
[

1 0

0 1

]

is in span B

[

0 0

0 1

]

=
[

0 1

1 1

]

−
[

0 1

0 0

]

−
[

0 0

1 0

]

is in span B

[

1 0

0 0

]

=
[

1 0

0 1

]

−
[

0 0

0 1

]

is in span B

Hence M22 = span
{[

0 1

0 0

]

,
[

0 0

1 0

]

,
[

0 0

0 1

]

,
[

1 0

0 0

]}

⊆ span B. Clearly span B ⊆
M22.

f. Yes. Indeed, 0u+0v+0w = 0 for any u, v, w, independent or not!

h. Yes. If su+ t(u+ v) = 0 then (s+ t)u+ tv = 0, so s+ t = 0 and t = 0 (because {u, v} is

independent). Thus s = t = 0.

j. Yes. If su+ tv = 0 then su+ tv+ 0w = 0, so s = t = 0 (because {u, v, w} is independent).

This shows that {u, v} is independent.

l. Yes. Since {u, v, w} is independent, the vector u+v+w is not zero. Hence {u+v+w} is

independent (see Example 5.2.5).

n. Yes. If I is a set of independent vectors, then |I| ≤ n by the fundamental theorem because V

contains a spanning set of n vectors (any basis).

15. If a linear combination of the vectors in the subset vanishes, it is a linear combination of the vectors

in the larger set (take the coefficients outside the subset to be zero). Since it still vanishes, all the

coefficients are zero because the larger set is independent.

19. We have su′+ tv = s(au+bv)+ t(cu+dv) = (sa+ tc)u+(sb+ td)v. Since {u, v} is independent,

we have
su′+ tv′ = 0 if and only if sa+ tc = 0 and sb+ td = 0

if and only if
[

a c

b d

][

s

t

]

=
[

0

0

]

Hence {u′, v′} is independent if and only if
[

a c

b d

][

s

t

]

=
[

0

0

]

implies
[

s

t

]

=
[

0

0

]

.

By Theorem 2.4.5, this is equivalent to A being invertible.

23. b. Independent: If r(u+v)+s(v+w)+t(w+u) = 0 then (r+t)u+(r+s)v+(s+t)w+0z = 0.

Thus r+ t = 0, r+s = 0, s+ t = 0 (because {u, v, w, z} is independent). Hence r = s = t = 0.

d. Dependent: (u+v)− (v+w)+ (w+ z)− (z+u) = 0 is a nontrivial linear combination that

vanishes.

26. If rz+ sz2 = 0, r, s in R, then z(r+ sz) = 0. If z is not real then z 6= 0 so r+ sz = 0. Thus s = 0

(otherwise z = −r
s

is real), whence r = 0. Conversely, if z is real then rz+ sz2 = 0 when r = z,

s =−1, so
{

z, z2
}

is not independent.

29. b. If U is not invertible, let Ux = 0 where x 6= 0 in Rn (Theorem 2.4.5). We claim that no set

{A1U , A2U , . . .} can span Mmn (let alone be a basis). For if it did, we could write any matrix

B in Mmn as a linear combination

B = a1A1U +a2A2U + · · ·
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Then Bx = a1AUx+a2A2Ux+ · · ·= 0+0+ · · ·= 0, a contradiction. In fact, if entry k of x is

nonzero, then Bx 6= 0 where all entries of B are zero except column k, which consists of 1’s.

33. b. Suppose U ∩W = 0. If su+ tw = 0 with u and w nonzero in U and W , then su = −tw is

in U ∩W = {0}. Hence su = 0 = tw. So s = 0 = t (as u 6= 0 and w 6= 0). Thus {u, v}
is independent. Conversely, assume that the condition holds. If v 6= 0 lies in U ∩W , then

{v, −v} is independent by the hypothesis, a contradiction because 1v+1(−v) = 0.

36. b. If p(x) = a0 +a1x+ · · ·+anxn is in On, then p(−x) =−p(x), so

a0−a1x+a2x2 +a3x3 +a4x4−·· ·=−a0−a1x−a2x2−a3x3−a4x4−·· ·
Hence a0 = a2 = a4 = · · ·= 0 and p(x)= a1x+a3x3+a5x5+· · · . Thus On = span

{

x, x3, x5, . . .
}

is spanned by the odd powers of x in Pn. The set B =
{

x, x3, x5, . . .
}

is independent (because
{

1, x, x2, x3, x4, . . .
}

is independent) so it is a basis of On. If n is even, B=
{

x, x3, x5, . . . , xn−1
}

has n
2 members, so dim On = n

2 . If n is odd, B =
{

x, x3, x5, . . . , xn
}

has n+1
2 members, so

dim On =
n+1

2 .

6.4 Finite Dimensional Spaces

1. b. B = {(1, 0, 0), (0, 1, 0), (0, 1, 1)} is independent as r(1, 0, 0)+ s(0, 1, 0)+ t(0, 1, 1) =
(0, 0, 0) implies r = 0, s+ t = 0, t = 0, whence r = s = t = 0. Hence B is a basis by Theorem

6.4.3 because dim R3 = 3.

d. B =
{

1, x, x2− x+1
}

is independent because r1+ sx+ t(x2− x− 1) = 0 implies r− t = 0,

s− t = 0, and t = 0; whence r = s = t = 0. Hence B is a basis by Theorem 6.4.3 because

dim P2 = 3.

2. b. As dim P2 = 3, any independent set of three vectors is a basis by Theorem 6.4.3. But we have

−(x2 +3)+2(x+2)+(x2−2x−1) = 0,
{

x2 +3, x+2, x2−2x−1
}

, so is dependent. How-

ever any other subset of three vectors from
{

x2 +3, x+2, x2−2x−1, x2 + x
}

is independent

(verify).

3. b. B = {(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 1, 1), (1, 1, 1, 1)} spans R4 because

(1, 0, 0, 0) = (1, 1, 1, 1)− (0, 1, 0, 0)− (0, 0, 1, 1) is in span B

(0, 0, 0, 1) = (0, 0, 1, 1)− (0, 0, 1, 0) is in span B

and, of course, (0, 1, 0, 0) and (0, 0, 1, 0) are in span B. Hence B is a basis of R4 by Theorem

6.4.3 because dim R
4 = 4.

d. B =
{

1, x2 + x, x2 +1, x3
}

spans P3 because x2 = (x2 + 1)− 1 and x = (x2 + x)− x2 are in

span B (together with 1 and x3). So B is a basis of P3 by Theorem 6.4.3 because dim P3 = 4.

4. b. Let z = a+bi; a, b in R. Then b 6= 0 as z is not real and a 6= 0 as z is not pure imaginary. Since

dim C = 2, it suffices (by Theorem 6.4.3) to show that {z, z} is independent. If rz+ sz = 0

then 0 = r(a+bi)+s(a−bi) = (r+s)a+(r−s)bi. Hence (r+s)a = 0 = (r−s)b so (because

a 6= 0 6= b) r+ s = 0 = r− s. Thus r = s = 0.
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5. b. The four polynomials in S have distinct degrees. Use Example 6.3.4.

6. b. {4, 4x, 4x2, 4x3} is such a basis. There is no basis of P3 consisting of polynomials have the

property that their coefficients sum to zero. For if it did then every polynomial in P3 would have

this property (since sums and scalar multiples of such polynomials have the same property).

7. b. Not a basis because (2u+v+3w)− (3u+v−w)+(u−4w) = 0.

d. Not a basis because 2u− (u+w)− (u−w)+0(v+w) = 0.

8. b. Yes, four vectors can span R3 — say any basis together with any other vector.

No, four vectors in R3 cannot be independent by the fundamental theorem (Theorem 6.3.2)

because R3 is spanned by 3 vectors (dim R3 = 3).

10. We have det A = 0 if and only if A is not invertible. This holds if and only if the rows of A are

dependent by Theorem 5.2.3. This in turn holds if and only if some row is a linear combination of

the rest by the dependent lemma (Lemma 6.4.3).

11. b. No. Take X = {(0, 1), (1, 0)} and D = {(0, 1), (1, 0), (1, 1)}. Then D is dependent, but its

subset X is independent.

d. Yes. This is follows from Exercise 15 Section 6.3 (solution above).

15. Let {u1, . . . , um}, m ≤ k, be a basis of U so dim U = m. If v ∈U then W =U by Theorem 6.2.2,

so certainly dim W = dim U . On the other hand, if v /∈U then {u1, . . . , um, v} is independent by

the independent lemma (Lemma 6.4.1). Since W = span{u1, . . . , um, v}, again by Theorem 6.2.2,

it is a basis of W and so dim W = 1+ dim U .

18. b. The two-dimensional subspaces of R3 are the planes through the origin, and the one-dimensional

subspaces are the lines through the origin. Hence part (a) asserts that if U and W are distinct

planes through the origin, then U ∩W is a line through the origin.

23. b. Let vn denote the sequence with 1 in the nth coordinate and zeros elsewhere. Thus v0 =
(1, 0, 0, . . .), v1 =(0, 1, 0, . . .) etc. Then a0v0+a1v1+ · · ·+anvn =(a0, a1, . . . , an, 0, 0, . . .)
so a0v0 +a1v1 + · · ·+anvn = 0 implies a0 = a1 = · · · = an = 0. Thus {v0, v1, . . . , vn} is an

independent set of n+1 vectors. Since n is arbitrary, dim V cannot be finite by the fundamental

theorem.

25. b. Observe that Ru = {su | s in R}. Hence Ru+Rv = {su+ tv | s in R, t in R} is the set of all

linear combinations of u and v. But this is the definition of span {u, v}.
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6.5 An Application to Polynomials

2. b. f (0)(x) = f (x) = x3 + x+1, so f (1)(x) = 3x2 +1, f (2)(x) = 6x, f (3)(x) = 6. Hence, Taylor’s

theorem gives

f (x) = f (0)(1)+ f (1)(1)(x−1)+
f (2)(1)

2! (x−1)2 +
f (3)(1)

3! (x−1)3

= 3+4(x−1)+3(x−1)2 +(x−1)3

d. f (0)(x) = f (x) = x3−3x2 +3x, f (1)(x) = 3x2−6x+3, f (2)(x) = 6x−6, f (3)(x) = 6. Hence,

Taylor’s theorem gives

f (x) = f (0)(1)+ f (1)(1)(x−1)+ f (2)(1)
2! (x−1)2 + f (3)(1)

3! (x−1)3

= 1+0(x−1)+ 0
2!(x−1)2 +1(x−1)3

= 1+(x−1)3

6. b. The three polynomials are x2−3x+2 = (x−1)(x−2), x2−4x+3 = (x−1)(x−3) and x2−
5x+6 = (x−2)(x−3), so use a0 = 3, a1 = 2, a2 = 1, in Theorem 6.5.2.

7. b. The Lagrange polynomials for a0 = 1, a1 = 2, a2 = 3, are

δ0(x) =
(x−2)(x−3)
(1−2)(1−3) =

1
2(x−2)(x−3)

δ1(x) =
(x−1)(x−3)
(2−1)(2−3) =−(x−1)(x−3)

δ2(x) =
(x−1)(x−2)
(3−1)(3−2) =

1
2(x−1)(x−2)

Given f (x) = x2 + x+1:

f (x) = f (1)δ0(x)+ f (2)δ1(x)+ f (3)δ2(x)

= 3
2(x−2)(x−3)−7(x−1)(x−3)+ 13

2 (x−1)(x−2)

10. b. If r(x− a)2 + s(x− a)(x− b)+ t(x− b)2 = 0, then taking x = a gives t(a− b)2 = 0, so t =
0 because a 6= b; and taking x = b gives r(b− a)2 = 0, so r = 0. Thus, we are left with

s(x−a)(x−b) = 0. If x is any number except a, b, this implies s = 0. Thus

B =
{

(x−a)2, (x−a)(x−b), (x−b)2
}

is independent in P2; since dim P2 = 3, B is a basis.

11. b. Have Un = { f (x) in Pn | f (a) = 0 = f (b)}. Let {p1(x), . . . , pn−1(x)} be a basis of Pn−2; it

suffices to show that

B = {(x−a)(x−b)p1(x), . . . , (x−a)(x−b)pn−1(x)}

is a basis of Un. Clearly B⊆Un.

Independent: Let s1(x− a)(x− b)p1(x)+ · · ·+ sn−1(x− a)(x− b)pn−1(x) = 0. Then (x−
a)(x− b)[s1p1(x)+ · · ·+ sn−1 pn−1(x)] = 0, so (by the hint) s1p1(x)+ · · ·+ sn−1 pn−1(x) = 0.

Thus s1 = s2 = · · ·= sn−1 = 0.
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Spanning: Given f (x) in Pn with f (a) = 0, we have f (x) = (x−a)g(x) for some polynomial

g(x) in Pn−1 by the factor theorem. But 0 = f (b) = (b−a)g(b) so (as b 6= a) g(b) = 0. Then

g(x) = (x−b)h(x) with h(x) = r1 p1(x)+ · · ·+ rn−1 pn−1(x), ri in R, whence

f (x) = (x−a)g(x)

= (x−a)(x−b)g(x)

= (x−a)(x−b)[r1p1(x)+ · · ·+ rn−1 pn−1(x)]

= r1(x−a)(x−b)p1(x)+ · · ·+ rn−1(x−a)(x−b)pn−1(x)

6.6 An Application to Differential Equations

1. b. By Theorem 6.6.1, f (x) = ce−x for some constant c. We have 1 = f (1) = ce−1, so c = e. Thus

f (x) = e1−x.

d. The characteristic polynomial is x2 + x− 6 = (x− 2)(x+ 3). Hence f (x) = ce2x + de−3x for

some c, d. We have 0= f (0)= c+d and 1= f (1)= ce2+de−3. Hence, d =−c and c= 1
e2−e−3

so f (x) = e2x−e−3x

e2−e−3 .

f. The characteristic polynomial is x2− 4x+ 4 = (x− 2)2. Hence, f (x) = ce2x + dxe2x = (c+
dx)e2x for some c, d. We have 2 = f (0) = c and 0 = f (−1) = (c−d)e−2. Thus c = d = 2 and

f (x) = 2(1+ x)e2x.

h. The characteristic polynomial is x2−a2 = (x−a)(x+a), so (as a 6=−a) f (x) = ceax +de−ax

for some c, d. We have 1 = f (0) = c+ d and 0 = f (1) = cea + de−a. Thus d = 1− c and

c = 1
1−e2a whence

f (x) = cax +(1− c)e−ax = eax−ea(2−x)

1−e2a

j. The characteristic polynomial is x2 +4x+5. The roots are λ =−2± i, so

f (x) = e−2x(csinx+d cosx) for some real c and d.

We have 0 = f (0) = d and 1 = f
(

π
2

)

= e−π(c). Hence f (x) = eπ−2x sinx.

4. b. If f (x) = g(x)+2 then f ′+ f = 2 becomes g′+g = 0, whence g(x) = ce−x for some c. Thus

f (x) = ce−x +2 for some constant c.

5. b. If f (x) =−x3

3 then f ′(x) =−x2 and f ′′(x) =−2x, so

f ′′(x)+ f ′(x)−6 f (x) =−2x− x2 +2x3

Hence, f (x) = −x3

3 is a particular solution. Now, if h = h(x) is any solution, write g(x) =

h(x)− f (x) = h(x)+ x3

3 . Then

g′′+g′−6g = (h′+h′−6h)− ( f ′′+ f ′−6 f ) = 0

So, to find g, the characteristic polynomial is x2 + x− 6 = (x− 2)(x+ 3). Hence we have

g(x) = ce−3x +de2x, where c and d are constants, so

h(x) = ce−3x +de2x− x3

3
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6. b. The general solution is m(t) = 10(4
5)

1/3. Hence 10(4
5)

t/3 = 5 so t =
3ln(1/2)
ln(4/5) = 9.32 hours.

7. b. If m = m(t) is the mass at time t, then the rate m′(t) of decay is proportional to m(t), that is

m′(t)= km(t) for some k. Thus, m′−km= 0 so m = cekt for some constant c. Since m(0)= 10,

we obtain c = 10, whence m(t) = 10ekt . Also, 8 = m(3) = 10e3k so e3k = 4
5 , ek =

(

4
5

)1/3
,

m(t) = 10(ek)t = 10
(

4
5

)t/3
.

9. In Example 6.6.4, we found that the period of oscillation is 2π√
k
. Hence 2π√

k
= 30 so we obtain

k =
(

π
15

)2
= 0.044.

Supplementary Exercises: Chapter 6

2. b. Suppose {Ax1, . . . , Axn} is a basis of Rn. To show that A is invertible, we show that YA = 0

implies Y = 0. (This shows AT is invertible by Theorem 2.4.4, so A is invertible). So assume

that YA = 0. Let c1, . . . , cm denote the columns of Im, so Im =
[

c1 c2 · · · cm

]

. Then Y =
Y Im =Y

[

c1 c2 · · · cm

]

=
[

Y c1 Y c2 · · · Y cm

]

, so it suffices to show that Y c j = 0 for

each j. But c j is in Rn so our hypothesis shows that c j = r1Av1+ · · ·+ rnAvn for some r j in R.

Hence,

c j = A(r1v1 + · · ·+ rnvn)

so Y c j = YA(r1v1 + · · ·+ rnvn) = 0, as required.

4. Assume that A is m×n. If x is in null A, then Ax = 0 so (AT A)x = AT 0 = 0. Thus x is in null AT A,

so null A⊆ null AT A. Conversely, let x be in null AT A; that is AT Ax = 0. Write

Ax = y =

[

y1

.

.

.
ym

]

Then y2
1 + y2

2 + · · ·+ y2
m = yT y = (Ax)T (Ax) = xT AT Ax = xT 0 = 0. Since the yi are real numbers,

this implies that y1 = y2 = · · ·= ym = 0; that is y = 0, that is Ax = 0, that is x is in null A.
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7.1 Examples and Elementary Properties

1. b. T (X) = XA where A =

[

1 0 0

0 1 0
0 0 −1

]

and X = (x, y, z) is thought of as a row matrix. Hence,

matrix algebra gives T (X +Y ) = A(X +Y ) = AX +AY = T (X)+T(Y ) and T (rλ ) = A(rX) =
rA(X) = rT (X).

d. T (A+B) = P(A+B)Q = PAQ+PBQ = T (A)+T (B); T (rA) = P(rA)Q = rPAQ = rT (A).

f. Here T [p(x)] = p(0) for all polynomials p(x) in Pn. Thus

T [(p+q)(x)] = T [p(x)+q(x)] = p(0)+q(0) = T [p(x)]+T [q(x)]

T [rp(x)] = rp(0) = r[T p(x)]

h. Here z is fixed in R
n and T (x) = x · z for all x in R

n. We use Theorem 5.3.1:

T (x+y) = (x+y) · z = x · z+y · z = T (x)+T (y)

T (rx) = (rx) · z = r(x · z) = rT (x)

j. If v = (r1 · · ·rn) and w = (s1 · · ·sn) then, v+w = (r1 + s1 · · ·rn + sn). Hence:

T (v+w) = (r1+ s1)e1 + · · ·+(rn + sn)en

= (r1e1 + · · ·+ rnen)+(s1e1 + · · ·+ snen) = T (v)+T (w)

Similarly, for a in R, we have av = (ar1 · · ·arn) so

T (av) = (ar1)e1 + · · ·+(arn)en = a(r1e1 + · · ·+ rnen) = aT (v)

2. b. Let A =









1 0 0 . . . 0

0 1 0 . . . 0

0 0 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 0 . . . 0









, B =









1 0 0 . . . 0

0 −1 0 . . . 0

0 0 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 0 . . . 0









, then A+B =









2 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 0 . . . 0









. Thus,

T (A) = rank A = 2, T (B) = rank B = 2 and T (A+B) = rank (A+B) = 1. Thus T (A+B) 6=
T (A)+T (B).

d. Here T (v) = v+u, T (w) = w+u, and T (v+w) = v+w+u. Thus if T (v+w) = T (v)+
T (w) then v+w+u = (v+u)+ (w+u), so u = 2u, u = 0. This is contrary to assumption.

Alternatively, T (0) = 0+u 6= 0, so T cannot be linear by Theorem 7.1.1.

3. b. Because T is linear, T (3v1 +2v2) = 3T (v1)+2T (v2) = 3(2)+2(−3) = 0.

103
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d. Since we know the action of T on
[

1

−1

]

and
[

1

1

]

, it suffices to express
[

1

−7

]

as a linear

combination of these vectors.
[

1

−7

]

= r
[

1

−1

]

+ s
[

1

1

]

Comparing components gives 1 = r+ s and −7 =−r+ s. The solution is r = 4, s =−3, so

T
[

1

−7

]

= T
(

4
[

1

−1

]

−3
[

1

1

])

= 4T
[

1

−1

]

−3T
[

1

1

]

= 4
[

0

1

]

−3
[

1

1

]

=
[

−3

4

]

f. We know T (1), T (x+2) and T (x2 + x), so we express 2− x+3x2 as a linear combination of

these vectors:

2− x+3x2 = r ·1+ s(x+2)+ t(x2+ x)

Equating coefficients gives 2 = r+ 2s, −1 = s+ t and 3 = t. The solution is r = 10, s = −4

and t = 3, so

T (2− x+3x2) = T [r ·1+ s(x+2)+ t(x2+ x)]

= rT (1)+ sT (x+2)+ tT(x2 + x)

= 5r+ s+0

= 46

In fact, we can find the action of T on any vector a+bx+ cx2 in the same way. Observe that

a+bx+ cx2 = (a−2b+2c) ·1+(b− c)(x+2)+ c(x2+ x)

for any a, b and c, so

T (a+bx+ cx2) = (a−2b+2c)T (1)+(b− c)T(x+2)+ cT (x2 + x)

= (a−2b+2c) ·5+(b− c) ·1+ c ·0
= 5a−9b+9c

This retrieves the above result when a = 2, b =−1 and c = 3.

4. b. Since B = {(2, −1), (1, 1)} is a basis of R2, any vector (x, y) in R2 is a linear combination

(x, y) = r(2, −1)+ s(1, 1). Indeed, equating components gives x = 2r+ s and y = −r+ s so

r = 1
3(x− y), s = 1

3(x+2y). Hence,

T (x, y) = T [r(2, −1)+ s(1, 1)]

= rT (2, −1)+ sT (1, 1)

= 1
3(x− y)(1, −1, 1)+ 1

3(x+2y)(0, 1, 0)

=
(

1
3(x− y), y, 1

3(x− y)
)

= 1
3(x− y, 3y, x− y)

In particular, T (v) = T (−1, 2) = 1
3(−3, 6, −3) = (−1, 2, −1).

This works in general. Observe that (x, y) = x−y
3 (2, −1)+ x+2y

3 (1, 1) for any x and y, so since

T is linear,

T (x, y) = x−y
3 T (2, −1)+ x+2y

3 T (1, 1)

for any choice of T (2, −1) and T (1, 1).
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d. Since B =
{[

1 0

0 0

]

,
[

0 1

1 0

]

,
[

1 0

1 0

]

,
[

0 0

0 1

]}

is a basis of M22, every vector
[

a b

c d

]

is

a linear combination
[

a b

c d

]

= r
[

1 0

0 0

]

+ s
[

0 1

1 0

]

+ t
[

1 0

1 0

]

+u
[

0 0

0 1

]

Indeed, equating components and solving for r, s, t and u gives r = a− c+b, s = b, t = c−b,

u = d. Thus,

T
[

a b

c d

]

= rT
[

1 0

0 0

]

+ sT
[

0 1

1 0

]

+ tT
[

1 0

1 0

]

+uT
[

0 0

0 1

]

= (a− c+b) ·3+b · (−1)+(c−b) ·0+d ·0
= 3a+2b−3c

5. b. Since T is linear, the given conditions read

T (v)+2T (w) = 3v−w

T (v)−T (w) = 2v−4w

Add twice the second equation to the first to get 3T (v) = 7v−9w, T (v) = 7
3v−3w. Similarly,

subtracting the second from the first gives 3T (w) = v+ 3w, T (w) = 1
3v+w. [Alternatively,

we can use gaussian elimination with constants 3v−w and 2v−4w.]

8. b. Since {v1, . . . , vn} is a basis of V , every vector v in V is a unique linear combination v =
r1v1 + · · ·+ rnvn, ri in R. Hence, as T is linear,

T (v) = r1T (v1)+ · · ·+ rnT (vn) = r1(−v1)+ · · ·+ rn(−vn) =−v = (−1)v

Since this holds for every v in V , it shows that T =−1, the scalar operator.

12. {1} is a basis of the vector space R. If T : R→V is a linear transformation, write T (1) = v. Then,

for all r in R :

T (r) = T (r ·1) = rT (1) = rv

Since T (r) = rv is linear for each v in V , this shows that every linear transformation T : R→ V

arises in this way.

15. b. Write U = {v ∈ V | T (v) ∈ P}. If v and v1 are in U , then T (v) and T (v1) are in P. As P is

a subspace, it follows that T (v+ v1) = T (v)+T (v1) and T (rv) = rT (v) are both in P; that

is v+ v1 and rv are in U . Since 0 is in U—because T (0) = 0 is in P—it follows that U is a

subspace.

18. Assume that {v, T (v)} is independent. Then T (v) 6= v (or else 1v+(−1)T (v) = 0) and similarly

T (v) 6=−v.

Conversely, assume that T (v) 6= v and T (v) 6= −v. To verify that {v, T (v)} is independent, let

rv+ sT (v) = 0; we must show that r = s = 0. If s 6= 0, then T (v) = av where a = − r
s
. Hence

v = T [T (v)] = T (av) = aT (v) = a2v. Since v 6= 0, this gives a = ±1, contrary to hypothesis. So

s = 0, whence rv = 0 and r = 0.

21. b. Suppose that T : Pn→ R is a linear transformation such that T (xk) = T (x)k holds for all k ≥
0 (where x0 = 1). Write T (x) = a. We have T (xk) = T (x)k = ak = Ea(x

k) for each k by

assumption. This gives T = Ea by Theorem 7.1.2 because
{

1, x, x2, . . . , xi, . . . , xn
}

is a basis

of Pn.
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7.2 Kernel and Image of a Linear Transformation

1. b. We have ker TA = {x | Ax = 0}; to determine this space, we use gaussian elimination:
[

2 1 −1 3 0

1 0 3 1 0

1 1 −4 2 0

]

→
[

1 0 3 1 0

0 1 −7 1 0

0 1 −7 1 0

]

→
[

1 0 3 1 0

0 1 −7 1 0

0 0 0 0 0

]

Hence ker TA =

{[ −3s− t

7s− t

s

t

]∣

∣

∣

∣

∣

s, t in R

}

= span

{[ −3
7

1

0

]

,

[

1
1

0

−1

]}

. These vectors are inde-

pendent so nullity of TA = dim (ker TA) = 2. Next

im TA =
{

Ax | x in R
4
}

=

{

[

2 1 −1 3

1 0 3 1

1 1 −4 2

]

[

r

s

t

y

]∣

∣

∣

∣

∣

r, s, t, u in R

}

=

{

r

[

2

1
1

]

+ s

[

1

0
1

]

+ t

[

−1

3
−4

]

+u

[

3

1
2

]∣

∣

∣

∣

r, s, t, u in R

}

Thus im TA = col A as is true in general. Hence dim ( im TA) = dim (col A) = rank A, and we

can compute this by carrying A to row-echelon form:
[

2 1 −1 3

1 0 3 1

1 1 −4 2

]

→
[

1 0 3 1

0 1 −7 1

0 0 0 0

]

Thus dim ( im TA) = rank A = 2. However, we want a basis of col A, and we obtain this by

writing the columns of A as rows and carrying the resulting matrix (it is AT ) to row-echelon

form:
[

2 1 1
1 0 1

−1 3 −4

3 1 2

]

→
[

1 0 1
0 1 −1

0 3 −3

0 1 −1

]

→
[

1 0 1
0 1 −1

0 0 0

0 0 0

]

Hence, by Lemma 5.4.2,

{[

1

0

1

]

,

[

0

1

−1

]}

is a basis of im TA = col A. Of course this once

again shows that rank TA = dim (col A) = 2.

d. ker TA = {x | Ax = 0} so, as in (b), we use gaussian elimination:
[

2 1 0

1 −1 3

1 2 −3
0 3 −6

]

→
[

1 −1 3

0 3 −6

0 3 −6
0 3 −6

]

→
[

1 0 1

0 1 −2

0 0 0
0 0 0

]

Hence, ker TA =

{[

−t

2t

t

]∣

∣

∣

∣

t in R

}

= span

{[

−1

2

1

]}

. Thus the nullity of TA is dim (ker TA)=

1. As in (b), im TA = col A and we find a basis by doing gaussian elimination on AT :
[

2 1 1 0

1 −1 2 3

0 3 −3 −6

]

→
[

1 −1 2 3

0 3 −3 −6

0 3 −3 −6

]

→
[

1 0 1 1

0 1 −1 −2

0 0 0 0

]

Hence, im TA = col A = span

{[

1
0

1

1

]

,

[

0
1

−1

−2

]}

, so rank TA = dim ( im TA) = 2.
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2. b. Here T = P2→ R
2 given by T (p(x)) =

[

p(0) p(1)
]

. Hence

ker T = {p(x) | p(0) = p(1) = 0}
If p(x) = a+ bx+ cx2 is in ker T , then 0 = p(0) = a and 0 = p(1) = a+ b+ c. This means

that p(x) = bx−bx2, and so ker T = span
{

x− x2
}

. Thus
{

x− x2
}

is a basis of ker T . Next,

im T is a subspace of R2. We have (1, 0) = T (1− x) and (0, 1) = T (x) are both in im T , so

im T = R2. Thus {(1, 0), (0, 1)} is a basis of im T .

d. Here T : R3→R4 given by T (x, y, z) = (x, x, y, y). Thus,

ker T = {(x, y, z) | (x, x, y, y) = (0, 0, 0, 0)}= {(0, 0, z) | z in R}= span {(0, 0, 1)}
Hence, {(0, 0, 1)} is a basis of ker T . On the other hand,

im T = {(x, x, y, y) | x, y in R}= span {(1, 1, 0, 0) , (0, 0, 1, 1)}
Then {(1, 1, 0, 0) , (0, 0, 1, 1)} is a basis of im T .

f. Here T : M22→ R is given by T
[

a b

c d

]

= a+d. Hence

ker T =
{[

a b

c d

]∣

∣

∣
a+d = 0

}

=
{[

a b

c −a

]∣

∣

∣
a, b, c in R

}

= span
{[

1 0

0 −1

]

,
[

0 1

0 0

]

,
[

0 0

1 0

]}

Hence,
{[

1 0

0 −1

]

,
[

0 1

0 0

]

,
[

0 0

1 0

]}

is a basis of ker T (being independent). On the other

hand,

im T =
{

a+d

∣

∣

∣

[

a b

c d

]

in M22

}

= R

So {1} is a basis of im T .

h. T : Rn→ R, T (r1, r2, . . . , rn) = r1 + r2 + · · ·+ rn. Hence,

ker T = {(r1, r2, . . . , rn) | r1 + r2 + · · ·+ rn = 0}
= {(r1, r2, . . . , rn−1, −r1−·· ·− rn−1) | ri in R}
= span {(1, 0, 0, . . . , −1) , (0, 1, 0, . . . , −1) , . . . , (0, 0, 1, . . . , −1)}

This is a basis of ker T . On the other hand,

im T = {r1 + · · ·+ rn | (r1, r2, . . . , rn) is in R
n}= R

Thus {1} is a basis of im T .

j. T : M22→M22 is given by T (X) = XA where A =
[

1 1

0 0

]

. Writing X =
[

x y

z w

]

:

ker T = {X | XA = 0}=
{[

x y

z w

]∣

∣

∣

[

x x

z x

]

=
[

0 0

0 0

]}

=
{[

0 y

0 w

]∣

∣

∣
y, w in R

}

= span
{[

0 1

0 0

]

,
[

0 0

0 1

]}

Thus,
{[

0 1

0 0

]

,
[

0 0

0 1

]}

is a basis of ker T (being independent). On the other hand,

im T = {XA | X in M22}=
{[

x x

z z

]∣

∣

∣
x, z in R

}

= span
{[

1 1

0 0

]

,
[

0 0

1 1

]}

Thus,
{[

1 1
0 0

]

,
[

0 0
1 1

]}

is a basis of im T .
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3. b. We have T : V →R
2 given by T (v) = (P(v), Q(v)) where P : V →R and Q : V →R are linear

transformations. T is linear by (a). Now

ker T = {v | T (v) = (0, 0)}
= {v | P(v) = 0 and Q(v) = 0}
= {v | P(v) = 0}∩{v | Q(v) = 0}
= ker P∩ ker Q

4. b. ker T = {(x, y, z) | x+ y+ z = 0, 2x− y+3z = 0, z−3y = 0, 3x+4z = 0}. Solving:

[

1 1 1 0

2 −1 3 0
0 −3 1 0

3 0 4 0

]

→
[

1 1 1 0

0 −3 1 0
0 −3 1 0

0 −3 1 0

]

→
[

1 0 4
3 0

0 1 − 1
3 0

0 0 0 0

0 0 0 0

]

Hence, ker T = {(−4t, t, 3t) | t in R}= span {(−4, 1, 3)}. Hence,

{(1, 0, 0), (0, 1, 0), (−4, 1, 3)} is one basis of R3 containing a basis of ker T . Thus

{T (1, 0, 0), T (0, 1, 0)}= {(1, 2, 0, 3), (1, −1, −3, 0)}

is a basis of im T by Theorem 7.2.5.

6. b. Yes. dim ( im T ) = dim V − dim (ker T ) = 5− 2 = 3. As dim W = 3 and im T is a 3-

dimensional subspace, im T =W . Thus, T is onto.

d. No. If ker T =V then T (v) = 0 for all v in V , so T = 0 is the zero transformation. But W need

not be the zero space. For example, T : R2→ R2 defined by T (x, y) = (0, 0) for all (x, y) in

R2.

f. No. Let T : R2→ R2 be defined by T (x, y) = (y, 0) for all (x, y) ∈R2. Then ker T = {(x, 0) |
x ∈ R}= im T .

h. Yes. We always have dim ( im T ) ≤ dim W (because im T is a subspace of W ). Since

dim (ker T )≤ dim W also holds in this case:

dim V = dim (ker T )+ dim ( im T )≤ dim W + dim W = 2 dim W

Hence dim W ≥ 1
2 dim V .

j. No. T : R2→R2 given by T (x, y) = (x, 0) is not one-to-one (because ker T = {(0, y) | y ∈ R}
is not 0).

l. No. T : R2→R2 given by T (x, y) = (x, 0) is not onto.

n. No. Define T :R2→R2 by T (x, y) = (x, 0), and let v1 = (1, 0) and v2 = (0, 1). Then {v1, v2}
spans R2, but {T (v1), T (v2)}= {v1, 0} does not span R2.

7. b. Given w in W , we must show that it is a linear combination of T (v1), . . . , T (vn). As T is onto,

w = T (v) for some v in V . Since V = span {v1, . . . , vn} we can write v = r1v1 + · · ·+ rnvn

where each ri is in R. Hence

w = T (v) = T (r1v1 + · · ·+ rnvn) = r1T (v1)+ · · ·+ rnT (vn)
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8. b. If T is onto, let v be any vector in V . Then v = T (r1, . . . , rn) for some (r1, . . . , rn) in R
n; that

is v = r1v1 + · · ·+ rnvn is in span {v1, . . . , vn}. Thus V = span {v1, . . . , vn}. Conversely, if

V = span {v1, . . . , vn}, let v be any vector in V . Then v is in span {v1, . . . , vn} so r1, . . . , rn

exist in R such that

v = r1v1 + · · ·+ rnvn = T (r1, . . . , rn)

Thus T is onto.

10. The trace map T : M22→R is linear (Example 7.1.2) and it is onto (for example,

r = tr [diag (r, 0, . . . , 0)] = T [diag (r, 0, . . . , 0)] for any r in R). Hence the dimension theorem

gives dim (ker T ) = dim Mnn− dim ( im T ) = n2− dim (R) = n2−1.

12. Define TA : Rn → Rm and TB : Rn→ Rk by TA(x) = Ax and TB(x) = Bx for all x in Rn. Then the

given condition means ker TA ⊆ ker TB, so dim (ker TA)≤ dim (ker TB). Hence

rank A = dim ( im TA) = n− dim (ker TA)≥ n− dim (ker TB) = dim ( im TB) = rank B

15. b. Write B =
{

x−1, x2−1, . . . , xn−1
}

. Then B ⊆ ker T because T (xk− 1) = 1− 1 = 0 for

all k. Hence span B ⊆ ker T . Moreover, the polynomials in B are independent (they have

distinct degrees), so dim (span B) = n. Hence, by Theorem 6.4.2, it suffices to show that

dim (ker T ) = n. But T : Pn → R is onto, so the dimension theorem gives dim (ker T ) =
dim (Pn)− dim (R) = (n+1)−1 = n, as required.

20. If we can find an onto linear transformation T : Mnn →Mnn with ker T = U and im T = V , then

we are done by the dimension theorem. The condition ker T = U suggests that we define T by

T (A) = A−AT for all A in Mnn. By Example 7.2.3, T is linear, ker T =U , and im T =V . This is

what we wanted.

22. Fix a column y 6= 0 in Rn, and define T : Mmn→ Rm by T (A) = Ay for all A in Mmn. This is linear

and ker T =U , so the dimension theorem gives

mn = dim (Mmn) = dim (ker T )+ dim ( im T ) = dim U + dim ( im T )

Hence, it suffices to show that dim ( im T ) = m, equivalently (since im T ⊆ Rm) that T is onto. So

let x be a column in Rm, we must find a matrix A in Mmn such that Ay = x. Write A in terms of its

columns as A =
[

C1 C2 · · · Cn

]

and write y =
[

y1 y2 · · · yn

]T
. Then the requirement that

Ay = x becomes

x =
[

C1 C2 · · · Cn

]





y1

y2

.

.

.

yn



= y1C1 + y2C2 + · · ·+ ynCn (∗)

Since y 6= 0, let yk 6= 0. Then Ay = x if we choose Ck = y−1
k x and C j = 0 if j 6= k. Hence T is onto

as required.

29. b. Choose a basis {u1, . . . , um} of U and (by Theorem 6.4.1) let {u1, . . . , um, . . . , un} be a basis

of V . By Theorem 7.1.3, there is a linear transformation S : V →V such that

S(ui) = ui if 1≤ i≤ m

S(ui) = 0 if i > m
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Hence, ui is in im S for 1≤ i≤m, whence U ⊆ im S. On the other hand, if w is in im S, write

w = S(v), v in V . Then ri exist in R such that

v = r1u1 + · · ·+ rmum + · · ·+ rnun

so

w = r1S(u1)+ · · ·+ rmS(um)+ · · ·+ rnS(un)

= r1u1 + · · ·+ rmum +0

It follows that w is in U , so im S⊆U . Then U = im S as required.

7.3 Isomorphisms and Composition

1. b. T is one-to-one because T (x, y, z) = (0, 0, 0) means x = 0, x+y = 0 and x+y+z = 0, whence

x = y = z = 0. Now T is onto by Theorem 7.3.3.

Alternatively: {T (1, 0, 0), T (0, 1, 0), T (0, 0, 1)}= {(1, 1, 1), (0, 1, 1), (0, 0, 1)} is inde-

pendent, so T is an isomorphism by Theorem 7.3.1.

d. T is one-to-one because T (X)= 0 implies UXV = 0, whence X = 0 (as U and V are invertible).

Now Theorem 7.3.3 implies that T is onto and so is an isomorphism.

f. T is one-to-one because T (v) = 0 implies kv = 0, so v = 0 because k 6= 0. Hence, T is onto if

dim V is finite (by Theorem 7.3.3) and so is an isomorphism. Alternatively, T is onto because

T (k−1v) = k(k−1v) = v holds for all v in V .

h. T is onto because T (AT ) = (AT )T = A for every n×m matrix A (note that AT is in Mmn so

T (AT ) makes sense). Since dim Mmn = mn = dim Mnm, it follows that T is one-to-one by

Theorem 7.3.3, and so is an isomorphism. (A direct proof that T is one-to-one: T (A) = 0

implies AT = 0, whence A = 0.)

4. b. ST (x, y, z) = S(x+y, 0, y+ z) = (x+y, 0, y+ z); T S(x, y, z) = T (x, 0, z) = (x, 0, z). These

are not equal (if y 6= 0) so ST 6= T S.

d. ST
[

a b

c d

]

= S
[

c a

d b

]

=
[

c 0

0 b

]

; T S
[

a b

c d

]

= T
[

a 0

0 d

]

=
[

0 a

d 0

]

. These are not equal

for some values of a, b, c and d (nearly all) so ST 6= T S.

5. b. T 2(x, y) = T [T (x, y)] = T (x+y, 0) = (x+y+0, 0) = (x+y, 0) = T (x, y). This holds for all

(x, y), whence T 2 = T .

d. T 2
[

a b

c d

]

= T
(

T
[

a b

c d

])

= T
(

1
2

[

a+ c b+d

a+ c b+d

])

= 1
2T
[

a+ c b+d

a+ c b+d

]

= 1
4

[

(a+ c)+(a+ c) (b+d)+(b+d)
(a+ c)+(a+ c) (b+d)+(b+d)

]

= 1
2

[

a+ c b+d

a+ c b+d

]

= T
[

a b

c d

]

This holds for all
[

a b

c d

]

, so T 2 = T .

6. b. No inverse. For example T (1, −1, 1, −1) = (0, 0, 0, 0) so (1, −1, 1, −1) is a nonzero vector

in ker T . Hence T is not one-to-one, and so has no inverse.
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d. T is one-to-one because T
[

a b

c d

]

=
[

0 0

0 0

]

implies a+2c = 0 = 3c−a and b+2d = 0 =

3d−b, whence a = b = c = d = 0. Thus T is an isomorphism by Theorem 7.3.3. If

T−1V
[

a b

c d

]

=
[

x y

z w

]

, then
[

a b

c d

]

= T
[

x y

z w

]

=
[

x+2z y+2w

3z− x 3w− y

]

. Thus

x+2z = a

−x+3z = c

y+2w = b

−y+3w = d

The solution is x = 1
5(3a−2c), z = 1

5(a+ c), y = 1
5(3b−2d), w = 1

5(b+d). Hence

T−1
[

a b

c d

]

= 1
5

[

3a−2c 3b−2d

a+ c b+d

]

(∗)

A better way to find T−1 is to observe that T (X) = AX where A =
[

1 2

−1 3

]

. This matrix is

invertible which easily implies that T is one-to-one (and onto), and if S : M22→M22 is defined

by S(X) = A−1X then ST = 1M22
and T S = 1M22

. Hence S = T−1 by Theorem 7.3.5. Note that

A−1 = 1
5

[

3 −2

1 1

]

which gives (∗).

f. T is one-to-one because, if p in P2 satisfies T (p) = 0, then p(0) = p(1) = p(−1) = 0. If

p = a+ bx+ cx2, this means a = 0, a+ b+ c = 0 and a− b+ c = 0, whence a = b = c = 0,

and p = 0. Hence, T−1 exists by Theorem 7.3.3. If T−1(a, b, c) = r+ sx+ tx2, then

(a, b, c) = T (r+ sx+ tx2) = (r, r+ s+ t, r− s+ t)

Then r = a, r+ s+ t = b, r− s+ t = c, whence r = a, s = 1
2(b− c), t = 1

2(b+ c−2a). Finally

T−1(a, b, c) = a+ 1
2(b− c)x+ 1

2(b+ c−2a)x2

7. b. T 2(x, y) = T [T (x, y)] = T (ky− x, y) = (ky− (ky− x), y) = (x, y) = 1R2(x, y). Since this

holds for all (x, y) in R2, it shows that T 2 = 1R2 . This means that T−1 = T .

d. It is a routine verification that A2 = I. Hence

T 2(x) = T [T (x)] = A[Ax] = A2x = Ix = x = 1M22
(x)

holds for all x in M22. This means that T 2 = 1M22
, and hence that T−1 = T .

8. b. T 2(x, y, z, w) = T [T (x, y, z, w)] = T (−y, x− y, z, −w)
= (−(x− y), −y− (x− y), z, −(−w)) = (y− x, −x, z, w)

T 3(x, y, z, w) = T
[

T 2(x, y, z, w)
]

= T (y− x, −x, z, w) = (x, y, z, −w)
T 6(x, y, z, w) = T 3

[

T 3(x, y, z, w)
]

= T 3 [x, y, z, −w] = (x, y, z, w) = 1R4(x, y, z, w)

Hence, T 6 = 1R4 so T−1 = T 5. Explicitly:

T−1(x, y, z, w) = T 2
[

T 3(x, y, z, w)
]

= T 2(x, y, z, −w) = (y− x, −x, z, −w)
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9. b. Define S : Mnn→Mnn by S(A) =U−1A. Then

ST (A) = S(T (A)) =U−1(UA) = A = 1Mnn
(A) so ST = 1Mnn

T S(A) = T (S(A)) =U(U−1A) = A = 1Mnn
(A) so T S = 1Mnn

Hence, T is invertible and T−1 = S.

10. b. Given V
T→W

S→U with T and S both onto, we are to show that ST : V →U is onto. Given

u in U , we have u = S(w) for some w in W because S is onto; then w = T (v) for some v in V

because T is onto. Hence,

ST (v) = S[T (v)] = S[w] = u

This shows that ST is onto.

12. b. If u lies in im RT write u = RT (v), v in V . Thus u = R[T (v)], where T (v) in W , so u is in

im R.

13. b. Given V
T→U

S→W with ST onto, let w be a vector in W . Then w = ST (v) for some v in V

because ST is onto, whence w = S[T (v)] where T (v) is in U . This shows that S is onto. Now

the dimension theorem applied to S gives

dim U = dim (ker S)+ dim ( im S) = dim (ker S)+ dim W

because im S =W (S is onto). As dim (ker S)≥ 0, this gives dim U ≥ dim W .

14. If T 2 = 1V then T T = 1V so T is invertible and T−1 = T by the definition of the inverse of a

transformation. Conversely, if T−1 = T then T 2 = T T−1 = 1V .

16. Theorem 7.2.5 shows that {T (e1), T (e2), . . . , T (er)} is a basis of im T . Write

U = span {e1, . . . , er}. Then B = {e1, . . . , er} is a basis of U , and T : U → im T carries B to the

basis {T (e1), . . . , T (er)}. Thus T : U → im T is itself an isomorphism. Note that T : V →W may

not be an isomorphism, but restricting T to the subspace U of V does result in an isomorphism in

this case.

19. b. We have V = {(x, y) | x, y in R} with a new addition and scalar multiplication:

(x, y)⊕ (x1, y1) = (x+ x1, y+ y1 +1)

a⊙ (x, y) = (ax, ay+a−1)

We use the notation ⊕ and ⊙ for clarity. Define

T : V → R
2 by T (x, y) = (x, y+1)

Then T is a linear transformation because:

T [(x, y)⊕ (x1, y1)] = T (x+ x1, y+ y1 +1)

= (x+ x1, (y+ y1 +1)+1)

= (x, y+1)+(x1, y1 +1)

= T (x, y)+T (x1, y1)
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T (a⊙ (x, y)] = T (ax, ay+a−1)

= (ax, ay+a)

= a(x, y+1)

= aT (x, y)

Moreover T is one-to-one because T (x, y) = (0, 0) means x = 0 = y+1, so (x, y) = (0, 1), the

zero vector of V . (Alternatively, T (x, y) = T (x1, y1) implies (x, y+1) = (x1, y1 +1), whence

x = x1, y = y1.) As T is clearly onto R2, it is an isomorphism.

24. b. T S[x0, x1, . . .) = T [0, x0, x1, . . .) = [x0, x1, . . .) so T S = 1V . Hence T S is both onto and

one-to-one, so T is onto and S is one-to-one by Exercise 10. But [1, 0, 0, . . .) is in ker T while

[1, 0, 0, . . .) is not in im S.

26. b. If p(x) is in ker T , then p(x) =−xp′(x). If we write p(x) = a0+a1x+ · · ·+anxn, this becomes

a0 +a1x+ · · ·+an−1xn−1 +anxn =−a1x−2a2x2−·· ·−nanxn

Equating coefficients gives a0 = 0, a1 = −a1, a2 = −2a2, . . . , an = −nan. Hence we have,

a0 = a1 = · · · = an = 0, so p(x) = 0. Thus ker T = {0}, so T is one-to-one. As T : Pn→ Pn

and dim Pn is finite, this implies that T is also onto, and so is an isomorphism.

27. b. If T S = 1W then, given w in W , T [S(w)] = w, so T is onto. Conversely, if T is onto, choose a

basis {e1, . . . , er, er+1, . . . , en} of V such that {er+1, . . . , en} is a basis of ker T . By Theorem

7.2.5, {T (e1), . . . , T (en)} is a basis of im T =W (as T is onto). Hence, a linear transformation

S : W → V exists such that S[T (ei)] = ei for i = 1, 2, . . . , r. We claim that T S = 1W , and we

show this by verifying that these transformations agree on the basis {T (e1), . . . , T (er)} of W .

Indeed

T S[T (ei)] = T {S[T (ei)]}= T (ei) = 1W [T (ei)]

for i = 1, 2, . . . , n.

28. b. If T = SR, then every vector T (v) in im T has the form T (v) = S[R(v)], whence im T ⊆ im S.

Since R is invertible, S = T R−1 implies im S⊆ im T , so im S = im T .

Conversely, assume that im S = im T . The dimension theorem gives

dim (ker S) = n− dim ( im S) = n− dim ( im T ) = dim (ker T )

Hence, let {e1, . . . , er, . . . , en} and {f1, . . . , fr, . . . , fn} be bases of V such that {er+1, . . . , en}
and {fr+1, . . . , fn} are bases of ker S and ker T , respectively. By Theorem 7.2.5,

{S(e1), . . . , S(er)} and {T (f1), . . . , T (fr)} are both bases of im S = im T . So let g1, . . . , gr

in V be such that

S(ei) = T (gi)

for each i = 1, 2, . . . , r.

Claim: B = {g1, . . . , gr, fr+1, . . . , fn} is a basis of V .

Proof. It suffices (by Theorem 6.4.4) to show that B is independent. If

a1g1 + · · ·+argr +br+1fr+1 + · · ·+bnfn = 0
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apply T to get

0 = a1T (g1)+ · · ·+arT (gr)+br+1T (fr+1)+ · · ·+bnT (fn)

= a1T (g1)+ · · ·+arT (gr)+0

because T (f j) = 0 if j̇ > r. Hence a1 = · · ·= ar = 0; whence 0 = br+1fr+1 + · · ·+bnfn. This

gives br+1 = · · ·= bn = 0 and so proves the claim.

By the claim, we can define R : V →V by

R(gi) = ei for i = 1, 2, . . . , r

R(f j) = e j for j = r+1, . . . , n

Then R is an isomorphism by Theorem 7.3.1, and we claim that SR = T . We show this by

verifying that SR and T have the same effect on the basis B in the claim. The definition of R

gives
SR(gi) = S[R(gi)] = S(ei) = T (gi) for i = 1, 2, . . . , r

SR(f j) = S[e j] = 0 = T (f j) for j = r+1, . . . , n

Hence SR = T .

29. As in the hint, let {e1, e2, . . . , er, . . . , en} be a basis of V where {er+1, . . . , en} is a basis of

ker T . Then {T (e1), . . . , T (er)} is linearly independent by Theorem 7.2.5, so extend it to a ba-

sis {T (e1), . . . , T (er), wr+1, . . . , wn} of V . Then define S : V →V by

S[T (ei)] = ei for 1≤ i≤ r

S(w j) = e j for r < j ≤ n

Then, S is an isomorphism (by Theorem 7.3.1) and we claim that T ST = T . We verify this by

showing that T ST and T agree on the basis {e1, . . . , er, . . . , en} of V (and invoking Theorem 7.1.2).

If 1≤ i≤ r: T ST (ei) = T (S[T (ei)]) = T (ei)

If r+1≤ j ≤ n: T ST (e j) = T S[T (e j)] = T S[0] = 0 = T (e j)

where, at the end, we use the fact that e j is in ker T for r+1≤ j ≤ n.

7.4 A Theorem about Differential Equations

This section contains no exercises.
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7.5 More on Linear Recurrences

1. b. The associated polynomial is

p(x) = x3−7x+6 = (x−1)(x−2)(x+3)

Hence, {[1), [2n), [(−3)n)} is a basis of the space of all solutions to the recurrence. The

general solution is thus,

[xn) = a[1)+b[2n)+ c[(−3)n)

where a, b and c are constants. The requirement that x0 = 1, x1 = 2, x2 = 1 determines a, b,

and c. We have

xn = a+b2n + c(−3)n

for all n≥ 0. So taking n = 0, 1, 2 gives

a+b+ c = x0 = 1

a+2b−3c = x1 = 2

a+4b+9c = x2 = 1

The solution is a = 15
20 , b = 8

20 , c =− 3
20 , so

xn =
1

20(15+2n+3 +(−3)n+1) n≥ 0

2. b. The associated polynomial is

p(x) = x3−3x+2 = (x−1)2(x+2)

As 1 is a double root of p(x), [1n) = [1) and [n1n) = [n) are solutions to the recurrence by

Theorem 7.5.3. Similarly, [(−2)n) is a solution, so {[1), [n), [(−2)n)} is a basis for the space

of solutions by Theorem 7.5.4. The required sequence has the form

[xn) = a[1)+b[n)+ c[(−2)n)

for constants a, b, c. Thus, xn = a+bn+ c(−2)n for n≥ 0, so taking n = 0, 1, 2, we get

a + c = x0 = 1

a + b − 2c = x1 = −1

a + 2b + 4c = x2 = 1

The solution is a = 5
9 , b =−6

9 , c = 4
9 , so

xn =
1
9

[

5−6n+(−2)n+2
]

n≥ 0

d. The associated polynomial is

p(x) = x3−3x2 +3x−1 = (x−1)3
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Hence, [1n) = [1), [n1n) = [n) and [n21n) = [n2) are solutions and so
{

[1), [n), [n2)
}

is a basis

for the space of solutions. Thus

xn = a ·1+bn+ cn2

a, b, c constants. As x0 = 1, x1 =−1, x2 = 1, we obtain

a = x0 = 1

a + b + c = x1 = −1

a + 2b + 4c = x2 = 1

The solution is a = 1, b =−4, c = 2, so

xn = 1−4n+2n2 n≥ 0

This can be written

xn = 2(n−1)2−1

3. b. The associated polynomial is

p(x) = x2− (a+b)x+ab = (x−a)(x−b)

Hence, as a 6= b, {[an), [bn)} is a basis for the space of solutions.

4. b. The recurrence xn+4 =−xn+2 +2xn+3 has r0 = 0 as there is no term xn. If we write yn = xn+2,

the recurrence becomes

yn+2 =−yn +2yn+1

Now the associated polynomial is x2− 2x+ 1 = (x− 1)2 so basis sequences for the solution

space for yn are [1n) = [1, 1, 1, 1, . . .) and [n1n) = [0, 1, 2, 3, . . .). As yn = xn+2, corre-

sponding basis sequences for xn are [0, 0, 1, 1, 1, 1, . . .) and [0, 0, 0, 1, 2, 3, . . .). Also,

[1, 0, 0, 0, 0, 0, . . .) and [0, 1, 0, 0, 0, 0, . . .) are solutions for xn, so these four sequences

form a basis for the solution space for xn.

7. The sequence has length 2 and associated polynomial x2 + 1. The roots are nonreal: λ1 = i and

λ2 =−i. Hence, by Remark 2,

[in+(−i)n) = [2, 0, −2, 0, 2, 0, −2, 0, . . .) and [i(in− (−i)n)) = [0, −2, 0, 2, 0, −2, 0, 2, . . .)

are solutions. They are independent as is easily verified, so they are a basis for the space of solutions.
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8.1 Orthogonal Complements and Projections

1. b. Write x1 = (2, 1) and x2 = (1, 2). The Gram-Schmidt algorithm gives

e1 = x1 = (2, 1)

e2 = x2− x2·e1

‖e1‖2 e1

= (1, 2)− 4
5(2, 1)

= 1
5 {(5, 10)− (8, 4)}

= 3
5(−1, 2)

In hand calculations, {(2, 1), (−1, 2)} may be a more convenient orthogonal basis.

d. If x1 = (0, 1, 1), x2 = (1, 1, 1), x3 = (1, −2, 2) then

e1 = x1 = (0, 1, 1)
e2 = x2− x2·e1

‖e1‖2 e1 = (1, 1, 1)− 2
2(0, 1, 1) = (1, 0, 0)

e3 = x3− x3·e1

‖e1‖2 e1− x3·e2

‖e2‖2 e2 = (1, −2, 2)− 0
2(0, 1, 1)− 1

1(1, 0, 0) = (0, −2, 2)

2. b. Write e1 = (3, −1, 2) and e2 = (2, 0, −3). Then {e1, e2} is orthogonal and so is an orthogonal

basis of U = span {e1, e2}. Now x = (2, 1, 6) so take

x1 = projU x = x·e1

‖e1‖2 e1 +
x·e2

‖e2‖2 e2

= 17
14(3, −1, 2)− 14

13(2, 0, −3)

= 1
182(271, −221, 1030)

Then x2 = x−x1 =
1

182(93, 402, 62). As a check: x2 is orthogonal to both e1 and e2 (and so

is in U⊥).

d. If e1 = (1, 1, 1, 1), e2 = (1, 1, −1, −1), e3 = (1, −1, 1, −1) and x = (2, 0, 1, 6), then

{e1, e2, e3} is orthogonal so take

x1 = projU x = x·e1

‖e1‖2 e1 +
x·e2

‖e2‖2 e2 +
x·e3

‖e3‖2 e3

= 9
4(1, 1, 1, 1)− 5

4(1, 1, −1, −1)− 3
4(1, −1, 1, −1)

= 1
4(1, 7, 11, 17)

Then, x2 = x−x1 =
1
4(7, −7, −7, 7) = 7

4(1, −1, −1, 1). Check: x2 is orthogonal to each ei,

hence x2 is in U⊥.

117
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f. If e1 = (1, −1, 2, 0) and e2 = (−1, 1, 1, 1) then (as x = (a, b, c, d))

x1 = projU x = a−b+2c
6 (1, −1, 2, 0)+ −a+b+c+d

4 (−1, 1, 1, 1)

= (5a−5b+c−3d
12 , −5a+5b−c+3d

12 , a−b+11c+3d
12 , −3a+3b+3c+3d

12 )

x2 = x−x1 = (7a+5b−c+3d
12 , 5a+7b+c−3d

12 , −a+b+c−3d
12 , 3a−3b−3c+9d

12 )

3. a. Write e1 = (2, 1, 3, −4) and e2 = (1, 2, 0, 1), so {e1, e2} is orthogonal.

As x = (1, −2, 1, 6)

projU x = x·e1

‖e1‖2 e1 +
x·e2

‖e2‖2 e2

=−21
30(2, 1, 3, −4)+ 3

6(1, 2, 0, 1) = 3
10(−3, 1, −7, 11)

c. projU x =−15
14(1, 0, 2, −3)+ 3

70(4, 7, 1, 2) = 3
10(−3, 1, −7, 11).

4. b. U = span {(1, −1, 0), (−1, 0, 1)} but this basis is not orthogonal. By Gram-Schmidt:

e1 = (1, −1, 0)

e2 = (−1, 0, 1)− (−1, 0, 1)·(1, −1, 0)

‖(1, −1, 0)‖2 (1, −1, 0) =−1
2(1, 1, −2)

So we use U = span {(1, −1, 0), (1, 1, −2)}. Then the vector x1 in U closest to x = (2, 1, 0)
is

x1 = projU x = 2−1+0
2 (1, −1, 0)+ 2+1+0

6 (1, 1, −2) = (1, 0, −1)

d. The given basis of U is not orthogonal. The Gram-Schmidt algorithm gives

e1 = (1, −1, 0, 1)

e2 = (1, 1, 0, 0) = (1, 1, 0, 0)− 0
3e1 = (1, 1, 0, 0)

e3 = (1, 1, 0, 1)− 1
3(1, −1, 0, 1)− 2

2(1, 1, 0, 0) = 1
3(−1, 1, 0, 2)

Given x = (2, 0, 3, 1), we get (using e′3 = (−1, 1, 0, 2) for convenience)

projU x = 3
3(1, −1, 0, 1)+ 2

2(1, 1, 0, 0)+ 0
6(−1, 1, 0, 2) = (2, 0, 0, 1).

5. b. Here A =
[

1 −1 2 1

1 0 −1 1

]

→
[

1 −1 2 1

0 1 −3 0

]

→
[

1 0 −1 1

0 1 −3 0

]

. Hence, AxT = 0 has x =

(s− t, 3s, s, t) = s(1, 3, 1, 0)+ t(−1, 0, 0, 1).

Thus U⊥ = span {(1, 3, 1, 0), (−1, 0, 0, 1)}.

8. If x = projU x then x is in U by Theorem 8.1.3. Conversely, if x is in U , let {f1, . . . , fm} be an

orthogonal basis of U . Then the expansion theorem (applied to the space U ) gives x = ∑i
x·fi

‖fi‖2 fi =

projU x by the definition of the projection.

10. Let {f1, . . . , fm} be an orthonormal basis of U . If x is in U then, since ‖fi‖ = 1 for each i, so

x = (x · f1)f1 + · · ·+(x · fm)fm = projU x by the expansion theorem (applied to the space U ).

14. If {y1, . . . , ym} is a basis of U⊥, take A =





yT
1

.

.

.

yT
m

0



. Then Ax = 0 if and only if yT
i x = 0 for each

i; if and only if yi · x = 0 for each i; if and only if x is in (U⊥)⊥ = U⊥⊥ = U . This shows that

U = {x in Rn | Ax = 0}.
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17. d. If AAT is invertible and E = AT (AAT )−1A, then

E2 = AT (AAT )−1A ·AT (AAT )−1A = AT I(AAT)−1A = E

ET =
[

AT (AAT )−1A
]T

= AT
[

(AAT )−1
]T

(AT )T

= AT
[

(AAT )T
]−1

A = AT
[

(AT )T AT
]−1

A

= AT
[

AAT
]−1

A = E

Thus, E2 = E = ET .

8.2 Orthogonal Diagonalization

1. b. Since 32 +42 = 52, each row has length 5. So

[

3
5 − 4

5
4
5

3
5

]

= 1
5

[

3 −4

4 3

]

is orthogonal.

d. Each row has length
√

a2 +b2 6= 0, so 1√
a2+b2

[

a b

−b a

]

is orthogonal.

f. The rows have length
√

6,
√

3,
√

2 respectively, so
[

2√
6

1√
6

− 1√
6

1√
3
− 1√

3

1√
3

0 1√
2

1√
2

]

= 1√
6

[

2 1 −1√
2 −

√
2
√

2

0
√

3
√

3

]

is orthogonal.

h. Each row has length
√

4+36+9 =
√

49 = 7. Hence
[

2
7

6
7 − 3

7
3
7

2
7

6
7

− 6
7

3
7

2
7

]

= 1
7

[

2 6 −3

3 2 6

−6 3 2

]

is orthogonal.

2. Let P be orthogonal, so P−1 = PT . If P is upper triangular, so also is P−1, so P−1 = PT is both upper

triangular (P−1) and lower triangular PT ). Hence, P−1 = PT is diagonal, whence P = (P−1)−1 is

diagonal. In particular, P is symmetric so P−1 = PT = P. Thus P2 = I. Since P is diagonal, this

implies that all diagonal entries are ±1.

5. b. cA(x) =
∣

∣

∣

x−1 1
1 x−1

∣

∣

∣
= x(x−2).

Hence the eigenvalues are λ1 = 0, λ2 = 2.

λ1 = 0:
[

−1 1

1 −1

]

→
[

1 −1

0 0

]

; E0(A) = span
{[

1

1

]}

.

λ2 = 2:
[

1 1

1 1

]

→
[

1 1

0 0

]

; E2(A) = span
{[

−1

1

]}

.

Note that these eigenvectors are orthogonal (as Theorem 8.2.4 asserts). Normalizing them

gives an orthogonal matrix

P =

[

1√
2
− 1√

2
1√
2

1√
2

]

= 1√
2

[

1 −1

1 1

]

Then P−1 = PT and PT AP =
[

0 0
0 2

]

.
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d. cA(x) =

∣

∣

∣

∣

x−3 0 −7

0 x−5 0

−7 0 x−3

∣

∣

∣

∣

= (x−5)(x2−6x−40) = (x−5)(x+4)(x−10). Hence the eigen-

values are λ1 = 5, λ2 = 10, λ3 =−4.

λ1 = 5:

[

2 0 −7

0 0 0

−7 0 2

]

→
[

1 0 0

0 0 1

0 0 0

]

; E5(A) = span

{[

0

1

0

]}

.

λ2 = 10:

[

7 0 −7

0 5 0

−7 0 7

]

→
[

1 0 −1

0 1 0

0 0 0

]

; E10(A) = span

{[

1

0

1

]}

.

λ3 =−4:

[

−7 0 −7

0 −9 0

−7 0 −7

]

→
[

1 0 1

0 1 0

0 0 0

]

; E−4(A) = span

{[

1

0

−1

]}

.

Note that the three eigenvectors are pairwise orthogonal (as Theorem 8.2.4 asserts). Normal-

izing them gives an orthogonal matrix

P =

[

0 1√
2

1√
2

1 0 0

0 1√
2
− 1√

2

]

= 1√
2

[

0 1 1√
2 0 0

0 1 −1

]

Then P−1 = PT and PT AP =

[

5 0 0

0 10 0

0 0 −4

]

.

f. cA(x) =

∣

∣

∣

∣

x−5 2 4

2 x−8 2

4 2 x−5

∣

∣

∣

∣

=

∣

∣

∣

∣

x−9 0 9− x

2 x−8 2

4 2 x−5

∣

∣

∣

∣

=

∣

∣

∣

∣

x−9 0 0

2 x−8 4

4 2 x−1

∣

∣

∣

∣

= (x−9)
∣

∣

∣

x−8 4

2 x−1

∣

∣

∣
= (x−9)(x2−9x) = x(x−9)2.

The eigenvalues are λ1 = 0, λ2 = 9.

λ1 = 0 :

[

−5 2 4

2 −8 2

4 2 −5

]

→
[

1 −4 1

0 −18 9

0 18 −9

]

→
[

1 −4 1

0 1 − 1
2

0 0 0

]

→
[

1 0 −1

0 1 − 1
2

0 0 0

]

; E0(A) = span

{[

2

1

2

]}

.

λ2 = 9:

[

4 2 4

2 1 2

4 2 4

]

→
[

1 1
2 1

0 0 0

0 0 0

]

; E9(A) = span

{[

−1

0

1

]

,

[

−1

2

0

]}

.

However, these are not orthogonal and the Gram-Schmidt algorithm replaces

[

−1

2

0

]

with Z2 =

[

1

−4

1

]

. Hence P =

[

2
3

−1√
2

1

3
√

2
1
3 0 −4

3
√

2
2
3

1√
2

1

3
√

2

]

= 1

3
√

2

[

2
√

2 −3 1√
2 0 −4

2
√

2 3 1

]

is orthogonal and satisfies PT AP =

[

0 0 0

0 9 0

0 0 9

]

.

We note in passing that

[

−2
2

1

]

and

[

1
2

−2

]

are another orthogonal basis of E9(A), so Q =

1
3

[

2 −2 1

1 2 2

2 1 −2

]

also satisfies QT AQ =

[

0 0 0

0 9 0

0 0 9

]

.

h. To evaluate cA(x), we begin adding rows 2, 3 and 4 to row 1.

cA(x) =

∣

∣

∣

∣

∣

x−3 −5 1 −1
−5 x−3 −1 1

1 −1 x−3 −5

−1 1 −5 x−3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

x−8 x−8 x−8 x−8
−5 x−3 −1 1

1 −1 x−3 −5

−1 1 −5 x−3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

x−8 0 0 0

−5 x−2 4 6

1 −2 x−4 −6

−1 2 −4 x−2

∣

∣

∣

∣

∣

= (x−8)

∣

∣

∣

∣

x+2 4 6
−2 x−4 −6

2 −4 x−2

∣

∣

∣

∣

= (x−8)

∣

∣

∣

∣

x+2 4 6

x x 0

2 −4 x−2

∣

∣

∣

∣

= (x−8)

∣

∣

∣

∣

x−2 4 6

0 x 0

6 −4 x−2

∣

∣

∣

∣

= x(x−8)
∣

∣

∣

x−2 6

6 x−2

∣

∣

∣
= x(x−8)(x2−4x−32) = x(x+4)(x−8)2
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λ1 = 0 :

[ −3 −5 1 −1

−5 −3 −1 1

1 −1 −3 −5

−1 1 −5 −3

]

→
[ −3 −5 1 −1

−8 −8 0 0

1 −1 −3 −5

0 0 −8 −8

]

→
[

1 −1 −3 −5

0 −8 −8 −16

0 −16 −24 −40

0 0 1 1

]

→
[

1 0 −2 −3

0 1 1 2
0 0 1 1

0 0 1 1

]

→
[

1 0 0 −1

0 1 0 1
0 0 1 1

0 0 0 0

]

; E0(A) = span

{[

1

−1
−1

1

]}

λ2 =−4 :

[ −7 −5 1 −1

−5 −7 −1 1

1 −1 −7 −5

−1 1 −5 −7

]

→
[

1 −1 −7 −5

0 −12 −48 −36

0 −12 −36 −24

0 0 −12 −12

]

→
[

1 0 −3 −2

0 1 4 3

0 0 −1 −1

0 0 1 1

]

→
[

1 0 0 1
0 1 0 −1

0 0 1 1

0 0 0 0

]

; E−4(A) = span

{[ −1
1

−1

1

]}

λ3 = 8 :

[

5 −5 1 −1

−5 5 −1 1

1 −1 5 −5

−1 1 −5 5

]

→
[

1 −1 5 −5

0 0 −24 24

0 0 24 −24

0 0 0 0

]

→
[

1 −1 0 0

0 0 1 −1

0 0 0 0

0 0 0 0

]

;

E8(A) = span

{[

1

1

0
0

]

,

[

0

0

1
1

]}

Hence, P =







1
2 − 1

2
1√
2

0

− 1
2

1
2

1√
2

0

− 1
2 − 1

2 0 1√
2

1
2

1
2 0 1√

2






= 1

2





1 −1
√

2 0

−1 1
√

2 0

−1 −1 0
√

2

1 1 0
√

2



 gives PT AP =

[

0 0 0 0
0 −4 0 0

0 0 8 0

0 0 0 8

]

.

6. cA(x) =

∣

∣

∣

∣

x −a 0

−a x −c

0 −c x

∣

∣

∣

∣

= x

∣

∣

∣

x −c

−c x

∣

∣

∣
+a

∣

∣

∣

−a 0
−c x

∣

∣

∣
= x(x2− c2)−a2x = x(x2− k2).

Hence cA(x) = x(x− k)(x+ k), where k2 = a2 + c2, so the eigenvalues are λ1 = 0, λ2 = k, λ3 =−k.

They are all distinct (k 6= 0, and a 6= 0 or c 6= 0) so the eigenspaces are all one dimensional.

λ1 = 0 :

[

0 −a 0

−a 0 −c

0 −c 0

][

c

0

−a

]

=

[

0

0

0

]

; E0(A) = span

{[

c

0

−a

]}

λ2 = k :

[

k −a 0
−a k −c

0 −c k

][

a

k

c

]

=

[

0
0

0

]

; Ek(A) = span

{[

a

k

c

]}

λ3 =−k :

[

−k −a 0

−a −k −c

0 −c −k

][

a

−k

c

]

=

[

0

0

0

]

; E−k(A) = span

{[

a

−k

c

]}

These eigenvalues are orthogonal and have length, k,
√

2k,
√

2k respectively. Hence,

P = 1√
2k

[

c
√

2 a a

0 k −k

−a
√

2 c c

]

is orthogonal and PT AP =

[

0 0 0

0 k 0

0 0 −k

]

.

10. Similar to Example 8.2.6, q has matrix A =
[

1 2

2 −2

]

with eigenvalues λ1 = −3 and λ2 = 2 and

corresponding eigenvectors x1 =
[

−1

2

]

and x2 =
[

2

1

]

respectively. Hence P = 1√
5

[

−1 2

2 1

]

is

orthogonal and PT AP =
[

−3 0

0 2

]

. Let

[

y1

y2

]

= y = PT x = 1√
5

[

−x1 +2x2

2x1 + x2

]

; so y1 =
1√
5
(−x1 +2x2) and y2 =

1√
5
(2x1 + x2).

Then q =−3y2
1 +2y2

2 is diagonalized by these variables.

11. (c)⇒ (a). By Theorem 8.2.1 let P−1AP = D = diag (λ1, . . . , λn) where the λi are the eigenvalues

of A. By (c) we have λi =±1 for each i. It follows that

D2 = diag (λ 2
1 , . . . , λ 2

n ) = diag (1, . . . , 1) = I
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Since A = PDP−1, we obtain A2 = (PDP−1)2 = PD2P−1 = PIP−1 = I. Since A is symmetric, this

proves (a).

13. b. Let A and B be orthogonally similar, say B=PT AP where PT =P−1. Then B2 =PT APPT AP=
PT AIAP = PT A2P. Hence A2 and B2 are orthogonally similar.

15. Assume that (Ax) ·y = x ·Ay for all columns x and y; we must show that AT = A. We have (Ax) ·y =
xT AT y and x ·Ay = xT Ay, so the given condition asserts that

xT AT y = xT Ay for all columns x and y. (∗)

But if E j denotes column j of the identity matrix, then writing A =
[

ai j

]

we have

eT
i Ae j = ai j for all i and j.

Since (∗) shows that AT and A have the same (i, j)-entry for each i and j. In other words, AT = A.

Note that the same argument shows that if A and B are matrices with the property that xT By = xT Ay

for all columns x and y, then B = A.

18. b. If P =
[

cosθ sinθ
−sinθ cosθ

]

and Q =
[

cosθ sinθ
sinθ −cosθ

]

then P and Q are orthogonal matrices, det P = 1

and det Q =−1. (We note that every 2×2 orthogonal matrix has the form of P or Q for some

θ .)

d. Since P is orthogonal, PT = P−1. Hence

PT (I−P) = PT −PT P = PT − I =−(I−PT ) =−(I−P)T

Since P is n×n, taking determinants gives

det PT det (I−P) = (−1)n det [(I−P)T ] = (−1)n det (I−P)

Hence, if I−P is invertible, then det (I−P) 6= 0 so this gives det PT = (−1)n; that is det P =
(−1)n, contrary to assumption.

21. By the definition of matrix multiplication, the (i, j)-entry of AAT is ri · r j. This is zero if i 6= j,

and equals ‖ri‖2 if i = j. Hence, AAT = D = diag (‖r1‖2 , ‖r2‖2 , . . . , ‖rn‖2). Since D is invertible

(‖ri‖2 6= 0 for each i), it follows that A is invertible and, since row i of AT is
[

a1i a2i · · · a ji · · · ani

]

A−1 = AT D−1 =





.

.

. · · ·
.
.
. · · ·

.

.

.

a1i · · · a ji · · · ani

.

.

. · · ·
.
.
. · · ·

.

.

.













1

‖r1‖2
0 · · · 0

0 1

‖r2‖2
· · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 1

‖rn‖2









Thus, the (i, j)-entry of A−1 is
a ji

‖r j‖2 .

23. b. Observe first that I−A and I +A commute, whence I−A and (I +A)−1 commute. Moreover,
[

(I +A)−1
]T

=
[

(I +A)T
]−1

= (IT +AT )−1 = (I−A)−1. Hence,

PPT = (I−A)(I+A)−1[(I−A)(I +A)−1]T
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= (I−A)(I+A)−1[(I+A)−1]T (I−A)T

= (I−A)(I+A)−1(I−A)−1(I +A)

= (I +A)−1(I−A)(I−A)−1(I +A)

= (I +A)−1I(I+A)

= I

8.3 Positive Definite Matrices

1. b.
[

2 −1
−1 1

]

→
[

2 −1

0 1
2

]

. Then A =UTU where U =
[
√

2 − 1√
2

0 1√
2

]

=
√

2
2

[

2 −1
0 1

]

.

d.

[

20 4 5

4 2 3

5 3 5

]

→
[

20 4 5

0 6
5 2

0 2 15
4

]

→
[

20 4 5

0 6
5 2

0 0 5
12

]

.

Hence, U =





2√
5

1√
5

5

2
√

5

0 6√
30

10√
30

0 0 5

2
√

15



= 1
30

[

60
√

5 12
√

5 15
√

5

0 6
√

30 10
√

30

0 0 5
√

15

]

, and A =UTU .

2. b. If λ k is positive and k is odd, then λ is positive.

4. Assume x 6= 0 is a column. If A and B are positive definite then xT Ax > 0 and xT Bx > 0 so

xT (A+B)x = xT Ax+xT Bx > 0+0 = 0

Thus A+B is positive definite. Now suppose r > 0. Then xT (rA)x = r(xT Ax)> 0, proving that rA

is positive definite.

6. Given x in R
n, xT (UT AU)x = (Ux)T A(Ux) > 0 provided Ux 6= 0 (because A is positive definite).

Write U =
[

c1 · · · cm

]

where c j in R
n is column j of U . If 0 6= x =

[

x1 · · · xm

]T
, then

Ux = ∑x jc j 6= 0 because the c j are independent [rank of U is m].

10. Since A is symmetric, the principal axis theorem asserts that an orthogonal matrix P exists such that

PT AP = D = diag (λ1, λ2, . . . , λn) where the λi are the eigenvalues of A. Since each λi > 0,
√

λi

is real and positive, so define B = diag
(√

λ1,
√

λ2, . . . ,
√

λn

)

. Then B2 = D. As A = PDPT , take

C = PBPT . Then

C2 = PBPT PBPT = PB2PT = PDPT = A

Finally, C is symmetric because B is symmetric
(

CT = PT T BT PT = PBPT =C
)

and C has eigen-

values
√

λi > 0 (C is similar to B). Hence C is positive definite.

12. b. Suppose that A is positive definite so A = UT
0 U0 where U0 is upper triangular with positive

diagonal entries d1, d2, . . . , dn. Put D0 = diag (d1, d2, . . . , dn). Then L = UT
0 D−1

0 is lower

triangular with 1’s on the diagonal, U = D−1
0 U0 is upper triangular with 1’s on the diagonal,

and A = LD2
0U . Take D = D2

0.

Conversely, if A = LDU as in (a), then AT =UT DLT . Hence, AT = A implies that UT DLT =
LDU , so UT = L and LT = U by (a). Hence, A = UT DU . If D = diag (d1, d2, . . . , dn), let

D1 = diag
(√

d1,
√

d2, . . . ,
√

dn

)

. Then D = D2
1 so A =UT D2

1U = (D1U)T (D1U). Hence, A

is positive definite.
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8.4 QR-Factorization

1. b. The columns of A are c1 =
[

2

1

]

and c2 =
[

1

1

]

. First apply the Gram-Schmidt algorithm

f1 = c1 =
[

2

1

]

f2 = c2− c2·f1

‖f1‖2 f1 =
[

1
1

]

− 3
5

[

2
1

]

=
[

− 1
5

2
5

]

Now normalize to obtain

q1 =
1
‖f1‖f1 =

1√
5

[

2
1

]

q2 =
1
‖f2‖f2 =

1√
5

[

−1

2

]

Hence Q =
[

q1 q2

]

= 1√
5

[

2 −1

1 2

]

is an orthogonal matrix. We obtain R from equation

(8.5) preceding Theorem 8.4.1:

L =
[

‖f1‖ c2 ·q1

0 ‖f2‖

]

=
[
√

5 3√
5

0 1√
5

]

= 1√
5

[

5 3

0 1

]

Then A = QR.

d. The columns of A are c1 =
[

1 −1 0 1
]T

, c2 =
[

1 0 1 −1
]T

and

c3 =
[

0 1 1 0
]T

. Apply the Gram-Schmidt algorithm

f1 = c1 =
[

1 −1 0 1
]T

f2 = c2− c2·f1

‖f1‖2 f1 =
[

1 0 1 −1
]T − 0

3F1 =
[

1 0 1 −1
]T

f3 = c3− c3·f1

‖f1‖2 f1− c3·f2

‖f2‖2 f2

=
[

0 1 1 0
]T − −1

3

[

1 −1 0 1
]T − 1

3

[

1 0 1 −1
]T

= 2
3

[

0 1 1 1
]T

Normalize

Q1 =
1
‖f1‖f1 =

1√
3

[

1 −1 0 1
]T

Q2 =
1
‖f2‖f2 =

1√
3

[

1 0 1 −1
]T

Q3 =
1
‖f3‖f3 =

1√
3

[

0 1 1 1
]T

Hence Q =
[

q1 q2 q3

]

= 1√
3

[

1 1 0

−1 0 1

0 1 1

1 −1 1

]

has orthonormal columns. We obtain R from

equation (8.5) preceding Theorem 8.4.1:

R =

[

‖f1‖ c2 ·q1 c3 ·q1

0 ‖f2‖ c3 ·q2

0 0 ‖f3‖

]

=

[ √
3 1√

3
−1√

3

0
√

3 1√
3

0 0 2√
3

]

= 1√
3

[

3 0 −1

0 3 1

0 0 2

]

Then A = QR.
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2. b. If A = QR is a QR-factorization of A, then R has independent columns (it is invertible) as does

Q (its columns are orthonormal). Hence A has independent columns by (a). The converse is

by Theorem 8.4.1.

8.5 Computing Eigenvalues

1. b. A =
[

5 2

−3 −2

]

. Then cA(x) =
∣

∣

∣

x−5 −2

3 x+2

∣

∣

∣
= (x+1)(x−4), so λ1 =−1, λ2 = 4.

If λ1 =−1:
[

−6 −2

3 1

]

→
[

3 1

0 0

]

; eigenvector =
[

−1

3

]

.

If λ2 = 4:
[

−1 −2

3 6

]

→
[

1 2

0 0

]

; dominant eigenvector =
[

2

−1

]

.

Starting with x0 =
[

1
1

]

, the power method gives x1 = Ax0, x2 = Ax1, . . . :

x1 =
[

7

−5

]

, x2 =
[

25

−11

]

, x3 =
[

103

−53

]

, x4 =
[

409

−203

]

These are approaching (scalar multiples of) the dominant eigenvector
[

2

−1

]

. The Rayleigh

quotients are rk =
xk·xk+1

‖xk‖2 , k = 0, 1, 2, . . . , so r0 = 1, r1 = 3.29, r2 = 4.23, r3 = 3.94. These

are approaching the dominant eigenvalue 4.

d. A =
[

3 1

1 0

]

; cA(x) =
∣

∣

∣

x−3 −1

−1 x

∣

∣

∣
= x2− 3x− 1, so the eigenvalues are λ1 = 1

2(3+
√

13),

λ2 =
1
2(3−

√
13). Thus the dominant eigenvalue is λ1 =

1
2(3+

√
13). Since λ1λ2 = −1 and

λ1 +λ2 = 3, we get
[

λ1−3 −1
−1 λ1

]

→
[

1 −λ1

0 0

]

so a dominant eigenvector is
[

λ1

1

]

. We start with x0 =
[

1

1

]

.

Then xk+1 = Axk, k = 0, 1, . . . gives

x1 =
[

4

1

]

, x2 =
[

13

4

]

, x3 =
[

43

13

]

, x4 =
[

142

43

]

These are approaching scalar multiples of the dominant eigenvector
[

λ1

1

]

=
[

3.302776
1

]

. The

Rayleigh quotients are rk =
xk·xk+1

‖xk‖2 :

r0 = 2.5, r1 = 3.29, r2 = 3.30270, r3 = 3.30278

These are rapidly approaching the dominant eigenvalue λ1 = 3.302776.

2. b. A =
[

3 1

1 0

]

; cA(x) =
∣

∣

∣

x−3 −1

−1 x

∣

∣

∣
= x2−3x−3; λ1 =

1
2

[

3+
√

13
]

= 3.302776 and

λ2 =
1
2

[

3−
√

13
]

=−0.302776. The QR-algorithm proceeds as follows:

A1 =
[

3 1

1 0

]

= Q1R1 where Q1 =
1√
10

[

3 1

1 −3

]

, R1 =
1√
10

[

10 3

0 1

]

.
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A2 = R1Q1 =
1

10

[

33 1

1 −3

]

= Q2R2 where Q2 =
1√

1090

[

33 1

1 −33

]

, R2 =
1√

1090

[

109 3

0 10

]

.

A3 = R2Q2 =
1

109

[

360 1

1 −33

]

=
[

3.302752 0.009174

0.009174 −0.302752

]

.

The diagonal entries already approximate λ1 and λ2 to 4 decimal places.

4. We prove that AT
k =Ak for each k by induction in k. If k = 1, then A1 =A is symmetric by hypothesis,

so assume AT
k = Ak for some k ≥ 1. We have Ak = QkRk so Rk = Q−1

k Ak = QT
k Ak because Qk is

orthogonal. Hence

Ak+1 = RkQk = QT
k AkQk

so

AT
k+1 = (QT

k AkQk)
T = QT

k AT
k QT T

k = QT
k AkQk = Ak+1

The eigenvalues of A are all real as A is symmetric, so the QR-algorithm asserts that the Ak converge

to an upper triangular matrix T . But T is symmetric (it is the limit of symmetric matrices), so it is

diagonal.

8.6 Singular Value Decomposition

4. b. tσ1, . . . , tσr.

7. If A =UΣV T then Σ is invertible, so A−1 =V Σ−1UT is a SVD.

8. b. First AT A = In so ΣA = In.

A = 1√
2

[

1 1

1 −1

][

1 0

0 1

]

1√
2

[

1 1

−1 1

]

= 1√
2

[

1 −1

1 1

]

1√
2

[

−1 1

1 1

]

=

[

−1 0

0 1

]

9. b.

A = F

= 1
5

[

3 4

4 −3

][

20 0 0 0

0 10 0 0

]

1
2

[

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 1 −1

]

13. b. If x ∈ Rn then xT (G+H)x = xT Gx+xT Hx≥ 0+0 = 0.

17. b.

[

1
4 0 1

4

−1
4 0 −1

4

]
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8.7 Complex Matrices

1. b.

√

|1− i|2 + |1+ i|2 +12 +(−1)2 =
√

(1+1)+(1+1)+1+1 =
√

6

d.

√

4+ |−i|2 + |1+ i|2 + |1− i|2 + |2i|2 =
√

4+1+(1+1)+(1+1)+4 =
√

13

2. b. Not orthogonal: 〈(i, −i, 2+ i), (i, i, 2− i)〉= i(−i)+(−i)(−i)+(2+ i)(2+ i) = 3+4i

d. Orthogonal: 〈(4+4i, 2+ i, 2i), (−1+ i, 2, 3−2i)〉= (4+4i)(−1− i)+ (2+ i)2+(2i)(3+
2i) = (−8i)+(4+2i)+(−4+6i) = 0.

3. b. Not a subspace. For example, i(0, 0, 1) = (0, 0, i) is not in U .

d. If v = (v+w, v−2w, v) and w = (v′+w′, v′−2w′, v′) are in U then

v+w = ((v+ v′)+(w+w′), (v+ v′)−2(w+w′), (v+ v′)) is in U

zv = (zv+ zw, zv−2zw, zv) is in U

0 = (0+0, 0−20, 0) is in U

Hence U is a subspace.

4. b. Here U = {(iv+w, 0, 2v−w) | v, w ∈ C}= {v(i, 0, 2)+w(1, 0, −1) | v, w ∈ C}=
span {(i, 0, 2), (1, 0, −1)}.
If z(i, 0, 2)+ t(1, 0, −1) = (0, 0, 0) with z, t ∈ C, then iz+ t = 0, 2z− t = 0. Adding gives

(2+ i)z = 0, so z = 0; and so t =−iz = 0. Thus {(i, 0, 2), (1, 0, −1)} is independent over C,

and so is a basis of U . Hence dimCU = 2.

d. U = {(u, v, w) | 2u+(1+ i)v− iw = 0;u, v, w ∈ C)}. The condition is w = −2iu+(1− i)v,

so

U = {(u, v, −2iu+(1− i)v) | u, v ∈ C}= span {(1, 0, −2i), (0, 1, 1− i)}
If z(1, 0, −2i)+ t(0, 1, i−1) = (0, 0, 0) then components 1 and 2 give z = 0 and t = 0. Thus

{(1, 0, −2i), (0, 1, 1− i)} is independent over C, and so is a basis of U . Hence dimCU = 2.

5. b. A =
[

2 3

−3 2

]

, AH = AT =
[

2 −3

3 2

]

, A−1 = 1
13

[

2 −3

3 2

]

. Hence, A is not hermitian (A 6= AH)

and not unitary (A−1 6= AH). However, AAH = 13I = AHA, so A is normal.

d. A =
[

1 −i

i −1

]

, AH = (A)T =
[

1 i

−i −1

]T

=
[

1 −i

i −1

]

= A. Thus A is hermitian and so is

normal. But, AAH = A2 = 2I so A is not unitary.

f. A =
[

1 1+ i

1+ i i

]

. Here A = AT so AH = A =
[

1 1− i

1− i −i

]

6= A (thus A is not hermitian). Next,

AAH =
[

3 2−2i

2+ i 3

]

6= I so A is not unitary. Finally, AHA =
[

3 2+2i

2−2i 3

]

6= AAH , so A is not

normal.

h. A = 1√
2|z|

[

z z

z −z

]

. Here A = 1√
2|z|

[

z z

z −z

]

so AH = 1√
2|z|

[

z z

z −z

]

. Thus A = AH if and only

if z = z; that is A is hermitian if and only if z is real. We have AAH = 1

2|z|2
[

2 |z|2 0

0 2 |z|2
]

= I,

and similarly, AHA = I. Thus it is unitary (and hence normal).
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8. b. A =
[

4 3− i

3+ i 1

]

, cA(x) =
[

x−4 −3+ i

−3− i x−1

]

= x2−5x−6 = (x+1)(x−6).

Eigenvectors for λ1 =−1:
[

−5 −3+ i

−3− i 1

]

→
[

3+ i 2

0 0

]

; an eigenvector is x1 =
[

−2

3+ i

]

.

Eigenvectors for λ2 = 6:
[

2 −3+ i

−3− i 5

]

→
[

2 −3+ i

0 0

]

; an eigenvector is x2 =
[

3− i

2

]

.

As x1 and x2 are orthogonal and ‖x1‖ = ‖x2‖ =
√

14, U = 1√
14

[

−2 3− i

3+ i 2

]

is unitary and

UHAU =
[

−1 0

0 6

]

.

d. A =
[

2 1+ i

1− i 3

]

; cA(x) =
∣

∣

∣

x−2 −1− i

−1+ i x−3

∣

∣

∣
= x2−5x+4 = (x−1)(x−4).

Eigenvectors for λ1 = 1:
[

−1 −1− i

−1+ i −2

]

→
[

1 1+ i

0 0

]

; an eigenvector is x1 =
[

1+ i

−1

]

.

Eigenvectors for λ2 = 4:
[

2 −1− i

−1+ i 1

]

→
[

−1+ i 1

0 0

]

; an eigenvector is x2 =
[

1

1− i

]

.

Since x1 and x2 are orthogonal and ‖x1‖ = ‖x2‖ =
√

3, U = 1√
3

[

1+ i 1

−1 1− i

]

is unitary and

UHAU =
[

1 0

0 4

]

.

f. A =

[

1 0 0

0 1 1+ i

0 1− i 2

]

; cA(x) =

∣

∣

∣

∣

x−1 0 0

0 x−1 −1− i

0 −1+ i x−2

∣

∣

∣

∣

= (x−1)(x2−3x) = (x−1)x(x−3).

Eigenvectors for λ1 = 1:

[

0 0 0

0 0 −1− i

0 −1+ i −1

]

→
[

0 1 0

0 0 1

0 0 0

]

; an eigenvector is x1 =

[

1

0

0

]

.

If λ2 = 0:

[

−1 0 0

0 −1 −1− i

0 −1+ i −i

]

→
[

1 0 0

0 1 1+ i

0 0 0

]

; an eigenvector is x2 =

[

0

1+ i

−1

]

.

Eigenvectors for λ3 = 3:

[

2 0 0

0 2 −1− i

0 −1+ i 1

]

→
[

1 0 0

0 −1+ i 1
0 0 0

]

; an eigenvector is x3 =

[

0

1
1− i

]

.

Since {x1, x2, x3} is orthogonal and ‖x2‖= ‖x3‖ =
√

3, U = 1√
3

[ √
3 0 0

0 1+ i 1

0 −1 1− i

]

is orthog-

onal and U∗AU =

[

1 0 0

0 0 0

0 0 3

]

.

10. b. (1) If z = (z1, z2, . . . , zn) then ‖z‖2 = |z1|2 + |z2|2 + · · ·+ |zn|2. Thus ‖z‖= 0 if and only if

|z1|= · · ·= |zn|= 0, if and only if z = (0, 0, . . . , 0).

(2) By Theorem 8.7.1, we have 〈λz, w〉= λ 〈z, w〉 and 〈z, λw〉= λ 〈z, w〉. Hence

‖λz‖2 = 〈λz, λz〉= λ 〈z, λz〉= λλ〈z, z〉= |λ |2‖z‖2

Taking positive square roots gives ‖λz‖= |λ |‖z‖.

11. b. If A is hermitian then A = AT . If A =
[

ai j

]

, the (k, k)-entry of A is akk, and the (k, k)-entry of

AT is akk. Thus, A = AT implies that akk = akk for each k; that is akk is real.

14. b. Let B be skew-hermitian, that is BH =−B. Then Theorem 8.7.3 gives

(B2)H = (BH)2 = (−B)2 = B2, so B2 is hermitian

(iB)H = (−i)BH = (−i)(−B) = iB, so iB is hermitian.

d. If Z = A + B where AH = A and BH = −B, then ZH = AH + BH = V − B. Solving gives

Z +ZH = 2V and Z−ZH = 2B, so V = 1
2(Z +ZH) and S = 1

2(Z+ZH). Hence the matrices A
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and B are uniquely determined by the conditions Z = A+B, AH = A, BH =−B, provided such

A and B exist. But always,

Z = 1
2(Z+ZH)+ 1

2(Z−ZH)

and the matrices A = 1
2(Z+ZH) and B = 1

2(Z−ZH) are hermitian and skew-hermitian respec-

tively:

AH = 1
2(Z

H +ZHH) = 1
2(Z

H +Z) = A

BH = 1
2(Z

H−ZHH) = 1
2(Z

H−Z) =−B

16. b. If U is unitary, then U−1 =UH . We must show that U−1 is unitary, that is (U−1)−1 = (U−1)H .

But

(U−1)−1 =U = (UH)H = (U−1)H

18. b. If V =
[

1 i

−i 0

]

then V is hermitian because V =
[

1 −i

i 0

]

= V T , but iV =
[

i −1

1 0

]

is not

hermitian (it has a nonreal entry on the main diagonal).

21. b. Given A =
[

0 1

−1 0

]

, let U =
[

a b

c d

]

be invertible and real, and assume that U−1AU =
[

λ µ
0 ν

]

. Thus, AU =U
[

λ µ
0 ν

]

so

[

c d

−a −b

]

=
[

aλ aµ +bν
cλ cµ +dν

]

Equating first column entries gives c = aλ and −a = cλ . Thus, −a = (aλ )λ = aλ 2 so (1+
λ 2)a = 0. Now λ is real (a and c are not both zero so either λ = c

a
or λ =−a

c
), so 1+λ 2 6= 0.

Thus a = 0 (because (1+λ 2)a = 0) whence c = aλ = 0. This contradicts the assumption that

A is invertible.

8.8 An Application to Linear Codes over Finite Fields

1. b. The elements with inverses are 1, 3, 7, 9: 1 and 9 are self-inverse; 3 and 7 are inverses of each

other. As for the rest, 2 · 5 = 4 · 5 = 6 · 5 = 8 · 5 = 0 in Z10 so 2, 5, 4, 6 and 8 do not have

inverses in Z10.

d. The powers of 2 computed in Z10 are: 2, 4, 8, 16 = 6, 32 = 2, . . . , so the sequence repeats: 2,

4, 8, 16, 2, 4, 8, 16, . . . .

2. b. If 2a = 0 in Z10 then 2a = 10k for some integer k. Thus a = 5k so a = 0 or a = 5 in Z10.

Conversely, it is clear that 2a = 0 in Z10 if a = 0 or a = 5.

3. b. We want a number a in Z19 such that 11a = 1. We could try all 19 elements in Z19, the one

that works is a = 7. However the euclidean algorithm is a systematic method for finding a. As

in Example 8.8.2, first divide 19 by 11 to get

19 = 1 ·11+8
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Then divide 11 by 8 to get

11 = 1 ·8+3

Now divide 8 by 3 to get

8 = 2 ·3+2

Finally divide 3 by 2 to get

3 = 1 ·2+1

The process stops here since a remainder of 1 has been reached. Now eliminate remainders

from the bottom up:

1 = 3−1 ·2 = 3− (8−2 ·3) = 3 ·3−8

= 3(11−1 ·8)−8 = 3 ·11−4 ·8
= 3 ·11−4(19−1 ·11) = 7 ·11−4 ·19

Hence 1 = 7 ·11−4 ·19 = 7 ·11 in Z19 because 19 = 0 in Z19.

6. b. Working in Z7, we have det A = 15−24 = 1+4 = 5 6= 0, so A−1 exists. Since 5−1 = 3 in Z7,

A−1 = 3
[

3 −6

−4 5

]

= 3
[

3 1

3 5

]

=
[

2 3

2 1

]

.

7. b. Gaussian elimination works over any field F in the same way that we have been using it over

R. In this case we have F = Z7, and we reduce the augmented matrix of the system as follows.

We have 5 ·3 = 1 in Z7 so the first step in the reduction is to multiply row 1 by 5 in Z7:

[

3 1 4 3

4 3 1 1

]

→
[

1 5 6 1

4 3 1 1

]

→
[

1 5 6 1

0 4 5 4

]

→
[

1 5 6 1

0 1 3 1

]

→
[

1 0 5 3

0 1 3 1

]

Hence x and y are the leading variables, and the non-leading variable z is assigned as a param-

eter, say z = t. Then, exactly as in the real case, we obtain x = 3+2t, y = 1+4t, z = t where t

is arbitrary in Z7.

9. b. If the inverse is a+ bt then 1 = (1+ t)(a+ bt) = (a− b)+ (a+ b)t. This certainly holds if

a−b = 1 and a+b = 0. Adding gives 2a = 1, that is −a = 1 in Z3, that is a =−1 = 2. Hence

a+b = 0 gives b = −a = 1, so a+bt = 2+ t; that is (1+ t)−1 = 2+ t. Of course it is easily

checked directly that (1+ t)(2+ t) = 1.

10. b. The minimum weight of C is 5, so it detects 4 errors and corrects 2 errors by Theorem 8.8.5.

11. b. The linear (5, 2)-code {00000, 01110, 10011, 11101} has minimum weight 3 so it corrects 1

error by Theorem 8.8.5.

12. b. The code is {0000000000, 1001111000, 0101100110, 0011010111,

1100011110, 1010101111, 0110110001, 1111001001}.
This has minimum distance 5 and so corrects 2 errors.

13. b. C = {00000, 10110, 01101, 11011} is a linear (5, 2)-code of minimal weight 3, so it corrects

single errors.

14. b. G =
[

1 u
]

where u is any nonzero vector in the code. H =
[

u

In−1

]

.
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8.9 An Application to Quadratic Forms

1. b. A =
[

1 1
2 (1−1)

1
2 (−1+1) 2

]

=
[

1 0

0 2

]

d. A =

[

1 1
2 (2+4) 1

2 (−1+5)
1
2 (4+2) 1 1

2 (0−2)
1
2 (5−1) 1

2 (−2+0) 3

]

=

[

1 3 2

3 1 −1

2 −1 3

]

2. b. q = xT Ax where A =
[

1 2

2 1

]

. cA(x) =
∣

∣

∣

x−1 −2

−2 x−1

∣

∣

∣
= x2−2x−3 = (x+1)(x−3)

λ1 = 3:
[

2 −2

−2 2

]

→
[

1 −1

0 0

]

; so an eigenvector is x1 =
[

1

1

]

.

λ2 =−1:
[

−2 −2

−2 −2

]

→
[

1 1

0 0

]

; so an eigenvector is x2 =
[

1

−1

]

.

Hence, P = 1√
2

[

1 1

1 −1

]

is orthogonal and PT AP =
[

3 0

0 −1

]

.

As in Theorem 8.9.1, take y = PT x = 1√
2

[

1 1

1 −1

][

x1

x2

]

= 1√
2

[

x1 + x2

x1− x2

]

. Then

y1 =
1√
2
(x1 + x2) and y2 =

1√
2
(x1− x2)

Finally, q = 3y2
1−y2

2, the index of q is 1 (the number of positive eigenvalues) and the rank of q

is 2 (the number of nonzero eigenvalues).

d. q = xT Ax where A =

[

7 4 4

4 1 −8

4 −8 1

]

. To find cA(x), subtract row 2 from row 3:

cA(x) =

∣

∣

∣

∣

x−7 −4 −4

−4 x−1 8

−4 8 x−1

∣

∣

∣

∣

=

∣

∣

∣

∣

x−7 −4 −4

−4 x−1 8

0 −x+9 x−9

∣

∣

∣

∣

=

∣

∣

∣

∣

x−7 −8 −4

−4 x+7 8

0 0 x−9

∣

∣

∣

∣

= (x−9)2(x+9)

λ1 = 9:

[

2 −4 −4

−4 8 8

−4 8 8

]

→
[

1 −2 −2

0 0 0

0 0 0

]

; orthogonal eigenvectors

[

2

2

−1

]

,

[

2

−1

2

]

.

λ2 = −9:

[

−16 −4 −4

−4 −10 8

−4 8 −10

]

→
[

4 1 1

0 −9 9

0 9 −9

]

→
[

4 0 2

0 1 −1

0 0 0

]

; eigenvector

[

−1

2

2

]

. These

eigenvectors are orthogonal and each has length 3. Hence, P = 1
3

[

2 2 −1
2 −1 2

−1 2 2

]

is orthog-

onal and PT AP =

[

9 0 0

0 9 0

0 0 −9

]

. Thus

y = PT x = 1
3

[

2 2 −1

2 −1 2

−1 2 2

][

x1

x2

x3

]

= 1
3

[

2x1 +2x2− x3

2x1− x2 +2x3

−x1 +2x2 +2x3

]

so

y1 =
1
3 [2x1 +2x2− x3]

y2 =
1
3 [2x1− x2 +2x3]

y3 =
1
3 [−x1 +2x2 +2x3]

will give q = 9y2
1 +9y2

2−9y2
3. The index of q is 2 and the rank of q is 3.
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f. q = xT Ax where A =

[

5 −2 −4

−2 8 −2

−4 −2 5

]

. To find cA(x), subtract row 3 from row 1:

cA(x) =

∣

∣

∣

∣

x−5 2 4

2 x−8 2

4 2 x−5

∣

∣

∣

∣

=

∣

∣

∣

∣

x−9 0 −x+9

2 x−8 2

4 2 x−5

∣

∣

∣

∣

=

∣

∣

∣

∣

x−9 0 0

2 x−8 4

4 2 x−1

∣

∣

∣

∣

= x(x−9)2

λ1 = 9:

[

4 2 4

2 1 2

4 2 4

]

→
[

2 1 2

0 0 0

0 0 0

]

; orthogonal eigenvectors are

[

−2

2

1

]

and

[

1

2

−2

]

.

λ2 = 0:

[

−5 2 4

2 −8 2

4 2 −5

]

→
[

1 −4 1

0 −18 9

0 18 −9

]

→
[

1 0 −1

0 2 −1

0 0 0

]

; an eigenvector is

[

2

1

2

]

.

These eigenvectors are orthogonal and each has length 3. Hence P = 1
3

[

−2 1 2

2 2 1

1 −2 2

]

is or-

thogonal and PT AP =

[

9 0 0

0 9 0

0 0 0

]

. If

y = PT x = 1
3

[

−2 2 1

1 2 −2

2 1 2

][

x1

x2

x3

]

then

y1 =
1
3(−2x1 +2x2 + x3)

y2 =
1
3(x1 +2x2−2x3)

y3 =
1
3(2x1 + x2 +2x3)

gives q = 9y2
1 +9y2

2. The rank and index of q are both 2.

h. q = xT Ax where A =

[

1 −1 0

−1 0 1
0 1 1

]

. To find cA(x), add row 3 to row 1:

cA(x) =

∣

∣

∣

∣

x−1 1 0

1 x −1

0 −1 x−1

∣

∣

∣

∣

=

∣

∣

∣

∣

x−1 0 x−1

1 x −1

0 −1 x−1

∣

∣

∣

∣

=

∣

∣

∣

∣

x−1 0 0

1 x −2

0 −1 x−1

∣

∣

∣

∣

= (x−1)(x−2)(x+1)

λ1 = 2:

[

1 1 0

1 2 −1
0 −1 1

]

→
[

1 1 0

0 1 −1
0 −1 1

]

→
[

1 0 1

0 1 −1
0 0 0

]

; an eigenvector is

[

−1

1
1

]

.

λ2 = 1:

[

0 1 0

1 1 −1

0 −1 0

]

→
[

1 1 −1

0 1 0

0 0 0

]

→
[

1 0 −1

0 1 0

0 0 0

]

; an eigenvector is

[

1

0

1

]

.

λ3 =−1:

[

−2 1 0

1 −1 −1

0 −1 −2

]

→
[

1 −1 −1

0 −1 −2

0 −1 −2

]

→
[

1 0 1

0 1 2

0 0 0

]

; an eigenvector is

[

1

2

−1

]

.

Hence,

P =





− 1√
3

1√
2

1√
6

1√
3

0 2√
6

1√
3

1√
2
− 1√

6



= 1√
6

[

−
√

2
√

3 1√
2 0 2√
2

√
3 −1

]
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is orthogonal and PT AP =

[

2 0 0

0 1 0

0 0 −1

]

. If

y = PT x = 1√
6

[

−
√

2
√

2
√

2√
3 0

√
3

1 2 −1

][

x1

x2

x3

]

then

y1 =
1√
3
(−x1 + x2 + x3)

y2 =
1√
2
(x1 + x3)

y3 =
1√
6
(x1 +2x2− x3)

gives q = 2y2
1 + y2

2− y2
3. Here q has index 2 and rank 3.

3. b. q = 3x2−4xy = xT Ax where x =
[

x

y

]

, A =
[

3 −2

−2 0

]

. cA(t) =
∣

∣

∣

t−3 2

2 t

∣

∣

∣
= (t−4)(t +1)

λ1 = 4:
[

1 2

2 4

]

→
[

1 2

0 0

]

; an eigenvector is
[

2

−1

]

.

λ2 =−1:
[

−4 2

2 −1

]

→
[

2 −1

0 0

]

; an eigenvector is
[

1

2

]

.

Hence, P = 1√
5

[

2 1

−1 2

]

gives PT AP =
[

4 0

0 −1

]

. If y = PT x =
[

x1

y1

]

, then x1 =
1√
5
(2x− y)

and y1 =
1√
5
(x+2y). The equation q = 2 becomes 4x2

1− y2
1 = 2, a hyperbola.

d. q = 2x2 +4xy+5y2 = xT Ax where x =
[

x

y

]

, A =
[

2 2

2 5

]

.

In this case cA(t) =
∣

∣

∣

t−2 −2
−2 t−5

∣

∣

∣
= (t−1)(t−6).

λ1 = 6:
[

4 −2

−2 1

]

→
[

2 −1

0 0

]

; an eigenvector is
[

1

2

]

.

λ2 = 1:
[

−1 −2

−2 −4

]

→
[

1 2

0 0

]

; an eigenvector is
[

2

−1

]

.

Hence, P = 1√
5

[

1 2

2 −1

]

gives PT AP =
[

6 0

0 1

]

. If y = PT x =
[

x1

y1

]

, then x1 =
1√
5
(x+2y),

y1 =
1√
5
(2x− y) and q = 1 becomes 6x2

1 + y2
1 = 1. This is an ellipse.

4. After the rotation, the new variables x1 =
[

x1

y1

]

are related to x =
[

x

y

]

by x = Ax1 where A =
[

cosθ −sinθ
sinθ cosθ

]

(this is equation (8.8) preceding Theorem 8.9.2, or see Theorem 2.6.4). Thus x =

x1 cosθ−y1 sinθ and y= x1 sinθ +y1 cosθ . If these are substituted in the equation ax2+bxy+cy2 =
d, the coefficient of x1y1 is

−2asinθ cosθ +b(cos2 θ − sin2 θ)+2csinθ cosθ = bcos2θ − (a− c)sin2θ .

This is zero if θ is chosen so that

cos2θ = a−c√
b2+(a−c)2

and sin2θ = b√
b2+(a−c)2

Such an angle 2θ exists because

[

a−c√
b2+(a−c)2

]2

+

[

b√
b2(a−c)2

]2

= 1.
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7. b. The equation is xT Ax+Bx = 7 where x =

[

x1

x2

x3

]

, A =

[

1 2 −2

2 3 0

−2 0 3

]

, B =
[

5 0 −6
]

.

cA(x) =

∣

∣

∣

∣

t−1 −2 2

−2 t−3 0

2 0 t−3

∣

∣

∣

∣

=

∣

∣

∣

∣

t−1 −2 2

−2 t−3 0

0 t−3 t−3

∣

∣

∣

∣

=

∣

∣

∣

∣

t−1 −4 2

−2 t−3 0

0 0 t−3

∣

∣

∣

∣

= (t−3)(t2−4t−5) = (t−3)(t−5)(t +1)

λ1 = 3:

[

2 −2 2

−2 0 0

2 0 0

]

→
[

1 0 0

0 1 −1

0 0 0

]

; an eigenvector is

[

0

1

1

]

.

λ2 = 5:

[

4 −2 2

−2 2 0

2 0 2

]

→
[

−2 2 0

0 2 2

0 2 2

]

→
[

1 0 1

0 1 1

0 0 0

]

; an eigenvector is

[

1

1

−1

]

.

λ3 =−1:

[

−2 −2 2

−2 −4 0

2 0 −4

]

→
[

1 1 −1

0 −2 −2

0 −2 −2

]

→
[

1 0 −2

0 1 1

0 0 0

]

; an eigenvector is

[

2

−1

1

]

.

Hence, P =





0 1√
3

2√
6

1√
2
− 1√

3
− 1√

6
1√
2

+ 1√
3

1√
6



= 1√
6

[

0
√

2 2√
3

√
2 −1√

3 −
√

2 1

]

satisfies PT AP =

[

3 0 0
0 5 0

0 0 −1

]

. If

y =

[

y1

y2

y3

]

= PT x = 1√
6

[ √
3(x2 + x3)√

2(x1 + x2− x3)
2x1− x2 + x3

]

then

y1 =
1√
2
(x2 + x3)

y2 =
1√
3
(x1 + x2− x3)

y3 =
1√
6
(2x1− x2 + x3)

As P−1 = PT , we have x = Py so substitution in xT Ax+Bx = 7 gives

yT (PT AP)y+(BP)y = 7

As BP = 1√
6

[

−6
√

3 11
√

2 4
]

=
[

−3
√

2 11
√

3
3

2
√

6
3

]

, this is

3y2
1 +5y2

2− y2
3− (3

√
2)y1 +(11

3

√
3)y2 +(2

3

√
6)y3 = 7

9. b. We have A =UTU where U is upper triangular with positive diagonal entries. Hence

q(x) = xTUTUx = (Ux)T (Ux) = ‖Ux‖2

So take y =Ux as the new column of variables.
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8.10 An Application to Constrained Optimization

This section contains no exercises.

8.11 An Application to Statistical Principal Component

Analysis

This section contains no exercises.





9. Change of Basis

9.1 The Matrix of a Linear Transformation

1. b. CB(v) =

[

a

2b− c

c−b

]

because v = ax2 +bx+ c = ax2 +(2b− c)(x+1)+(c−b)(x+2).

d. CB(v) =
1
2

[

a−b

a+b

−a+3b+2c

]

because

v = (a, b, c) = 1
2 [(a−b)(1, −1, 2)+(a+b)(1, 1, −1)+(−a+3b+2c)(0, 0, 1)]

2. b. MDB(T ) =
[

CD[T (1)] CD[T (x)] CD[T (x
2)]
]

=
[

2 1 3

−1 0 −2

]

. Comparing columns gives

CD[T (1)] =
[

2

−1

]

CD[T (x)] =
[

1

0

]

CD[T (x
2)] =

[

3

−2

]

Hence

T (1) = 2(1, 1)− (0, 1) = (2, 1)

T (x) = 1(1, 1)+0(0, 1) = (1, 1)

T (x2) = 3(1, 1)−2(0, 1) = (3, 1)

Thus

T (a+bx+ cx2) = aT (1)+bT (x)+ cT (x2)

= a(2, 1)+b(1, 1)+ c(3, 1)

= (2a+b+3c, a+b+ c)

3. b. MDB(T ) =
[

CD

{

T
[

1 0
0 0

]}

CD

{

T
[

0 1
0 0

]}

CD

{

T
[

0 0
1 0

]}

CD

{

T
[

0 0
0 1

]} ]

=
[

CD

{[

1 0

0 0

]}

CD

{[

0 0

1 0

]}

CD

{[

0 1

0 0

]}

CD

{[

0 0

0 1

]} ]

=

[

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

]

d. MDB(T ) =
[

CD[T (1)] CD[T (x)] CD[T (x
2)]
]

=
[

CD(1) CD(x+1) CD(x
2 +2x+1)

]

=

[

1 1 1

0 1 2

0 0 1

]

137
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4. b. MDB(T ) =
[

CD[T (1, 1)] CD[T (1, 0)]
]

=
[

CD(1, 5, 4, 1) CD(2, 3, 0, 1)
]

=

[

1 2

5 3

4 0

1 1

]

.

We have v = (a, b) = b(1, 1)+(a−b)(1, 0) so CB(v) =
[

b

a−b

]

. Hence,

CD[T (v)] = MDB(T )CB(v) =

[

1 2

5 3

4 0

1 1

]

[

b

a−b

]

=

[

2a−b

3a+2b

4b

a

]

Finally, we recover the action of T :

T (v) = (2a−b)(1, 0, 0, 0)+(3a+2b)(0, 1, 0, 0)+4b(0, 0, 1, 0)+a(0, 0, 0, 1)

= (2a−b, 3a+2b, 4b, a)

d. MDB(T ) =
[

CD[T (1)] CD[T (x)] CD[T (x
2)]
]

=
[

CD(1, 0) CD(1, 0) CD(0, 1)
]

=
[

1
2

1
2 − 1

2
1
2

1
2

1
2

]

= 1
2

[

1 1 −1

1 1 1

]

We have v = a+bx+ cx2 so CB(v) =

[

a

b

c

]

. Hence

CD[T (v)] = MDB(T )CB(v) =
1
2

[

1 1 −1
1 1 1

]

[

a

b

c

]

= 1
2

[

a+b− c

a+b+ c

]

Finally, we recover the action of T :

T (v) = 1
2(a+b− c)(1, −1)+ 1

2(a+b+ c)(1, 1) = (a+b, c).

f. MDB(T ) =
[

CD

{

T
[

1 0
0 0

]}

CD

{

T
[

0 1
0 0

]}

CD

{

T
[

0 0
1 0

]}

CD

{

T
[

0 0
0 1

]} ]

=
[

CD

[

1 0

0 0

]

CD

[

0 1

1 0

]

CD

[

0 1

1 0

]

CD

[

0 0

0 1

] ]

=

[

1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1

]

.

We have v =
[

a b

c d

]

= a
[

1 0

0 0

]

+b
[

0 1

0 0

]

+ c
[

0 0

1 0

]

+d
[

0 0

0 1

]

,

so CB(v) =

[

a

b

c

d

]

. Hence CD[T (v)] = MDB(T )CB(v) =

[

1 0 0 0
0 1 1 0

0 1 1 0

0 0 0 1

][

a

b

c

d

]

=

[

a

b+ c

b+ c

d

]

.

Finally, we recover the action of T :

T (v) = a
[

1 0

0 0

]

+(b+ c)
[

0 1

0 0

]

+(b+ c)
[

0 0

1 0

]

+d
[

0 0

0 1

]

=
[

a b+ c

b+ c d

]

5. b. Have R
3 T→R

4 S→ R
2. Let B, D, E be the standard bases. Then

MED(S) =
[

CE [S(1, 0, 0, 0)] CE [S(0, 1, 0, 0)] CE [S(0, 0, 1, 0)] CE [S(0, 0, 0, 1)]
]

=
[

CE(1, 0) CE(1, 0) CE(0, 1) CE(0, −1)
]
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=
[

1 1 0 0

0 0 1 −1

]

MDB(T ) =
[

CD[T (1, 0, 0)] CD[T (0, 1, 0)] CD[T (0, 0, 1)]
]

=
[

CD(1, 0, 1, −1) CD(1, 1, 0, 1) CD(0, 1, 1, 0)
]

=

[

1 1 0
0 1 1

1 0 1

−1 1 0

]

We have ST (a, b, c) = S(a+b, c+b, a+ c, b−a) = (a+2b+ c, 2a−b+ c). Hence

MEB(ST ) =
[

CE [ST (1, 0, 0)] CE [ST (0, 1, 0)] CE [ST (0, 0, 1)]
]

=
[

CE(1, 2) CE(2, −1) CE(1, 1)
]

=
[

1 2 1

2 −1 1

]

With this we confirm Theorem 9.1.3 as follows:

MED(S)MDB(T ) =
[

1 1 0 0

0 0 1 −1

]

[

1 1 0

0 1 1

1 0 1

−1 1 0

]

=
[

1 2 1

2 −1 1

]

= MEB(ST )

d. Have R3 T→ P2
S→ R2 with bases B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, D =

{

1, x, x2
}

,

E = {(1, 0), (0, 1)}.

MED(S) =
[

CE [S(1)] CE [S(x)] CE [S(x
2)]
]

=
[

CE(1, 0) CE(−1, 0) CE(0, 1)
]

=
[

1 −1 0

0 0 1

]

MDB(T ) =
[

CD[T (1, 0, 0)] CD[T (0, 1, 0)] CD[T (0, 0, 1)]
]

=
[

CD(1− x) CD(−1+ x2) CD(x)
]

=

[

1 −1 0

−1 0 1

0 1 0

]

The action of ST is ST (a, b, c) = S
[

(a−b)+(c−a)x+bx2
]

= (2a−b− c, b). Hence,

MEB(ST ) =
[

CE [ST (1, 0, 0)] CE [ST (0, 1, 0)] CE [ST (0, 0, 1)]
]

=
[

CE(2, 0) CE(−1, 1) CE(−1, 0)
]

=
[

2 −1 −1

0 1 0

]

Hence, we verify Theorem 9.1.3 as follows:

MED(S)MDB(T ) =
[

1 −1 0

0 0 1

]

[

1 −1 0
−1 0 1

0 1 0

]

=
[

2 −1 −1

0 1 0

]

= MEB(ST )
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7. b. MDB(T ) =
[

CD[T (1, 0, 0)] CD[T (0, 1, 0)] CD[T (0, 0, 1)]
]

=
[

CD(0, 1, 1) CD(1, 0, 1) CD(1, 1, 0)
]

=

[

0 1 1

1 0 1

1 1 0

]

If T−1(a, b, c) = (x, y, z) then (a, b, c) = T (x, y, z) = (y+ z, x+ z, x+y). Hence, y+ z = a,

x+ z = b, x+ y = c. The solution is

T−1(a, b, c) = (x, y, z) = 1
2(b+ c−a, a+ c−b, a+b− c)

Hence,

MBD(T
−1) =

[

CB[T
−1(1, 0, 0)] CB[T

−1(0, 1, 0)] CB[T
−1(0, 0, 1)]

]

=
[

CB

(

−1
2 , 1

2 , 1
2

)

CB

(

1
2 , −1

2 , 1
2

)

CB

(

1
2 , 1

2 , −1
2

) ]

= 1
2

[

−1 1 1

1 −1 1
1 1 −1

]

This matrix is MDB(T )
−1 as Theorem 9.1.4 asserts.

d. MDB(T ) =
[

CD[T (1)] CD[T (x)] C[T (x2)]
]

=
[

CD(1, 0, 0) CD(1, 1, 0) CD(1, 1, 1)
]

=

[

1 1 1

0 1 1

0 0 1

]

If T−1(a, b, c) = r+ sx+ tx2, then (a, b, c) = T (r+ sx+ tx2) = (r+ s+ t, s+ t, t). Hence,

r+ s+ t = a, s+ t = b, t = c; the solution is t = c, s = b− c, r = a−b. Thus,

T−1(a, b, c) = r+ sx+ tx2 = (a−b)+(b− c)x+ cx2

Hence,

MBD(T
−1) =

[

CB[T
−1(1, 0, 0)] CB[T

−1(0, 1, 0)] CB[T
−1(0, 0, 1)]

]

=
[

CB(1) CB(−1+ x) CB(−x+ x2)
]

=

[

1 −1 0

0 1 −1

0 0 1

]

This matrix is MDB(T )
−1 as Theorem 9.1.4 asserts.

8. b. MDB(T ) =
[

CD

{

T
[

1 0
0 0

]}

CD

{

T
[

0 1
0 0

]}

CD

{

T
[

0 0
1 0

]}

CD

{

T
[

0 0
0 1

]} ]

=
[

CD(1, 0, 0, 0) CD(1, 1, 0, 0) CD(1, 1, 1, 0) CD(0, 0, 0, 1)
]

=

[

1 1 1 0

0 1 1 0

0 0 1 0

0 0 0 1

]

This is invertible and the matrix inversion algorithm (and Theorem 9.1.4) gives

MDB(T
−1) = [MDB(T )]

−1 =

[

1 −1 0 0

0 1 −1 0

0 0 1 0

0 0 0 1

]

If v = (a, b, c, d) then

CB[T
−1(v)] = MDB(T

−1)CD(v) =

[

1 −1 0 0
0 1 −1 0

0 0 1 0

0 0 0 1

][

a

b

c

d

]

=

[

a−b

b− c

c

d

]
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Hence, we get a formula for the action of T−1:

T−1(a, b, c, d) = T−1(v) = (a−b)
[

1 0

0 0

]

+(b− c)
[

0 1

0 0

]

+ c
[

0 0

1 0

]

+d
[

0 0

0 1

]

=
[

a−b b− c

c d

]

12. Since D = {T (e1), . . . , T (en)}, we have CD

[

T (e j)
]

=C j = column j of In. Hence,

MDB(T ) =
[

CD [T (e1)] CD [T (e2)] · · · CD [T (en)]
]

=
[

C1 C2 · · · Cn

]

= In

16. b. Define T : Pn → Rn+1 by T [p(x)] = (p(a0), p(a1), . . . , p(an)), where a0, . . . , an are fixed

distinct real numbers. If B = {1, x, . . . , xn} and D⊆ R
n+1 is the standard basis,

MDB(T ) = [ CD [T (1)] CD [T (x)] CD

[

T (x2)
]

· · · CD [T (xn)] ]

= [CD(1, 1, . . . , 1) CD(a0, a1, . . . , an) CD(a
2
0, a2

1, . . . , a2
n) · · · CD(a

n
0, an

1, . . . , an
n) ]

=







1 a0 a2
0 . . . an

0

1 a1 a2
1 . . . an

1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 an a2
n . . . an

n







Since the ai are distinct, this matrix has nonzero determinant by Theorem 3.2.7. Hence, T is

an isomorphism by Theorem 9.1.4.

20. d. Assume that V
R→W

S, T→ U . Recall that the sum S+T : W →U of two operators is defined by

(S+T )(w) = S(w)+T (w) for all w in W . Hence, for v in V :

[(S+T )R] (v) = (S+T )[R(v)]

= S[R(v)]+T [R(v)]

= (SR)(v)+(T R)(v)

= (SR+TR)(v)

Since this holds for all v in V , it shows that (S+T )R = SR+T R.

21. b. If P and Q are subspaces of a vector space W , recall that P+Q = {p+q | p in P, q in Q} is a

subspace of W (Exercise 25 Section 6.4). Now let w be any vector in im (S+T ). Then w =
(S+T )(v) = S(v)+T (v) for some v in V , whence w is in im S+ im T . Thus, im (S+T ) ⊆
im S+ im T .

22. b. If T is in X0
1 , then T (v) = 0 for all v in X1. As X ⊆ X1, this implies that T (v) = 0 for all v in

X ; that is T is in X0. Hence, X0
1 ⊆ X0.

24. b. We have R : V → L(R, V ) defined by R(v) = Sv. Here Sv : R→V is defined by Sv(r) = rv.

R is a linear transformation: The requirements that R(v + w) = R(v) + R(w) and R(av) =
aR(v) translate to Sv+w = Sv +Sw and Sav = aSv. If r is arbitrary in R:

Sv+w(r) = r(v+w) = rv+ rw = Sv(r)+Sw(r) = (Sv +Sw)(r)
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Sav(r) = r(av) = a(rv) = a [Sv(r)] = (aSv)(r)

Hence, Sv+w = Sv +Sw and Sav = aSv so R is linear.

R is one-to-one: If R(v) = 0 then Sv = 0 is the zero transformation R→ V . Hence we have

0 = Sv(r) = rv for all r; taking r = 1 gives v = 0. Thus ker R = 0.

R is onto: Given T in L(R, V ), we must find v in V such that T = R(v); that is T = Sv. Now

T : R→V is a linear transformation and we take v = T (1). Then, for r in R:

Sv(r) = rv = rT (1) = T (r ·1) = T (r)

Hence, Sv = T as required.

25. b. Given the linear transformation T : R → V and an ordered basis B = {b1, b2, . . . , bn} of

V , write T (1) = a1b1 + a2b2 + · · ·+ anbn where the ai are in R. We must show that T =
a1S1 +a2S2 + · · ·+anSn where Si(r) = rbi for all r in R. We have

(a1S1 +a2S2 + · · ·+anSn)(r) = a1S1(r)+a2S2(r)+ · · ·+anSn(r)

= a1(rb1)+a2(rb2)+ · · ·+an(rbn)

= rT (1)

= T (r)

for all r in R. Hence a1S1 +a2S2 + · · ·+anSn = T .

27. b. Given v in V , write v = r1b1 + r2b2 + · · ·+ rnbn, ri in R. We must show that r j = E j(v) for

each j. To see this, apply the linear transformation E j:

E j(v) = E j(r1b1 + r2b2 + · · ·+ r jb j + · · ·+ rnbn)

= r1E j(b1)+ r2E j(b2)+ · · ·+ r jE j(b j)+ · · ·+ rnE j(bn)

= r1 ·0+ r2 ·0+ · · ·+ r j ·1+ · · ·+ rn ·0
= r j

using the definition of E j.

9.2 Operators and Similarity

1. b. PD←B =
[

CD(x) CD(1+ x) CD(x
2)
]

=

[

− 3
2 −1 1

2
1 1 0

0 0 1

]

= 1
2

[

−3 −2 1

2 2 0

0 0 2

]

because

x =−3
2 ·2+1(x+3)+0(x2−1)

1+ x = (−1) ·2+1(x+3)+0(x2−1)

x2 = 1
2 ·2+0(x+3)+1(x2−1)
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Given v = 1+ x+ x2, we have

CB(v) =

[

0

1

1

]

and CD(v) =

[

− 1
2

1

1

]

because v = 0 · x+1(1+ x)+1 · x2 and v =−1
2 ·2+1 · (x+3)+1(x2−1). Hence

PD←BCB(v) =
1
2

[

−3 −2 1

2 2 0
0 0 2

][

0

1
1

]

= 1
2

[

−1

2
2

]

=CD(v)

as expected.

4. b. PB←D =
[

CB(1+ x+ x2) CB(1− x) CB(−1+ x2)
]

=

[

1 1 −1

1 −1 0

1 0 1

]

PD←B =
[

CD(1) CD(x) CD(x
2)
]

= 1
3

[

1 1 1

1 −2 1

−1 −1 2

]

because

1 = 1
3

[

(1+ x+ x2)+(1− x)− (−1+ x2)
]

x = 1
3

[

(1+ x+ x2)−2(1− x)− (−1+ x2)
]

x2 = 1
3

[

(1+ x+ x2)+(1− x)+2(−1+ x2)
]

The fact that PD←B = (PB←D)
−1 is verified by multiplying these matrices. Next:

PE←D =
[

CE(1+ x+ x2) CE(1− x) CE(−1+ x2)
]

=

[

1 0 1

1 −1 0

0 1 −1

]

PE←B =
[

CE(1) CE(x) CE(x
2)
]

=

[

0 0 1
0 1 0

1 0 0

]

where we note the order of the vectors in E =
{

x2, x, 1
}

. Finally, matrix multiplication verifies

that PE←DPD←B = PE←B.

5. b. Let B= {(1, 2, −1), (2, 3, 0), (1, 0, 2)} be the basis formed by the transposes of the columns

of A. Since D is the standard basis:

PD←B =
[

CD(1, 2, −1) CD(2, 3, 0) CD(1, 0, 2)
]

=

[

1 2 1

2 3 0

−1 0 2

]

= A

Hence Theorem 9.2.2 gives

A−1 = (PD←B)
−1 = PB←D =

[

CB(1, 0, 0) CB(0, 1, 0) CB(0, 0, 1)
]

=

[

6 −4 −3

−4 3 2
3 −2 −1

]

because

(1, 0, 0) = 6(1, 2, −1)−4(2, 3, 0)+3(1, 0, 2)

(0, 1, 0) =−4(1, 2, −1)+3(2, 3, 0)−2(1, 0, 2)

(0, 0, 1) =−3(1, 2, −1)+2(2, 3, 0)−1(1, 0, 2)
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7. b. Since B0 =
{

1, x, x2
}

, we have

P = PB0←B =
[

CB0
(1− x2) CB0

(1+ x) CB0
(2x+ x2)

]

=

[

1 1 0

0 1 2

−1 0 1

]

MB0
(T ) =

[

CB0
[T (1)] CB0

[T (x)] CB0
[T (x2)]

]

=
[

CB0
(1+ x2) CB0

(1+ x) CB0
(x+ x2)

]

=

[

1 1 0

0 1 1

1 0 1

]

Finally

MB(T ) =
[

CB[T (1− x2)] CB[T (1+ x)] CB[T (2x+ x2)]
]

=
[

CB(1− x) CB(2+ x+ x2) CB(2+3x+ x2)
]

=

[

−2 −3 −1

3 5 3
−2 −2 0

]

because

1− x =−2(1− x2)+3(1+ x)−2(2x+ x2)

2+ x+ x2 =−3(1− x2)+5(1+ x)−2(2x+ x2)

2+3x+ x2 =−1(1− x2)+3(1+ x)+0(2x+ x2)

The verification that P−1MB0
(T )P=MB(T ) is equivalent to checking that MB0

(T )P=PMB(T ),
and so can be seen by matrix multiplication.

8. b. P−1AP =
[

5 −2

−7 3

][

29 −12

70 −29

][

3 2

7 5

]

=
[

5 −2

7 −3

][

3 2

7 5

]

=
[

1 0

0 −1

]

.

Let B =
{[

3

7

]

,
[

2

5

]}

consist of the columns of P. These are eigenvectors of A correspond-

ing to the eigenvalues 1, −1 respectively. Hence,

MB(TA) =
[

CB

(

TA

[

3

7

])

CB

(

TA

[

2

5

]) ]

=
[

CB

[

3

7

]

CB

[

−2

−5

] ]

=
[

1 0

0 −1

]

9. b. Choose a basis of R2, say B = {(1, 0), (0, 1)}, and compute

MB(T ) =
[

CB[T (1, 0)] CB[T (0, 1)]
]

=
[

CB(3, 2) CB(5, 3)
]

=
[

3 5
2 3

]

Hence, cT (x) = cMB(T )(x) =
∣

∣

∣

x−3 −5

−2 x−3

∣

∣

∣
= x2 − 6x− 1. Note that the calculation is easy

because B is the standard basis, but any basis could be used.

d. Use the basis B =
{

1, x, x2
}

of P2 and compute

MB(T ) =
[

CB[T (1)] CB[T (x)] CB[T (x
2)]
]

=
[

CB(1+ x−2x2) CB(1−2x+ x2) CB(−2+ x)
]
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=

[

1 1 −2

1 −2 1

−2 1 0

]

Hence,

cT (x) = cMB(T )(x) =

∣

∣

∣

∣

x−1 −1 2

−1 x+2 −1

2 −1 x

∣

∣

∣

∣

=

∣

∣

∣

∣

x−1 −1 2

−1 x+2 −1

−x+3 0 x−2

∣

∣

∣

∣

= x3 + x2−8x−3

f. Use B =
{[

1 0

0 0

]

,
[

0 1

0 0

]

,
[

0 0

1 0

]

,
[

0 0

0 1

]}

and compute

MB(T ) =
[

CB

{

T
[

1 0
0 0

]}

CB

{

T
[

0 1
0 0

]}

CB

{

T
[

0 0
1 0

]}

CB

{

T
[

0 0
0 1

]} ]

=
[

CB

[

1 0

1 0

]

CB

[

0 1

0 1

]

CB

[

−1 0

−1 0

]

CB

[

0 −1

0 −1

] ]

=

[

1 0 −1 0

0 1 0 −1
1 0 −1 0

0 1 0 −1

]

Hence,

cT (x) = cMB(T )(x) =

∣

∣

∣

∣

∣

x−1 0 1 0

0 x−1 0 1
−1 0 x+1 0

0 −1 0 x+1

∣

∣

∣

∣

∣

= (x−1)

∣

∣

∣

∣

x−1 0 1
0 x+1 0

−1 0 x+1

∣

∣

∣

∣

+

∣

∣

∣

∣

0 x−1 1
−1 0 0

0 −1 x+1

∣

∣

∣

∣

= x4

12. Assume that A and B are both n×n and that null A= null B. Define TA : Rn→Rn by TA(x) = Ax for

all x in Rn; similarly for TB. Then let T = TA and S = TB. Then ker S = null B and ker T = null A

so, by Exercise 28 Section 7.3 there is an isomorphism R : Rn→ Rn such that T = RS. If B0 is the

standard basis of Rn, we have

A = MB0
(T ) = MB0

(RS) = MB0
(R)MB0

(S) =UB

where U = MB0
(R). This is what we wanted because U is invertible by Theorem 9.1.4.

Conversely, assume that A = UB with U invertible. If x is in null A then Ax = 0, so UBx = 0,

whence Bx = 0 (because U is invertible), that is x is in null B. In other words null A⊆ null B. But

B =U−1A so null B⊆ null A by the same argument. Hence null A = null B.

16. b. We verify first that S is linear. Showing S(w+v)= S(w)+S(v) means showing that MB(Tw+v)=
MB(Tw)+MB(Tv). If B = {b1, b2} then column j of MB(Tw+v) is

CB[Tw+v(b j)] =CB[(w+ v)b j] =CB(wb j + vb j) =CB(wb j)+CB(vb j)

because CB is linear. This is column j of MB(Tw) +MB(Tv), which shows that S(w+ v) =
S(w) + S(v). A similar argument shows that MB(Taw) = aMB(Tw), so S(aw) = aS(w), and

hence that S is linear.

To see that S is one-to-one, let S(w) = 0; by Theorem 7.2.2 we must show that w = 0. We

have MB(Tw) = S(w) = 0 so, comparing jth columns, we see that CB[Tw(b j)] =CB[wb j] = 0 for
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j = 1, 2. As CB is an isomorphism, this means that wb j = 0 for each j. But B is a basis of C and

1 is in C, so there exist r and s in R such that 1 = rb1+sb2. Hence w = w1 = rwb1+swb2 = 0,

as required.

Finally, to show that S(wv) = S(w)S(v) we first show that TwTv = Twv. Indeed, given z in C,

we have

(TwTv)(z) = Tw(Tv(z)) = w(vz) = (wv)z = Twv(z)

Since this holds for all z in C, it shows that TwTv = Twv. But then Theorem 9.2.1 shows that

S(wv) = MB(TwTv) = MB(Tw)MB(Tv) = S(w)S(v)

This is what we wanted.

9.3 Invariant Subspaces and Direct Sums

2. b. Let v ∈ T (U), say v = T (u) where u ∈U . Then T (v) = T [T (u)] ∈ T (U) because T (u) ∈U .

This shows that T (U) is T -invariant.

3. b. Given v in S(U), we must show that T (v) is also in S(U). We have v = S(u) for some u in U .

As ST = T S, we compute:

T (v) = T [S(u)] = (TS)(u) = (ST )(u) = S[T (u)]

As T (u) is in U (because U is T -invariant), this shows that T (v) = S[T (u)] is in S(U).

6. Suppose that a subspace U of V is T -invariant for every linear operator T : V → V ; we must show

that either U = 0 or U =V . Assume that U 6= 0; we must show that U =V . Choose u 6= 0 in U , and

(by Theorem 6.4.1) extend {u} to a basis {u, e2, . . . , en} of V . Now let v be any vector in V . Then

(by Theorem 7.1.3) there is a linear transformation T : V → V such that T (u) = v and T (ei) = 0

for each i. Then v = T (u) lies in U because U is T -invariant. As v was an arbitrary vector in V , it

follows that V =U .

[Remark: The only place we used the hypothesis that V is finite dimensional is in extending {u} to

a basis of V . In fact, this is true for any vector space, even of infinite dimension.]

8. b. We have U = span
{

1−2x2, x+ x2
}

. To show that U is T -invariant, it suffices (by Example

9.3.3) to show that T (1−2x2) and T (x+ x2) both lie in U . We have

T (1−2x2) = 3+3x−3x2 = 3(1−2x2)+3(x+ x2)
T (x+ x2) =−1+2x2 =−(1−2x2)

}

(∗)

So both T (1−2x2) and T (x+ x2), so U is T -invariant. To get a block triangular matrix for T

extend the basis
{

1−2x2, x+ x2
}

of U to a basis B of V in any way at all, say

B =
{

1−2x2, x+ x2, x2
}
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Then, using (∗), we have

MB(T ) =
[

CB

[

T (1−2x2)
]

CB

[

T (x+ x2)
]

CB

[

T (x2)
] ]

=

[

3 −1 1
3 0 1

0 0 3

]

where the last column is because T (x2) = 1+ x+2x2 = (1−2x2)+(x+ x2)+3(x2). Finally,

cT (x) =

∣

∣

∣

∣

x−3 1 −1

−3 x −1

0 0 x−3

∣

∣

∣

∣

= (x−3)
∣

∣

∣

x−3 1

−3 x

∣

∣

∣
= (x−3)(x2−3x+3)

9. b. Algebraic Solution. If U is TA-invariant and U 6= {0}, U 6= R2, then dim U = 1. Thus U = Ru

where u 6= 0. Thus TA(u) is in Ru (because U is T -invariant), say TA(u) = ru, that is Au = ru,

whence (rI−A)u = 0. But

det (rI−A) =
∣

∣

∣

r− cosθ −sinθ
sinθ r− cosθ

∣

∣

∣
= (r− cosθ)2 + sin2 θ 6= 0 as sinθ 6= 0(0 < θ < π)

Hence, (rI−A)u = 0 implies u = 0, a contradiction. So U = 0 or U = R2.

Geometric Solution. If we view R
2 as the euclidean plane, and U 6= 0, R2, is a TA-invariant

subspace, then U must have dimension 1 and so be a line through the origin (Example 5.2.13).

But TA is rotation through θ counterclockwise about the origin (Theorem 2.6.4), so it will move

the line U unless θ = 0 or θ = π , contrary to our assumption that 0 < θ < π . So no such line

U can exist.

10. b. If v is in U ∩W , then v = (a, a, b, b) = (c, d, c, −d) for some a, b, c, d. Hence a = c, a = d,

b = c and b = −d. It follows that d = −d so a = b = c = d = 0; that is U ∩W = {0}. To see

that R4 =U +W , we have (after solving systems of equations)

(1, 0, 0, 0) = 1
2(1, 1, −1, −1)+ 1

2(1, −1, 1, 1) is in U +W

(0, 1, 0, 0) = 1
2(1, 1, 1, 1)+ 1

2(−1, 1, −1, −1) is in U +W

(0, 0, 1, 0) = 1
2(−1, −1, 1, 1)+ 1

2(1, 1, 1, −1) is in U +W

(0, 0, 0, 1) = 1
2 (1, 1, 1, 1)+ 1

2(−1, −1, −1, 1) is in U +W

Hence, R4 =U +W . A simpler argument is as follows. As dim U = 2 = dim W , the subspace

U ⊕W has dimension 2+2 = 4 by Theorem 9.3.6. Hence U⊕W = R
4 because dim R

4 = 4.

d. If A is in U ∩W , then A =
[

a a

b b

]

=
[

c d

−c d

]

for some a, b, c, d, whence a = b = c = d = 0.

Thus, U ∩W = {0}. Thus, by Theorem 9.3.7

dim (U⊕W ) = dim U + dim W = 2+2 = 4

Since dim M22 = 4, we have U⊕W = M22. Again, as in (b), we could show directly that each

of
[

1 0

0 0

]

,
[

0 1

0 0

]

,
[

0 0

1 0

]

,
[

0 0

0 1

]

is in U +W .

14. First U is a subspace because 0E = 0, and AE = A and A1E = A1 implies that

(A+A1)E = AE +A1E = A+A1 and (rA)E = r(AE) = rA for all r ∈ R
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Similarly, W is a subspace because 0E = 0, and BE = 0 = B1E implies that we have (B+B1)E =
BE +B1E = 0+0 = 0 and (rB)E = r(BE) = r0 = 0 for all r ∈ R.

These calculations hold for any matrix E; but if E2 = E we get Mnn =U ⊕W . First U ∩W = {0}
because X in U ∩W implies X = XE because X is in U and XE = 0 because X is in W , so X =
XE = 0. To prove that U +W = Mnn let X be any matrix in Mnn. Then:

XE is in U because (XE)E = XE2 = XE

X−XE is in W because (X−XE)E = XE−XE2 = XE−XE = 0.

Hence X = XE +(X −XE) where XE is in U and (X −XE) is in W ; that is X is in U +W . Thus

Mnn =U +W .

17. By Theorem 6.4.5, we have dim (U ∩W )+ dim (U +W ) = dim U + dim W = n by hypothesis. So

if U +W =V then dim (U +W ) = n, whence dim (U ∩W ) = 0. This means that U ∩W = {0} so,

since U +W =V , we have proved that V =U⊕W .

18. b. First, ker TA is TA-invariant by Exercise 2. Now suppose that U is any TA-invariant subspace,

U 6= 0, U 6= R2. Then dim U = 1, say U = Rp, p 6= 0. Thus p is in U so Ap = TA(p) is in

U , say Ap = λp where λ is a real number. Applying A again, we get A2p = λAp = λ 2p. But

A2 = 0, so this gives 0 = λ 2p. Thus λ 2 = 0, whence λ = 0 and Ap = λp = 0. Hence p is in

ker TA, whence U ⊆ ker TA. But dim U = 1 = dim (ker TA), so U = ker TA.

20. Let B1 be a basis of U and extend it (using Theorem 6.4.1) to a basis B of V . Then MB(T ) =
[

MB1
(T ) Y

0 Z

]

by Theorem 9.3.1. Since we are writing T1 for the restriction of T to U , MB1
(T ) =

MB1
(T1). Hence,

cT (x) = det [xI−MB(T )] = det
[

xI−MB1
(T ) −x

0 xI−Z

]

= det [xI−MB1
(T1)] det [xI−Z] = cT1

(x) ·q(x)

where q(x) = det [xI−Z].

22. b. We have T : P3→ P3 given by T [p(x)] = p(−x) for all p(x) in P3. We leave it to the reader to

verify that T is a linear operator. We have

T 2[p(x)] = T {T [p(x)]}= T [p(−x)] = p(−(−x)) = p(x) = 1P3
(p(x))

Hence, T 2 = 1P3
. As in Example 9.3.10, let

U1 = {p(x) | T [p(x)] = p(x)}= {p(x) | p(−x) = p(x)}
U2 = {p(x) | T [p(x)] =−p(x)}= {p(x) | p(−x) =−p(x)}

These are the subspaces of even and odd polynomials in P3, respectively, and have bases

B1 = {1, x2} and B2 = {x, x3}. Hence, use the ordered basis B = {1, x2, x, x3} of P3. Then

MB(T ) =
[

MB1
(T ) 0

0 MB2
(T )

]

=
[

I2 0

0 −I2

]

as in Example 9.3.10. More explicitly,

MB(T ) =
[

CB[T (1)] CB[T (x
2)] CB[T (x)] CB[T (x

3)]
]
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=
[

CB(1) CB(x
2) CB(−x) CB(−x3)

]

=

[

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

]

=
[

I2 0

0 −I2

]

d. Here T 2(a, b, c) = [−(−a+2b+c)+2((b+c)+(−c), (b+c)−c), −(−c)] = (a, b, c), so

T 2 = 2R3 .

Note that T (1, 1, 0)= (1, 1, 0), while T (1, 0, 0)=−(1, 0, 0) and T (0, 1, −2)=−(0, 1, −2).
Let B1 = {(1, 1, 0)} and B2 = {(1, 0, 0), (0, −1, 2)}. These are bases of U1 =R(1, 1, 0) and

U2 =R(1, 0, 0)+R(0, 1, −2), respectively. So if we take B= {(1, 1, 0), (1, 0, 0), (0, −1, 2)}
then MB1

(T )= [1] and MB2
(T )=

[

−1 0

0 −1

]

. Hence MB(T )=
[

MB1
(T ) 0

0 MB2
(T )

]

=

[

1 0 0

0 −1 0

0 0 −1

]

.

23. b. Given v, T [v−T (v)] = T (v)−T 2(v) = T (v)−T (v) = 0, so v−T (v) lies in ker T . Hence

v = (v− T (v))+ T (v) is in ker T + im T for all v, that is V = ker T + im T . If v lies in

ker T ∩ im T , write v= T (w), w in V . Then 0= T (v)= T 2(w)= T (w)= v, so ker T ∩ im T =
0.

25. b. We first verify that T 2 = T . Given (a, b, c) in R3, we have

T 2(a, b, c) = T (a+2b, 0, 4b+ c) = (a+2b, 0, 4b+ c) = T (a, b, c)

Hence T 2 = T . As in the preceding exercise, write

U1 = {v | T (v) = v} and U2 = {v | T (v) = 0}= ker (T ).

Then we claim that R3 =U1⊕U2. To show R
3 =U1+U2, observe that v = T (v)+ [v−T (v)]

for each v in R3, and T (v) is in U1 [because T [T (v)] = T 2(v) = T (v)] while v−T (v) is in U2

[because T [v−T (v)] = T (v)−T 2(v) = 0]. Finally we show that U1∩U2 = {0}. For if v is in

U1∩U2 then T (v) = v and T (v) = 0 so certainly v = 0.

Next, we show that U1 and U2 are T -invariant. If v is in U1 then T (v) is also in U1 because

T [T (v)] = T 2(v) = T (v). Similarly U2 is T -invariant because, if v is in U2, that is T (v) = 0,

then T [T (v)] = T 2(v) = R(v) = 0; that is T (v) is also in U2.

It is clear that T (a, b, c) = (a, b, c) if and only if b = 0; that is U1 = {(a, 0, c) | b, c in R},
so B1 = {(1, 0, 0), (0, 0, 1)} is a basis of U1. Since T (v) = v for all v in U1 the restriction of

T to U1 is the identity transformation on U1, and so has matrix I2.

Similarly, T (a, b, c) = (0, 0, 0) holds if and only if a = −2b and c = −4b for some b, so

U1 = R(2, −1, 4) and B2 = {(2, −1, 4)} is a basis of U2. Clearly the restriction of T to U2 is

the zero transformation, and so has matrix 02 — a 1×1 matrix.

Finally then, B = B1∪B2 = {(1, 0, 0), (0, 0, 1), (2, −1, 4)} is a basis of R3 (since we have

shown that R3 =U1⊕U2), so T has matrix
[

MB1
(T ) 0

0 MB2
(T )

]

=
[

I2 0

0 01

]

.

29. b. We have T 2
f , z[v] = Tf , z[Tf , z(v)] = Tf , z[ f (v)z] = f [ f (v)z]z = f (v) f (z)z. This expression

equals Tf , z(v) = f (v)z for all v if and only if

f (v)(z− f (z)z) = 0



150 Change of Basis

for all v. Since f 6= 0, f (v) 6= 0 for some v, so this holds if and only if

z = f (z)z

As z 6= 0, this holds if and only if f (z) = 1.

30. b. Let λ be an eigenvalue of T . If A is in Eλ (T ) then T (A) = λA; that is UA = λA. If we write

A =
[

p1 p2 · · · pn

]

in terms of its columns p1, p2, . . . , pn, then UA = λA becomes

U
[

p1 p2 · · · pn

]

= λ
[

p1 p2 · · · pn

]

[

Up1 Up2 · · · Upn

]

=
[

λp1 λp2 · · · λpn

]

Comparing columns gives Upi = λpi for each i; that is pi is in Eλ (U) for each i. Conversely,

if p1, p2, . . . , pn are all in Eλ (U) then Upi = λpi for each i, so T (A) = UA = λA as above.

Thus A is in Eλ (T ).
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10.1 Inner Products and Norms

1. b. P5 fails: 〈(0, 1, 0), (0, 1, 0)〉=−1

The other axioms hold. Write x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3).
P1 holds: 〈x, y〉= x1y1− x2y2 + x3y3 is real for all x, y in Rn.

P2 holds: 〈x, y〉= x1y1− x2y2 + x3y3 = y1x1− y2x2 + y3x3 = 〈y, x〉
P3 holds: 〈x+y, z〉 = (x1 + y1)z1− (x2 + y2)z2 +(x3 + y3)z3

= (x1z1− x2z2 + x3z3)+(y1z1− y2z2 + y3z3) = 〈x, z〉+ 〈y, z〉
P4 holds: 〈rx, y〉= (rx1)y1− (rx2)y2 +(rx3)y3 = r(x1y1− x2y2 + x3y3) = r〈x, y〉

d. P5 fails: 〈x−1, x−1〉= 0 ·0 = 0

P1 holds: 〈p(x), q(x)〉= p(1)q(1) is real.

P2 holds: 〈p(x), q(x)〉= p(1)q(1) = q(1)p(1) = 〈q(x), p(x)〉
P3 holds: 〈p(x)+ r(x), q(x)〉 = [p(1)+ r(1)]q(1) = p(1)q(1)+ r(1)q(1)

= 〈p(x), q(x)〉+ 〈r(x), q(x)〉
P4 holds: 〈rp(x), q(x)〉= [rp(1)]q(1) = r[p(1)q(1)] = r〈p(x), q(x)〉

f. P5 fails: Here 〈 f , f 〉= 2 f (0) f (1) for any f , so if f (x) = x− 1
2 then 〈 f , f 〉=−1

2 .

P1 holds: 〈 f , g〉= f (1)g(0)+ f (0)g(1) is real.

P2 holds: 〈 f , g〉= f (1)g(0)+ f (0)g(1) = g(1) f (0)+g(0) f (1) = 〈g, f 〉
P3 holds: 〈 f +h, g〉 = ( f +h)(1)g(0)+( f +h)(0)g(1)

= [ f (1)+h(1)]g(0)+ [ f (0)+h(0)]g(1)
= [ f (1)g(0)+ f (0)g(1)]+ [h(1)g(0)+h(0)g(1)]= 〈 f , g〉+ 〈h, g〉

P4 holds: 〈r f , h〉 = (r f )(1)g(0)+(r f )(0)g(1)= [r · f (1)]g(0)+ [r f (0)]g(1)
= r[ f (1)g(0)+ f (0)g(1)] = r〈 f , g〉

2. If 〈 , 〉 denotes the inner product on V , then 〈u1, u2〉 is a real number for all u1 and u2 in U .

Moreover, the axioms P1−P5 hold for the space U because they hold for V and U is a subset of V .

So 〈 , 〉 is an inner product for the vector space U .

3. b. ‖ f‖2 =
∫ π
−π cos2 xdx =

∫ π
−π

1
2 [1+ cos(2x)]dx = 1

2

[

x+ 1
2 sin(2x)

]π

−π
= π . Hence f̂ = 1√

π
f is a

unit vector.

d. ‖v‖2 = 〈v, v〉= vT
[

1 −1

−1 2

]

v = [ 3 −1 ]
[

1 −1

−1 2

][

3

−1

]

= 17.

Hence 1
‖v‖v = 1√

17

[

3

−1

]

is a unit vector in this space.

4. b. d(u, v) = ‖u−v‖= ‖(1, 2, −1, 2)− (2, 1, −1, 3)‖= ‖(−1, 1, 0, −1)‖=
√

3.
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d. ‖ f −g‖2 =
∫ π
−π(1− cosx)2 dx =

∫ π
−π

[

3
2 −2cosx+ 1

2 cos(2x)
]

dx because we have cos2(x) =
1
2 [1+ cos(2x)]. Hence ‖ f −g‖2 =

[

3
2x−2sin(x)+ 1

4 sin(2x)
]π

−π
= 3

2 [π− (−π)] = 3π . Hence

d( f , g) =
√

3π .

8. The space Dn uses pointwise addition and scalar multiplication:

( f +g)(k) = f (k)+g(k) and (r f )(k) = r f (k)

for all k = 1, 2, . . . , n.

P1. 〈 f , g〉= f (1)g(1)+ f (2)g(2)+ · · ·+ f (n)g(n) is real.

P2. 〈 f , g〉 = f (1)g(1)+ f (2)g(2)+ · · ·+ f (n)g(n)) = g(1) f (1)+g(2) f (2)+ · · ·+g(n) f (n)
= 〈g, f 〉

P3. 〈 f +h, g〉 = ( f +h)(1)g(1)+( f +h)(2)g(2)+ · · ·+( f +h)(n)g(n)
= [ f (1)+h(1)]g(1)+ [ f (2)+h(2)]g(2)+ · · ·+[ f (n)+h(n)]g(n)
= [ f (1)g(1)+ f (2)g(2)+ · · ·+ f (n)g(n)]+ [h(1)g(1)+h(2)g(2)+ · · ·+h(n)g(n)]
= 〈 f , g〉+ 〈h, g〉

P4. 〈r f , g〉 = (r f )(1)g(1)+(r f )(2)g(2)+ · · ·+(r f )(n)g(n)
= [r f (1)]g(1)+ [r f (2)]g(2)+ · · ·+[r f (n)]g(n)
= r[ f (1)g(1)+ f (2)g(2)+ · · ·+ f (n)g(n)] = r〈 f , g〉

P5. 〈 f , f 〉= f (1)2+ f (2)2 + · · ·+ f (n)2 ≥ 0 for all f . If 〈 f , f 〉= 0 then

f (1) = f (2) = · · ·= f (n) = 0 (as the f (k) are real numbers) so f = 0

12. b. We need only verify P5. [P1−P4 hold for any symmetric matrix A by (the discussion preced-

ing) Theorem 10.1.2.] If v =
[

v1

v2

]

:

〈v, v〉= vT Av =
[

v1 v2

]

[

5 −3

−3 2

][

v1

v2

]

= 5v2
1−6v1v2 +2v2

2

= 5
[

v2
1− 6

5v1v2 +
9

25v2
2

]

− 9
5v2

2 +2v2
2

= 5
(

v1− 3
5v2

)2
+ 1

5v2
2

= 1
5

[

(5v1−3v2)
2 + v2

2

]

Thus, 〈v, v〉 ≥ 0 for all v; and 〈v, v〉= 0 if and only if 5v1−3v2 = 0 = v2; that is if and only

if v1 = v2 = 0 (i.e. v = 0). So P5 holds.

d. As in (b), consider v =
[

v1

v2

]

.

〈v, v〉=
[

v1 v2

]

[

3 4

4 6

][

v1

v2

]

= 3v2
1 +8v1v2 +6v2

2

= 3(v2
1 +

8
3v1v2 +

16
9 v2

2)− 16
3 v2

2 +6v2
2

= 3
(

v1 +
4
3v2

)2
+ 2

3v2
2

= 1
3

[

(3v1 +4v2)
2 +2v2

2

]

Thus, 〈v, v〉 ≥ 0 for all v; and (v, v) = 0 if and only if 3v1 +4v2 = 0 = v2; that is if and only

if v = 0. Hence P5 holds. The other axioms hold because A is symmetric.
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13. b. If A =
[

a11 a12

a21 a22

]

, then ai j is the coefficient of viw j in 〈v, w〉. Here a11 = 1, a12 =−1 = a21,

and a22 = 2. Thus, A =
[

1 −1

−1 2

]

. Note that a12 = a21, so A is symmetric.

d. As in (b): A =

[

1 0 −2
0 2 0

−2 0 5

]

.

14. As in the hint, write 〈x, y〉 = xT Ay. Since A is symmetric, this satisfies axioms P1, P2, P3 and P4

for an inner product on Rn—(and only P2 requires that A be symmetric). Then it follows that

0 = 〈x+y, x+y〉= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉= 2〈x, y〉 for all x, y in R
n.

Hence 〈x, y〉= 0 for all x and y in Rn. But if e j denotes column j of In, then 〈ei, e j〉= eT
i Ae j is the

(i, j)-entry of A. It follows that A = 0.

16. b. 〈u−2v−w, 3w−v〉 = 3〈u, w〉−6〈v, w〉−3〈w, w〉−〈u, v〉+2〈v, v〉+ 〈w, v〉
= 3〈u, w〉−5〈v, w〉−3‖w‖2−〈u, v〉+2‖v‖2

= 3 ·0−5 ·3−3 ·3− (−1)+2 ·4
= −15

20. (1) 〈u, v+w〉 P2
= 〈v+w, u〉 P3

= 〈v, u〉+ 〈w, u〉 P2
= 〈u, v〉+ 〈u, w〉

(2) 〈v, rw〉 P2
= 〈rw, v〉 P4

= r〈w, v〉 P2
= r〈v, w〉

(3) By (1): 〈v, 0〉= 〈v, 0+0〉 (1)= 〈v, 0〉+ 〈v, 0〉. Hence 〈v, 0〉= 0. Now 〈0, v〉= 0 by P2.

(4) If v = 0 then 〈v, v〉= 〈0, 0〉= 0 by (3). If 〈v, v〉= 0 then it is impossible that v 6= 0 by P5, so

v = 0.

22. b. 〈3u−4v, 5u+v〉 = 15〈u, u〉+3〈u, v〉−20〈v, u〉−4〈v, v〉
= 15‖u‖2−17〈u, v〉−4‖v‖2

d. ‖u+v‖2 = 〈u+v, u+v〉 = 〈u, u〉+u, v〉+ 〈v, u〉+4〈v, v〉
= ‖u‖2 +2〈u, v〉+‖v‖2

26. b. Here

W =
{

w | w in R
3 and v ·w = 0

}

= {(x, y, z) | x− y+2z = 0}
= {(s, s+2t, t) | s, t in R}
= span B

where B = {(1, 1, 0), (0, 2, 1)}. Then B is the desired basis because B is independent

[In fact, if s(1, 1, 0)+ t(0, 2, 1) = (s, s+2t, t) = (0, 0, 0) then s = t = 0].

28. Write u = v−w; we show that u = 0. We are given that

〈u, vi〉= 〈v−w, vi〉= 〈v, vi〉−〈w, vi〉= 0

for each i. As V = span {v1, . . . , vn}, write u = r1v1 + · · ·+ rnvn, ri in R. Then

‖u‖2 = 〈u, u〉= 〈u, r1v1 + · · ·+ rnvn〉
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= r1〈u, v1)+ · · ·+ rn〈u, vn〉
= r1 ·0+ · · ·+ rn ·0
= 0

Thus, ‖u‖= 0, so u = 0.

29. b. If u = (cosθ , sinθ) in R2 (with the dot product), then ‖u‖ = 1. If v = (x, y) the Schwarz

inequality (Theorem 10.1.4) gives

〈u, v〉2 ≤ ‖u‖2‖v‖2 ≤ 1 · ‖v‖2 = ‖v‖2

This is what we wanted.

10.2 Orthogonal Sets of Vectors

1. b. B is an orthogonal set because (writing f1 =

[

1

1

1

]

, f2 =

[

−1

0

1

]

and f3 =

[

1

−6

1

]

)

〈e1, e2〉=
[

1 1 1
]

[

2 0 1

0 1 0

1 0 2

][

−1

0

1

]

=
[

3 1 3
]

[

−1

0

1

]

= 0

〈f1, f3〉=
[

1 1 1
]

[

2 0 1
0 1 0

1 0 2

][

1
−6

1

]

=
[

3 1 3
]

[

1
−6

1

]

= 0

〈f2, f3〉=
[

−1 0 1
]

[

2 0 1

0 1 0
1 0 2

][

1

−6
1

]

=
[

−1 0 1
]

[

1

−6
1

]

= 0

Thus, B is an orthogonal basis of V and the expansion theorem gives

v = 〈v, f1〉
‖f1‖2 f1 +

〈v, f2〉
‖f2‖2 f2 +

〈v, f3〉
‖f3‖2 f3

= 3a+b+3c
7 e1 +

c−a
2 e2 +

3a−6b+3c
42 e3

= 1
14 [(6a+2b+6c)e1 +(7c−7a)e2 +(a−2b+ c)e3]

d. Observe first that
〈[

a b

c d

]

,
[

a′ b′

c′ d′

]〉

= aa′+bb′+cc′+dd′. Now write B= {f1, f2, f3, f4}

where f1 =
[

1 0

0 1

]

, f2 =
[

1 0

0 −1

]

, f3 =
[

0 1

1 0

]

, f4 =
[

0 1

−1 0

]

. Then B is orthogonal be-

cause

〈f1, f2〉= 1+0+0−1 = 0 〈f2, f3〉= 0+0+0+0 = 0

〈f1, f3〉= 0+0+0+0 = 0 〈f2, f4〉= 0+0+0+0 = 0

〈f1, f4〉= 0+0+0+0 = 0 〈f3, f4〉= 0+1+0+−1 = 0

The expansion theorem gives

v = 〈v, f1〉
‖f1‖2 f1 +

〈v, f2〉
‖f2‖2 f2 +

〈v, f3〉
‖f3‖2 f3 +

〈v, f4〉
‖f4‖2 f4

=
(

a+d
2

)

f1 +
(

a−d
2

)

f2 +
(

b+c
2

)

f3 +
(

b−c
2

)

f4
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2. b. Write b1 = (1, 1, 1), b2 = (1, −1, 1), b3 = (1, 1, 0). Note that in the Gram-Schmidt algorithm

we may multiply each ei by a nonzero constant and not change the subsequent ei. This avoids

fractions.

f1 = b1 = (1, 1, 1)

f2 = b2− 〈b2, e1〉
‖e1‖2 f1

= (1, −1, 1)− 4
6(1, 1, 1)

= 1
3(1, −5, 1); use e3 = (1, −5, 1) with no loss of generality

f3 = b3− 〈b3, f1〉
‖e1‖2 f1− 〈b3, f2〉

‖e2‖2 f2

= (1, 1, 0)− 3
6(1, 1, 1)− (−3)

(30) · (1, −5, 1)

= 1
10 [(10, 10, 9)− (5, 5, 5)+(1, −5, 1)]

= 1
5(3, 0, −2); use f3 = (3, 0, −2) with no loss of generality

So the orthogonal basis is {(1, 1, 1), (1, −5, 1), (3, 0, −2)}.

3. b. Note that
〈[

a b

c d

]

,
[

a′ b′

c′ d′

]〉

= aa′+bb′+ cc′+dd′. For convenience write

b1 =
[

1 1

0 1

]

, b2 =
[

1 0

1 1

]

, b3 =
[

1 0

0 1

]

, b4 =
[

1 0

0 0

]

. Then:

f1 = b1 =
[

1 1

0 1

]

f2 = b2− 〈b2, f1〉
‖f1‖2 f1

=
[

1 0

1 1

]

− 2
3

[

1 1

0 1

]

= 1
3

[

1 −2

3 1

]

For the rest of the algorithm, use f2 =
[

1 −2

3 1

]

, the result is the same.

f3 = b3− 〈b3, f1〉
‖f1‖2 f1− 〈b3, f2〉

‖f2‖2 f2

=
[

1 0

0 1

]

− 2
3

[

1 1

0 1

]

− 2
15

[

1 −2

3 1

]

= 1
5

[

1 −2

−2 1

]

Now use f4 =
[

1 −2
−2 1

]

, the results are unchanged.

f4 = b4− 〈b4, f1〉
‖f1‖2 f1− 〈b4, f2〉

‖f2‖2 f2− 〈b4, f3〉
‖f3‖2 f3

=
[

1 0

0 0

]

− 1
3

[

1 1

0 1

]

− 1
15

[

1 −2

3 1

]

− 1
10

[

1 −2

−2 1

]

= 1
2

[

1 0

0 −1

]

Use f4 =
[

1 0

0 −1

]

for convenience. Hence, finally, the Gram-Schmidt algorithm gives the

orthogonal basis
{[

1 1
0 1

]

,
[

1 −2
3 1

]

,
[

1 −2
−2 1

]

,
[

1 0
0 −1

]}

.



156 Inner Product Spaces

4. b. f1 = 1

f2 = x− 〈x, f1〉
‖f1‖2 f1 = x− 2

2 ·1 = x−1

f3 = x2− 〈x
2, f1〉
‖f1‖2 f1− 〈x

2, f2〉
‖f2‖2 f2 = x2− 8/3

2 ·1−
4/3
2/3
· (x−1) = x2−2x+ 2

3 .

6. b.
[

x y z w
]

is in U⊥ if and only if

x+ y =
[

x y z w
]

·
[

1 1 0 0
]

= 0

Thus y =−x and

U⊥ =
{[

x −x z w
]

| x, z, w in R
}

= span
{[

1 −1 0 0
]

,
[

0 0 1 0
]

,
[

0 0 0 1
]}

Hence dim U⊥ = 3 and U = 1.

d. If p(x) = a+bx+ cx2, p is in U⊥ if and only if

0 = 〈p, x〉=
∫ 1

0
(a+bx+ cx2)xdx = a

2 +
b
3 +

c
4

Thus a = 2s+ t, b = −3s, c = −2t where s and t are in R, so p(x) = (2s+ t)− 3sx− 2tx2.

Hence, U⊥ = span
{

2−3x, 1−2x2
}

and dim U⊥ = 2, dim U = 1.

f.

[

a b

c d

]

is in U if and only if

0 =
〈[

a b

c d

]

,
[

1 1

0 0

]〉

= a+b

0 =
〈[

a b

c d

]

,
[

1 0

1 0

]〉

= a+ c

0 =
〈[

a b

c d

]

,
[

1 0
1 1

]〉

= a+ c+d

The solution d = 0, b = c = −a, so U⊥ =
{[

a −a

−a 0

]∣

∣

∣
a in R

}

= span
{[

1 −1

−1 0

]}

. Thus

dim U⊥ = 1 and dim U = 3.

7. b. Write b1 =
[

1 0
0 1

]

, b2 =
[

1 1
1 −1

]

, and b3 =
[

1 1
0 0

]

. Then {b1, b2, b3} is independent but

not orthogonal. The Gram-Schmidt algorithm gives

f1 = b1 =
[

1 0

0 1

]

f2 = b2− 〈b2, f1〉
‖f1‖2 f1 =

[

1 1
1 −1

]

− 0
2

[

1 0
0 1

]

=
[

1 1
1 −1

]

f3 = b3− 〈b3, f1〉
‖f1‖2 f1− 〈b3, f2〉

‖f2‖2 f2

=
[

1 1

0 0

]

− 1
2

[

1 0

0 1

]

− 2
4

[

1 1

1 −1

]

= 1
2

[

0 1

−1 0

]
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If E ′3 =
[

0 1

−1 0

]

then
{

E1, E2, E ′3
}

is an orthogonal basis of U . If A =
[

2 1

3 2

]

then

projU A =
〈A, E1〉
‖E1‖2 E1 +

〈A, E2〉
‖E2‖2 E2 +

〈A, E ′3〉
‖E ′3‖2 E ′3

= 4
2

[

1 0

0 1

]

+ 4
4

[

1 1

1 −1

]

+ −2
2

[

0 1

−1 0

]

=
[

3 0

2 1

]

is the vector in U closest to A.

8. b. We are given U = span{1, 1+ x2}, and applying the Gram-Schmidt algorithm gives an or-

thogonal basis consisting of 1 and

(1+ x2)− 〈1+x2, 1〉
‖1‖2 1 = (1+ x2)− (1+02)1+(1+12)1+(1+22)1

1+1+1 =−5
3 + x2

We use U = span{1, 5−3x2}. Then Theorem 10.2.8 asserts that the closest vector in U to x

is

projU x =
〈x, 1〉
‖1‖2 1+

〈x, 5−3x2〉
‖5−3x2‖2 (5−3x2) = 3

3 +
−12
78 (5−3x2) = 3

13(1+2x2)

Here, for example 〈x, 5− 3x2〉 = 0(5)+ 1(2)+ 2(−7) = −12, and the other calculations are

similar.

9. b. {1, 2x−1} is an orthogonal basis of U because 〈1, 2x−1〉= ∫ 1
0 (2x−1)dx = 0. Thus

projU (x2 +1) =
〈x2+1, 1〉
‖1‖2 1+

〈x2+1, 2x−1〉
‖2x−1‖2 (2x−1)

=
3/4
1 1+

1/6
1/3

(2x−1)

= x+ 5
6

Hence, x2 +1 = (x+ 5
6)+ (x2− x+ 1

6) is the required decomposition. Check: x2− x+ 1
6 is in

U⊥ because

〈x2− x+ 1
6 , 1〉=

∫ 1

0

(

x2− x+ 1
6

)

dx = 0

〈x2− x+ 1
6 , 2x−1〉=

∫ 1

0

(

x2− x+ 1
6

)

(2x−1)dx = 0

11. b. We have 〈v+w, v−w〉 = 〈v, v〉− 〈v, w〉+ 〈w, v〉− 〈u, u〉 = ‖v‖2−‖w‖2. But this means

that 〈v+w, v−u〉= 0 if and only if ‖v‖= ‖w‖. This is what we wanted.

14. b. If v is in U⊥ then 〈v, u〉 = 0 for all u in U . In particular, 〈v, ui〉 = 0 for 1≤ i ≤ n, so v is in

{u1, . . . , um}⊥. This shows that U⊥ ⊆ {u1, . . . , um}⊥. Conversely, if v is in {u1, . . . , um}⊥
then 〈v, ui〉= 0 for each i. If u is in U , write u = r1u1 + · · ·+ rmum, ri in R. Then

〈v, u〉= 〈v, r1u1 + · · ·+ rmum〉
= r1〈v, u1〉+ · · ·+ rm〈v, um〉
= r1 ·0+ · · ·+ rm ·0
= 0

As u was arbitrary in U , this shows that v is in U⊥; that is {u1, . . . , um}⊥ ⊆U⊥.
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18. b. Write e1 = (3, −2, 5) and e2 = (−1, 1, 1), write B = {e1, e2}, and write U = span B. Then

B is orthogonal and so is an orthogonal basis of U . Thus if v = (−5, 4, −3) then

projU v = v·e1

‖e1‖2 e1 +
v·e2

‖e2‖2 e2

= −38
38 (3, −2, 5)+ 6

3(−1, 1, 1)

= (−5, 4, −3)

= v

Thus, v is in U . However, if v1 = (−1, 0, 2) then

projU v1 =
v1·e1

‖e2‖2 e1 +
v·e2

‖e2‖2 e2

= 7
38(3, −2, 5)+ 3

3(−1, 1, 1)

= 1
38(−17, 24, 73)

As v1 6= projU v1, v1 is not in U by (a).

19. b. The plane is U = {x | x · n = 0}, so span
{

n×w, w−
(

n·w
‖n‖2

)

n
}

⊆ U . Since dim U = 2,

it suffices to show that B =
{

n×w, w−
(

n·w
‖n‖2

)

n
}

is independent. These two vectors are

orthogonal (because (n×w) ·n= 0= (n×w) ·w). Hence B is orthogonal (and so independent)

provided each of the vectors is nonzero. But: n×w 6= 0 because n and w are not parallel, and

w− n·w
‖n‖2 n is nonzero because w and n are not parallel, and n · (w− n·w

‖n‖2 n) = 0.

20. b. CE(bi) is column i of P. Since CE(bi) ·CE(b j) = 〈bi, b j〉 by (a), the result follows.

23. b. Let V be an inner product space, and let U be a subspace of V . If U = span{f1, . . . , fm}, then

projU v =
m

∑
i=1

〈v, fi〉
‖fi‖2 fi by Theorem 10.2.7 so ‖ projU v‖2 =

m

∑
i=1

〈v, fi〉2
‖fi‖2 by Pythagoras’ theorem.

So it suffices to show that ‖ projU v‖2 ≤ ‖v‖2.

Given v in V , write v = u+w where u = projU v is in U and w is in U⊥. Since u and w are

orthogonal, Pythagoras’ theorem (again) gives

‖v‖2 = ‖u‖2 +‖w‖2 ≥ ‖u‖2 = ‖ projU v‖2

This is what we wanted.

10.3 Orthogonal Diagonalization

1. b. If B = {E1, E2, E3, E4} where E1 =
[

1 0

0 0

]

, E2 =
[

0 1

0 0

]

, E3 =
[

0 0

1 0

]

and E4 =
[

0 0

0 1

]

, then B is an orthonormal basis for M22 and

T (E1) =
[

−1 0
1 0

]

=−E1 +E3
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T (E2) =
[

0 −1

0 1

]

=−E2 +E4

T (E3) =
[

1 0

2 0

]

= E1 +2E3

T (E4) =
[

0 1

0 2

]

= E2 +2E4

Hence,

MB(T ) =
[

CB[T (E1)] CB[T (E2)] CB[T (E3)] CB[T (E4)]
]

=

[ −1 0 1 0

0 −1 0 1

1 0 2 0

0 1 0 2

]

As MB(T ) is symmetric, T is a symmetric operator.

4. b. If T is symmetric then 〈v, T (w)〉= 〈T (v), w〉 holds for all v and w in V . Given r in R:

〈v, (rT )(w)〉= 〈v, rT (w)〉= r〈v, T (w)〉= r〈T (v), w〉= 〈rT (v), w〉= 〈(rT )(v), w〉

for all v and w in V . This shows that rT is symmetric.

d. Given v and w, write T−1(v) = v1 and T−1(w) = w1. Then

〈T−1(v), w〉= 〈v1, T (w1)〉= 〈T (v1), w1〉= 〈v, T−1(w)〉

This shows that T−1 is a symmetric operator.

5. b. If E = {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} is the standard basis of R3:

ME(T ) =
[

CE [T (e1)] CE [T (e2)] CE [T (e3)]
]

=
[

CE(7, −1, 0) CE(−1, 7, 0) CE(0, 0, 2)
]

=

[

7 −1 0

−1 7 0

0 0 2

]

Thus, cT (x) =

∣

∣

∣

∣

x−7 1 0

1 x−7 0

0 0 x−2

∣

∣

∣

∣

= (x−6)(x−8)(x−2) so the eigenvalues are λ1 = 6, λ2 = 8,

and λ3 = 2, (real as MB0
(T ) is symmetric). Corresponding (orthogonal) eigenvectors are x1 =

[

1

1

0

]

, x2 =

[

1

−1

0

]

, and x3 =

[

0

0

1

]

, so

{

1√
2

[

1

1

0

]

, 1√
2

[

1

−1

0

]

,

[

0

0

1

]}

is an orthonormal basis of eigenvectors of ME(T ). These vectors are equal to CE

[

1√
2
(1, 1, 0)

]

,

CE

[

1√
2
(1, −1, 0)

]

, and CE [(0, 0, 1)] respectively, so

{

1√
2
(1, 1, 0), 1√

2
(1, −1, 0), (0, 0, 1)

}

is an orthonormal basis of eigenvectors of T .
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d. If B0 =
{

1, x, x2
}

then

MB0
(T ) =

[

CB0
[T (1)] CB0

[T (x)] CB0
[T (x2)]

]

=
[

CB0
(−1+ x2) CB0

(3x) CB0
(1− x2)

]

=

[

−1 0 1

0 3 0

1 0 −1

]

Hence, cT (x)=

∣

∣

∣

∣

x+1 0 −1

0 x−3 0

−1 0 x+1

∣

∣

∣

∣

= x(x−3)(x+2) so the (real) eigenvalues are λ1 = 3, λ2 = 0,

λ3 = −2. Corresponding (orthogonal) eigenvectors are x1 =

[

0
1

0

]

, x2 =

[

1
0

1

]

, x3 =

[

1
0

−1

]

,

so

{[

0

1

0

]

, 1√
2

[

1

0

1

]

, 1√
2

[

1

0

−1

]}

is an orthonormal basis of eigenvectors of MB0
(T ). These

have the form CB0
(x), CB0

[

1√
2
(1+ x2)

]

, and CB0

[

1√
2
(1− x2)

]

, respectively, so

{

x, 1√
2
(1+ x2), 1√

2
(1− x2)

}

is an orthonormal basis of eigenvectors of T .

7. b. Write A =
[

a b

c d

]

and compute:

MB(T ) =
[

CB

(

T
[

1 0

0 0

])

CB

(

T
[

0 0

1 0

])

CB

(

T
[

0 1

0 0

])

CB

(

T
[

0 0

0 1

]) ]

=
[

CB

[

a 0

c 0

]

CB

[

b 0

d 0

]

CB

[

0 a

0 c

]

CB

[

0 b

0 d

] ]

=

[

a b 0 0

c d 0 0

0 0 a b

0 0 c d

]

=
[

A 0

0 A

]

Hence,

cT (x) = det [xI−MB(T )] = det
{[

xI 0

0 xI

]

−
[

A 0

0 A

]}

= det
[

xI−A 0

0 xI−A

]

= det (xI−A) · det (xI−A) = [cA(x)]
2

12. (2) We prove that (1)⇒ (2). If B = {f1, . . . , fn} is an orthonormal basis of V , then MB(T ) = [ai j]
where ai j = 〈fi, T (f j)〉 by Theorem 10.3.2. If (1) holds then a ji = 〈f j, T (fi)〉=−〈T (f j), fi〉=
−〈fi, T (f j)〉=−ai j. Hence [MV (T )]

T =−MV (T ), proving (2).

14. c. We have

MB(T
′) =

[

CB[T
′(f1)] CB[T

′(f2)] · · · CB[T
′(fn)]

]

Hence, column j of MB(T
′) is

CB(T
′(f j)) =





〈f j , T (f1)〉
〈f j , T (f2)〉

.

.

.

〈f j , T (fn)〉





by the definition of T ′. Hence the (i, j)-entry of MB(T
′) is 〈f j, T (fi)〉. But this is the ( j, i)-

entry of MB(T ) by Theorem 10.3.2. Thus, MB(T
′) is the transpose of MB(T ).
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10.4 Isometries

2. b. We have T
[

a

b

]

=
[

−a

−b

]

=
[

−1 0

0 −1

][

a

b

]

so T has matrix
[

−1 0

0 −1

]

, which is orthogonal.

Hence T is an isometry, and det T = 1 so T is a rotation by Theorem 10.4.4. In fact, T

is counterclockwise rotation through π . (Rotation through θ has matrix
[

cosθ −sinθ
sinθ cosθ

]

by

Theorem 2.6.4; see also the discussion following Theorem 10.4.3). This can also be seen

directly from the diagram.

[

a

b

]

T

[

a

b

]

=

[

−a

−b

]

x

y

d. We have T
[

a

b

]

=
[

−b

−a

]

=
[

0 −1

−1 0

][

a

b

]

so T has matrix
[

0 −1

−1 0

]

. This is orthogonal,

so T is an isometry. Moreover, det T = −1 so T is a reflection by Theorem 10.4.4. In fact,

T is reflection in the line y = −x by Theorem 2.6.5. This can also be seen directly from the

diagram.

[

a

b

]

T

[

a

b

]

=

[

−b

−a

]

y =−x

x

y

f. If B0 is the standard basis of R2, then

MB0
(T ) =

[

CB0

(

T
[

1

0

])

CB0

(

T
[

0

1

]) ]

=
[

CB0

(

1√
2

[

1

1

])

CB0

(

1√
2

[

−1

1

]) ]

= 1√
2

[

1 −1
1 1

]
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Hence, det T = 1 so T is a rotation. Indeed, (the discussion following) Theorem 10.4.3 shows

that T is a rotation through an angle θ where cosθ = 1√
2
, sinθ = 1√

2
; that is θ = π

4 .

3. b. T

[

a

b

c

]

= 1
2

[ √
3c−a√
3a+ c

2b

]

= 1
2

[

−1 0
√

3√
3 0 1

0 2 0

][

a

b

c

]

, so T has matrix 1
2

[

−1 0
√

3√
3 0 1

0 2 0

]

. Thus,

cT (x) =

∣

∣

∣

∣

∣

x+ 1
2 0 −

√
3

2

−
√

3
2 x − 1

2

0 −1 x

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

x+ 1
2 0 −

√
3

2

−
√

3
2 0 x2− 1

2

0 −1 x

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

x+ 1
2 −

√
3

2

−
√

3
2 x2− 1

2

∣

∣

∣

∣

= (x−1)
(

x2 + 3
2x+1

)

Hence, we are in (1) of Table 10.1 so T is a rotation about the line Re with direction vector

e =

[

1√
3√
3

]

, where e is an eigenvector corresponding to the eigenvalue 1.

d. T

[

a

b

c

]

=

[

a

−b

−c

]

=

[

1 0 0

0 −1 0

0 0 −1

][

a

b

c

]

, so T has matrix

[

1 0 0

0 −1 0

0 0 −1

]

. This is orthogonal,

so T is an isometry. Since cT (x) = (x− 1)(x+ 1)2, we are in case (4) of Table 10.1. Then

e =

[

1

0

0

]

is an eigenvector corresponding to 1, so T is a rotation of π about the line Re with

direction vector e, that is the x-axis.

f. T

[

a

b

c

]

= 1√
2

[

a+ c

−
√

2b

c−a

]

= 1√
2

[

1 0 1

0 −
√

2 0

−1 0 1

][

a

b

c

]

, so T has matrix 1√
2

[

1 0 1

0 −
√

2 0

−1 0 1

]

. Hence,

cT (x) =

∣

∣

∣

∣

∣

x− 1√
2

0 − 1√
2

0 x+1 0
1√
2

0 x− 1√
2

∣

∣

∣

∣

∣

= (x+1)
∣

∣

∣

x− 1√
2

− 1√
2

1√
2

x− 1√
2

∣

∣

∣
= (x+1)(x2−

√
2x+1)

Thus we are in case (2) of Table 10.1. Now e =

[

0

1
0

]

is an eigenvector corresponding to the

eigenvalue −1, so T is rotation (of 3π
4 ) about the line Re (the y-axis) followed by a reflection

in the plane (Re)⊥ — the xz-plane.

6. Let T be an arbitrary isometry, and let a be a real number. If aT is an isometry then Theorem 10.4.2

gives

‖v‖= ‖(aT )(v)‖= ‖a(T (v))‖= |a|‖T (v)‖= |a|‖v‖ holds for all v.

Thus |a|= 1 so, since a is real, a =±1. Conversely, if a =±1 then |a|= 1 so we have ‖(aT )(v)‖=
|a|‖T (v)‖= 1‖T (v)‖= ‖v‖ for all v. Hence aT is an isometry by Theorem 10.4.2.

12. b. Assume that S = Su◦T where u is in V and T is an isometry of V . Since T is onto (by Theorem

10.4.2), let u = T (w) where w ∈V . Then for any v ∈V , we have

(T ◦Sw)(v) = T (w+v) = T (w)+T (v) = ST(w)(T (v)) = (ST(w) ◦T )(v)

Since this holds for all v ∈V , it follows that T ◦Sw = ST (w) ◦T .
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10.5 An Application to Fourier Approximation

The integrations involved in the computation of the Fourier coefficients are omitted in 1(b), 1(d), and 2(b).

1. b. f5 =
π
2 − 4

π

(

cosx+ cos3x
32 + cos5x

52

)

d. f5 =
π
4 +
(

sinx− sin2x
2 + sin3x

3 − sin4x
4 + sin5x

5

)

− 2
π

(

cosx+ cos3x
32 + cos5x

52

)

2. b. 2
π − 8

π

(

cos2x
22−1

+ cos4x
42−1

+ cos6x
62−1

)

4. We use the formula that cos(θ ± φ) = cosθ cosφ ∓ sinθ sinφ , so that 2cosθ cosφ = cos(θ −
φ)cos(θ +φ). Hence:

∫ π

0
cos(kx)cos(ℓx)dx = 1

2

∫ π

0
{cos[(k− ℓ)x]+ cos[(k+ ℓ)x]}dx

= 1
2

[

sin[(k+ℓ)x]
k+ℓ + sin[(k−ℓ)x]

(k−ℓ)

]π

0

= 0 if k 6= ℓ.





11. Canonical Forms

11.1 Block Triangular Form

1. b. cA(x) =

∣

∣

∣

∣

x+5 −3 −1

4 x−2 −1

4 −3 x

∣

∣

∣

∣

=

∣

∣

∣

∣

x+1 −x−1 0

4 x−2 −1

4 −3 x

∣

∣

∣

∣

=

∣

∣

∣

∣

x+1 0 0

4 x+2 −1

4 1 x

∣

∣

∣

∣

= (x+1)3.

Hence, λ1 =−1 and we are in case k = 1 of the triangulation algorithm.

−I−A =

[

4 −3 −1

4 −3 −1

4 −3 −1

]

→
[

4 −3 −1

0 0 0

0 0 0

]

; p11 =

[

1

1

1

]

, p12 =

[

0

1

−3

]

Hence, {p11, p12} is a basis of null (−I−A). We now expand this to a basis of null
[

(−I−A)2
]

.

However, (−I−A)2 = 0 so null
[

(−I−A)2
]

= R3. Hence, in this case, we expand {p11, p12}

to any basis {p11, p12, p13} of R3, say by taking p13 =

[

0
0

1

]

. Hence

P =
[

p11 p12 p13

]

=

[

1 0 0

1 1 0

1 −3 1

]

satisfies P−1AP =

[

−1 0 1

0 −1 0

0 0 −1

]

as may be verified.

d. cA(x) =

∣

∣

∣

∣

x+3 1 0

−4 x+1 −3

−4 2 x−4

∣

∣

∣

∣

=

∣

∣

∣

∣

x+3 1 0

−4 x+1 −3

0 −x+1 x−1

∣

∣

∣

∣

=

∣

∣

∣

∣

x+3 1 0

−4 x−2 −3

0 0 x−1

∣

∣

∣

∣

= (x−1)2(x+2).

Hence λ1 = 1, λ3 =−2, and we are in case k = 2 of the triangulation algorithm.

I−A =

[

4 1 0

−4 2 −3
−4 2 −3

]

→
[

4 1 0

0 3 −3
0 0 0

]

; p11 =

[

−1

4
4

]

Thus, null (I−A) = span {p11}. We enlarge {p11} to a basis of null
[

(I−A)2
]

(I−A)12 =

[

12 6 −3

−12 −6 3

−12 −6 3

]

→
[

4 2 −1

0 0 0

0 0 0

]

; p11 =

[

−1

4

4

]

, p12 =

[

0

1

2

]

Thus, null
[

(I−A)2
]

= span {p11, p12}. As dim
[

Gλ1
(A)
]

= 2 in this case (by Lemma 11.1.1),

we have Gλ1
(A) = span {p11, p12}. However, it is instructive to continue the process:

(I−A)2 = 3

[

4 2 −1

−4 −2 1
−4 −2 1

]

whence

(I−A)3 = 9

[

4 2 −1

−4 −2 1

−4 −2 1

]

= 3(I−A)2

165
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This continues to give (I−A)4 = 32(I−A)2, . . . , and in general (I−A)k = 3k−2(I−A)2 for

k ≥ 2. Thus null
[

(I−A)k
]

= null
[

(I−A)2
]

for all k ≥ 2, so

Gλ1
(A) = null

[

(I−A)2
]

= span {p11, p12}

as we expected. Turning to λ2 =−2:

−2I−A =

[

1 1 0

−4 −1 −3

−4 2 −6

]

→
[

1 1 0

0 3 −3

0 6 −6

]

→
[

1 1 0

0 1 −1

0 0 0

]

; p21 =

[

−1

1

1

]

Hence, null [−2I−A] = span {p21}. We need go no further with this as {p11, p12, p21} is a

basis of R3. Hence

P =
[

p11 p12 p21

]

=

[

−1 0 −1

4 1 1

4 2 1

]

satisfies P−1AP =

[

1 1 0

0 1 0

0 0 −2

]

as may be verified.

f. To evaluate cA(x), we begin by adding column 4 to column 1:

cA(x) =

∣

∣

∣

∣

∣

x+3 −6 −3 −2

2 x−3 −2 −2

1 −3 x −1

1 −1 −2 x

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

x+1 −6 −3 −2

0 x−3 −2 −2

0 −3 x −1

x+1 −1 −2 x

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

x+1 −6 −3 −2

0 x−3 −2 −2

0 −3 x −1

0 5 1 x+2

∣

∣

∣

∣

∣

= (x+1)

∣

∣

∣

∣

x−3 −2 −2

−3 x −1

5 1 x+2

∣

∣

∣

∣

= (x+1)

∣

∣

∣

∣

x−3 −2 0

−3 x −x−1

5 1 x+1

∣

∣

∣

∣

= (x+1)

∣

∣

∣

∣

x−3 −2 0

2 x+1 0

5 1 x+1

∣

∣

∣

∣

= (x+1)1
∣

∣

∣

x−3 −2

2 x+1

∣

∣

∣
= (x+1)2(x−1)2

Hence, λ1 = −1, λ2 = 1 and we are in case k = 2 of the triangulation algorithm. We omit the

details of the row reductions:

−I−A =

[

2 −6 −3 −2

2 −4 −2 −2

1 −3 −1 −1

1 −1 −2 −1

]

→
[

1 0 0 −1

0 1 0 0

0 0 1 0

0 0 0 0

]

; p11 =

[

1

0

0

1

]

(−I−A)2 =

[ −13 23 13 13

−8 12 8 8

−6 10 6 6

−3 5 3 3

]

→
[

1 0 −1 −1

0 1 0 0

0 0 0 0

0 0 0 0

]

; p11

[

1

0

0

1

]

, p12 =

[

1

0

1

0

]

We have dim
[

Gλ1
(A)
]

= 2 as λ1 =−1 has multiplicity 2 in cA(x), so Gλ1
(A)= span {p11, p12}.

Turning to λ2 = 1:

I−A =

[

4 −6 −3 −2

2 −2 −2 −2

1 −3 1 −1

1 −1 −2 1

]

→
[

1 0 0 −5

0 1 0 −2

0 0 1 −2

0 0 0 0

]

; p21 =

[

5

2

2

1

]

(I−A)2 =

[ −1 −1 1 5

0 0 0 0

−2 −2 2 −6
1 1 −5 3

]

→
[

1 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0

]

; p21 =

[

5

2

2
1

]

, p22 =

[

1

−1

0
0

]

Hence, Gλ2
(A) = span {p21, p22} using Lemma 11.1.1. Finally, then

P =
[

p11 p12 p21 p22

]

=

[

1 1 5 1
0 0 2 −1

0 1 2 0

1 0 1 0

]

gives P−1AP =

[ −1 1 0 0
0 −1 0 0

0 0 1 −2

0 0 0 1

]

as may be verified.
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4. Let B be any basis of V and write A = MB(T ). Then cT (x) = cA(x) and this is a polynomial: cT (x) =
a0 + a1x+ · · ·+ anxn for some ai in R. Now recall that MB : L(V , V )→ Mnn is an isomorphism

of vector spaces (Exercise 9.1.26) with the additional property that MB(T
k) = MB(T )

k for k ≥ 1

(Theorem 9.2.1). With this we get

MB [cT (T )] = MB [a01V +a1T + · · ·+anT n]

= a0MB(1V )+a1MB(T )+ · · ·+anMB(T )
n

= a0I +a1A+ · · ·+anAn

= cA(A)

= 0

by the Cayley-Hamilton theorem. Hence cT (T ) = 0 because MB is one-to-one.

11.2 Jordan Canonical Form

2.

[

a 1 0

0 a 0

0 0 b

][

0 1 0

0 0 1

1 0 0

]

=

[

0 1 0

0 0 1

1 0 0

][

b 0 0

0 a 1

0 0 a

]

, and

[

0 1 0

0 0 1

1 0 0

]

is invertible.





A. Complex Numbers

1. b. 12+ 5i = (2+ xi)(3− 2i) = (6+ 2x)+ (−4+ 3x)i. Equating real and imaginary parts gives

6+2x = 12, −4+3x = 5, so x = 3.

d. 5 = (2+ xi)(2− xi) = (4+ x2)+0i. Hence 4+ x2 = 5, so x =±1.

2. b. (3−2i)(1+ i)+ |3+4i|= (5+ i)+
√

9+16 = 10+ i

d. 3−2i
1−i
− 3−7i

2−3i
=

(3−2i)(1+i)
(1−i)(1+i) −

(3−7i)(2+3i)
(2−3i)(2+3i)

= 5+i
1+1 − 27−5i

4+9

= 11
26 +

23
26 i

f. (2− i)3 = (2− i)2(2− i) = (3−4i)(2− i) = 2−11i

h. (1− i)2(2+ i)2 = (−2i)(3+4i) = 8−6i

3. b. iz+1 = i+ z−6i+3iz =−5i+(1+3i)z. Hence 1+5i = (1+2i)z, so

z = 1+5i
1+2i

= (1+5i)(1−2i)
(1+2i)(1−2i) =

11+3i
1+4 = 11

5 + 3
5 i

d. z2 = 3− 4i. If z = a + bi the condition is (a2− b2) + (2ab)i = 3− 4i, whence a2− b2 =
3 and ab = −2. Thus b = −2

a
, so a2 − 4

a2 = 3. Hence a4− 3a2− 4 = 0. This factors as

(a2−4)(a2 +1) = 0, so a =±2, whence b =∓1. Finally, z = a+bi =±(2− i).

f. Write z = a+bi. Then the condition reads

(a+bi)(2− i) = (a−bi+1)(1+ i)

(2a+b)+(2b−a)i = (a+1+b)+(a+1−b)i

Thus 2a+b = a+1+b and 2b−a = a+1−b; whence a = 1, b = 1, so z = 1+ i.

4. b. x = 1
2

[

−(−1)±
√

(−1)2−4
]

= 1
2

[

1± i
√

3
]

d. x = 1
4

[

−(−5)±
√

(−5)2−4 ·2 ·2
]

= 1
4

[

5±
√

9
]

= 2, 1
2

5. b. If x= reiθ then x3 =−8 becomes r3e3iθ = 8eπi. Thus r3 = 8 (whence r = 2) and 3θ = π+2kπ .

Hence θ = π
3 + k · 2π

3 , k = 0, 1, 2. The roots are

2eiπ/3 = 1+
√

3i (k = 0)

2eπi =−2 (k = 1)

2e5πi/3 = 1−
√

3i (k = 2)
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d. If x = re−iθ then x4 = 64 becomes r4e4iθ = 64ei·0. Hence r4 = 64 (whence r = 2
√

2) and

4θ = 0+2kπ; θ = k π
2 , k = 0, 1, 2, 3. The roots are

2
√

2e0i = 2
√

2 (k = 0)

2
√

2eπi/2 = 2
√

2i (k = 1)

2
√

2eπi =−2
√

2 (k = 2)

2
√

2e3πi/2 =−2
√

2i (k = 3)

6. b. The quadratic is (x−u)(x−u) = x2−(u+u)x+uu = x2−4x+13. The other root is u= 2+3i.

d. The quadratic is (x−u)(x−u) = x2−(u+u)x+uu = x2−6x+25. The other root is u= 3+4i.

8. If u = 2− i, then u is a root of (x−u)(x−u) = x2− (u+u)x+uu = x2−4x+5.

If v = 3−2i, then v is a root of (x− v)(x− v) = x2− (v+ v)x+ vv = x2−6x+13.

Hence u and v are roots of

(x2−4x+5)(x2−6x+13) = x4−10x3 +42x2−82x+65

10. b. Taking x = u =−2: x2+ ix−(4−2i) = 4−2i−4+2i = 0. If v is the other root then u+v =−i

(i is the coefficient of x) so v =−u− i = 2− i.

d. Taking x = u =−2+ i: (−2+ i)2 = 3(1− i)(−2+ i)−5i

= (3− ri)+3(−1+3i)−5i

= 0.

If v is the other root then u+ v =−3(1− i), so v =−3(1− i)−u =−1+2i.

11. b. x2−x+(1− i) = 0 gives x = 1
2

[

1±
√

1−4(1− i)
]

= 1
2

[

1±
√
−3+4i

]

. Write w =
√
−3+4i

so w2 =−3+4i. If w = a+bi then w2 = (a2−b2)+(2ab)i, so a2−b2 =−3, 2ab = 4. Thus

b = 2
a
, a2− 4

a2 =−3, a4 +3a2−4 = 0, (a2 +4)(a2−1) = 0, a =±1, b =±2, w =±(1+2i).

Finally the roots are 1
2 [1±w] = 1+ i, −i.

d. x2−3(1− i)x−5i = 0 gives x = 1
2

[

3(1− i)±
√

9(1− i)2+20i
]

= 1
2

[

3(1− i)±
√

2i
]

. If w =
√

2i then w2 = 2i. Write w = a+bi so (a2−b2)+2abi = 2i. Hence a2 = b2 and ab = 1; the

solution is a = b =±1 so w =±(1+ i). Thus the roots are x = 1
2(3(1− i)±w) = 2− i, 1−2i.

12. b. |z−1|= 2 means that the distance from z to 1 is 2. Thus the graph is the circle, radius 2, center

at 1.

d. If z = x+ yi, then z = −z becomes x+ yi = −x+ yi. This holds if and only if x = 0; that is if

and only if z = yi. Hence the graph is the imaginary axis.

f. If z = x+yi, then im z = m · re z becomes y =mx. This is the line through the origin with slope

m.

18. b. −4i = 4e3πi/2

d.
∣

∣−4+4
√

3i
∣

∣ = 4
√

1+3 = 8 and cosϕ = 4
8 = 1

2 . Thus ϕ = π
3 , so θ = 2π

3 and we have −4+

4
√

3i = 8e2πi/3.
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f. |−6+6i|= 6
√

1+1 = 6
√

2 and cosϕ = 6

6
√

2
= 1√

2
. Thus ϕ = π

4 so θ = 3π
4 ; whence−6+6i =

6
√

2e−3πi/4.

19. b. e7πi/3 = e(π/3+2π)i = eπi/3 = cos π
3 + isin π

3 = 1
2 +

√
3

2 i

d.
√

2e−πi/4 =
√

2
(

cos
(−π

4

)

+ isin
(−π

4

))

=
√

2
(

1√
2
− 1√

2
i
)

= 1− i

f. 2
√

3e−2πi/6 = 2
√

3
(

cos
(−π

3

)

+ isin
(−π

3

))

= 2
√

3
(

1
2 −

√
3

2 i
)

=
√

3−3i

20. b. (1+
√

3i)−4 = (2eπi/3)−4 = 2−4e−4πi/3

= 1
16 [cos(−4π/3)+ isin(−4π/3)]

= 1
16

(

−1
2 +

√
3

2 i
)

= − 1
32 +

√
3

32 i

d. (1− i)10 =
[√

2e−πi/4
]10

= (
√

2)10e−5πi/2 = (
√

2)10e(−π/2−2π)i

= (
√

2)10e−πi/2 = 25
[

cos
(−π

2

)

+ isin
(−π

2

)]

= 32(0− i) =−32i

f. (
√

3− i)9(2−2i)5 =

[

2e−πi/6]9
[

2
√

2e−πi/4
]5
]

= 29e−3πi/2(2
√

2)5e−5πi/4

= 29(i)25(
√

2)4
√

2
(

− 1√
2
+ 1√

2
i
)

= 216i(−1+ i)
= −216(1+ i)

23. b. Write z = reiθ . Then z4 = 2(
√

3i−1) becomes r4e4iθ = 4e2πi/3. Hence r4 = 4, so r =
√

2, and

4θ = 2π
3 +2πk; that is

θ = π
6 +

π
2 k k = 0, 1, 2, 3

The roots are

√
2eπi/6 =

√
2
(√

3
2 + 1

2 i
)

=
√

2
2

(√
3+ i

)

√
2e4πi/6 =

√
2
(

−1
2 +

√
3

2 i
)

=
√

2
2

(

−1+
√

3i
)

√
2e7πi/6 =

√
2
(

−
√

3
2 − 1

2 i
)

=−
√

2
2

(√
3+ i

)

√
2e10πi/6 =

√
2
(

1
2 −

√
3

2 i
)

=−
√

2
2

(

−1+
√

3i
)
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k = 1

k = 2

k = 3

k = 4

π/6

d. Write z = reiθ . Then z6 = −64 becomes r6e6iθ = 64eπi. Hence r6 = 64, so r = 2, and 6θ =
π +2πk; that is θ = π

6 +
π
3 k where k = 0, 1, 2, 3, 4, 5. The roots are thus z = 2eπ/6+π/3k for

these values of k. In cartesian form they are

k 0 1 2 3 4 5

z
√

3+ i 2i −
√

3+ i −
√

3− i −2i
√

3− i

26. b. Each point on the unit circle has polar form eiθ for some angle θ . As the n points are equally

spaced, the angle between consecutive points is 2π
n

. Suppose the first point into the first quad-

rant is z0 = eαi. Write w = e2πi/n. If the points are labeled z1, z2, z3, . . . , zn around the unit

circle, they have polar form

z1 = eαi

z2 = e(α+2π/n)i = eαie2πi/n = z1w

z3 = e[α+2(2π/n)]i = eαie4πi/n = z1w2

z4 = e[α+3(2π/n)]i = eαie6πi/n = z1w3

...

zn = e[α+(n−1)(2π/n)]i = eaie2(n−1)πi/n = z1wn−1

z4

2π
n

z3

2π
n

z2

2π
n z1

α
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Hence the sum of the roots is

z1 + z2 + · · ·+ zn = z1(1+w+ · · ·+wn−1) (∗)

Now wn =
(

e2πi/n
)n

= e2πi = 1 so

0 = 1−wn = (1−w)(1+w+w2 + · · ·+wn−1)

As w 6= 1, this gives 1+w+ · · ·+wn−1 = 0. Hence (∗) gives

z1 + z2 + · · ·+ zn = z1 ·0 = 0





B. Proofs

1. b. (1). We are to prove that if the statement “m is even and n is odd” is true then the statement

“m+n is odd” is also true.

If m is even and n is odd, they have the form m = 2p and n = 2q+1, where p and q are

integers. But then m+n = 2(p+q)+1 is odd, as required.

(2). The converse is false. It states that if m+ n is odd then m is even and n is odd; and a

counterexample is m = 1, n = 2.

d. (1). We are to prove that if the statement “x2−5x+6 = 0” is true then the statement “x = 2 or

x = 3” is also true.

Observe first that x2−5x+6= (x−2)(x−3). So if x is a number satisfying x2−5x+6 = 0

then (x−2)(x−3)−0 so either x = 2 or x = 3. [Note that we are using an important fact

about real numbers: If the product of two real numbers is zero then one of them is zero.]

(2). The converse is true. It states that if x= 2 or x= 3 then x satisfies the equation x2−5x+6=
0. This is indeed the case as both x = 2 or x = 3 satisfy this equation.

2. b. The implication here is p⇒ q where p is the statement “n is any odd integer”, and q is the

statement “n2 = 8k+ 1 for some integer k”. We are asked to either prove this implication or

give a counterexample.

This implication is true. If p is true then n is odd, say n = 2t + 1 for some integer t. Then

n2 = (2t)2 + 2(2t)+ 1 = 4t(t + 1)+ 1. But t(t + 1) is even (because t is either even or odd),

say t(t +1) = 2k where k is an integer. Hence n2 = 4t(t+1)+1 = 4(2k)+1, as required.

3. b. The implication here is p⇒ q where p is the statement “n +m = 25, where n and m are

integers”, and q is the statement “one of m and n is greater than 12” is also true. We are asked

to either prove this implication by the method of contradiction, or give a counterexample.

The implication is true. To prove it by contradiction, we assume that the conclusion q is false,

and look for a contradiction. In this case assuming that q is false means both n ≤ 12 and

m ≤ 12. But then n+m≤ 24, contradicting the hypothesis that n+m = 25. So the statement

is true by the method of proof by contradiction.

The converse is false. It states that q⇒ p, that is if one of m and n is greater than 12 then

n+m = 25. But n = 13 and m = 13 is a counterexample.

d. The implication here is p ⇒ q where p is the statement “mn is even, where n and m are

integers”, and q is the statement “m is even or n is even”. We are asked to either prove this

implication by the method of contradiction, or give a counterexample.

This implication is true. To prove it by contradiction, we assume that the conclusion q is false,

and look for a contradiction. In this case assuming that q is false means that m and n are both

odd. But then mn is odd (if either were even the product would be even). This contradicts the

hypothesis, so the statement is true by the method of proof by contradiction.

The converse is true. It states that if m or n is even then mn is even, and this is true (if m or n

is a multiple of 2, then mn is a multiple of 2).
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4. b. The implication here is: “x is irrational and y is rational”⇒ “x+ y is irrational”.

To argue by contradiction, assume that x+ y is rational. Then x = (x+ y)− y is the difference

of two rational numbers, and so is rational, contrary to the hypothesis that x is irrational.

5. b. At first glance the statement does not appear to be an implication. But another way to say it is

that if the statement “n≥ 2” is true then the statement “n3 ≥ 2n” is also true.

This is not true. In fact, n = 10 is a counterexample because 103 = 1000 while 210 = 1024. It

is worth noting that the statement n3 ≥ 2n does hold for 2≤ n < 9.



C. Mathematical Induction

6. Write Sn for the statement
1

1·2 +
1

2·3 + · · ·+ 1
n(n+1) =

n
n+1 (Sn)

Then S1 is true: It reads 1
1·2 = 1

1+1 , which is true. Now assume Sn is true for some n≥ 1. We must

use Sn to show that Sn+1 is also true. The statement Sn+1 reads as follows:

1
1·2 +

1
2·3 + · · ·+ 1

(n+1)(n+2)
= n+1

n+2

The second last term on the left side is 1
n(n+1)

so we can use Sn:

1
1·2 +

1
2·3 + · · ·+ 1

(n+1)(n+2) =
[

1
1·2 +

1
2·3 + · · ·+ 1

n(n+1)

]

+ 1
(n+1)(n+2)

= n
n+1 +

1
(n+1)(n+2)

= n(n+2)+1
(n+1)(n+2)

=
(n+1)2

(n+1)(b+2)

= n+1
n+2

Thus Sn+1 is true and the induction is complete.

14. Write Sn for the statement
1√
1
+ 1√

2
+ · · ·+ 1√

n
≤ 2
√

n−1 (Sn)

Then S1 is true as it asserts that 1√
1
≤ 2
√

1−1, which is true. Now assume that Sn is true for some

n≥ 1. We must use Sn to show that Sn+1 is also true. The statement Sn+1 reads as follows:

1√
1
+ 1√

2
+ · · ·+ 1√

n+1
=
[

1√
1
+ 1√

2
+ · · ·+ 1√

n

]

+ 1√
n+1

≤
[

2
√

n−1
]

+ 1√
n+1

= 2
√

n2+n+1√
n+1

−1

< 2(n+1)√
n+1
−1

= 2
√

n+1−1

where, at the second last step, we used the fact that
√

n2 +n < (n+1)—this follows by showing that

n2 +n < (n+1)2, and taking positive square roots. Thus Sn+1 is true and the induction is complete.

18. Let Sn stand for the statement

n3−n is a multiple of 3.
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Clearly S1 is true. If Sn is true, then n3−n = 3k for some integer k. Compute:

(n+1)3− (n+1) = (n3 +3n2 +3n+1)− (n+1)

= 3k+3n2 +3n

which is clearly a multiple of 3. Hence Sn+1 is true, and so Sn is true for every n by induction.

20. Look at the first few values: B1 = 1, B2 = 5, B3 = 23, B4 = 119, . . . . If these are compared to the

factorials: 1! = 1, 2! = 4, 3! = 6, 4! = 24, 5! = 120, . . . , it is clear that Bn = (n+1)!−1 holds for

n = 1, 2, 3, 4 and 5. So it seems a reasonable conjecture that

Bn = (n+1)!−1 for n≥ 1. (Sn)

This certainly holds for n = 1: B1 = 1 = 2!−1. If this is true for some n≥ 1, then

Bn+1 = [1 ·1!+2 ·2!+ · · ·+n ·n!]+(n+1)(n+1)!

= [(n+1)!−1]+(n+1)(n+1)!

= (n+1)![1+(n+1)]−1

= (n+1)![n+2]−1

= (n+2)!−1

Hence Sn+1 is true and so the induction goes through.

Note that many times mathematical theorems are discovered by “experiment”, somewhat as in this

example. Several examples are worked out, a pattern is observed and formulated, and the result is

proved (often by induction).

22. b. If we know that Sn⇒ Sn+8 then it is enough to verify that S1, S2, S3, S4, S5, S6, S7, and S8 are

all true. Then
S1 ⇒ S9 ⇒ S17 ⇒ S25 ⇒ ·· ·
S2 ⇒ S10 ⇒ S18 ⇒ S26 ⇒ ·· ·
S3 ⇒ S11 ⇒ S19 ⇒ S27 ⇒ ·· ·
S4 ⇒ S12 ⇒ S20 ⇒ S28 ⇒ ·· ·
S5 ⇒ S13 ⇒ S21 ⇒ S29 ⇒ ·· ·
S6 ⇒ S14 ⇒ S22 ⇒ S30 ⇒ ·· ·
S7 ⇒ S15 ⇒ S23 ⇒ S31 ⇒ ·· ·
S8 ⇒ S16 ⇒ S24 ⇒ S32 ⇒ ·· ·

Clearly each Sn will appear in this array, and so will be true.
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