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Base Text Revision History
Current Revision: Version 2019 — Revision A

* New Section on Singular Value Decomposition (8.6) is included.

* New Example 2.3.2 and Theorem 2.2.4. Please note that this will impact the numbering of subsequent
examples and theorems in the relevant sections.

2019 A ) )
e Section 2.2 is renamed as Matrix-Vector Multiplication.
* Minor revisions made throughout, including fixing typos, adding exercises, expanding explanations,
and other small edits.
* Images have been converted to LaTeX throughout.
2018 B  Text has been converted to LaTeX with minor fixes throughout. Page numbers will differ from 2018 A

revision. Full index has been implemented.

2018 A ¢ Text has been released with a Creative Commons license.
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1. Systems of Linear Equations

1.1 Solutions and Elementary Operations

1. b. Substitute these values of x, x2, x3 and x4 in the equation

261+ 5%+ 93+3x4 = 225+ 12t 4+13)+5(s) +9(—s—3t—3)+3(t) = —1
X1+ 2xp +4x3 = (2s+ 12t +13) +2(s) +4(—s—3t—3) = 1

Hence this is a solution for every value of s and 7.

2. b. The equation is 2x+ 3y = 1. If x = s then y = %(1 — 2s) so this is one form of the general
solution. Also, if y = then x = (1 — 3t) gives another form.

4. Given the equation 4x — 2y 40z = 1, take y = s and z =t and solve for x: x = %(2s +3). This is the
general solution.

5. a. If a=0, no solution if b # 0, infinitely many if b = 0.
b. If a # 0 unique solution x = b/a for all b.

1
0 .
2

8. b. A system with this augmented matrix is

7. b. The augmented matrix is [ (1) f ‘ (1) }
110

d. The augmented matrixis | 0 1 1

-1 0 1

2x — Yy = —1
-3x + 2y + z = 0
y + z = 3

2 1
10. b |1 2 1
0

|
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11.

14.

16.

17.

19.

Systems of Linear Equations

b. [ _1; 7% ‘ 156 ] — [ (3) 7(2) ‘ 356 } The last equation is Ox + Oy = 36, which has no solution.

b. False. The system x4y =0, x —y = 0 is consistent, but x = 0 = y is the only solution.

d. True. If the original system was consistent the final system would also be consistent because
each row operation produces a system with the same set of solutions (by Theorem 1.1.1).

The substitution gives
3(5¢ =2y ) +2(=7x' +3y) =5
7(5¢ —2y)+5(=7¥ +3y) =1

this simplifies to X' =5,y = 1. Hence x = 5x' =2y’ =23 and y = —7x' + 3y’ = —32.

As in the Hint, multiplying by (x> +2)(2x — 1) gives x> —x +3 = (ax+b)(2x — 1) + c(x* + 2).
Equating coefficients of powers of x gives equations 2a+c¢ =1, —a+2b = —1, —b+2c = 3.
Solving this linear system we find a = —%, b= —%, c= %.

If John gets $x per hour and Joe gets $y per hour, the two situations give 2x+ 3y = 24.6 and 3x+2y =
23.9. Solving gives x = $4.50 and y = $5.20.

1.2 Gaussian Elimination

b. No, No; no leading 1.
d. No, Yes; not in reduced form because of the 3 and the top two 1’s in the last column.

f. No, No; the (reduced) row-echelon form would have two rows of zeros.

0 -1 3 1 3 2 1 0 1 -3 —1 -3 —2 -1
0 2 6 1 -5 0 -1 00 0 -1 —11 -4 -3
bl 5 9 2 41 a7l oo0 o 5 13 7 2
0 1 -3 -1 3 0 00 0 0 6 2 2
"0 01 -3 0 8§ 2 2 01 -3 0 8 2 2
o0 o0 1 11 4 3 00 0 1 11 4 3
—~lo0 00 -4 -3 -3 7loo 00 0 1 1
o0 o0 6 2 2 00 00 3 1 1
F0 01 -3 0 8 0 0 01 =300 0 0
00 0 1 11 0 -1 00 0 1 0 0 —1
100 00 3 0 ol 7|00 0010 o0
o0 00 0 1 1 00 00 0 1 1

b. The matrix is already in reduced row-echelon form. The nonleading variables are parameters;
Xy =r,x4 =sand xg =1.
The first equation is x| — 2xp +2x4 +x¢ = 1, whence x| = 1 4+2r — 25 —¢.
The second equation is x3 + 5x4 — 3x¢ = —1, whence x3 = —1 — 55+ 3¢.
The third equation is x5 + 6xg = 1, whence xs = 1 — 61.

d. First carry the matrix to reduced row-echelon form.

I -1 2 4 6| 2 10 4 5 5| 1 1 0 4 0 5|-4
0 1 2 1 —1/|-1 001 2 1 —1]-1 01 2 0 —1]-2
o 001 ol 1] ]looo 1 ol t|looo0o 1 of1
0 000 0| 0 0000 0| 0 0000 0| 0




1.2. Gaussian Elimination = 3

The nonleading variables are parameters; x3 = s, x5 = 1.

The first equation is x| +4x3 + 5x5 = —4, whence x| = —4 — 4s — 5¢t.
The second equation is xp + 2x3 — x5 = —2, whence x, = —2 — 25 +1.
The third equation is x4 = 1.

3 -1]0 12| -1 12| -1 12
[273‘1]6[273‘1}%[077‘3]_)[01
3

Hence x = —%,y: —5.

| |
w0 =
1

. Note that the variables in the second equation are in the wrong order.
3 -1 2 3 -1|2 1 =112
e Y e EaE e P

The nonleading variable y = ¢ is a parameter; then x = % + %t = %(t +2).

. Again the order of the variables is reversed in the second equation.

[ _; 7? ‘ ; ] — [ (2) 7(3) ‘ ; } There is no solution as the second equation is Ox+ Oy = 7.

-2 3 3 -9 3 -4 1 5 1 -1 4 —4
3 -4 1 5 — -2 3 3 -9 — -2 3 3 -9
=5 7 21| -14 =5 7 2| —14 -5 7 2| —14
1 -1 4 —4 1 0 15| -21
— 0 1 11| -17 — o 1 11| =17 |.
0 2 22| -34 0 0 0 0

Take z =t (the nonleading variable). The equations give x = —21 — 15¢, y = —17 — 11z¢.

i 2 1 2 -1 2 1 2 -1 2
1| —=]0 1 -1|=3|—=01 —-1]|-3]1.
7

1 2 -1
3 0o 2 -2 1 0 0 O

2 5 -3
|1 4 =3
There is no solution as the third equation is Ox+ 0y +0z = 7.

3 =2 1|=2 1 -1 3 5 1 -1 3 5
1 -1 3 5 — 3 =2 -2 — 0 1 -8 —17
| -1 1 1] -1 -1 -1 0 0 4 4

-5

10
_>[o 1 -8 -9 |.Hencex=—-7,y=-9,z=1.
0 0

1
10 1 0 0|4
3 — [0 1 2|3 ].
0 0 0 0]0

. Label the rows of the augmented matrix as Rj, R> and R3, and begin the gaussian algorithm on
the augmented matrix keeping track of the row operations:

1 2 =3 -3 Ry 1 2 -5
1 3 =5 5 R, — 0 1 -2
1 -2 5

35 | R 0 —4 8

At this point observe that R3 — R = —4(R, — R;), that is R3 = 5R; — 4R;. This means that
equation 3 is 5 times equation 1 minus 4 times equation 2, as is readily verified. (The solution
isx;=t—11,x=2t+8and x3 =1.)

—_ 0O = =

1
-12 10
17 | = |o 1
1 1 0 0
1 2 -4]10 1 2 —4] 10 1 2 -4
2 -1 25 | —=lo =5 1w|]-15|=]0 1 -2
1 1 2|7 0 -1 2| -3 0 0
Hence z=t¢,x=4,y=342t.

—-32 R3; —Ry

5 Ry
8 Ry —Ry

1 -1 1 -1]0 I -1 1 -1]0 -1 1o
11 1 1o 0o 0 2 o]0 0 1 -1 1]o0
. 11 -1 1ol 7o 2 =2 2/0| 7o o 0o
11 1 1o 0 2 o0 2|0 0 1 1o
1 0 0 00 1 00 0]0
01 -1 1]0 01 0 10 o - -
— oo 1 olo — 00 1 olo .Hencex4—t,x1—O,xg——t,x3—0.
00 1 0]0 000 0|0



4 n Systems of Linear Equations

11 2 —1] 4 112 —1] 4 10 7 -7] 8

03 -1 4] 2 03 -1 4] 2 0 0 14 —14| 14

d |7 32 5 sl ol =01 =5 6|la|]o0o1 5 64

11 -5 6| -3 00 -7 7]-7 00 -7  7|-7

o 7 -7 8 1o 0o ol 1 10 0 |

01 -5 6|-4 01 -5 6|-4 01 0 !

1o o0 14 14|l 700 1 1| 1| 7o o0 1 —1]1

00 -7 7|-7 o0 o0 ol o 0 0 0 0
Hencexy =t;x1 =1, xp=1—t,x3=1+41.

8. b |:lll Z‘ié]ﬁ[é 2—bab‘5:rla]-

Case 1 If ab +# 2, it continues — [ b

-1 ]_) 1 0|
5 .
0 1| 2« 0 1| e

—2-5h .._ 5+ta
2—ab *Y = 2—ab"

The unique solution is x =
Case2 If ab=2,itis | § |5, |- Hence there is no solution if a # —5. If a = 5, then

;2
b= —Tz and the matrix is [ b3

a 1]1 1 3
afsii]-]0

_1 o o 2
0 ].Theny-t,x-—l—l—gt.

: N
1—%]%[0 2—a 2—ab]'

1 b b—1
Case 1 If a # 2 it continues: — [é 2L } — [é N ]
2—a 2—a
The unique solution: x = %, y= 221‘25’.
IR : L
Case 2 If a = 2 the matrix is [ (1) 5 2(1{b) } . Hence there is no solution if b # 1.

. .. I . 1 1,1
Ifb—lthematmns[0 ol ,S0y=1,x=5—5t=7(1—1).
2 1 —1]a 1 0 —-1]c¢ 1 0 -1 c
9 b. 0 2 3|b|—>1]02 3|b|—=|02 3 b —
_1 0 —-11|c¢ 2 1 —-1]a 0 1 1| a—2c
1 0 -1 c 1 0 -1 c 1 0 0| b—2a+5¢c
0 1 1 a—2c — 0 1 1 a—2c — 0 1 0| 3a—b—6¢
L0 2 3 b 0 0 1|b—2a+4c 0 0 1| b—2a+4c
Hence, for any values of a, b and ¢ there is a unique solution x = —2a+b+5c¢, y = 3a— b — 6c,
and z = —2a+b+4c.
(1 a 0]O0 1 a 0]O0 1 0 —ab |0
d. 01 b|lO]|—=]0 1 b»lO0o|—=1]01 b 0 |.
L ¢ 0O 110 0 —ac 1|0 0 O I1+4abc| O
. . 1 0 -ab |0 1 0 0]0
Case 1 If abc # —1,itcontinues: — | 0 1 b [0 [ — |0 1 0|0 |,
00 1 |0 0 0 1]0
Hence we have the unique solutionx =0,y =0, z=0.
o 1 0 -ab |0
Case 2 If abc = —1, the matrixis | 0 1 b |0 |,s0oz=1t,x=abt,y= —bt.
00 o0 |0
Note: It is impossible that there is no solution here: x = y = z = 0 always works.
1 a -1 1 1 a -1] 1 1 a -1] 1
f. | -1 a=2 1 |-1 | —=]0 2a-1 0 0| —=1]0 a-1 of 0],
2 2 a-2| 1 0 2a—-1) a | -1 0 0 al -1

11
Case 1 If ¢ = 1 the matrix is { 00 0
)

soy=t,x=—t,z=—1.
Case 2 If a =0 the last equation is Ox + 0y + 0z = —1, so there is no solution.
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11.

12.

14.

16.

CItisi

1 0]1
.False.A:[o 1‘1],

0 0lo

1 0]1
.False.A:{o 1‘1],

0 0o

. We begin the row reduction | 1 b c+a

1.2. Gaussian Elimination = 5

Case3 Ifa# 1 and a # 0, there is a unique solution:

1 a 1 1 a -1 1 1 00

0 a-1 0| —|0 1 o0 [—]|]0 10

0 a| -1 oo 1|-1 0 0 1
H

encex-l——,y 0,z=— é

0 0

[ 2 1 -1 3 S S S .
1o o 00}—>[ (2) 2 (2) ;rank is 1.

row-echelon form; rank is 3.

n
0 0 1 0 0
0 0 1 — 0 0
0 0 1 0 0

m
1 .

0 |;rankis 1.
0

-2 3 3 1 -1 4 1 -1 4 1 -1 4
3 -4 1}—>[ 3 —4 1}—>[0 -1 11]—>[0 1 11};ranki52.
| -5 7 2 -5 7 2 0o 2 22 0 0 0
'3—21—2} [1—13 5} {1—1 3 5} {1—1 3 5}
1 -1 3 5| = 3 21 2| =0 1 -8 —-17|—=]0 1 -8 -17 |;
| -1 1 1 -1 —1 1 1 -1 0 0 4 4 0 0 1 1
rank is 3.
M1 1 2 & 1 1 2 a* 11 2 a
1 1- 2 0 | =] 0 -a 0 —a? — |0 a 0 a
| 2 2—a 6-a 4} [0 —a 2-a 4—2a2:| [0 0 2-a 4—a2:|
1 1 2 0 1 1 2 0
Ifa—Oweget[O 0 0 0}%[0 0 1 2};rank 2
0 0 2 4 0 0 0 0
1 1 2 4 1 1 2 4
Ifa—2weget{0 2.0 4}%{0 1o 2};rank:2
0 0 0 0 0 0 0 0
1 1 2 a* 1 1 2 4
Ifa#0 a;«éZ,weget{O a 0 & }%{0 1 0 a ] rank =3
0 0 2—a 4-4* 0 0 1 2+a

. False. The system 2x —y =0, —4x+ 2y = 0 is consistent, but the system 2x—y =1, —4x+2y =

1 is not consistent.

. True. A has 3 rows so there can be at most 3 leading 1’s. Hence the rank of A is at most 3.

0 b-a a-b |. Now one of b—a and ¢ —

1 a b+c 1 a b+c
—
0 ¢c—a a—c

1 ¢ a+b
a is nonzero (by hypothesis) so that row provides the second leading 1 (its row becomes

[0 1 —1]). Hence further row operations give

which has the given form.

. Substituting the coordinates of the three points in the equation gives

1+14+a+b+c=0 a+b+c=-2
254+9+5a—-3b+c=0 Sa—3b+c=-34
9+9—-3a—-3b+c=0 3a+3b—c=18



6 = Systems of Linear Equations

SO =
[
— Ol —

—2} [1 1 1 —2] [
34 | =10 -8 —4|-24 | —
18 0 0 —4| 24
1
— 0
0

-2
6 |.
—6

, so the equation is x> +y? — 2x 46y — 6 = 0.

0
0
1

1 0
0 1
0 0
Hencea=-2,b=6,c=—6

18. Let a, b and ¢ denote the fractions of the student population in Clubs A, B and C respectively. The
new students in Club A arrived as follows: 14—0 of those in Club A stayed; % of those in Club B go to
A, and % of those in C go to A. Hence

a= a—f—%b—i—%c

Sl
—
—

Similarly, looking at students in Club B and C.

1 7 2
b= ma-ﬁ- mb-f‘ EC

_ 5 1 6
C——Oa—f—mb—f——oc

—_
—

Hence
—6a+2b+2c=0
a—3b+2¢c=0
Sa+b—4c=0

00~ 00l

-6 2 2 0 1 -3 2
1 -3 2 of—]0 1 -3
5 1 -4 0 0 0 0

0
0
0
Thus the solution is a = St b= St c=t. However a+b+
exactly one club) which gives t = % Hence a = 20, b= lo

0 1 -3 2
0| — 1|0 —16 14
0 0 16 —14

1 (because every student belongs to
_ 8

20°

1 0 - 0
— 0o 1 - 0 1.
0 0 0|0
C=
Cc =

1.3 Homogeneous Equations

1 0o 1]o0 1 0o 1]1
L b Falkea=|g 0 1[0] S
L o0lo 1 0]o0
f. False.A:[o 1‘0] h. False. A=|o0 1|0 |.
0 0]0
2 110 1 1 |o 1 0o -9 |0
2 b. 3 6[0 0 5 ]lo| —=1lo0o 1 5 |o0].
2 3 a0 71 a—210 0 0 a+31|0
Hence there is a nontr1v1al solution whena = —3: x=9¢,y = —5t,z =t.
[a 1 1]0 1 1 —-1]0 1 1 -1 1]0
d. 1 1 —-1]l0|—=]a 1 1{o| =10 1l-a 14al0 |.
1 1 alo 1 1 alo 0 0 a+1]0

Hence if a # 1 and a # —1, there is a unique, trivial solution. The other cases are as follows:



1.3. Homogeneous Equations = 7

1 1 —1]0 11 0]0
a=1:[00 2/ol—=|0 o0 1|0|;x=—t,y=t2=0.
00 20 00 0]0
11 —1]0 1 0 —1]0
a=—1:]102 ojo|—=f0o 1 o0 |;x=t,y=0,z=t.
00 0]o0 00 o]0
. Not a linear combination. If ax + by + cz = v then comparing entries gives equations 2a + b +
c=4,a+c=3and —a+b—2c = —4. Now carry the coefficient matrix to reduced form:

2 1 1 4 1 0 10
1 0 1 3 — 0O 1 —-1]0
-1 1 2| -4 0 0 0]1

. Here, if aa+ by + cz = v then comparing entries gives equations 2a+b+c¢ =3, a+c¢ =0 and
—a+ b —2c = 3. Carrying the coefficient matrix to reduced form gives

3 1 0o 1]o

0|l —=1]o0o 1 -1]3

3 00 0]0
so the general solution is a = —t, b =3+t and ¢ =t. Taking t = —1 gives the linear combina-
tionv=a+2y—z.

Hence there is no solution.

. We must determine if x, y and z exist such that y = xa; +yas 4 za3. Equating entries here gives
equations —x+3y+z=—1,3x+y+z=9,2y+z=2 and x+ z = 6. Carrying the coefficient
matrix to reduced form gives

-1 3 1 -1 1 0 0 2
31 1 9 01 0 -1
021 2| 7|00 1 4
1 01 6 000 0
so the unique solutionis x =2, y = —1 and z = 4. Hence y = 2a; — a, +4as3.
. Carry the augmented matrix to reduced form:
12 -1 1 0 1 2 0 2 3 0
-1 =2 2 0 1 0|—=]0o0 11 20
-1 =2 3 1 3 0 00000 0
Hence the general solution is x| = —2r —2s — 3¢, xp =r, x3 = —s —2t, x4 = s and x5 =¢. In

) . T
matrix form, the general solution x = [ X| Xp X3 X4 X; } takes the form

2r—2s—3t ) ) -3
r 1 0 0
X — —s—2t =r 0 + s -1 +t -2
s 0 1 0
' 0 0 1
Hence x is a linear combination of the basic solutions.

. Carry the augmented matrix to reduced form:
1 1 -2 -2 2 0 1 0 0 1 0 0
2 2 —4 -4 1 0 01 -2 -3 0 0
I =1 2 4 10| 7]l0o0 0o 010
2 4 8 10 1 0 00 0 0 00
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. T .
Hence the general solution x = [ X] X2 X3 X4 X5 ] 1S

—t 0 -1
25+3t 2 3
X = s =5 1 +t 0
t 0 1
0 0 0
Hence x is a linear combination of the basic solutions.
x+y = 1
6. b. Thesystem 2x+2y = 2 has nontrivial solutions with fewer variables than equations.
—x—-y = -1

7. b. There are n —r = 6 — 1 =5 parameters by Theorem 1.2.2.

d. The row-echelon form has four rows and, as it has a row of zeros, has at most 3 leading
I’s. Hence rank A =r =1, 2 or 3 (r # 0, because A has nonzero entries). Thus there are
n—r=6—r=2>5,4 or 3 parameters.

9.  b. Insisting that the graph of ax+ by + cz+d = 0 (the plane) contains the three points leads to
three linear equations in the four variables a, b, ¢ and d. There is a nontrivial solution by
Theorem 1.3.1.

11. Since the system is consistent there are n — r parameters by Theorem 1.2.2. The system has nontrivial
solutions if and only if there is at least one parameter, that is if and only if n > r.

1.4 An Application to Network Flows

1. b. There are five flow equations, one for each junction:

h — f = 25
h + f3 + fs = 50
p) + fa + fr = 60
- B+ s + Jfe 75
s+ fo — f = 40
1 -1 00 0 0 025 1 -1 00 0 0 0|25
1 0 1 0 1 0 0|50 0O 1 1.0 1 0 0]25
o 1 0100 1|60 —|0 1 0100 1|60
0 0 -1 1 0 1 0|75 0 0 -1 1 0 1 075
0 0 0 0 1 1 —1]40 0 0 0 0 1 1 —1]|40
-1 0 1.0 1 0 0]50 100 1 00 1] 85
01 1.0 1 0 0|2 01 0 1 00 1| 60
—~100 -t 1 -t o 1|3 =001 -1 1 0 —1]-35
00 -1 1 01 0|7 000 0 1 1 —1| 40
Lo 0o 00 1 1 —1]|40 00 0 0 1 1 —1| 40
-1 0 0 1 0 0 1] 8
01 0 1 0 0 1| 60
—~]0 01 -1 0 -1 o0of-75
000 0 1 1 —1| 40
Lo oo 00 o0 o] o
If we use fi, fg , and f;7 as parameters, the solution is

fi=85—fa—f7
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fr=60—fa—fr
[3==T5+fa+Jo
fs=40—fe+ f7

2. b. The solution to (a) gives f1 =55 — fa, f» =20— fa+ f5, f3 = 15— f5. Closing canal BC means
f3=0,s0 fs = 15. Hence f; = 35— f4, so f, <30 means f; > 5. Similarly f; =55 — f4 so

f1 <30 implies f; > 25. Hence the range on fy is 25 < f; < 30.
3. b. Theroad CD.

1.5 An Application to Electrical Networks

2. The junction and circuit rules give:

Leftjunction I, — I + L1 = 0
Rightjunction I, — L + L = 0
Top circuit 5hy + 104 = 5

Lower circuit 10, + 53 = 10

0 1 -1 1
1 — | 0 1 -2
2 0 2 1

] |

Wl W =

4. The equations are:

Lower left junction [} —Is—1I5=0
Top junction L—11+1=0
Middle junction L+15—15=0

Lower right junction I} —3—134 =0

Observe that the last of these follows from the others (so may be omitted).

Left circuit
Right circuit —
Lower circuit

10I5 — 105 = 10
1055 + 10 = 10
1075 + 1015 = 20

1 0 0 0 -1 —-1]0 1 0 0 0 -1 —-1]0
0 1 0 -1 0 1|0 01 0 -1 0 1]|0
0 1 1 0 -1 00 0 0 1 1 -1 —=11]0
o0 0o o0 10 —t]10o|7loo o o 1 —1]1
0 0 —-10 10 0 0]10 0 0 -1 1 0 o1
00 10 0 10 0]20 | 00 1 0 1 02
1 0 0 -1 —1]0 7 1 0 0 0 -1 -1 0
01 0 -1 0 1]|0 01 0 0 —2 0f-=2
0 0 1 -1 -110 001 0 1 o0 2
—“loo0oo0 o 1 1|1 | 70000 1 —1| 1
00 0 2 -1 —-1]1 00 0 0 3 1 5
000 -1 2 1|2 | | 000 0 1 —2 —1]|-2




10 = Systems of Linear Equations

1 000 -1 —-1] 0 1 00 0 0 —2]1
01 00 -2 0f-2 01 00 0 —2]0
00 1L 0 1 o0 2 00 1 00 1|1
10001 —2 —1|=2|7]lo0oo0oo0 10 =30
00 0 0 1 -—1] 1 00 0 0 1 —1]1
0000 3 1|5 00 00 0 4|2
1 00 00 02
01 00 0 Of1
001 00 03 . . 1 _3 _3 _ 1
— 000 1 0 03 .Hencell—2,12—1,13—5,14—2,15—5,16—2
00 00 1 03
[ 000 0 0 0 1]} |

1.6 An Application to Chemical Reactions

2. Suppose xNH3 + yCuO — 7N +wCu + vH, O where x, y, z, w and v are positive integers. Equating
the number of each type of atom on each side gives

N:x=12z Cu:y=w
H:3x=2v O:y=v

Taking v =1 these givey =t, w =t,x = %t and z = %x = %t. The smallest value of ¢ such that there
are all integersist =3,sox =2,y =3, z= 1 and v = 3. Hence the balanced reaction is

2NH3 +3CuO — Ny +3Cu+3H,0

4. 15Pb(N3)2 + 44CF(MI’ZO4)2 — 22Cry03 + 88MnQO, + 5Pb304 + 90N O

Supplementary Exercises: Chapter 1

1. b. No. If the corresponding planes are parallel and distinct, there is no solution. Otherwise they
either coincide or have a whole common line of solutions.

1 0 6 6 | 16
1 4 -1 1|2 1 4 -1 1 2 1(1‘ 110 110
3 2 1 2|5 0 -10 4 -1 1 0 1 —10 10 | 10
22007 6 s ot o s o4 <l |7 00 o olo
1 14 -5 2|3 0 10 —4 1 1 0 0 0 0 0

1

Hence x3 = s, x4 = t are parameters, and the equations give x| = 5 (16 — 65— 6t) and x, =

%(1 +4s—1).
4fa2 :| .
4—a?

0
1 } , so there is no solution.
1

=]

0 3(2—a)




1.6. An Application to Chemical Reactions = 11

1 32 10 2]2
If a =2 the matrixis | 0 -1 -1]0 | —= [0 1 1|0 |, sox=2—-2t,y=—t,z="1.
0 0 o]0 00 0]o0
If a # 1 and a # 2 there is a unique solution.
B = —5a+8
I L o 2y | oo g
2 2
0 1-a 5-3a |d4-a® | — |0 1 ¥ |45 | =0 1 ¥ et =0 1 0f g
0 0 32—a) | 4—a 0 0 1 % L0 o 1 aTJrZ 0 0 0 643L2

_ 8-5a _ —a—2 _ at2
Hence x = 5205,y = 30,747, 2= "3

4. If Ry and R, denote the two rows, then the following indicate how they can be interchanged using
row operations of the other two types:

R Ri+R, Ri+R, R, R,
R R LR

Note that only one row operation of Type II was used — a multiplication by —1.

6. Substitute x = 3, y = —1 and z = 2 into the given equations. The result is
3—a+2c=0 a — 2¢c = 3
3b—c—6=1 thatis 3b — ¢ =09

3a—2+2b=5 3a + 2b = 7

This system of linear equations for a, b and ¢ has unique solution:

1 0 —-213 1 0 -2 3 1 0 -2 3 1 0 -2 3 1 0 O 1
03 17| =103 1| 7| =101 -7] 9|—=1]01 =7 9o —= o 1 o] 2.
_3 2 017 0 2 6| -2 0 2 6| =2 0 0 20 | =20 0o 0 1] -1
Hencea=1,b=2,c = —1.
! 1 115 1 1 1 5 1 1 1]5 1 0 0|2
8. 2 -1 1|1 | —=]o0o =3 3|9 =101 1|3|=1]0o1 1]3].
| 3 2 270 0 5 5|15 00 00 00 00

Hence the solutionis x =2,y =3—¢,z=t. Takingt =3 —i givesx =2,y =1, z =3 —1, as required.
If the real system has a unique solution, the solution is real because all the calculations in the
gaussian algorithm yield real numbers (all entries in the augmented matrix are real).






2. Matrix Algebra

2.1 Matrix Addition, Scalar Multiplication, and
Transposition

1.  b. Equating entries gives four linear equations: a —b=2,b—c=2,c—d = —6,d —a =2. The
solutionisa = —-2+t,b=—-4+t,c=—-6+t,d=t.

d. Equating coefficients gives: a =b,b=c,c=d,d =a. The solutionisa=b=c=d =1t,t

arbitrary.
L el A B R B E R R R R R b )
d. [_3[—1 2]—_2[_9 3 4]:|-[_3]11_[—i]:[3_—] 2]—[18 6 8]4+[3 11 —6]

o -1 21T 0 1 -2
f,|:1 0—4] :{—1 0 4]
2 4 0 2 4 0
» 117 1 -1 2 —1 1 -1 6 -3 2 -2 4 -1
h'3[—10} _2[2 3}:3[1 0}_2[2 3}:[3 0}_[4 6]:[—1 —6]
3 -1 15 -5
5C_5[2 0]:[10 0}
B+ D is not defined as B is 2 x 3 while D is 3 x 2.
T T
243 1-1 5 0 5 2
(A+C)T:[oiz —1+0} :[2 —1] :[0 —1}
A — D is not defined as A is 2 x 2 while D is 3 x 2.

S

4. b. Given 3A + [ f ] :SA—Z[(3)],subtract3Afrombothsidestoget [ f ] :ZA—Z[ (3) ].Now
add 2| § | o both sides: 24 = | | +2| 3| = | ] Finally, multiply both sides by }:

1 8
a=3[1]=]

[SIE N
I

5. b. Given 2A — B =5(A+2B), add B to both sides to get
2A=5(A+2B)+B=5A+10B+B=5A+11B

Now subtract 5A from both sides: —3A = 11B. Multiply by —% togetA = —%B.

13
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6.

11.

13.

Matrix Algebra
) 4X +3Y =A -
b. Given 5X 414y —B° subtract the first from the second to get X +Y = B — A. Now subtract 3

times this equation from the first equation: X =A —-3(B—A) =4A—3B. Then X +Y =B—A
givesY =(B—A)—X=(B—A)—(4A—3B) =4B—5A.
Note that this also follows from the Gaussian Algorithm (with matrix constants):

43 A 5 4B 1 1] B-A
[543]_)[4 3‘ }%[4 3‘A:|

1 1] B-4 1 0|44-3B
_>[0 —1‘5A—4B]_>[01‘4B—5A]

. Given 2X —5Y = [ 1 2 } let Y =T where T is an arbitrary 1 x 2 matrix. Then 2X = 5T +

[1 2]soX=3T+1[1 2],Y=T.1fT=[s t] thisgivesX=[ 3s+1 3r+1],
Y=[s 1], wheresandr are arbitrary.

. 5[3(A—B+2C)—2(3C—B) —A] +2[3(3A—B+C) +2(B—24) — 2(]

— 5[3A — 3B+ 6C — 6C + 2B — A] +2[9A — 3B+ 3C + 2B — 4A — 2(]
= 5[2A — B] +-2[5A — B+ (]

— 10A —5B+10A —2B+2C

=20A—TB+2C

. Write A = [ Z’ Z } . We want p, g, r and s such that

a b 1 0 11 1 0 0 1 +q+r +s
|:C d]:p[01}+q|:0 0i|+r[10i|+s[10i|:[przx qp]

Equating components give four linear equations in p, ¢, r and s:

pt+aqg+r =a
q +s=5>b
r+s=c
P =d
The solutionis p=d, g = 3(a+b—c—d),r=3(a—b+c—d),s=3(—a+b+c+d).
A+A" = 0
—A+(A+A") = —A+0 (add —A to both sides)
(—A+A)+A" = —A+0 (associative law
0+A" = —A+0 (definition of —A)
Al = A (property of 0)
a 0 - 0 by 0 - 0
0 a - 0 0 b -~ 0
CIFA= - |andB=| . . s
0 0 - a 0 0 - b,
az-by 0 0
0  a-b - 0
thenA —B = : 2: : : so A — B is also diagonal.
0 0 a—b,

14. b. [ y i } is symmetric if and only if = st; thatis #(s — 1) = 0; thatis s = 1 or t = 0.
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16.

19.

20.

22.

2.2. Matrix-Vector Multiplication = 15

This matrix is symmetric if and only if 2s = 5,3 =1¢,3 =s+1; thatis s =0 and r = 3.

b T
8 0 2 0
[31_:<3AT ) :3A+[04].
6
3

HenceBA:_g ?}—[ 2]:[2 _g],soA:%

+
[\
—
o -
[=3 S} oo
[ S
N——
—~
|98)
N
~N
~—
~
_|_
/N
o

| — |
o -
[\ SR}
—_

4A-9] ! g}:(ZAT)T—<5

Hence 2A = | 0 9]—[3 _18
FinallyA:%[_g }3]:[_2% _75]

We have AT = A as A is symmetric. Using Theorem 2.1.2: (kA)T = kAT = kA; so kA is
symmetric.

b. False. Take B = —A for any A # 0.

d. True. The entries on the main diagonal do not change when a matrix is transposed.

f. True. Assume that A and B are symmetric, that is A” = A and B” = B. Then Theorem 2.1.2

gives
(kA +mB)T = (kA)T + (mB)" = kAT +mB" = kA 4+ mB

for any scalars k and m. This shows that the matrix kA +mB is symmetric.

.IfA=S+W asin (b), then AT =ST +WT =S —W. Hence A+AT =25 and A — AT =2W,

s0S=2(A+AT)and W = (A —AT).

If A = [a;;] then (kp)A = [(kp)aij] = [k(paij)] = k[paij] = k(pA).

2.2 Matrix-Vector Multiplication

3.

b.

b.

b.

X1 — 3% — 3x3 4+ 3x4 = 5
8xp + 2x4 = 1
X 4+ 2x% + 2x3 + = 2
X2 + 2x3 — 5x4 = 0
-2 -1 1 5
x| | tx| [t g [t 5]2[31
3 4 9 ) 12
By Definition 2.4:

" X X X
ax=[4 23] 5 [ =n 3] en] 2 ]en 3] =[]

X3

3 0-x14+(—4)-x2+5-x3 —4x2 4 5x3

By Theorem 2.2.5: Ax = [ (1) 7;‘; g } [2 ] — [ Lox+2-x 4323 ] — [x1+2x2+3x3 }
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d. By Definition 2.4:

[ 3 -4 16 M 3
AX = 0 2 15 2l =x| o
X3
8 7 30 -8
L x4
By Theorem 2.2.5:
r 3 4 1 6 M
AX = 0 2 1 5 f =
-8 7 -3 0 3 (
L x4
1 -1 —4]| -4 1 -1 -4
5. b.|1 2 5| 2| —=1]0 3 9
1 1 2| o0 0 2 6
. X —2+t —
z=t;thatis | y | = | 2-3 | =
Z t

-2
Observe that 2
0
the associated homogeneous system.
2 1 -1 —1]-1 11 -
3001 1 -2 -2 0 -1
N T el
-2 -1 0 2| 3 0o 1 -
Hence x; =3—t,xp0 =4t —9,x3 =t
X1 3—t¢ 3
X2 _ —9+4¢ _ -9
SO X3 -2+t - -2 +1
X4 t 0
3
-9
Here |
0

—4

is a solution to the given system of equations, and {

is a solution to the given equations, and

—4 1 6 3x1 —4xp +x3 4+ 6x4
2 2x2 +x3 + 5x4
7

—8x1 + Txp — 3x3

|

1 51 =
3 0

-]

3x1 —4xp +x3 + 6x4
2x2 + X3+ 5x4

o[ 1] |

3-X1+(74)-XQ+I-X3 +6-x4
0-x1+2-x0+1-x34+5x4

o]
|

—8)x1+7-x24+(—3)-x3+0-x4 —8x1 + Txp —3x3
1 0 —-1]| -2
6| =0 1 3| 2 Hence x =t -2, y =2 — 3¢,
4 0 0 0 0
2 1
0 1

1
-3
1

is a solution to

|

2 1|2 1o 1 of 1 100 1] 3
31| 3 01 -3 —1|-3 0 1 0 —4]|-9
700 4| 7loo0o 1 <1|=2]7loo0o 1 1|2
4 0] -1 00 -1 1| 2 000 0] 0
—2,Xx4 =1,

is a solution to the associated

—_— =

homogeneous equations.

6. To say that xg and x; are solutions to the homogeneous system Ax = 0 of linear equations means
simply that Axy) = 0 and Ax; = 0. If sx( + #X; is any linear combination of x( and X, we compute:

A(SX() —l—l‘Xl) :A(SX()) —l—A(l‘Xl) = S(AX()) —l—l‘(AXl) =s04+1t0=0

using Theorem 2.2.2. This shows that sxg + X7 is also a solution to Ax = 0.

8.  b. The reduction of the augmented matrix is
12 1 2 3| -4 1 2 00 5]|-3 AR
306 -2 -3 11| 11 0 0 1 0 —2|-1 :
2 4 -1 1 8| 7|70 o0 1 of ofS0OX= _IJZ’
-1 2 0 3 -5| 3 0 000 0| 0 .
-3 2 -5
. . 0 1 0 . . .
is the general solution. Hencex= | -1 | + | s | 0 | +¢ 2 is the desired expression.
0 0 0
0 0 1

1 2
2 4

2
—1

10.  b. False. [

I

d. True. The linear combination xja; + - - - + x,a, equals Ax where, by Theorem 2.2.1,
A= a a, | is the matrix with these vectors a; as its columns.

[ g ] has a zero entry, but [ é i } has no zero row.
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2.2. Matrix-Vector Multiplication = 17

2
f. False. If A = [ é é 7(1) ] and x = { 0 } then Ax = [ i }, and this is not a linear combination
1

of [ é } and [ é } because it is not a scalar multiple of [ é }

1

h. False. If A = [ _i 71 _i }, there is a solution { 2 } forb = [ 8 ] But there is no solution
1

for b = [ (1) ] Indeed, if [ 7} _} 7} } {y} = [é} thenx—y+z=1and —x+y—z=0.
Zz
This is impossible.

y

b. If [ f ] is reflected in the line y = x the result is [ ] ; see the diagram for Example 2.4.12. In

N 0 1
otherwords,T[y]Z[i}:[l o}[

d. If [ § } is rotated clockwise through 7 the result is

X . 0 1
y]SoThasmatrlx [1 0]

I ]; see Example 2.2.14. Hence

r[1=[2]=[ 5 20 s 1 4],

b. The reflection of { y } in the yz-plane keeps y and z the same and negates x. Hence
Z

x —x -1 0 0 x -1 0 0
T[y}:{ y]:[ 0 1 0}[)’],sothematrixis[ 0 1 0}.
z z 0 0 1 z 0 0 1
Write A = [ a; a, --- a, ] where a; is column i of A for each i. If b = xja; +xa2 + - -- + x4,
where the x; are scalars, then Ax = b by Theorem 2.2.1 where x = [ X] Xy 0 Xp }T; that is x is

a solution to the system Ax = b.

b. We are given that x; and x; are solutions to Ax = 0; that is Ax; = 0 and Ax, = 0. If 7 is any
scalar then, by Theorem 2.2.2, A(rx;) = t(Ax;) = t0 = 0. That is, ¢x; is a solution to Ax = 0.

LetA:[al a --- an}WhereaiiscolumniofAforeachi,andwriteX:[xl Xy - xn}T
T
andy= [y y2 -+ ya] .Then
T
X+y=[xi+y1 x+y2 - Xty |

Hence we have

A(x+y)=(x1+y)ar+ (xa+y2)as+ -+ (xn +yn)a, Definition 2.4
= (x131 —i—ylal) + (x232 —l—y232) + -4 (xnan —i—ynan) Theorem 2.1.1
= (xja; +xay+ - +x5a,) + (121 +y220+ - -+ ypa,) Theorem 2.1.1
= Ax + Ay Definition 2.4
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2.3 Matrix Multiplication

1 b, 1 -1 2 3 ; _[2-1-2 3-940 1-744 ] [ -1 -6 -2
0 4 o 2 | L4+0-4 6+0+0 24048 | T 0 6 10
0
1 3 6+0 0+3— 18] [73 715]
6

12.

=

e

OO'—‘I\) Ol\)w

| =)= ]

%
[1 -
§ ] [10710 :ziz}:[é?}

a 0 0 d 0 ad +0+0 0+0+0 0+0+0 ad 0 0
0O b O 0 b 0 — 0+04+0 0+bb'+0 0+0+0 — 0 bb' 0
0 0 ¢ 0o 0 (¢ 0+0+0 04+0+0 O0+04cc 0 0 o

A2, AB, BC and C? are all undefined. The other products are
Ba—| -1 4 -10] p2_ 7T 6| cB= - on AC = 410
= e fles=] e e fac=| 2

1 6
2 4 8
CA:|:—1 -1 —5:|,
1 4 2

. . . 2a+a1 2b+b1 o 7 2
The given matrix equation becomes [ Cat2a b ] = [ 1 4 ]

Equating coefficients gives linear equations

2a+a; =7 2b+b1 =2
—a+2a; =—1 —b+2b =4

The solutionis: a=3,a;=1;b=0, by =2.
8 2 2 2 6 0 0 0
e e E I R e A B
1 -1 -9 —16 —14 -17 -2 -1 -2
A(BC):[O 1}[5 1}:[ 5 1}:[3 1 0][

IfA:[Z }thenA[O 8]:[? g}Abecomes[z 8}:[2 g]whencebzoand

1
2
5

00— O

] = (AB)C

a = d. Hence A has the form A = | 2 , as required.

If Aism xnand B is p X g then n = p because AB can be formed and g = m because BA can
be formed. So Bisn xm, A is m X n.

. 10 1 0 11 .. 1 0 1 0 11

(l)[o 1]’[0 71]’[0 71] (H)_o 0}’[0 1}’[0 0}
erteA:[g Z}whereP[o }],X—[(z) 7(1)] and Q [ ]ThenPX—l—XQ—
BRI R U A B R )



2.3. Matrix Multiplication = 19

144:[1'(’)2 52}[’(’)2 52}_[ ; 54},A6:A4A2:[1;6 gﬁ},...;ingeneralweclaimthat

k=00 fork=1,2, ... ()

This holds for k£ = 1; if it holds for some k£ > 1 then

2(k+-1 %42 [P o [P o PR+ 0
A(+):AA: 0 o |:0 Q2:|:|: 0 QZ(k+l)]

Hence (x) follows by induction in k.
Next P2 = [ (1) 7? ],P3 = [ (1) 7? ], and we claim that

sz[g *ﬂform:Lz,... ()
It is true for m = 1; if it holds for some m > 1, then

P’"“:PmP:[l —mi||:1 —1]:[1 —(m-l-l)]
0 1

which proves (xx) by induction.
Asto Q, Q2 =1so QZk = [ for all k. Hence (x) and (xx) gives

1 —21]0 o
2k P* 0 0 1 [0 0
A:[o 1]:[0 0 10]f0rk21
0 0 |0 1
Finally

1 —(2k+1) 2 -1
2k+1 _ A2k 4 _ | P* 0 P ox | _ [ Pt ophx | | O 1 0 0
A =4 A_[O 1}[0 Q}_[ 0 0 — |0 0 T 1
0 0 1

I X I X +X0 —IX+XI I 0
13. b [o 1}[0 I}:[OH-IO —0x+12]:[0 I]ZIZk

d [1x ][ ) =0 w ][ ] =X+ X1 =0,

f[sz}z:[m]{m=[§§j
iRbithEk
=l el

2 m
Continue. We claim that [ ] = [ XO Xom } for m > 1. It is true if m = 1 and, if it holds

for some m, we have
0 x |2m+1) CTo x1To x12_[x o x o] __[xm1 o
I 0 — |1 o0 I 0 -1 0 xm 0 x| — 0 xmt
Hence the result follows by induction on m. Now
o x 1 1o x 170 x1 _[x o 0 x] _ [ o xm
I 0 =11 0 I 0| = | o xm I o | = |x" o

for all m > 1. It also holds for m = 0 if we take X° = 1.
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Matrix Algebra

b. If YA =0 for all 1 x m matrices Y, let ¥; denote row i of 1,,,. Thenrow i of [,A =Ais Y;A = 0.
Thus each row of A is zero, so A = 0.

b. A(B+C—D)+B(C—~A+D)—(A+B)C+ (A~ B)D = AB+AC — AD +BC — BA+ BD —
AC —BC+AD — BD = AB — BA.

d. (A—B)(C—A)+(C—B)(A—C)+(C—A)>=[(A—B)— (C—B)+(C—A)(C—A) =0(C—
A) =0,

b. We are given that AC = CA, so (kA)C = k(AC) = k(CA) = C(kA), using Theorem 2.3.3. Hence
kA commutes with C.

Since A and B are symmetric, we have AT = A and B! = B. Then Theorem 2.3.3 gives (AB)! =
BTAT = BA. Hence (AB)” = AB if and only if BA = AB.

X

a y
b. LetA = [ x b z } . Then the entries on the main diagonal of A% are a® +x2 + yz, Z4+b*+72,

y Zz Cc
y? + 7% + 2. These are all zero if and only if a = x = y = b = z = ¢ = 0; that is if and only if
A=0.

If AB = 0 where A # 0, suppose BC = I for some matrix C. Left multiply this equation by A to get
A=AI=A(BC) = (AB)C = 0C = 0, a contradiction. So no such matrix C exists.

We have A = . Hence there are 3 paths of length 3

10 1 0 2 1 1 1
(1) g g i],andhenceA3:[; 8 f f
1100 301 2 1
from vy to v4 because the (4, 1)-entry of A3 is 3. Similarly, the fact that the (3, 2)-entry of A3 is 0
means that there are no paths of length 3 from v, to vs.

b. False. IfA = | § § | = then AJ = A, butJ #1.

d. True. Since A is symmetric, we have AT = A. Hence Theorem 2.1.2 gives (I +A)T =17 + AT =
I+ A. In other words, I + A is symmetric.

f. False. 1A= | § | thena #0buta® =0,

h. True. We are assuming that A commutes with A + B, that is A(A + B) = (A + B)A. Multiplying
out each side, this becomes A” + AB = A? 4 BA. Subtracting A? from each side gives AB = BA;
that is A commutes with B.

j. False. Let A = [ . } and B = [ B } . Then AB = 0 is the zero matrix so both columns
are zero. However B has no zero column.

1. False. Let A = [ _; 7‘21 } and B = [ ? g ] as above. Again AB = 0 has both rows zero, but A
has no row of zeros.

b. If A = [a;;] the sum of the entries in row i is };_;a;j = 1. Similarly for B = [b;;]. If AB =
C = [c;j] then ¢;; is the dot product of row i of A with column j of B, that is ¢;; = Y _; aiby;.
Hence the sum of the entries in row i of C is

Yocij= Y ) anbi; = ) ai (Z%) =Y an-1=1
j=1 j=lk=1 k=1 j=1 k=1
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32.

34.

35.

2.3. Matrix Multiplication = 21

Easier Proof: Let X be the n x 1 column matrix with every entry equal to 1. Then the entries
of AX are the row sums of A, so these all equal 1 if and only if AX = X. Butif also BX =X
then (AB)X = A(BX) = AX = X, as required.

. If A = [a;j] then the trace of A is the sum of the entries on the main diagonal, that is tr A =

ai +ax +---+a,,. Now the matrix kA is obtained by multiplying every entry of A by k, that
is kA = [ka;j]. Hence

tr (kA) = kay, +kaxn + - +kay, = k(ajy +apn+--+ap,) =ktrA

. If A = [a;j] the transpose AT is obtained by replacing each entry a; ; by the entry aj; directly

across the main diagonal. Hence, write AT = [d/ j] where d; ;=ajiforalliand j. Let b; denote
the (i, i)-entry of AAT. Then b; is the dot product of row i of A and column i of AT, that is

bi=Yr_,apay; = Y4 agay = Yi_, a’. Hence we obtain

This is what we wanted.

. We have Q = P+ AP — PAP so, since P:=p,

PQ = P?+ PAP — P’ AP =P +PAP—PAP=P

Hence Q2 = (P+AP — PAP)Q = PQ + APQ — PAPQ = P+ AP — PAP = Q.

. We always have

(A+B)(A—B) =A% +BA —AB — B*

If AB = BA, this gives (A +B)(A — B) = A2 — B. Conversely, suppose that (A +B)(A —B) =
A? — B Then
A*—B*=A>+BA—-AB-B*

Hence 0 = BA — AB, whence AB = BA.

. Denote B = [ by b, --- b, } = [ b; } where b; is column j of B. Then Definition 2.9

asserts that
AB=[ Ab; Ab, --- Ab, | =[ Ab; |,

that is column j of AB is Ab; for each j. Note that multiplying a matrix by a scalar a is the
same as multiplying each column by a. This, with Definition 2.9 and Theorem 2.2.2, gives

a(AB) = a[Ab|] Definition 2.9
= [a(Ab;)] Scalar Multiplication
= [A(abj)] Theorem 2.2.2
= A(aB) Definition 2.9

Similarly,

a(AB) = a[Ab|] Definition 2.9
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= [a(Ab J)] Scalar Multiplication
= [(aA)bj)] Theorem 2.2.2
= (aA)B Definition 2.9

This proves that a(AB) = A(aB) = (aA)B, as required.

36. See the article in the mathematics journal Communications in Algebra, Volume 25, Number 7
(1997), pages 1767 to 1782.

2.4 Matrix Inverses

2. In each case we need row operations that carry A to I; these same operations carry I to A~!. In short
[ Al } — [ I A7 } This is called the matrix inversion algorithm.

b. We begin by subtracting row 2 from row 1.

41 10 I R [ S G
[32|01}_>[3 2‘0 1}%[0 5‘—3 4]

1 -1 1 -1 1 o 2 -4 . . 2 1
— A 5 75 |. Hence the inverse is 1
0 1| -2 z 0o 1| -2 4 5 3 4
5 5 3 3
1 -1 211 0 0 1 -1 2|1 0 0 1 0 30 1
d | -5 7 —11]o 1 0| —=1]o 1|5 1 0| =01 —1]2 0 1
2 3 5|0 0 1 0 -1]2 0 1 0 0 11 -2
1 0 0l2 -1 3 2 -1 3
—lo 1 03 1 -1].S04 1=]3 -1 |.
00 1|1 1 -2 11 -2
31 -1|1 0 0 1 0 1|1 -1 0 1 0 1| 1 -1 0
f. 21 ofl0o 1 0|—=|2 1 o]0 0| —=1]0 1 21 -2 3 0
1 -1]0 0 1 1 5 -1]0 1 05 0|-1 1 1
1 4 1
1 0 -1 1 -1 0 L0 0] % —w% 1 | ) 1 4 -1
=0 1 2/=2 305101 0l-% § g |-HenceA™ =55 2 2 2|,
00 —10] 9 —14 1 o 0 1 9 14 . 9 14 -1
% 10 "0
h. We begin by subtracting row 2 from twice row 1:
31 1|1 0 0 1 0 —2]2 -1 0 1 0 -2 2 -1 0
5 2 oflo1 0o|—=|52 olo 1 0|—=]02 100]-10 0
1 1 -1]0 0 1 11 -1]0 o0 1 01 1| -2 1 1
1 0 2] 2 -1 0 1 0o -2 2 -1 0 1 0o o0| 32 o -2
—]01 s5|-5 30— |01 5|-5 3 O0—|010|-3 % 3
00 =43 21 00 1|-3 i -3 00 1|-3 2z -!
L 2 0 -2
Hence A~ =5 | -5 2 5 |.
3 2 -1
-1 4 5 2|1 0 0 0 1 -4 -5 -2 -1 0 0
0 0 0 ~1j0 1 00| |0 0 0 1) o0 -1 0 0
J 1 =2 -2 0]/0 0 1 0 0 2 3 2| 1 01 0
0 -1 -1 0]0 0 0 1 o0 1 1 0ol 0 0 0 -1
1 =4 =5 —2|-1 0 0 0 1 0 -1 —2|-1 0 0 -4
o0 1 1 0ol 0 0 0 -1 01 1 0ol 0 0 0 -1
~lo 2 3 2/ 1 o1 ol 7]oo0o 1 2/ 1 01 2
0o 0 0 1| 0 -1 0 0 00 0 1| 0 -1 0 0
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100 o0 0 1 -2 1000 0 0 1 -2
01 0 —2|-1 0 -1 -3 01 0 0|-1 -2 -1 -3
—“loo1 2/ 1 o 1 2|7loo 1ol 1 2 1 2]/
000 1|0 -1 0 o0 000 1] 0 -1 o0 o0
0 1 -2
a2 o 3
Hence A~ =| | 5 | 5 |-
0 -1 0 0
1 200 0|1 00 0 0 100 0 0|1 -2 6 -30 210
01 3 00[/01 000 01 00 0[0 1 -3 15 —105
001 50[/00100/|=]0oo0100l0o o 1 -5 35
000 1 1/0 00 1 0 0001 0/0 0 0 1 -7
0000 1/0 00 0 1 0000 1/0 0 0 0 |
I =2 6 -3 210 7
0 1 -3 15 —105
HenceA'=1]0 o 1 -5 35
o 0 o 1 -7
o 0 0 0 i

. The equations are Ax = b where A = f :2 }, X = [ f ], b= [ (1) ] We have (by the algo-

rithm or Example 2.4.4) A~ = 1 [ 4 -3

x:,aHAx:A*lb:%[‘11 :3} [?]zé[ii]

il [4]

6
By the algorithm, A~! = % { 4 4 1

. 9 —14 6 1 Z
! 4 -4 1 1= 8
Z10 15 -5 0 s

The equations have the form Ax = b, so left multiplying by A~! gives

] . Left multiply Ax = b by A~! to get

1
. Here A = [ 2
4

9 -—14 6

—Alax) =4 p=1 9o 4 1 =1 8
X (4x) S| Z10 15 =5 0 S| o5

Hence x = %,y: %, and z = —255 =-5
(1 -1 2
. We want B such that AB=P where P= | 0 1 1 ] Since A~! exists left multiply this
10 0

equation by A~! to get B=A"!(AB) = AP, [This B will satisfy our requirements because
AB = A(A~'P) = IP = P]. Explicitly

1 1 -1 37 1 -1 2 4 -2 1
B=A""P= 2 0 5 0o 1 1| = 7 -2 4
-1 1 0 1 0 0 -1 2 -1

-1
. By Example 2.4.4, we have (2A)T = | | 7] } =1 [ B ] Since (2A)T =2AT, we get
2AT:§[ 3 ] soAT = L [ 3 ].Finauy

T
A=y = [ 3] =h[1 ]
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. TheequationsareA[;‘,] = [ ! ] and [ y ] :B[;‘; ] where A

. False. A = [ 10 ] and B = [ (1) _(1) ] are both invertible, but A + B

. False. Take A = [0 8]andB [

Matrix Algebra

. We have (I —247)"! = [ 2 } so (because (U~!)~! = U for any invertible matrix U)

1 -1 10 1 -1 0 1
ThusZAT:I—[fl 2}:[0 1}—[71 2]:[1 71].
This gives A* = 5

B
~~
B
~
N—
Pﬂ
I
STl
| —
— O
|
—_
ﬂ
I
=
L—
- o
|
—_

)
(¢]
=
(@)
(¢)]
>
—
|
[\®]
~N
[\®]
—
S -
[ R
I
—
SN
[\ SR}
—_
|
[\®]
| — |
S -
—_
I
| — |
Lo
|
[N 2N\S)
—_
I
[\®]
| — |
|
—_
3!
=
o
=
<

>
Il
—~
N
L
N—
L
Il
/N
[\
[ —
Lo
|
—_—
| I
N—
L
Il
B —
| —
Lo
|
—_—
| I
L
Il
B —
~ N
|P—‘
—
[ —
—_
O -
| I
N—
Il
]
—
[ —
—_—
O -
| I

o1 —17°! 2 —1 3
.HaveA:(Al)l:[}g }] :%{(2) } —ﬂbythealgorithm.

Thus B = A~! (by Example 2.4.4) so the substitution gives

X | | X ;- ’ x | _ 71 _ | -5
I[),,]—[),,]Thusx—ly—lso[y}—B[l}—[ 1

— ||
w-l> — N
[ T NN

||

—

I

I

>

oo

/1 A~ W

R

—

I

I
—
(=)
I
—
2]
=]
o
=

. True. If A* =3I then A(3A%) =1 = (JA%)A, s0 A~! = 143
1
0

} Then AB = B and B # 0, but A is not invertible by
Theorem 2.4.5 since Ax = 0 where x = [ (1) ] .



10.

11.

15.

16

. We use the algorithm:

|
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18.

19.

20.

21.

22

. If a > 1, the x-expansion T : R? 5 R? is given by T [ f } =

|

24.

25.

1
c
3

2.4. Matrix Inverses = 25

. True. Since A? is invertible, let (A%)B = I. Thus A(AB) = I, so AB is the inverse of A by
Theorem 2.4.5.
We are given C~' = A, s0 C = (C~!)~! =A=', Hence CT = (A~!)7. This also has the form

CT = (AT)~! by Theorem 2.4.4. Hence (CT)~! = AT,

. If a solution x to Ax = b exists, it can be found by left multiplication by C: CAx = Cb, Ix = Cb,

x = Cbh.

(i) x=Cb= [ (3) } here but x = [ (3) } is not a solution. So no solution exists.
(i) x=Cb = [ _? } in this case and this is indeed a solution.
N T N I RN P T F R )

Thus B-B =1 =B'B.soB ' =B =88=| | ][]

S -

—_
I

| —
Lo
o -

—_

0 1|1 0 0 1 o 1] 1 0 0 1 0 1 1 0 0

1 ¢lo1 0o|l—=]01 O0|l-10]|—=]01 0| - 1 0

c 210 0 1 0 ¢ —-1|1-3 0 1 0 0 —-1|c=-3 —¢ 1

1 0 0|2=2 — 1 1o 1171 A2 ¢ 1

01 0| —c 1 o0 |.Hence | ¢ 1 ¢ = —c 1 o | for all values of c.
0 0 1|3=¢ c -1 3 ¢ 2 3—¢2 ¢ -1

b. Suppose column j of A consists of zeros. Then Ay = 0 where y is the column with 1 in the

b.
b.

a
0

b.

position j and zeros elsewhere. If A~! exists, left multiply by A~! to get A='Ay = A~10, that
is Iy = 0; a contradiction. So A~! does not exist.

If each column of A sums to 0, then XA = 0 where x is the row of 1s. If A~! exists, right
multiply by A~! to get XxAA~! = 0A~!, that is x/ = 0, x = 0, a contradiction. So A~! does not
exist.
2 1 -1
(i) Write A = [ i (1) _01 } Observe that row 1 minus row 2 minus row 3 is zero. If x =
[ I -1 —1 }, this means XA = 0. If A~! exists, right multiply by A~! to get xAA™! =
04—, xI =0, x =0, a contradiction. So A~! does not exist.

If A is invertible then each power A* is also invertible by Theorem 2.4.4. In particular, A¥ £ 0.
If A and B both have inverses, so also does AB (by Theorem 2.4.4). But AB = 0 has no inverse.

Fe T =Ta 0] [ 1] we nave

—1 .
0 1 .. )
" ] = [ g (1) ], and this is an x-compression because % < 1.

The condition can be written as A(A® 4+ 242 —I) = 41, whence A[}(A% +2A% —1)] = I. By
Corollary 2.4.1 of Theorem 2.4.5, A is invertible and Al = }‘(A3 +2A%2 -1 ). Alternatively,
this follows directly by verifying that also [i(A3 +2A2 -D]A=1.

If Bx = 0 then (AB)x = 0 so x = 0 because AB is invertible. Hence B is invertible by Theorem
2.4.5. But then A = (AB)B~! is invertible by Theorem 2.4.4 because both AB and B! are
invertible.
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26.  b. AsinExample 2.4.11, —=B~'YA~! = —(—1)"1[ 1 3]

28. d. IfA"=0writte B=I1+A+A%+---+A"1 Then

(I—A)B=(I—-A)(I+A+A*+- A"
= (I+A+A%+ A" —A-AZ A ... A"
=]—A"

Similarly B(I —A) =1,s0 (I—-A)~!' =B.
30. b. Assume that AB and BA are both invertible. Then

AB(AB)"! =150 AX = I where X = B(AB) ™!
(BA)"'BA =150 YA =1whereY = (BA)"'B

Butthen X =1X = (YA)X =Y(AX) =YI =Y, s0 X =Y is the inverse of A.
Different Proof. The fact that AB is invertible gives A[B(AB)~!] = I. This shows that A is
invertible by the Corollary 2.4.1 to Theorem 2.4.5. Similarly B is invertible.

31. b. fA=BthenA~'B=A"'A=1. Conversely,if A~'B = I left multiply by A to get AA~!B = AI,
IB=A,B=A.

32. a. Since A commutes with C, we have AC = CA. Left-multiply by A~! to get C = A~!CA. Then
right-multiply by A~! to get CA~! = A~!C. Thus A~! commutes with C too.

33. b. The condition (AB)? = A>B? means ABAB = AABB. Left multiplication by A~! gives BAB =
ABB, and then right multiplication by B~! yields BA = AB.

34. Assume that AB is invertible; we apply Part 2 of Theorem 2.4.5 to show that B is invertible. If
Bx = 0 then left multiplication by A gives ABx = 0. Now left multiplication by (AB)~! yields
x = (AB)~10 = 0. Hence B is invertible by Theorem 2.4.5. But then we have A = (AB)B~! so A is
invertible by Theorem 2.4.4 (B~ ! and AB are both invertible).
-1

35.  b. By the hint, Bx = 0 where x = [ 3 ] so B is not invertible by Theorem 2.4.5.
—1
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36. Assume that A can be left cancelled. If Ax = 0 then Ax = A0 so x = 0 by left cancellation. Thus

38.

39.

41.

A is invertible by Theorem 2.4.5. Conversely, if A is invertible, suppose that AB = AC. Then left
multiplication by A~! yields A~'AB=A"'AC,IB=1IC,B=C.

b. Write U =1, —2XXT. Then U is symmetric because

Ul =17 —2xx")T =1, —2xTTxT =, —2xxT =U
Moreover U ! = U because (since X7X =1,)
U? = (I, —2xXT)(1 —2xxT)
=1, —2xXT —2xxT +4xx"xx"

=1,—4xXX" +4x1,x7
=1,

. If P2 = P then I — 2P is self-inverse because

(I—2P)(I—2P)=1-2P—2P+4P* =]
Conversely, if I — 2P is self-inverse then
I=(I-2P)>=1—4P+4P>

Hence 4P = 4P?; so P = P2,

. If A and B are any invertible matrices (of the same size), we compute:

AV A+B)B ' =A'AB ' +A BB =B A = A 4 B!

Hence A~! + B~! is invertible by Theorem 2.4.4 because each of A~!, A+ B, and B! is
invertible. Furthermore

A +B ) =[AT A+B)B T =(B7) T (A+B) I (AT) T =B(A+B) A

gives the desired formula.

2.5 Elementary Matrices

1.

d. Add (—2) times row 1 of I torow 2. E~! = [

f. Multiply row 3of I by 5. E~! = [

b. Interchange rows 1 and 3 of I, E “-1—F.

(=3 e
(=N =]

- o O
_

S O =
S = O
w— O O

|
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2. b. A— Bisaccomplished by negating row 1, so E = [ 701 8 ]
d. A — Bis accomplished by subtracting row 2 from row 1, so E = [ (1) _} ] :

0

1

f. A — B is accomplished by interchanging rows 1 and 2, so E = [

3. b. The possibilities for E are [ (1) (1) }, [ ](; (1) ], [ (1) 2 }, [ (1) ]1‘ ] and [ ,lc (1) } In each case EA
has a row different from C.
4. If E is Type I, EA and A differ only in the interchanged rows.

If E is of Type II, EA and A differ only in the row multiplied by a nonzero constant.
If E is of Type II, EA and A differ only in the row to which a multiple of a row is added.

5. b. No. The zero matrix O is not invertible.

12 1|10 12 1] 10 12110 1o 7
6. b-[su —1‘01]%[02—6‘—51]%[01—3‘—% }%[0173

1
2

2 4
5 ] SO
2 2

UA=R= [ (1) (1) _; ] where U = % [ _1§ *f ] . This matrix U is the product of the elementary

matrices used at each stage:

[; 122 —i_:A
i
! 5 71-:E1A whereElz_fé (1)]
_¢ I
L2 L EBEA where B, = | ¢ |
-¢ i
_(1) (1) _;_ = FE3E>E A where E3 = _(1) 7?]

120 10 0 1 0 0 1 0 0 1 00
U:{OlO}[O%O]{O 10}{010}{310}{
0 0 1 0 0 1 0 -1 1 -2 0 1 0 0 1
is a product of elementary matrices.
2 -1 ofl1 o E[1 1 1|0 1]|E[3 o 1]1 1 11
7. b‘[l 11‘01}4[2710‘10}4[2710‘10]30[]:[10}-
Then £y = [ § [andE2= | § | |.s0U = BBy,
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8. b -
(73] =4
+ _

[é § = EA where £ = (1) (1)
o _ _

[(1) j = EEA where Ep = 7; (1)
o ﬁ

[(l) ? = E3E2E1A whereE3: (l) _1
o -

[0 V] = EEsEEA whereEy= || 7

Thus E4E3E2E1A =1so

A= (E4E3E2E1)71
=E;'E;ESE)!

=[ve] L]l e 1]

Of course a different sequence of row operations yields a different factorization of A.

1 0 0 1 0 O 1 0 -3 1 0 0
d. Analogousto(b),A:{ 0 1 0}{0 1 0]{0 0]{0 1 4}
0

1
2 0 1 0 2 1 0 1 0 0 1
10. By Theorem 2.5.3, UA = R for some invertible matrix U. Hence A = U ~'R where U ~! is invertible.
3 201 0 1 1|1 -1 1 1] 1 -1 1 0|-1 2
12. b [A‘I}:[z 1‘0 1]%[2 1‘0 1]%[0 71‘72 3}%[0 1‘ 2 73]
soU = [ _é _% } Hence, UA = R = I, in this case so U —=A~!. Thus, r = rank A = 2 and,
taking V = I, UAV =UA = .

1 1.0 —1]1 0 0 1 0 -1] 1.0 0 1 0 302 1 0
d,[A‘I}: 321 1]lo1o0]—=|o0o -1 1 4/-310|=]01 -1 —4| 3 -1 0],
1 01 3|00 1 0 -1 1 4|-1 0 1 0 0 ol 2 -1 1
-2 1 07 1 0 1 3
Hence, UA = R where U = 3 -1 ojlandR=|0 1t -1 -4 |. Note that rank A = 2.
2 -1 1 0 0 0
Next,
1 0 0]1 0 0 0 1 0 0| 1 0 0 0 1 0 0 0
T 1o 1 o0]lo 10 o0 01 0/ 01 0 0 T 01 0 0
[R ‘I]_ L 1 0loo 10| ]oool-t 11 o|SOVi=|_17159]|
3 -4 0l0 0 0 1 00 0|-3 4 0 1 3 4 0 1

0
Hence, (UAV)T = (RV)T = VTRT = [ g
0

16. We need a sequence of elementary operations to carry [ U A } to [ I U'A ] By Lemma 2.5.1
these operations can be achieved by left multiplication by elementary matrices. Observe

(1 U'A]=[U0w UT'A]=U"[U A] (2.1)



30 = Matrix Algebra

Since U ! is invertible, itis a product of elementary matrices (Theorem 2.5.2), say U 1—E\E- E
where the E; are elementary. Hence (2.1) shows that [ I U'A } =FEE)---E; [ U A }, SO a se-

quence of k row operations carries [ U A ] to [ I U'A ] Clearly [ I U'A } is in reduced
row-echelon form.

17. b. A~ A because A =IA. If A~ B, let A= UB, U invertible. Then B = U"'A so B ~ A.
Finally if A L Band B~ C ,let A=UB and B = VC where U and V are invertible. Hence
A=U(VC)=(UV)CsoA~C.

0

19.  b. The matrices row-equivalent to A = 8 8 | ] are the matrices UA where U is invertible. If

c

U= [ : Z ] then UA = [ g g Z ] where b and d are not both zero (as U is invertible). Every
such matrix arises —use U = | z

} — it is invertible as a* + b* # 0 (Example 2.3.5).
22.  b. By Lemma 2.5.1, B = EA where E is elementary, obtained from / by multiplying row i by

k #0. Hence B~' = A"'E~! where E~! is elementary, obtained from I by multiplying row i
by % But then forming the product A~'E~! is obtained by multiplying column i of A~! by %

2.6 Matrix Transformations

-1 5

find 7' (x). Since T is linear it is enough (by Theorem 2.6.1) to express X as a linear combination
of a and b. If we set X = ra + sb, equating entries gives equations 3r +2s =5, 2r = 6 and
—r—+5s = —13. The (unique) solution is r = 3, s = —2, so x = 3a — 2b. Since T is linear we

have
T(x)=37()—27(b) =3[ 3 | —2[ =[]} ]

3 2 5
. b. Writtea=| 2 ], b= [ 0 } and X = { 6 } We are given T'(a) and T'(b), and are asked to
13

2. b. Leta=

1 -1 5
| ],b = [ ; ] and x = [ - ] . We know 7' (a) and 7'(b); to find 7' (x) we express
1 —4 4
x as a linear combination of a and b, and use the assumption that 7 is linear. If we write
x = ra+ sb, equate entries, and solve the linear equations, we find that r = 2 and s = —3.
Hence x = 2a — 3b so, since T is linear,

T(x):2T(a)—3T(b):2l ?}_3{3]:[_3}

3. b. InR?, we have e; = [ (1) } and e; = [ (1) } We are given that 7'(x) = —x for each x in R%. In
particular, 7 (e;) = —e and T'(e;) = —e,. Since T is linear, Theorem 2.6.2 gives

A=[T(er) T(e) | =] —e —ez]z[_é —(1)]
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Ofcourse,T[;‘]:—[x}:[ﬂ}:[*é _?][;‘]forall[i}inRz,sointhiscase

y -y
we can easily see directly that T has matrix [ _(1) 7(1) . However, sometimes Theorem 2.6.2 is
necessary.

. Lete; = [ (1) ] and e; = [ (1) ] If these vectors are rotated counterclockwise through Z, some

V2

V2 2
simple trigonometry shows that 7'(e;) = { 5 } and T'(ey) = [ 4 } . Since T is linear, the
2 2
1
2

matrix Aof TisA= [ T(e;) T(e) | = [ ? _ﬁ ]

1 0 0
. Lete; = [ 0 ], e = [ 1 } and ez = { 0 ] denote the standard basis of R3. Since 7 : R? — R3
0 0 1

is reflection in the uz-plane, we have:
T (e;) = —e; because e, is perpendicular to the uz-plane; while
T(e;) =e; and T'(e3) = e3 because e; and ej3 are in the uz-plane.

SoA=[T(e) T(ex) T(es) | =[—er e es]Z[ 1 Z H

. Since y; and y, are both in the image of T, we have y; = T(x;) for some x; in R”", and

y> = T(xz) for some x; in R”. Since T is linear, we have
T (ax) +bxy) = aT (x1) +bT(x2) = ay, + by,

This shows that ay, + by, = T (ax; + bxy) is also in the image of T.

. It turns out that 72 fails for 7 : R? — R2. T2 requires that T (ax) = aT (x) for all x in R? and

all scalars a. Butifa=2and x = [ (1) ] then

re[t])=rls]= (] wiear ([1]) =2[1] =[]

Note that 7'1 also fails for this transformation 7', as you can verify.

.WearegivenT[i}:L[ xty ]:L[ ! ”[x} forall[i},soTisthematrix

—x+y -1

V2 V2
1

4 L
transformation induced by the matrix A = G [ o ] =| ¥ ¥ |. By Theorem 2.6.4
Vi Vi

we recognize this as the matrix of the rotation R_z. Hence T is rotation through 6 = — 7.

y

~

_Here T [ f] — _llo [ 8x+6y ] — 11—0 [ :g _g } [f} for all [f], so T is the matrix transfor-

6x— 8y

mation induced by the matrix A = % :2 _g . Looking at Theorem 2.6.5, we see that A is

the matrix of Q_3. Hence T'= Q_3 is reflection in the line y = —3x.

X 0 X
. Since T is linear, we have T [ y } =T [ y } +T [ 0 } Since T is rotation about the y axis,
0

Z Z

0 0 0
wehave T | v | = | v | because { y | is on the y axis. Now observe that 7 is rotation of the
0 0 0
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xz-plane through the angle 6 from the x axis to the z axis. By Theorem 2.6.4 the effect of 7 on
the xz-plane is given by

X N cos® —sinb x | _ | xcos@ —zsin®
z sin 6 cos 6 z | xsin@+zcos6

X xcos 6 —zsin 6
Hence T | 0 | = 0 , and so

z xsin 6 +zcos 6
X 0 X 0 xcos 0 —zsin 6
T y — T y + T 0 = y + 0
z 0 z 0 xsin6 4 zcos 6
xcos 0 —zsin 6 cos® 0 —sin6 X
= y = 0 1 0 y
xsin 6 +zcos 6 sin@ 0 cosB z

cosf® O —sine}

Hence the matrix of T is 0 1 0
sin@ 0 cos O

. Let Qg denote reflection in the x axis, and let R; denote rotation through 7. Then Qp has

matrix A = [ (1) _(1) ], and R; has matrix B = [ _(1) _(1) } Then R; followed by Qg is the

transformation Qg o Ry, and this has matrix AB = [ 7(1) (1) } by Theorem 2.6.3. This is the
matrix of reflection in the y axis.

. Let Qg denote reflection in the x axis, and let Rz denote rotation through % Then Qg has
2

matrix A = [ (1) _(1) }, and Rz has matrix B = [ (1)
2

7(1) } Then Qg followed by R z is the
transformation Rz o Qp, and this has matrix BA = [ (1) (1) ] by Theorem 2.6.3. This is the

2
matrix of reflection Q; in the line with equation y = x.

. Let Qg denote reflection in the x axis, and let Q; denote reflection in the line y = x. Then

Qo has matrix A = [ (1) 7(1) ], and Q) has matrix B = [ (1) (1) ] Then Qg followed by Qg is

the transformation Q; o Qp, and this has matrix BA = [ (1) _(1) ] by Theorem 2.6.3. This is the

matrix of rotation Rz about the origin through the angle 7.
2

. Since R has matrix A, we have R(x) = Ax for all x in R”. By the definition of 7" we have

T(x) = aR(x) = a(Ax) = (aA)x

for all x in R”. This shows that the matrix of T is dA.

. We use Axiom 72: T(—x) =T[(—1)x] = (-1)T(x) = —T(x).
. The matrix of T is B, so T(x) = Bx for all x in R". Let B> = I. Then

T?(x) = T[T (x)] = B[BxX] = B>x = Ix = X = 1 2(x) for all x in R".

Hence T2 = 1= since they have the same effect on every column x.
Conversely, if T? = 1g» then

B*x = B(Bx) = T(T(x)) = T?(x) = lp2(x) = x = Ix for all x in R".
This implies that B> = I by Theorem 2.2.6.



2.6. Matrix Transformations = 33

18. The matrices of Qg, Q1, Q1 and R% are [ (1) _(1) ], [ (1) (1) ], [ _(1) 7(1) } and [ (1) 7(1) },respectively.
We use Theorem 2.6.3 repeatedly: If S has matrix A and T has matrix B then S o T has matrix AB.

b. The matrix of Q| o Qg is [ (1) (1) ] [ (1) 7(1) ] = [ (1) _(1) },whichis the matrix of Rz .
2

d. The matrix of Qgo Rz is [ (1) _(1) } [ (1) 7(1) ] = [ _(1) 7(1) } which is the matrix of Q1.
2

19.  b. We have P, [Q,:(x)] = P,(x) for all x in R? because Q,,(x) lies on the line y = mx. This means
By o Qm = By.

20. To see that T is linear, write X — [ X| X2 o+ Xp }T andy = [ Vi Y2 ot ]T. Then:

T(x+y):T<[xl+y1 xX+yr - xn-l-yn]T)
= (x1+y1) + (2 +y2) + -+ (X0 + )
= (X1 +xo+ X))+ (1 +y2 4+ )
=Tx)+T(y)

T(ax)=T([ ax; ax, - axn}T)
=ax;taxy+---+ax
=a(x;4+x2+ - +x,)
=aT(x)

Hence T is linear, so its matrix is A = [ T(e;) T(e) --- T(e,) ] =[1 1 --- 1] by Theorem
2.6.2.

Note that this can be seen directly because

o ﬁi
T| . :x1+"'+xn:[1 1 .. 1}
so we see immediately that 7' is the matrix transformation induced by [ 1 -1 } Note that

this also shows that T is linear, and so avoids the tedious verification above.

22.  b. Suppose that T : R" — R is linear. Let e, e, ..., e, be the standard basis of R", and write
T(ej) =w,foreach j=1, 2, ..., n. Note that each w; is in R. As T is linear, Theorem 2.6.2
asserts that 7 has matrix A= [ T'(e;) T(ex) -+ T(e) |=[wi wy -+ wy |

X1
Hence, given x = x:2 in R”", we have

Xn

X1
T(X):AXZ[Wl wy e Wn] 2 = WX +waxg + -+ WXy = W-X = Ty(x)

Xn
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) T . .
for all x in R"” where w — [ wi wa \- } . This means that T = Ty. This can also be
seen without Theorem 2.6.2: We have X = xje; +xpe> + - - - +x,€, so, since T is linear,

T(x) =T(x1€] +x2€2+ - +xn€p)
=xi1T(e;)+x2T(ex)+---+x,T(ey,)
=XIW1 +XoWw2 + -+ XWy

=Ww-X

= Tw(x)

for all x in R”. Thus T = Ty,.

24.  b. Given linear transformations R" -5 R™ % Rk we are to show that (SoT)(ax) =a(SoT)(x)

for all x in R" and all scalars a. The proof is a straight forward computation:

(SoT)(ax) = S[T (ax)] Definition of So T
= S[aT (x)] T is linear
=a[S[T(x)]] S is linear
=a[(SoT)(x)] Definition of So T

2.7 LU-factorization

4 2 1 2 2 1 1 2 1
1 b. -1 3| = 1 -1 — 2= lo 1 -2 |=U.
- -7 - 7 -6 0 0 0
2 0 0
Hence A = LU where U is above and L -3 0 |.
9 1
I1-3 1 0 -1 1 3 -1 0 1 1 3 -1 0 1
1l 4 1 1 1 o 11 2 1 0 01 21 0
d. 2 3 a0 1|7 olaal2 10700 00o0]|=U
0l -—2 -4 —2 o 0| -—2|-4 -2 0 00 0 0 0
0 0 0
. 1 1 0 0
Hence A = LU where U 1is as above and L = 1 -11 0 |
0 -2 0 1
21 2 —2 4 2 1 1 -1 2 1 11 -1 2 1
1|-1 0 2 1 0= 1 0 0 01 -4 0 0| _
£l 1 26 3|2 ol 2] 1 00] o0 o oo |=U
1] 3 -2 2 1 o] 2|-1 0 o0 00 0 0 0

2.

0
0
1
0

— o oo
| I |

b. The reduction to row-echelon form requires two row interchanges:

0 -1 2 0 -1 2 12 1
0 0 4 | — 0 0 4| — 0 -1 2| —--.
- 21 -1 2 1 0 0 4

—_
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The elementary matrices corresponding (in order) to the interchanges are

1 0 0 0O 1 0 0 0 1
PIZ[O 0 1}andP2:{1 0 0],sotakeP:P2P1:[1 0 0}
0O 1 0 0 0 1 0O 1 0
We apply the LU -algorithm to PA:
1] 2 1 1 -2 -1 12 -1 12 -1
PA = 0| -1 2:|—)[0 —1 2:|—)[0 1 -2 —>|:O 12:|:U
0] o0 4 0| o] 4 0o o[ 4] 0o o0 1

-1 0 0
Hence PA = LU where U is as above and L = [ 0 -1 0 }

d. The reduction to row-echelon form requires two row interchanges:

1 -2 30 12 =30 12 -3 0 12 -3 0 12 -3 0
2 4 65 0 0 05 00 0 5 01 —2 -3 01 -2 -3
11 13| o1 23] 7]o1 23700 0o 5| 7|00 -2 4
2 5 —10 1 0 1 -4 1 00 —2 4 00 —2 4 00 0 5

The elementary matrices corresponding (in order) to the interchanges are

1 00 0 1 0 0 0 1 00 0
00 1 0 01 0 0 00 1 0

Pi=1¢g | o olandP=| o o | |[SOP=PRPi=|, 4, |
00 0 1 00 1 0 01 0 0

We apply the LU -algorithm to PA:
-2 3

- 0 1 2 -3 0 1 2 -3 0
- 1l 1 -1 3 or=1] 2 3 01 -2 -3
PA = 20 s —10 1| 7ol 1|l=4 1| 7|0 o[=2] 4
2| 4 -6 5 0 0 s 0o 0| of s
1 2 -3 0 1 2 3 0
01 -2 -3 01 -2 -3
“loo 1 2 |~loo 1 2|=U
00 0 00 0 1
-1 0 0
. ; 1 -1 0 0
Hence PA = LU where U is as above and L = 5 1 2 o |-
2 0 s

2 0 0 1 1 0 -1 M Vi
bWriteL:[ 1 30],U:[0 10 1],X: > ,y:[yz}ThesystemLy:b
-1 2 1 00 0 O xz 3
2y1 = —2
is yir + 3y = —1 and we solve this by forward substitution: y; = —1, y, =
-y + 2y + y3 = 1
X1 + x — x4 = -1
%(—l—yl)zo,y3:1—|—y1—2y2:O.ThesystemUx:yis X + x4 = 0 and
0 = 0
we solve this by back substitution: x4 =t,x3 =5,x = —x4 = —t,x1 = —1+x4 —x0 = —1+2¢.

2 8—2
d. Analogous to (b). The solutionis: y = [ _f ] , X = [ _61__t[ ] , t arbitrary.
0

t

5. If the rows in question are R and R, they can be interchanged thus:

6.

R, R +Ry R +Ry R R
F R R R B A R b

b. Let A = LU = L U; be LU-factorizations of the invertible matrix A. Then U and U; have
no row of zeros so (being row-echelon) are upper triangular with 1’s on the main diagonal.
Thus Ll_lL = U U~ is both lower triangular (Ll_lL) and upper triangular (U;U~!) and so is
diagonal. But it has 1’s on the diagonal (U; and U do) soitis /. Hence L} = L and U; =U.
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7. We proceed by induction on n where A and B are n x n. It is clear if n = 1. In general, write
A= [ ; fl and B = [ f; l?l ] where A| and By are lower triangular. Then AB = [ berl;ly AIOBI ]
by Theorem 2.2.5, and A|B; is upper triangular by induction. Hence AB is upper triangular.

9. b. Let A= LU = LU be two such factorizations. Then UU I= L~ 'L,; write this matrix as
D= UUl_1 = L7'L,. Then D is lower triangular (apply Lemma 2.7.1 to D =L~ 'L;), and D is
also upper triangular (consider UU | 1. Hence D is diagonal, and so D = I because L~! and L,
are unit triangular. Since A = LU, this completes the proof.

2.8 An Application to Input-Output Economic Models

5 0 -5 1 0 -1 1 0 -1
1. b I-FE= { -1 1 =2 } — { 0 1 -3 ] — { 01 -3 } The equilibrium price structure p
-4 -1 7 0o -1 3 00 0

is the solution to (I — E)p = 0; the general solutionisp=[ ¢ 3t 1] .

50 -1 -1 2 -2 2 o2 2 2

“2 3 0 -1 50 -1 —1 0 10 9 -1l

1 -2 2 2|72 3 0o 1| 7|0 7 -4 3|
0

—2 -1 -1 4 2 -1 -1 4 3 -5 8
Now add 3 times row 4 to row 2 to get:

d. —E=

14

1 2 -2 2 1 0 —14 28 10 —-14 28 oo - e
0 -1 —6 13 01 6 —13 01 6 -13 01 0 -U
0 7 4 3| 700 46 9|l 7 loo 1 4| 7| 0 g
0 3 -5 8 0 0 —23 47

00 0 0 o 0 0 o

The equilibrium price structure p is the solution to (I — E)p = 0. The solution is
p=[ 14 17t 47t 231 ]".

0 0 1
1 0 0 | soweget
01 0

1
I—E:|:—l

2. Here the input-output matrix is £ = [
0

1

0 -1

—1 1 0 -1 1 0 -1
o[ —=]10 1 -1 |—=(01 -1
1 0 -1 1 00 0
Thus the solution to (I —E)p is p; = pp = p3 =t. Thus all three industries produce the same output.

4. I -E = [ Jl_fa _Z ] — [ 16“ _g } so the possible equilibrium price structures are p = [ (lfta)t },

t arbitrary. This is nonzero for some ¢ unless » =0 and a = 1, and in that case p = [ } } is a solution.

If the entries of A are positive then p = [ | b ] has positive entries.

7. b. One such example is £ = [ 2‘71 :g },because (I—E)f1 = —% [ 3 2 }

8. If E = [‘; Z] then I — E = [ 1 l‘f’d]. We have det(I — E) = (1 —a)(1 —d) —be = 1 —

(a+d)+(ad —bc) =1 —tr E + det E. If det(I — E) # 0 then Example 2.3.5 gives (I —E)~! =

m [ lzd lfa . The entries 1 —d, b, ¢, and 1 — a are all between 0 and 1 so (I —E)~! >0 if

det(I—E) >0, thatisif tr E < 1+ detE.
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9. b pr:[

—_ N W

] then p > Ep so Theorem 2.8.2 applies.

then p > Ep so Theorem 2.8.2 applies.

NN W

d. pr:{

2.9 An Application to Markov Chains

1. b. Notregular. Every power of P has the (1, 2)- and (3, 2)-entries zero.

2. b I-P= [ J _} ] — [ (1) _g} so (I — P)s = 0 has solutions s = [ 2,’ ] The entries of s sum

2 . ) 1
tolifr= %, sos= | 7 | 1s the steady state vector. Given sy = [ (l) ] , we gets) = Psg = [ i } ,
3 2
3 3 o .. . o
s> = Ps; [ 1 1,83="Psy = { : } . So it is in state 2 after three transitions with probability %.
1 8

.6 -1 =5 1 -2 1 1 0 -1
d.I—P:{.z 4 .2}—>[0 11 11}—>[0 1 1} so (I —P)s = 0 has solution s =
. . 0 -—11 11 0 0 0

1
t 3 1
{ t } . The entries sumto 1 if t = % so the steady state vectoriss = | 1 |. Given sy = { 0 } ,
t 1 0
3
4 38 350 o
S;=Psop=| 2 |,sp=Ps; = | 28 |,s3=Ps; = | 312 |. Hence it is in state 2 after three
4 34 338
transitions with probability .312.
9 -3 -3 1 -3 2 10 —% )
f.I-P=|-3 9 -6|—|0 24 -21|—=]o0 1 ¢ |,s0(/—P)s=0has solutions=
-6 -6 9 0 -24 21 0 0
5t _ . | _ % _ 1
7t |. The entries sum to 1 if 7 = 55 so the steady state vectoriss= | 5 |. Givensp=| 0 |,
8t % 0
1 28 244 o
S;=Psop=| 3 |,sp=Psy=| 4 |,s3=Ps; = | 306 |. Hence it is in state 2 after three
6 30 450

transitions with probability .306.

g .1 1

4. b. The transition matrix is P = [ 1 8 3 } where the columns (and rows) represent the up-
2 1 6

per, middle and lower classes respectively and, for example, the last column asserts that, for
children of lower class people, 10% become upper class, 30% become middle class and 60%

3 -1 -1 1 -2 3 1 0 -1
remain lower class. Hence /- P=| -1 2 -3 | —|0 5 —-10|—= |0 1 -2 |, Thus
—2 —1 —4 0 10 00 0

|
[

t
the general solution to (I —P)s =0 is s = [ 2 ], SO § =

t

is the steady state solution.

Bl = B—

Eventually, upper, middle and lower classes will comprise 25%, 50% and 25% of this society
respectively.
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6. Let States 1 and 2 be “late” and “on time” respectively. Then the transition matrix is P =

W W —
l— 1=

Here column 1 describes what happens if he was late one day: the two entries sum to 1 and the top
entry is twice the bottom entry by the information we are given. Column 2 is determined similarly.

3 3
Now if Monday is the initial state, we are given that sg = [ 1 ] Hence s; = Psg = [ § } and
1 8
A
s, = Ps; = | ¥ |. Hence the probabilities that he is late and on time Wednesdays are 17—6 and 19—6
1
respectively.

8. Let the states be the five compartments. Since each tunnel entry is equally likely,

05 4o

Lo 0o 1 o0

P=|1 o0 11

RN

Lo 1 o0 o0

a. Since he starts in compartment 1,
1 0 3 14
0 3 0 120
So= |0 |.s1=Pso=| 3 |, 2=Psi=| 5 |.S3=Psr=| 3
0 0 7 53
0 30 300
1

wIl—
o

g

(=)

Hence the probability that he is in compartment 1 after three moves is %

b. The steady state vector s satisfies (I — P)s = 0. As

1 -1 -1 0 -I 1 oo o -3

-1 0o -1 o0 01 0 0 -1

I-P)=| -t o ¢ -1 4 |=]o0o010 -3

-4 -1 1 0 00 0 1 -2

-0 -1 o 1 00 0 0 0
3
L2

so the steady state is s = 1z | 5 |. Hence, in the long run, he spends most of his time in

4
2

compartment 3 (in fact 1% of his time).

I-p ¢ 1 g | _ 1 (I=p)g+ap | _ 1 q : : 1 q
12. a. [ ] [ ] [ ]——[p].Smcetheentnesofm[p} add

p l-g ptq | p |~ ptq| pe+(1-qp p+q
to 1, it is the steady state vector.
b. Ifm=1
L (¢ a|plop=q| » —a|__L | atp=p-pq q-atpita
ptq| p p ptq | P 4 p+q | p—p_p*+pa pta—pa—q

_ 1 | (p+9(=p) (p+a)q
o (p+q)p r+a)(1-q)
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In general, write X = [ } and Y = [ I } Then PX =X and PY = (1 —p —q)Y.

p

cepm 1 (I=p—q)"
Hence if P —p+qX—|— T Y for some m > 1, then

q 4q
p P

ptq ptaq
_ 1 (A—p—q)"
=Xt g (1—p—a)Y
1 (1—p—g)"™*!
- p+qX + ptq Y

Hence the formula holds for all m > 1 by induction.

NowO<p<land0<g<limply0< p+q<2,sothat—1 < (p+g—1) < 1. Multiplying
through by —1 gives 1 > (1 —p—¢q) > —1, so (1 — p — ¢)" converges to zero as m increases.

Supplementary Exercises: Chapter 2

2. b. Wehave 0 =p(U)=U?-5U+11U —4I sothatU(U?—5U +111) =4I = (U> - 5U +111)U.
Hence U~ = L(U?—5U + 111).

4. b. If X, =Xy, theny = k(y —z) =y +m(y —z), whence (k—m)(y —z) = 0. But the matrix
y —z # 0 (because y # z) so k —m = 0 by Example 2.1.7.

6. d. Using (¢), IpgAlrs = Xy Xj—; aijlpglijlys. Now (b) shows that Ip4l;jls = 0 unless i = g and
J = r, when it equals I,,;. Hence the double sum for /,,;Al,; has only one nonzero term — the
one for which i = ¢q, j = r. Hence I,4Al; = aglps.

7. b. If n=11itisclear. If n > 1, Exercise 6(d) gives
agrlps = IpgAlrs = Ipgl A

because Al,; = I,;A. Hence a4 = 0 if g # r by Exercise 6(b). If r = g then ayql,s = I,,5A is the
same for each value of ¢g. Hence a;| = az = --- = ay;, s0 A is a scalar matrix.






3. Determinants and Diagonalization

3.1 The Cofactor Expansion

If A is a square matrix, we write det A = |A| for convenience.

1. b. Take 3 out of row 1, then subtract 4 times row 1 from row 2:
)6 9‘:3‘2 3):3)2 3‘20
8 12 8 12 0 0
d. Subtract row 2 fromrow 1: | “*1 Pl =a—1)—a=-1

f. Subtract 2 times row 2 from row 1, then expand along row 2:
2 0 -3 0 —4 -13

R e O e A
h. Expand along row 1: % g % :—a’g g‘:—a(O):O
j. Expand along row 1:
g § g = —a| ¢ ¢ |+b| ¢ | =—a(—bc)+b(ac) = 2abc

1. Subtract multiples of row 1 from rows 2, 3 and 4, then expand along column 1:

1
2
—1
4

0
2
0
1

3

6
-3
12

1
0
1
0

S O W

1

2 0
0 0
1 0

-2
2
—4

=0

n. Subtract multiples of row 4 from rows 1 and 2, then expand along column 1:

4
3
0
1

4
3
0
1

—1
1
1
2

-1
1
1
2

3
0
2
—1

3
0
2
-1

-1
20
5| =
1

-1
2_
5| =
1

0
0
0
1

-9
=5
1
2

0 25
0 13
1

2

7
3
2
—1

13
9
2

=5
-1
2
1

|

25
13

-9 7

13
9

=5
1

3
2

-5
—1
2

Again, subtract multiples of row 3 from rows 1 and 2, then expand along column 1:

’:_

): —(~9465) =—56

p. Keep expanding along row 1:

0 0 0 a
0O 0 b p 00 b 0 ¢
0 ¢ g k|=—a|0 v a|==albl, ||)=—ab(—cd)=abcd
d s t
d s t u
-1 3 1 -1 3 1 -1 3 1 -1 3 1
5 b. 5 = 0 11 5|=—| o0 1 =—1 0 1 2 :_(17):_17
1 =2 1 0 1 2 0 11 5 0 0 —17
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9. b
d.

f.

h.

10. b

2 3 1 11 25 112 s 112 s
02 -1 3|_ o2 -1 3|_ o2 -1 3|_|0o1 -3 —9/|_
0 s I o5 1 1| 05 1 1|7 |o s 1 1|
11 5 2 3 11 01 -3 -9 02 -1 3
112 s 112 5
01 3 9|_|o 1 -3 —9|_
00 16 4 |=|0 0 1 -17|=1006
00 5 21 0 0 0 106
a b c a b ¢
Subtract row 1 fromrow 2: | a+b 2o c¢+b |=| b b b | =0by Theorem 3.1.2(4).
2 2 2 2 2 2

. Take —2 and 3 out of rows 1 and 2, then subtract row 3 from row 2, then take 2 out of row 2:

—2a —2b —2c a b c a b c a b ¢
2p+x 2q+y 2r+z | = —6]| 2p+x 2g+y 2tz |=—6|2p 29 2r |=—=12|p q¢ r |=12
3x 3y 3z X y z X y z X oy z

First add rows 2 and 3 to row 1:

2a+p 2b+q 2c+r
2p+x  2q+y 2r+z
2x+a 2y+b 2z+c

3a+3p+3x 3b+3q+3y 3c+3r+3z
2p+x 2g+y 2r+z
2x+a 2y+b 2z+c

atp+x b+q+y c+r+z
2p+x 2g+y 2r+z
2x+a 2y+b 2z+c

=3

Now subtract row 1 from rows 2 and 3, and then add row 2 plus twice row 3 to row 1, to get

a+p+x b+qg+y cH+r+z 3x 3y 3z
= p—a q—>b r—c = p—a qg—b r—c
x—p y—q z=r x—p y—q z-—r
Next take 3 out of row 1, and then add row 3 to row 2, to get
X y z X y z
=9 p—a qg—b r—c =9| —a -b -
-»  —q - -p —q -
Now use row interchanges and common row factors to get
-p —q -r —-a —-b —c a b c
=—-9| -a b —|=9| p —¢ —r|=9|p q r
X y z X y z Xy z

False. The matrix A = [ ; ; } has zero determinant, but no two rows are equal.

False. The reduced row-echelon form of A = [ g (1) } is R = [ (1) (1) }, but det A = 2 while
detR=1.

False. A = [ (1) i ], detA=1=detA”.

False. If A = [ (1) } } and B = [ } (1) } then det A = det B = 1. In fact, it is a theorem that
det A = det AT holds for every square matrix A.

Partlition th% matrix as follows and use Theorem 3.1.5:
1 3 1 s
00| 2 :5<—1‘ 3 1D:—S(—7):35

0 0| -1
0 0 3

2 1 1
-1 0 2
30 1

SO =k W

0
1
2
1



1.

14.

15.

16.

21.

3.1. The Cofactor Expansion = 43

b. Use Theorem 3.1.5 twice:

A O 0
¥ L‘:det[;‘; ) | detC = (deta detB) detC =2(~1)3 =6
Y Z C
A X 0

d. |0 5|0 |=det|§ } |detC=(detA detB)detC=2(~1)3=-6
Yy Zz C

b. Follow the Hint, take out the common factor in row 1, subtract multiples of column 1 from
columns 2 and 3, and expand along row 1:

x—1 -3 1 x—2 x—2 x-2 1 1 1
det 2 -1 x-1 |= 2 -1 x-1 :(x—Z) 2 -1 x-1
-3 x+2 =2 -3 x+2 =2 -3 x+2 =2
w-2)| 2 s = -2
=x—2)| 2 -3 x-3|=(x—2 ’
3 x45 1 *+5 1

= (x—2)(—x* —2x+12) = —(x —2)(x* +2x — 12)

2 -1

b. If we expand along column 2, the coefficientof zis — | |

=—(6+1)=-7.Soc=-T.

b. Compute det A by adding multiples of row 1 to rows 2 and 3, and then expanding along column

1:
1 X X 1 x X 2 )
detA=| —x -2 x|=]0 2-2 24x |= x2—2 ;cz-i-,;
—x —x -3 0 xz—x x2—3 xX“—Xx —

= (> =2)(x*=3) - (P +x)(x*—x) = (x* =524+ 6) =P (x* — 1) = 6 —4x?

Hence det A = 0 means x2 = % = g, SO X = :té.

d. Expand along column 1, and use Theorem 3.1.4:

x y 0 0
, x y 0 y 0 0
detA: 8 g i 2 =x| 0 x vy ‘—y x y O :x.x3_y.y3
y 0 0 «x 0 0 «x 0 x vy
=xt = (=) (P +)7) = (v =) () (P +5P)

Hence det A =0 means x =y orx = —y (x> +y*> = 0 only if x = y = 0).

X1 V1

Letx = xf , Y= }:2 ,andA:[cl o X+Yy - cn}wherex-l-yisincolumnj. Ex-
'le yVl

panding det A along column j we obtain

T(x+y)= detA= i(xi+Yi>Cij(A>
=1

1

(A) + iyicij(A)

=

; XiCij
T(x)+T(y)

where the determinant at the second step is expanded along column 1. Similarly, T'(ax) = aT (x) for
any scalar a.
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24. Suppose A is n X n. B can be found from A by interchanging the following pairs of columns: 1 and

n,2andn—1, ... . There are two cases according as n is even or odd:

Case 1. n = 2k. Then we interchange columns 1 and n,2 andn—1, ..., k and k+ 1, k interchanges
in all. Thus det B = (—1)* det A in this case.

Case 2. n =2k + 1. Now we interchange columns 1 and n, 2 and n— 1, ..., k and k + 2, leaving

column k fixed. Again k interchanges are used so det B = (—1)* det A.

Thus in both cases: det B = (—1)* det A where A is n x n and n = 2k or n = 2k + 1.

Remark: Observe that, in each case, k and 3n(n — 1) are both even or both odd, so (—1)F =

1 1
(—=1)2""=1)_ Hence, if A is n x n, we have det B = (—1)2"""V) det A.

3.2 Determinants and Matrix Inverses

10 3.0 3001
-1 1 0 1 0 -1
1 -3 -3
[ 1 2 1 2 1 -1
1 b. The cofactor matrix is —‘ . ‘ ‘ 0 1 ‘ ‘ 0 1 ‘ = [ -1 1 1 }
2 6 4
-1 2 12 1 -1
10 3.0 3001
. . . ) [
The adjugate is the transpose of the cofactor matrix: adjA=1| -3 1 6 |.
3 1 4

d. In computing the cofactor matrix, we use the fact that det [%M } = é det M for any 2 X 2 matrix
M. Thus the cofactor matrix is

-1 2] 42 2 2 -1
9 2 -1 92 -1 92 2
1] 2 2‘1—1 2 1—12‘ _1 _2 g 2 _1 _é f 2
-3 _ 3 _ —3 =9 - =3 -
2 -1 2 -1 2 2 Ol ¢ & _3 30 5 5,
o2 o2 -t o2 a -1 2
9 -1 2 9 2 2] 9 2 -1
. . . . 1 -1 2 2
The adjugate is the transpose of the cofactor matrix: adjA =53 | 2 -1 2 |. Note that the
2 2 -1

cofactor matrix is symmetric here. Note also that the adjugate actually equals the original
matrix in this case.

2. b. We compute the determinant by first adding column 3 to column 2:
0 —c
—(=0)| L g |= (a0 =

0
= ' -1 1 -1
This is zero if and only if ¢ = 0, so the matrix is invertible if and only if ¢ # 0.

0 c —c
-1 2 -1
c 0

c —C c

d. Begin by subtracting row 1 from row 3, and then subtracting column 1 from column 3:

4 ¢ 3 4 ¢ 3 4 ¢ -1 e -1
c 2 c¢c|=|c¢c 2 ¢c|=|c 2 0|l=1 5 0’:2
5 ¢ 4 1 0 1 1 0 0

This is nonzero for all values of ¢, so the matrix is invertible for all c.
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f. Begin by subtracting ¢ times row 1 from row 2:
1 ¢ -1 1 c —1
c 1 L |=]|0 1-¢ 1+4c¢
0 1 c 0 1 c
Now take the common factor (14 ¢) out of row 1:

1 ¢ -1

1= 14
- 1 c

_‘ (I+¢)(1=¢) 1+c
- 1 c

1—c¢

c 11 :(l-l—c)‘ | i =(1+c)c(1—c)—1]=—(1+c)(—c+1)=—(3+1)
0 1 c
This is zero if and only if ¢ = —1 (the roots of ¢? — ¢+ 1 are not real). Hence the matrix is

invertible if and only if ¢ # —1.

b. det(B*’C'AB~!CT) = detB?>detC~'detAdet B~ detC”
= (detB)? deltC detAdeltB det C
= detBdetA

= =2

b. det(A"'B!AB) = detA~' det B-! detAdet B= 1 detAdetB=1.

Note that the following proof is wrong:
det(A"'B7'AB) = det (A 'AB"'B) = det(I-1) = det I = 1

The reason is that A~'B~!AB may not equal A~'AB~!B because B~'A need not equal AB~!.

b. Since C is 3 x 3, the same is true for C~!, so det(2C~1) =23 . detC~! = dﬁc. Now we

compute det C by taking 2 and 3 out of columns 2 and 3, subtracting column 3 from column
2:

2p —a+u 3u p —a+u u p —a u
detC=1|2¢ -b+v 3v |=6|q —-b+v v |=6|q —-b v
2r —c+w 3w r —c+w w r —c w

Now take —1 from column 2, interchange columns 1 and 2, and apply Theorem 3.2.3:

u

detC=—6 v':6

ST
o S

; -1__8 __ 8 _ 4
Finally det2C™" = =15 =3-

b. Begin by subtracting row 2 from row 3, and then expand along column 2:

2% 0 4d 2 0 4d b ad b 2 b d
1 2 -2 =1 2 2 |=2 ) =4 ) =8
a+1 2 2(c—1) a 0 2 a = a = a ¢
Interchange rows and use Theorem 3.2.3, to get
_ a ¢ | __ a b | __ _
——8|5 o|=-8|¢ b|=-8(-2=16
’ 9 4 ’ ‘ 309 ’
-1 -1 -5 i 2 -1 _721_2
3 4 11 11
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d. The coefficient matrix has determinant:

4 -1 3 0 -1 0 “ s
6 2 -1 |=|14 2 5 :—(—1)) 51 ):79
3003 2 15 3 11
Hence Cramer’s rule gives
1 -1 3 1 -1
x=4 0 2 1 |=L]o -1 —L‘Z ”‘:Q
o5, Oy > 902 s 79
y_L 2 (1) —:; :L g (1) —? = L‘ 6 -1 _3_7
5 . 07 o s 907 s 79
c=hle 2 ool=gle 2 o=k =2
(CH I O, 5 o 907 2 79

9. b Al= ﬁ adjA = ﬁ [C,-J-}T where [C,-j] is the cofactor matrix. Hence the (2, 3)-entry of
12 -1 12 -1
11 0 -5 4

0 4 7 0 4 7

1 1
—C32. Now C32 = — ‘ 3 1

= —4. Since det A =

18 det A

= —51, the (2, 3) entry of A1 is =~ = 2.

10.  b. If A2 =1then det A> = det I = 1, that is (det A)> = 1. Hence det A = 1 or det A = —1.

d. If PA = P, P invertible, then det PA = det P, that is det P det A = det P. Since det P # 0 (as
P is invertible), this gives det A = 1.

f. IfA=—AT Aisn xn, then AT is also n x n so, using Theorem 3.1.3 and Theorem 3.2.3,
det A = det (—AT) = det[(—=1)AT] = (—1)" det AT = (—1)" det A

If n is even this is det A = det A and so gives no information about det A. But if #n is odd it
reads det A = — det A, so det A = O in this case.

15. Write d = det A, and let C denote the cofactor matrix of A. Here
AT =A""=1adja=1C"
Take transposes to get A = %C , whence C = dA.

0 c —c
19. b. Write A = { -1 2 -1 } . Then det A = ¢? (Exercise 2) and the cofactor matrix is

c —C c

2 -1 -1 -1 -1 2
—c c c c ¢ —c
c 0 —c
c —c 0 —c 0 c
[ClJ] - _‘ —c c c c e —c = [ 0 ¢ ¢ :|
c ¢ ¢
c —c 0 —c 0 ¢
2 -1 -1 -1 -1 2




20.

22.

3.2. Determinants and Matrix Inverses = 47

4 ¢ 3
d. Write A = { c 2 ¢ ] Then det A = 2 (Exercise 2) and the cofactor matrix is
5 ¢ 4
r 2 ¢ e ¢ c 7
c 4 5 4 5 ¢
—c? 2 _
Cii] = _c3‘ ‘4 3‘ _‘4c . 875 T CCIO
] = =
J c 4 5 4 5 ¢ 2_6 —c 8_¢
c |4 3 4 ¢
L 2 c ¢ c 2 .

-1 _ 1 | T 8-> —¢ -6
e~ = ghxaaia =4l =3[ 11, 1
1 ¢ -1
f. Writte A= | ¢ 1 1 |. Then detA = —(c> + 1) (Exercise 2) so det A = 0 means ¢ # —1 (c
0 1 c

is real). The cofactor matrix is

1 | e c 1
c 0 ¢ 0 1
c—1 —2 c
-1 1 -1 1 ¢
cl=1-|¢ ‘ _‘ =| @+ -1
[ J} 1 c 0 c 0 1 et (40 1-¢&
c -1 _ -1 1 ¢
1 1 c c 1
{ 1 ] [ ]T ] c—1 —(c2+1) c+1 ! l—c Z+1 —c—1
Hence A™" = adjA=5=Cj|' =5+ | ¢ ¢ —(e+l) | =5 & - o+l
det A ¢+l J ¢+l c -1 1—¢2 ¢+l —c 1 A—1 ’
where ¢ # —1.

b. True. Write d = det A, so that d-A~! = adj A. Since adj A = A~! by hypothesis, this gives
dA=!' = A~!, that is (d — 1)A~! = 0. It follows that d = 1 because A~! # 0 (see Example
2.1.7).

d. True. Since AB = AC we get A(B—C) = 0. As A is invertible, this means B = C. More
precisely, left multiply by A~! to get A"!A(B—C) = A=10 = 0; that is I(B — C) = 0; that is
B—-C=0,s0B=C.

1 1

f. False. IfA=| 1 1

1
1 ] then adj A = 0. However A # 0.
1 1 1

h. False. If A = - (1) (1) - then adj A = [ 8 _i }, and this has no row of zeros.

j. False. IfA = |~ || then det(/+4) = ~1 but 1+ detA=1.

I False. IfA=| ) ||

O -

then detA =1, butadia=| { | | £4.

b. If p(x) = ro + rix+ rox?, the conditions give linear equations for rg, r and r:

ro = p0) =5
ro + n + rn = pl) =3
ro + 2rn + 4 = p2) =5

The solution is ry = 5, 1| = —4, r, = 2, 50 p(x) = 5 — 4x + 2x°.
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23.

24.

26.

28. Writed = det A. Then J = det (A1) = det

34.

we have A-adjA=dl,so adjA=A"1(dl) =dA™! = 5] {

Determinants and Diagonalization

b. If p(x) = ro + rix+ rax> + r3x°, the conditions give linear equations for rg, r1, r» and r3:

70 = p0) = 1
o + n + n + rn = pl) = 1
roh — n + rn - r3 = ( 1) = 2
ro — 2r1 + 4rn — 8r3 = ( 2) = -3

The solutionis ro = 1,71 = 2, o= 1,13 = 2,50 p(x) = 1 — Jx+ L2 + 113

. If p(x) = ro + r1x+ rpx? 4 r3x°, the conditions give linear equations for rg, 71, r, and r3:

ro = p(0) = 1

ro + n + rn + r = p(l) = 149

ro + 2rn + 4rn + 8n p(2) = —-042

ro + 3r1 + 9% + 273 = p(3) = —-11.33
The solutionisrg=1,r, =—-0.51,n=2.1,r3=—1.1, 50

p(x) =1-051x+2.1x" — 1.1x°
The estimate for the value of y corresponding to x = 1.5 is
y=p(1.5)=1-0.51(1.5)+2.1(1.5)> = 1.1(1.5)* = 1.25

to two decimals.

. Let A be an upper triangular, invertible, n X n matrix. We use induction on n. If n =1 it is

clear (every 1 x 1 matrix is upper triangular). If n > 1 write A = [ o g ] and A~ = [ Z Z ]

in block form. Then
[ 1 0 } — A4 = [ ab+XZ a¥ +XC ]
0 I BZ BC

So BC =1, BZ=0. Thus C = B~! is upper triangular by induction (B is upper triangular

because A is) and BZ = 0 gives Z = 0 because B is invertible. Hence A~ = [ g g ] is upper

triangular.

| —
w O W
—_ N O

1
3 } = —-21. Hence d = 5—11 By Theorem 3.2 .4,

-1
0 1
2 3 1.
1 -1

—_
w O W

b. Write d = det A so detA~! = %. Now the adjugate for A~ gives

AN (adjAa™) =11

Take inverses to get (adj A~')"!A = dI. But dI = (adjA)A by the adjugate formula for A.
Hence
(adjA~H7'A = (adjA)A

Since A is invertible, we get [adj A_l} - adj A, and the result follows by taking inverses
again.
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d. The adjugate formula gives
ABadj(AB) = det AB-1=detA-detB-1
On the other hand

ABadjB-adjA=A[(detB)I]adj A
=A-adjA-(det B)I
= (detA)I - (det B)I
= detAdetB-I

Thus AB adj (AB) = AB- adj B - adj A, and the result follows because AB is invertible.

3.3 Diagonalization and Eigenvalues

I bocalx) =" xil ) = x> —x— 6= (x—3)(x+2); hence the eigenvalues are 1; = 3, and
A, = —2. Take these values for x in the matrix xI — A for ca (x):
14

o] ]

x—1 -1 3 x—1 -1 3 x—1 -1 —x+4
cax)=| 2 x -6 |=| 2 x -6 |=| -2 «x —4
-1 1 x-5 x—2 0 x-2 x—2 0 0
=(-2)| = - e ) = (- 2)

So the eigenvalue is A; = 2 of multiplicity 3. Taking x = 3 in the matrix xI — A for c4(x):

1 -1 3 1 -1 3 s—3t 1 -3
-2 2 6 — 0 0 0 , X = K ;X1 = 1 ;X0 = 0 .
—1 1 -3 0 0 0 t 0 1

Hence there are not n = 3 basic eigenvectors, so A is not diagonalizable.

x -1 0
f. Here ca(x) = | 3 x -1 |=x—3x—2. Note that —1 is a root of c4(x) so x+ 1 is a
-2 0 X

factor. Long division gives ca(x) = (x+1)(x> —x—2). But x> —x—2 = (x+1)(x —2), so
ca(x) = (x+1)%(x—2). Hence, the eigenvalues are A; = —1 and A, = 2. Substitute A; = —1
in the matrix xI — c4(x) gives
[ -1 -1 0 } [ 1
3 -1 -1 | = |o
-2 0 -1 0

S = O
o | BI—
8=
| I
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so the solution involves only 1 parameter. As the multiplicity of A; is 2, A is not diagonaliz-
able by Theorem 3.3.5. Note that this matrix and the matrix in Example 3.3.9 have the same
characteristic polynomial but the matrix in Example 3.3.9 is diagonalizable, while this one is

not.

x—2 —1 —1
h. CA(X): 0 x—1 0

—1 1 x—2

A1 =1, Ay = 3. Take these values for x in the matrix xI — A for c4 (x):

-1 -1 -1 1 1 1 1 0 1 -1
M=1: 0o 0 o|— 0f—1]0 1 0];x3= 0
| -1 1 -1 0 0 0 0 1

0
0
-1 -1 1 -1 1
Ay =3: 0 2 0}-)[0 0];;@:{0}
0 0 1

-1 11
Since n = 3 and there are only two basic eigenvectors, A is not diagonalizable.

=(x—1) x—12

:2 ‘ = (x—1)?(x—3). Hence the eigenvalues are

—_ o O N

o

b. As in Exercise 1, we find A; = 2 and A; = —1; with corresponding eigenvectors x| = [ f ]

-1

ve[h == ][] =]

and x; = [ é },SOPZ [f ” satisfies P"1AP =D = [g 0 ].Nextcompute

2
1
1
d. Here Ay =3, A, = —2 and A3 = 1; Xlz{o},XZZ{ 1} andX3:{—2],andP:
3

9

2

1

[e

1 -3 3

1
312k
o

If A is an eigenvalue for A, let Ax = Ax, x # 0. Then

111 |
0 1 -2 |. Now P~ =
1 -4 -1

3 6 3 1 |
2 -2 =2 . SO PO VO = 6

112

Vi

Aix=(A—ol)x=Ax—oax=Ax—ox= (A —o)x

So A — « is an eigenvalue of A| = A — al (with the same eigenvector). Conversely, if A — « is
an eigenvalue of Ay, then Ay = (A — a)y for some y # 5. Thus, (A —al)y = (A — a)y, whence
Ay —ay = Ay — ay. Thus Ay = Ay so A is an eigenvalue of A.

n
b. Direct computation gives P~'AP = [ (1) g } Since [ (1) g } = [ (1) 20 }, the hint gives A" =
1 0] p-1 9-8.2"  12(1—2"
P[o 2"]P :|:6(2”71) 94(2"78)]

b. A= [ 0 } We have c4(x) = x(x —2) so A has eigenvalues A; = 0 and A, = 2 with basic

eigenvectors x| = [ (1) ] and x, = [ é ] Since [ X Xo } = [ (1) é } is invertible, it is a diag-

onalizing matrix for A. On the other hand, D+ A = [ (1) } ] is not diagonalizable by Example
3.3.10.

b. Since A is diagonalizable, let P~'AP = D be diagonal. Then P~!(kA)P = k(P~'AP) = dD is
also diagonal, so kA is diagonalizable too.
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d. Againlet P~'AP = D be diagonal. The matrix Q = U~ !P is invertible and

0 '(U'AU) =P 'U(UAUYU~'P = P71AP = D is diagonal.
This shows that U ~!AU is diagonalizable with diagonalizing matrix Q = U~ P.

} ] = [ g 7} } + [ _(1) (2) } and both [ g 7} ] and [ _(1) (2) ] are diagonalizable. However,

} ] is not diagonalizable by Example 3.3.10.

14. If Ais nxn, let A;, A, ..., A, be the eigenvalues, all either O or 1. Since A is diagonalizable
(by hypothesis), we have P"!AP = D where D = diag(,, ..., A,) is the diagonal matrix with

AL, ..

., A, down the main diagonal. Since each A; =0, 1 it follows that 7Ll~2 = A; for each i. Thus

D? = diag (/'le, e, /’an) = diag (A4, ..., A;) = D. Since P~ 1AP = D, we have A = PDP~!. Hence

18.

20.

21.

23.

24.

A2 = (PDP "Y(PDP ' =PD’P ' =PDP ' =A

. Since r # 0 and A is n X n, we have

cra(x) = det[xI —rA] = det[r ({1 —A)] = r" det [2] —A]

As ca(x) = det [xI — A], this shows that c,a(x) = rca ().

. If u is an eigenvalue of A~! then A~'x = ux for some column x # 0. Note that i # 0 because

A~ is invertible and x # 0. Left multiplication by A gives x = {IAX, whence AX = ﬁx Thus,
% is an eigenvalue of A; call it A = % Hence, u = % as required. Conversely, if A is any
eigenvalue of A then A # 0 by (a) and we claim that % is an eigenvalue of A~!. We have
Ax = Ax for some column x # 0. Multiply on the left by A~! to get x = AA~'x; whence

A~'x = Jx. Thus } is indeed an eigenvalue of A~

. We have Ax = Ax for some column x # 0. Hence, AZx = AAx = A%x, A3 = 1%24x = A%, so

(A =244 31)x = A’x — 2Ax + 3x = A°x — 2Ax 4+ 3x = (A3 — 24 +3)x

. If A is an eigenvalue of A, let Ax = Ax for some x # 0. Then AZx = AAx = A%x, A3x = 12Ax =

A3x, .... We claim that A*x = A*x holds for every k > 1. We have already checked this for
k = 1. If it holds for some k > 1, then A*x = A*x, so

AFFlx = A(ARx) = A(AFx) = Mfax = AF(Ax) = AFFIx

Hence, it also holds for k + 1, and so A¥x = A¥x for all k > 1 by induction. In particular, if
A" =0,m > 1, then A"x = A"x = 0x = 0. As x # 0, this implies that A" =0, so A =0.

. Let A be diagonalizable with A” =I. If A is any eigenvalue of A, say Ax = Ax for some column

x # 0, then (see the solution to 23(b) above) A*x = A*x for all k > 1. Taking k = m we have
x = A"x = A""x, whence A" = 1. Thus A is a complex m'™ root of unity and so lies on the unit
circle by Theorem A.3. But we are assuming that A is a real number so A = £1, so A2 = 1.
Also A is diagonalizable, say P~!AP = D = diag (A1, ..., A,) where the 4; are the eigenvalues
of A. Hence D* = diag (A?, ..., A?) = I because A? = 1 for each i. Finally, since A = PDP~!
we obtain A2 = PD*P~! = pPIP~! =1.
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27. a. If Ais diagonalizable and has only one eigenvalue A, then the diagonalization algorithm asserts
that P~'AP = AI. But then A = P(AI)P~! = A1, as required.

b. Here the characteristic polynomial is c4 (x) = (x — 1), so the only eigenvalue is A = 1. Hence
A is not diagonalizable by (a).
} SO

W =det[ 5 F =R b-d= -1+ )

X

onim

31. b. The matrix in Example 3.3.1 is [ é El‘_) ] In this case A = [ é

Hence the dominant eigenvalue is A = 1, and the population stabilizes.
d. In this case A = [ i é ] 0 c4(x) = det [ x:ﬁ ;% ] = x> — 2x— 3. By the quadratic for-

mula, the roots are 15[3 == /69], so the dominant eigenvalue is 15[3++v/69] ~ 1.13 > 1, so the
population diverges.

Suio

34. Here the matrix A in Example 3.3.1 is A = [ g‘ ] where « is the adult reproduction rate. Hence

2 .
ca(x) = det [ s ] = x> —ax — %, and the roots are % {Ot +4/a?+ %] . Thus the dominant

X

eigenvalue is A} = %

a+/o%+ 15—6}, and this equals 1 if and only if o = % So the population

stabilizes if @ = % In fact it is easy to see that the population becomes extinct (A; < 1) if and only
if < %, and the population diverges (A; > 1) if and only if @ > %

3.4 An Application to Linear Recurrences

1. b. Inthiscase xg1o = 2xg —Xp11, SO Viy| = [ 2xkxf+;k+1 } — [ (2> 7} } [ * | = Avy. Diagonalizing

A gives P = [ i _é ] and D = [(1) _g ].Hence

b -1 112 1 1 E
=[n]=mto=s[i A2 =[]

Thus [ le ] = %1" [ i } — %(—2)" [ 7; } for each k. Comparing top entries gives

x=%3—-1(-2)f=t4a- (-2 = (—32)k 1-4 (}z)k] ~ —# for large k.

Here —2 is the dominant eigenvalue, so x; = %(—2)"[(_42),( — 1]~ —3(—2)kif k is large.
d. Here X2 = 6xk—xk+1, SO Vi1 = [ 6xkxi+)ik+1 :| = I 2 _i :| [ x:il :| :AVk.

Diagonalizing A gives P = [ é 7; ] and D =

D W

|

—_—
[
| —
—_—
—_

I
—
Qi Uil
1
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Here x;, = 75)]( [1 +r (%)k} oS (75—3)]( for large k, so —3 is dominant.

2. b Let v = {xffl } Then A —

Xk+2

40 1o
-1 0 0 by 1 1 _% _% | 1
D=| o —2 o | . Then | & | =Py 'vo=| -4 o | 0| =

O =

0 0 1 1

8=

|

giving the general formula

1 1] 1
oot it
Thus equating first entries give
xe=5(=1) 431 =5 [(=1) +1]

Note that the sequence x; here is 0, 1, 0, 1, O, 1, ... which does not converge to any fixed
value for large k.

3. b. Ifabusis parked at one end of the row, the remaining spaces can be filled in x; ways to fill it in;
if a truck is at the end, there are x;,, ways; and if a car is at the end, there are x; 3 ways. Since
one (and only one) of these three possibilities must occur, we have xgi4 = X + Xg12 + Xk43
must hold for all k > 1. Since x; = 1, x; =2 (cc or t), x3 = 3 (ccc, ct or tc) and x4 = 6 (cccc,
cct, ctc, tee, tt, b), we get successively, xs = 10, xg = 18, x7 =31, xg = 55, x9 =96, x19 = 169.

5. Let x; denote the number of ways to form words of k letters. A word of k + 2 letters must end in
either a or b. The number of words that end in b is x;, | — just add a b to a (k+ 1)-letter word.
But the number ending in a is x; since the second-last letter must be a b (no adjacent a’s) so we
simply add ba to any k-letter word. This gives the recurrence x;» = Xg4.1 +x; which is the same as
in Example 3.4.2, but with different initial conditions: xy = 1 (since the “empty” word is the only
one formed with no letters) and x; = 2. The eigenvalues, eigenvectors, and diagonalization remain
the same, and so

Vk:blﬂ,{c[;l ]-i-bzﬂgk[ ;2 ]
where A; = %(1 ++/5) and A, = %( —+/5). Comparing top entries gives
X = bllf-l-bzléc

By Theorem 2.4.1, the constants b and b, come from [ } =F, V(). However, we vary the method

and use the initial conditions to determine the values of bl and b, directly. More precisely, xo = 1
means 1 = by + by while x; =2 means 2 = bjA; + bpA,. These equations have unique solution

b= \é:/— and b, = ‘zf\/} It follows that

xk:L[@—i—\/g)(HTﬁ)k (— 3—|—\/_)( )} foreach k >0

Y

2
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I11.

12.

Determinants and Diagonalization

. In a stack of k+ 2 chips, if the last chip is gold then (to avoid having two gold chips together)

the second last chip must be either red or blue. This can happen in 2x; ways. But there are xj
ways that the last chip is red (or blue) so there are 2x;; ways these possibilities can occur. Hence

Xpro = 2x3; + 2x34 1. The matrix is A = [ g é ] with eigenvalues A} = 1++/3 and 4, = 1 —+/3

and corresponding eigenvectors X; = [ zll ] and x; = [ 112 } Given the initial conditions xo = 1 and

x1 =3, we get

bi | _p-ly, — L | &2 -l V1 [ 2=vB 1 | 2+v3
by ) Vo = \/§ —M 1 3 - _2\/§ 2—\/§ - 2\/§ —2+\/§
Since Theorem 2.4.1 gives
Vk:blﬂ,{c[lll ]-i-bzﬂéc[ /112 ]

comparing top entries gives
xp = b1 Af + b)) = ﬁ [(2—1— V3)(1+V3) 4 (—2+V3)(1 - \/g)k}

— VetV 1

. Let y; be the yield for year k. Then the yield for year k+2 is yy 12 = =5 = 5y + %ka. The

eigenvalues are A} = 1 and A, = —%, with corresponding eigenvectors x; = [ } ] and X, = [ ‘% }
Given that £ = 0 for the year 1990, we have the initial conditions yp = 10 and y; = 12. Thus

b ~1 [ 1 2 10 1 [ 34
[b;}:PO VO:?[—1 1][12}:§[2]

Since

then . .
__ 34 k2 1\ _34 4 1
w=51)"+3(-2)(=3) =5 -3(-3)
For large k, y; ~ % so the long term yield is 11% million tons of wheat.

0o 1 0
b. We have A = { 00 1 } 50 cs(x) = x° — (a+ bx+cx?). If A is any eigenvalue of A, and we
a b

C
1
write X = /12 , we have
A

x|

QOO

1 0 1 A A
0 1 A = 7[,2 = 12 = A,X
b ¢ A2 a+bA+cA? A3

because c4(A) = 0. Hence x is a A-eigenvector.

b. We have p = % from (a), so yr = x; + % satisfies ygi1o = yr1 + 6yx with yg =y = %. Here

A= [ (6) } } with eigenvalues 3 and —2, and diagonalizing matrix P = [ ; _é } This gives

Y = AL [3RFL— (22)k 1] so xp = 1L [36HT — (—p)kr1] _ 3
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13. a. If p; is a solution of (3.12) and gy is a solution of (3.13) then

Gk+2 = aqi+1 +bgx
Pk+2 = apiy1 +bpy +c(k)

for all k. Adding these equations we obtain
P2+ G2 = a(Piey1 + 1) + b(pr+ qi) + c(k)

that is py + gy is also a solution of (3.12).

b. If r¢ is any solution of (3.12) then ry o = argy1 + bry + c(k). Define g = ry — py for each k.
Then it suffices to show that g, is a solution of (3.13). But

G2 = Tks2 — P2 = (arpq1 +bri +c(k)) — (apis1 +bpi+c(k)) = agqir1 + bgy

which is what we wanted.

3.5 An Application to Systems of Differential Equations

1. b. The matrix of the system is A = [ 7} g ] so ca(x) =

lel x:53 ‘ =(x—4)(x+2).

A =4 [j —f]%[é _(l)];aneigenvectorisxlz[i

1

Ay = —2: [ :i :g ] — [ (1) (5) ];aneigenvectorisxzz [ j ]
_g } where P= | | _f . The general solution is

Thus P~1AP = | |
f=cix1eM 4 erxpe? = ¢ [ } ] Mty [ j ] e
Hence, fi(x) = c1e* +5ce%, fo(x) = c1e* — cpe~?*. The boundary condition is f;(0) = 1,
f2(0) = —1; that is
L] =to=al e ]

Thus ¢; +5¢3 = 1, ¢1 — ¢cp = —1; the solution is ¢; = —%, )= %, so the specific solution is

filw) = 4562 —26%), falx) = (26" o)

21 2
d. Now A = { 2 2 2 } To evaluate c4 (x), first subtract row 1 from row 3:
30101
=2 -1 2 =2 -1 =2 x—4 -1 =2
calx)=| 2 x-2 2 |=| 2 x-2 2 |=] 0 x-2 2
-3 -1 x—1 —x—1 0 xtl1 0 0 xt1




Determinants and Diagonalization

-3 -1 -2 1 5 -6 1 o 8 -8
M=—1:| -2 3 2|—=|23 2|—=|01 -2 [:x;=] 10
-3 -1 =2 00 0 00 0 7
0 -1 -2 10 -1 10 -1
=22 0o 2|(—=]0 1 2|—=|01 2[|;Xp=]-
-3 -1 1 0 -1 -2 00 0

-3 -1 3

~ O
g
=
(¢}
=
(¢]
~
I

1
)
|

o —X 2x 4x -8 —X 71 2x ! 4x
f=cixje " +teoxpe™ +c3x3¢™” =c1 | 10 |e " +ey| 2 |e”+c3| 0 |e
7 1 1

That is
fi(x) = —8cre ™+ 2% + cye™

f2(x) =10cie™* — 20,0

f(x) =Tcre™ 4 cre™ +cze™

If we insist on the boundary conditions f1(0) = f2(0) = f3(0) = 1, we get

-8 + o + i =1
10C1 — 2C2 = 1
2ci + ¢ 4+ 3 =1
The coefficient matrix is P is invertible, so the solution is unique: ¢y =0, ¢; = —%, c3 = %
Hence
fi(x) =33 — ™)
fr(x) =€
f3(x) = 3(3¢* — ™)

Note that f}(x) = f3(x) happens to hold.

b. Have m'(t) = km(t), so m(t) = ceX by Theorem 3.5.1. Then the requirement that m(0) = 10
4

gives ¢ = 10. Also we ask that m(3) = 8, whence 10e* = 8, ¢ = %. Hence (¢*)® = 2, so
() = (%)1/3. Thus m(t) = 10(%‘)”3. Now, we want the half-life 7y satisfying m(tg) = %m(O),

that is 10(2)/% =5 s0 19 = 1 = 9.32 hours.

a. Assume that a g’ = Ag where A is n x n. Put f =g —A~'b where b is a column of constant
functions. Then f = g’ = Ag = A(f+A~'b) = Af +b, as required.

b. Assume that f{ = a; f1 + f> and f} = as fi. Differentiating gives f{' = a1 f{ + f5 = a1 f{ + a2 f1.
This shows that f; satisfies (x).
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3.6 Proof of the Cofactor Expansion Theorem

2. Consider therows R, R 11, ..., R4—1, R;. Using adjacent interchanges we have
[ Rp ] . | Rpi1 ] . [ R, ]
Rp+1 : R,y
: R, 1
R q-p R g—p—1 | p"
q-1 interchanges 4 interchanges 1=
| Ry | | Ry ] L Ry

Hence 2(¢ — p) — 1 interchanges are used in all.

Supplementary Exercises: Chapter 3

2. b. Proceed by induction on n where Aisn xn. If n =1, AT = A. In general, induction and (a)
give
T
det[A;j] = det[(A;;) ] = det[(AT);)]

Write AT = [d] a;;] where a;; = aj;, and expand det (AT) along column 1:

ij

n

det (A7) = Z 1)+ det[(AT) Zal] )1t det[A};] = detA

where the last equality is the expansion of det A along row 1.






4. Vector Geometry

4.1 Vectors and Lines

-2
-1 } must have the form u = ¢ {
2

2
-1 } for a scalar ¢ > 0. Since

2. b. A vector u in the direction of {
2

u is a unit vector, we want |[u]| = 1; that is 1 = |¢| \/(—2)2+( 1)*> 422 = 3t, which gives

t=

m|.—~

L2
. Hence u = 31 -1
2

2

2
4.  b. Writeu= { -1 } andv= [ } The distance between u and v is the length of their difference:
1

u—vii= || 1 ]| = voeFETE -2

[-‘i]—[EHHH_%H!=W+<—2>2+<—2>2:3.

6. b. Inthe diagram, let £ and F be the midpoints of sides BC and AC respectively. Then ﬁ = %R
and C? = %@ Hence

— FC+CE = YAC+ 1CB = 1 (AC + CB) = 1AB

o

. As in (b), the distance is

7. Two nonzero vectors are parallel if and only if one is a scalar multiple of the other.

b. Yes, they are parallel: u = (—3)v.
d. Yes, they are parallel: v= (—4)u.

8. b Q? = p because OPQR is a parallelogram (where O is the origin).
d. 1@ —(p+q) becauseOﬁ% P+q.

59
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10.

1.

12.

13.

14.

X 2
.WriteP:P(x,y,z)andletp:[y],plz[ 1}andp2:[
Z -2

Vector Geometry

0 | 5 ]

.@:-—i}—{?-: —i-soH}@H— —1)2452=127=33.
. Here P = Q are equal points, so I@ = 0. Hence H@H =0.

.@:_i]_{_z::_i_zz[ }HenceH@H_pw P2t (C12=2V3.

_4 _72_

x 3
. Given Q(x, y, z) let q = { y } and p = [ 0 } be the vectors of Q and P. Then @ =q-—p.
z —1

2
Letv= [ -1 ]
3
5
() fPO—=vthenq—p=1V,s0q=p+V= [ 0 ] Thus © = Q(5, —1, 2).
2

1
(ii) If@:—vthenq—p:—v, soq=p—V= [ 1 }ThusQ:Q(l, 1, —4).
—4

. If2(3v—x) = 5w +u — 3x then 6v — 2x = 5w+ u — 3x, so

-5 3 24 -26
X:5w+u—6v:[5}+[1}—[o]:[ 4]
25 0 6 19

2a 2b 2a+2b—c

a 0 c a+c
. We have au+ bv+cw = [ a ]—i—[ b ]—i—[ 0 } = [ a+b } Hence setting

1

au+bv+cw=x= { 3 ] gives equations
0

Q
+
)

|
p—

The solutionis a = —5,b =38, c = 6.

5 3a+4b+c
. Suppose [ 6 ] =au+bv+cw = [ —a+c ] Equating coefficients gives linear equations
—1 b+c
for a, b, c:
3a¢ + 4b + ¢ = 5
—a + ¢ =
b + ¢ = -1

This system has no solution, so no such a, b, c exist.

1
) } be the vectors of P, P,
0

and P, respectively. Then

s
p—p, =P =p,+ L(PP) = py+ 1(py — o) = ipy + 2ps



17.

18.

20.

21.

22.

5o+ & o

4.1. Vectors and Lines = 61

Since p; and p, are known, this gives

Letp = 53 and q = OZ denote the vectors of the points P and Q respectively. Then q —p =

[ et LT T
Hence Q = 0(0, 7, 3).

We have |[u]|> = 20, so the given equation is 3u+7v = 20(2x+ v). Solving for x gives

6 26 —20
40x:3u—13v:{ 0}—[ 13]:[13}
12 ~26 14

L[
Hencex= -+~ | -13 |.
40 14

Let S denote the fourth point. We have 1?39 = @, SO
07:072+1@:55+@=l—”+lﬂ:[§}

Hence S = S(—1, 3, 2).

True. If |[v—w|| =0 then v—w = 0 by Theorem 4.1.1, so v =w.
False. ||v|| = ||—v|| for all v but v = —v only holds if v = 0.

False. If + < 0 they have opposite directions.

False. By Theorem 4.1.1, || —5v|| = |=5]||v]| = 5||v|| so it fails if v # 0.

. False. If w = —v where v # 0, then ||[v+w|| = 0 but ||v|| + ||w| = 2||v|| # 0.

2 3
One direction vector is d = @ = { -1 } . Letpy = { -1 } be the vector of P. Then the vector
5 4

equation of the line is

Z

3 2 X
p=py+td= { —1}—1—{—1] when p = {y}
4 5

is the vector of an arbitrary point on the line. Equating coefficients gives the parametric equa-
tions of the line

x=3+2t
y=—1—t
z=4+5¢
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1

1
d. Now py = { 1 } because Pi(1, 1, 1) is on the line, and take d = | 1 | because the line is to
1 1

1 1 X
be parallel to d. Hence the vector equation is p = py +td = [ 1 ] +1 [ 1 } . Taking p = [ y } ,
1 1 b4

x=1+t
the scalar equationsare y=1+471 .
=1+t
x=2—t .
f. The line with parametric equations y =1 has direction vector d = [ 0 } — the compo-
1
z=1

nents are the coefficients of ¢. Since our line is parallel to this one, d will do as direction vector.
2

We are given the vector py = [ -1 ] of a point on the line, so the vector equation is
1

2 -1
1 1

The scalar equations are

x=2-—t
y=-1
z=1+4t1t

X 4—t
23.  b. P(2, 3, —3) lies on the line [ y } = [ 3 } since it corresponds to t = 2. Similarly Q(—1, 3, —9)
z 1—2¢

corresponds to f =5, so Q lies on the line too.

24.  b. If P=P(x, y, z) is a point on both lines then

x=1—t

y=2+2t for some ¢ because P lies on the first line.
z=—1+3¢

x=2s

y=1+s for some s because P lies on the second line.
z=3

If we eliminate x, y, and z we get three equations for s and ¢:

1—t=2s
242t=1+s
—143t=3

The last two equations require ¢ = % and s = 13—1, but these values do not satisfy the first equation.
Hence no such s and ¢ exist, so the lines do not intersect.
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d. If { y } is the vector of a point on both lines, then

Z

x [ 4 1
[ y } = -1 } +t [ 0 } for some ¢ (first line)
z L S 1
x [ 2 0
[ y } =| -7 ] +s [ -2 ] for some s (second line).
z | 12 3

x 4 7] 1 2 0

Eliminating { y } gives { -1 |+t { 0 } = { =7 } +s { -2 ] Equating coefficients gives three
z 5 12 3

equations for s and t:

441=2
—1=-7-2s
54+t=1243s
This has a (unique) solution t = —2, s = —3 so the lines do intersect. The point of intersection

has vector

HELSEROEE
oo 3] 3] [£]2[ 4] [ ]

1 2 1
29. Leta=| -1 | and b= | o | be the vectors of A and B. Thend =b —a = 1 | is a direction
2 1 -1
vector for the line through A and B, so the vector ¢ of C is given by ¢ = a+rd for some ¢. Then

|4C| = lie—all = lrall = ] )l and |[BE]| = fle = bl = I~ Dyl = |~ 1]

Hence HRH :2HRH means |¢t| =2t — 1|, 501> =4(t— 1), whence 0 =3r> — 8t +4 = (t —2) (3t —

5

3 3

2). Thust:20rt:%. Since ¢ = a +td, this means ¢ = [ 1 } orc— [ -
0

4
3

W=

31.  b. If there are 2n points, then P, and P, are opposite ends of a diameter of the circle for each

k=1, 2, .... Hence CTI%k = —C?,Hk so these terms cancel in the sum C?l —1—@2 +--- —i—C'_I)’zn.
Thus all terms cancel and the sum is 0.

- =
33. We have 2EA = DA because E is the midpoint of side AD, and Zﬁ = ﬁ because F' is % the way
_>
from A to C. Finally DA = C% because ABCD is a parallelogram. Thus

OEF — 2(EA+AF) = 2EA +2AF — DA+ FC = Ch+FC — FB

Hence ﬁ = %ﬁ so F is in the line segment EB, % the way from E to B. Hence F is the trisection
point of both AC and EB.
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4.2 Projections and Planes

I. buv=uu=12+224(-1)2=6
d uv=3-6+(—-1)(-7)+5(-5)=18+7-25=0
f.v=0sou-v=a-0+b-04+¢c-0=0

2. b.ocos@ = v — 18240 _ 220§ Hence § = 7.
IV = Vievao — 20
_ _wv___ 64+6-3 __ 1 H _x
. = = = 5. N = 3.
d- c0s6 = Ry = Vove) — 2- Henee 0 =3
_wv_ _ 0-21-4 _ 1 _ 2t
£ c0s8 = vy = asyigo — 2 Hence 8 =7

2 1
3. b. Writingu = { -1 } and v = { x },the requirement is
1 2

1 _ T __ _wv_ _ 2—x42
5 =COS% = =
2 37 ulllvll — Vevx2+s

Hence 6(x? +5) = 4(4 — x)?, whence x> 4 16x — 17 = 0. The roots are x = —17 and x = 1.
4. b. The conditions are uj - v =0 and u; - v =0, yielding equations
3x — y 4+ 2z = 0
2x + z =0

-1
The solutions are x = —¢t,y=t,z=2t,s0V=t [ 1 }
2

d. The conditions are u; - v =0 and u; - v = 0, yielding equations

2x—y+3z=0
0=0
1 0
Thesolutionsarex:s,y:2s—|—3t,z:t,SOV:s[2]—1—t{3].
0 1
2 3 711%
6. b 1@“:“{—2] —94+44+16=29
4
2 2 1112
@éHZH{7} =44+49+4 =57
2
2 57112
F}%H:H[s] —25425+36=286
6

2 2
Hence Hﬁ%” = Hl@ ‘ + H@%H . Note that this implies that the triangle is right angled, that
PR is the hypotenuse, and hence that the angle at Q is a right angle. Of course, we can confirm
this latter fact by computing @ : @% =6—14+8=0.
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2 1
8. b. We havezﬁ: { 1 } andR: { 2} so the angle « at A is given by
-1

10.

11.

12.

-2 -2 3
_ : _uwv . —6+140 _ =5 T, —
. Takeul—prOJVu—HVHZV—4+1+16 { i}_“ { i}Thenuz—u ul—{(l)}—i—

1

ABAC 2 21 1
coso = A + =
[a[lac] ’

— -2 -1
Hence o = % or 60°. Next BA = { -1 ] and l% = [ 1 ] so the angle f3 at B is given by
-2

BABC  _ 2-142 _ 1

P ol ~ e

Hence 8 = % . Since the angles in any triangle add to 7, the angle yatCis t — § — 5 = Z.

However, CA = [ -2 } and @ { } this can also be seen directly from

CA-CB _—1+2+2 1

= el o

4
. _owv o 12-241 _ Q
- PROJy U =102V = 65T l ] 18 l : }

4
1
1
: _uv., _ —18-8-2
- PROJy U =102V = 364T6+4 { ]

Dlen
[ —
|
S —_1
| |

1

53
31 { 26 ] . As a check, verify that u, - v =0, that is u, is orthogonal to v.
20

—18—-8-1 27

-6 6
. Take u; = proj, u = v sz—m { _élt ] =5 { félt }Thenug isgivenbyu; =u—u; =

3 6 -3
{ -2 } g; { —4 ] = % { 2 } . As a check, verify that u, - v =0, that is u, is orthogonal to v.
1 1 26

1 3 1 0
. Write p, = {?},d: [i],p: [—;} andwriteu:}ﬁ:p—poz [_}1] Write

3
u = Poé and compute it as u; = projq Pol% = 81%1}2

1 —45
== | —41
1 3 71

15 1
= u = 0 = 1 = = 15
a=wr=| 3|5 [ ] =4[]

_ 71 15 34
Hence Q—Q(%, T 2—6).

3
1| = ;—g l 1 } Then the distance
4 4

from P to the line is H@)’H =|lu—w| = = %\/5642. To compute Q let q be its

vector. Then

i 3 -6

0
13. b.uXV:det{j -1 2}:Oi—0j+0k:{0}:0
kK 0 0 0
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14.

15.

2
. UXV:det{ i 0
—1

—1 3 i -1 3 23
.Anormalisnzﬁxﬁz{ 1}><{ 8 ]zdf:t(j 1 8 ):{—32}

Vector Geometry

_.
< -

4
} — 4i— 15§+ 8k = { SE ]
8

R

-5 —17 k -5 -17

Since the plane passes through B(0, 0, 1) the equation is

—11

23(x—0)—32(y—0)—11(z— 1) =0, that is —23x+32y+ 11z =11

2

. The plane with equation 2x —y+z = 3 has normal n = | -1 |. Since our plane is parallel

1
to this one, n will serve as normal. The point P(3, 0, —1) lies on our plane, the equation is

2(x=3)—(y—0)+(z—(—1) =0, thatis 2x—y+z = 5.
—

1
. The plane contains P(2, 1, 0) and Py(3, —1, 2), so the vector u = PPy = { -2 } is parallel
2

1
to the plane. Also the direction vectord = | 0 } of the line is parallel to the plane. Hence
—1
2

i 1 1
n=uxd=det|j -2 0 } = [ 3 } is perpendicular to the plane and so serves as a normal.
kK 2 -1 2

As P(2, 1, 0) is in the plane, the equation is

2(x—=2)+3(y—1)+2(z—0) =0, thatis 2x+ 3y +2z =7

1 2
. The two direction vectors d; = { -1 } anddp = { 1 ] are parallel to the plane, so
3 1

i 1 2 -2
n=d; xdy=det| i -1 1 } = [ 7 | will serve as normal. The plane contains P(3, 1, 0)
kK 3

so the equation is

—2(x=3)4+7(y—1)+3(z—0) =0, thatis —2x+7y+3z=1

X 3 1
Note that this plane contains the line { a } = | 1 | 4+¢| -1 | by construction; it contains the
z 0 3

other line because it contains P(0, —2, 5) and is parallel to d,. This implies that the lines
intersect (both are in the same plane). In fact the point of intersection is P(4, 0, 3) [t =1 on
the first line and r = 2 on the second line].

j. The set of all points R(x, y, z) equidistant from both P(0, 1, —1) and Q(2, —1, —3) is deter-

2
mined as follows: The condition is HP_f?H = HQ? , that is

s PR = [oF

=14+ =x=2 ++1)+(z+3)°

This simplifies to x> +y> 472 — 2y + 2z +2 = x> +y> 4+ 2% —4x+ 2y + 6z + 14; that is 4x — 4y —
4z =12; thatisx—y—z=3.

2
. The normal n = { 1 ] to the given plane will serve as direction vector for the line. Since the
0

X 2 2
line passes through P(2, —1, 3), the vector equation is [ y } = [ -1 } +t [ 1 }
z 3 0



16.

17.

4.2. Projections and Planes = 67

1 1
d. The given lines have direction vectors d; = { 1 ] andd, = { 2 } , SO
) -3

i 1 1 1
d=d; xdy = det [ i1 2 } = { 1 } is perpendicular to both lines.
kK -2 -3 1

Hence d is a direction vector for the line we seek. As P(1, 1, —1) is on the line, the vector

equation is
x 1 1
- [
z —1 1

1+t

. Each point on the given line has the form Q(2+1¢, 1+1¢, t) for some 7. So I@ = [ t } . This

t—2

1
is perpendicular to the given line if @ -d =0 (where d = { 1 } is the direction vector of the
1

given line). This condition is (14) +7+ (t —2) =0, that is r = . Hence the line we want

W= Wl

has direction vector

4
] . For convenience we use d = { 1 } . As the line we want passes
-5

Wit
~

X 1
through P(1, 1, 2), the vector equation is { y ] = { 1 ] .y { 1 } [Note that Q(%, %, %) is
z 2 -5

the point of intersection of the two lines.]
3

—1

. Choose a point Py in the plane, say Py(0, 6, 0), and write u = [ﬁ = { -5 } Now write

2
n= [ 1 } for the normal to the plane. Compute
-1

2
: u-n 2
U] = proj, 4 = —5n—= 2 1
1 p Jn HnHZ 6 |: 1 :|

The distance from P to the plane is |ju;|| = %\/6

0
Since py = [ 6 } and q are the vectors of Py and Q, we get
0

S RHEEI I

Hence O =0 (%, %, —TZ)

. A normal to the plane is given by

-2 -3 i -2 -3 —10
N R REIEIne
—4 -3 kK -4 -3
Thus, as P(4, 0, 5) is in the plane, the equation is
—10(x—4)+6(y—0)+8(z—5) = 0; that is Sx —3y —4z = 0.

The plane contains the origin P(0, 0, 0).
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19.

20.

21.

. The line has direction vector d =

. The vector u = @ = {

Vector Geometry

b. The coordinates of points of intersection satisfy both equations:

3x+y—2z=1
x+y+z=35
Solve .
301 21 11 1] s 1o 3|2
[11 1‘5}_)[0 2 —5‘—14}_)[01 gz 7]

Take z = 2t¢, to eliminate fractions, whence x = —2 4 3¢ and y = 7 — 5¢. Thus

-1 - [1)-03]

is the line of intersection.

. If P(x, y, z) is an intersection point, then x = 1 +2¢, y = —2+5¢, z =3 —1t since P is on the

line. Substitution in the equation of the plane gives 2(1+42¢) — (—2+5¢) — (3 —t) =5, that is
1 = 5. Thus there is no such ¢, so the line does not intersect the plane.

. If P(x, y, z) is an intersection point, then x = 1 4+2¢, y = —2+5¢ and z =3 — since P is on the

line. Substitution in the equation of the plane gives —1(1 +2¢) —4(—2+5¢) —3(3 —1) =6,

3
x 9
whence t = I—QS. Thus [ z ] = [ -% | so P(13—9, —%, %) is the point of intersection.

which is a normal to all such planes. If Py(xo, yo, z0)

N O W

is any point, the plane 3(x —xp) = 0(y —yo) +2(z — z9) = 0 is perpendicular to the line. This
can be written 3x + 2z = 3xg + 229, so 3x+ 2z = d, d arbitrary.

. If the normal is n = [ b ] # 0, the plane is a(x —3) +b(y —2) +c(z+4) = 0, where a, b and

c are not all zero.

1 ] is parallel to these planes so the normal n = { b } is orthogonal
1

c

a

tou. ThusO=u-n=—a+b—c. Hencec=b—-aandn=| » |. The plane passes through
b—a

Q(1, 0, 0) so the equationis a(x—1)+b(y—0)+ (b—a)(z—0) =0, thatis ax+by+ (b—a)z =
a. Here a and b are not both zero (as n # 0). As a check, observe that this plane contains
P(2, —1, 1) and Q(1, 0, 0).

c

. Such a plane contains Py(3, 0, 2) and its normaln = | » } must be orthogonal to the direction

1 a

vectord= | -2 oftheline.Thustd-n:a—Zb—c,whencec:a—Zbandn:{ b }
—1 a—2b

(where a and b are not both zero as n # 0). Thus the equation is
a(x—3)+b(y—0)+ (a—2b)(z—2) =0, that is ax+ by + (a — 2b)z = 5a — 4b

where a and b are not both zero. As a check, observe that the plane contains every point
P(3+1t, —2¢t, 2—t) on the line.



23.

24.

26.

28.

34.

38.

4.2. Projections and Planes = 69

b. Choose Pi(3, 0, 2) on the first line. The distance in question is the distance from P; to the
4 3

second line. Choose P»(—1, 2, 2) on the second line and let u = I?Pl> = [ -2 } Ifd= [ 1 }
0 0

is the direction vector for the line, compute

. . T T
ufqmmu:ﬁ%wz%[31 0]"=[31 0]

then the required distance is ||[u—u;|| = H[ 310 ]TH =/ 10.

1 3 -1

b. The cross product n = { 1 } X { 1 } = { 3 } of the two direction vectors serves as a normal to

1 0 -2
. . — 1

the plane. Given P;(1, —1, 0) and P»(—2, —1, 3) on the lines, letu = PP, = [ 0 } . Compute

3

_ L[ | 1
s ][

The required distance is |[u;|| = 5\/ 14+9+4= \/ 14.

Now let A =A(1+s, —1+s, s) and B=B(2+ 3¢, —1+1, 3) be the points on the two lines
1+3t

that are closest together. Then zﬁ = } is orthogonal to both direction vectors d; =

1 3
{ 1 } and d; = [ 1 } . By Theorem 4.2.3 this means d; 1@ =0=d, -ﬁ, giving equations
1 0

4t —3s = —4, 10t —4s = —3. The solution is # = 3, s = 2, so the points are A = A(3, 1, 2) and
B=B(}, -3.3).

d. Analogous to (b). The distance is ‘6[ and the points are A( 19 , 2, ) and B=2B (367 , 163, 0)

b. Position the cube with one vertex at the origin and sides along the positive axes. Assume
a

each side has length a and consider the diagonal with directiond = | « |. The face diagonals

a

a a 0
that do not meet d are: + [ —a ], + [ 0 } and =+ [ a ], and all are orthogonal to d (the dot
0 — —a

a

product is 0).

Position the solid with one vertex at the origin and sides, of lengths a, b, ¢, along the positive x, y

and z axes respectively. The diagonals are + { b }, + [ b }, + [ b } and £+ { b } The possible

dot products are &(—a? + b% 4 ¢?), £(a® — b> 4 ¢?), £(a® + b> — ¢?) and one of these is zero if and
only if the sum of two of a?, b* and ¢* equals the third.

b. The sum of the squares of the lengths of the diagonals equals the sum of the squares of the
lengths of the four sides.

b. The angle 8 between u and u+ v+ w is given by

w(Uviw) _ wutwviuw [u][>+0+0 [[u]
MutrvFw] = TulTutvwl — Tulurv+w] = Tutvw]

cos 0 =
[[ul
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Similarly the angles ¢, ¥ between v and w and u+ v + w are given by

— vl — vl
COSQ = iy and  cosy = o n
Since ||u|| = ||v]| = ||w|| we get cos 6 = cos ¢ = cosy, whence 8 = ¢ = .

NOTE: [[u+v+w| = \/||u||2 + |IVII* + [[w]|> = |lu]| v/3 by part (a), so cos 8 = cos @ = cos ¥ =

\/ig. Thus, in fact 0 = ¢ = y = .955 radians, (54.7°).
39. b. If P(x, y) is on the line then ax+ by + ¢ = 0. Hence u = }T)Po = [ ig:;‘i } so the distance is
. lun| _ Ja(xo—x)+byo—y)| _ |axo+byo+c]
Iprojn H [ = Ve VR

41.  b. This follows from (a) because ||v|* = a2 + b* + 2.

44. d. Takex; =z =x,y; =xp =yand z; = yp = zin (c).

4.3 More on the Cross Product

P13 5
3. b. One vector orthogonal tou and visuxv=det | i 2 1 ] =| -5 ] . We have [[uxv| =
kK —1 2 5

5 1
5 H { } H = 54/3. Hence the unit vectors parallel to u x v are -~ f { } if [ -1 ]
-1

4. b. The area of the triangle is 2 5 the area of the parallelogram ABCD. By Theorem 4.3 .4,

HEEIRH E

Area of triangle = % HE XRH — %

Hence 1@ and R are parallel.
d. Analogous to (b). Area = /5.

—4
5. b WehaveuXV:[ 5] so W- (uxv)=—7. The volume is |w-(uxv)| = |-7| =7 by
1

Theorem 4.3.5.

6. b. The line through Py perpendicular to the plane has direction vector n, and so has vector
equation p = py+/n where p=[x y z ]T. If P(x, y, z) also lies in the plane, then
n-p=ax+by+cz=d. Using p=p,+tn we find

d=n-p=n-py+1(n-n)=n-py+n|’

in ”'f 0) n. Finally, the distance from F to the plane is

s d—n- d—n.
PR = tp—pol = || (4552 ) n] = i

Hence ¢ = & H ”2 0 sop= p0+<




4.4. Linear Operators on R? = 71
10. The points A, B and C are all on one line if and only if the parallelogram they determine has area
zero. Since this area is ||1@ X RH, this happens if and only if AB x AC = 0.

12. If uw and v are perpendicular, Theorem 4.3.4 shows that ||ux v|| = ||u]|||v||. Moreover, if w is
perpendicular to both u and v, it is parallel tou X vso w- (u x v) = £ ||w/|| [[u x v|| because the angle
between them is either O or 7. Finally, the rectangular parallepiped has volume

W+ (wx v)| = [[w| [uxv][ = [|w[| ([[u] fv])

using Theorem 4.3.5.

X P I
15. b. Ifu= {y },V: { q ] and w = { m } then, by the row version of Exercise 3.1.19 Section 3.1,

Z r n

we get
i x I+p
ux (v+w)=det | j y m+q
k z n+r
i x p i x I
=det|j v g |+det| i y m | =uxv+uxw
k z r k z n

16. b. LetV:{:; ],w:{m } andu:{zi ].Compute

V- [(uxv)+(vxw)+(wxu)|=v-(uxv)+v-(vXw)+Vv-(wxu)

:0+0+det[v; w; u;}

Vi w3 uz

by Theorem 4.3.1. Similarly

W-[[(UXV)+(VXW)+(WXU)]]:W-(UXV):det[x; w :;}

w3 uz V3

These determinants are equal because each can be obtained from the other by two column
interchanges. The result follows because (v —w) -x = v-x — w-x for any vector x.

22. If v; and v, are vectors of points in the planes (so vi -n = d; and v, -n = d), the distance is the
length of the projection of v, — v along n; that is

| proj, (va—v1)|| = H (W) n” _ |(V2|—V1).n| _ |dT—d1|

4.4 Linear Operators on R’

1. b. By inspection, A = % [ 7} _i } ; by the formulas preceding Theorem 4.4.2, this is the matrix
of projection on y = —x.
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9.

Vector Geometry

d. By inspection, A = % [ 73 g ] ; by the formulas precedinging Theorem 4.4.2, this is the matrix
of reflection in y = 2x.
L -3
1

f. By inspection, A = % [ /3

; by Theorem 2.6.4 this is the matrix of rotation through %

1 1

b. For any slope m, projection on the line y = mx has matrix e ] (see the discussion

1+m2 | m
preceding Theorem 4.4.2). Hence the projections on the lines y = x and y = —x have matrices
% [ } } } and % [ 7} _} ], respectively, so the first followed by the second has matrix (note
the order)

S e =8 8] =0

It follows that projection on y = x followed by projection on y = —x is the zero transformation.
Note that this conclusion can also be reached geometrically. Given any vector v, its projection
p on the line y = x points along that line. But the line y = —x is perpendicular to the line y = x,
so the projection of p along y = —x will be the zero vector. Since v was arbitrary, this shows
again that projection on y = x followed by projection on y = —x is the zero transformation.

17 2 -8 0 2%
b. By Theorem 4.4.3: 2L 220 4} [ | } :%{ g }
-8 4 5 _

—_

L2 4 0 |

d. By Theorem 4.4.3: 55 ;{,‘ fg 7%8 } [ 7; } -1 [ _3§ }
Te oo ) L[

f. By Theorem 4.4.2: 35 102 g 106 } [ *; } =35 [ 124 }

h. By Theorem 4.4.2:

_— 2 -6 2
ﬁ 2 9 —6 _5
6 -6 7 0

b. This is Example 4.4.1 with 6 = £. Since cos § = g and sin § = %, the matrix is [

|

S oS-

-0 O

| I
I

. V3 -1 0
5 1 V3 0
0 0 2

=

[N
N = & o N|—N|§

] L] [v3 -Lo 1
. Hence the rotationof v=| 0 |is5| 1 3 0 0| =
3 2l 0 0 2 3

|

. Denote the rotation by R;, . Here the rotation takes place about the y-axis, so Ry ¢(j) = j. In the xz-

plane the effect of Ry, g is to rotate counterclockwise through 6, and this has matrix [ o g ;Zisnee ]
Theorem 2.6.4. So, in the xz-plane, R; ¢ [ . } = [ cosd ] and Ry ¢ [ 0 } = [ sng } Hence
cos O —sin@
Ry o(i) = [ 0 } and R ¢(k) = [ 0 } Finally, the matrix of
sin 6 cos 6
. . . cos@ 0 —sinB
Reois[ Ruo®) Ruoli) Ruo)]=| 5 1 0]
sin@ 0 cos@
. T
a. Writev= [ Xy } .
. d +b a 1 a*x+ab 1 a®  ab X
Then P (v) = projq v= (HVdT)d: (Z;CH;;) [ b } = 2+ [ ahx+h2§' } = 2+ [ ab } [ y }



4.5. An Application to Computer Graphics = 73

1 |:a2 ab

7 | w » ] Note that if the line L has slope m this retrieves

Hence the matrix of P; is

the formula ; +1m2 [ ,L e ] preceding Theorem 4.4.2. However the present matrix works for

vertical lines, where d = [ (l) ]

4.5 An Application to Computer Graphics

1. b. Translate to the origin, rotate and then translate back. As in Example 4.5.1, we compute

1 1 5 5 0 6
0 2 g 4 0 0
0 1 0 0 1 11

[ V242 TV242 3242 —V2+2  —5vV2+2 }
5. b. The line has a point w = [ (1) ] , so we translate by —w, then reflect in y = 2x, and then trans-

3

(=]
— W W
—_— 0 W

SRS
|

S

- o o
| I |
—
o o~
o = o
[
o =

—3V2+4 3V2+4 5V2+4 V244 9V2+4
2 2 2 2 2

=

late back by w. The line y = 2x has matrix % [ 73 g’ ] Thus the matrix (for homogeneous

coordinates) is

10 0 34 07[1 0 o0 3 4 4
{011}%{430}{01—1}:%[43 2]
0 0 1 00 5]loo 1 00 5
1 [ 4 = N o |
Hence forw= | 4 | weget<| 4 3 2 || 4 |=z]| 18 |. HencethepointisP (3, ).
) >l o0 5| s >3

Supplementary Exercises: Chapter 4

4. Let p and w be the velocities of the airplane and the wind. Then ||p|| = 100 knots and ||w|| = 75
knots and the resulting actual velocity of the airplane is v = w+ p. Since w and p are orthogonal.
Pythagoras’ theorem gives ||v||* = ||w]||* + ||p||* = 752 4 100% = 25%(3% + 42) = 25252, Hence
|lv|]| = 25-5 = 125 knots. The angle 0 satisfies cos 6 = % = % = 0.6 s0 6 = 0.93 radians or 53°.

6. Let v= [ Xy }T denote the velocity of the boat in the water. If ¢ is the current velocity then
¢ = (0, —5) because it flows south at 5 knots. We want to choose v so that the resulting actual

velocity w of the boat has easterly direction. Thus w = [ 0 ] for some z. Now w = v+ ¢ so

[ o ] = [ ! } —1—[ 2 } = [ 2 } Hence z=xand y = 5. Finally, 13 = ||v|| = /x2 +2 = VX2 +25

gives x2 =144, x = +12. But x > 0 as w heads east, so x = 12. Thus he steers v = [ 12 5 }T, and
the resulting actual speed is ||w|| = z = 12 knots.






5. The Vector Space R"

5.1 Subspaces and Spanning

0
1
]|
4
}:{O]isnotinU.
0
0 0
f. No. [1 } isinUbut(—l)[l } = [ 1 } isnotin U.
0 0 0

2. b. No. If x = ay + bz equating first and third components gives 1 = 2a+ b, 15 = —3b; whence
a =3, b = —5. This does not satisfy the second component which requires that 2 = —a — b.

d. Yes. x =3y+4z.

3. b. No. Write these vectors as aj, ap, a3 and a4, and let A = [ a; a; a3 a4 } be the matrix
with these vectors as columns. Then det A = 0, so A is not invertible. By Theorem 2.4.5, this
means that the system Ax = b has no solution for some column b. But this says that b is not a

linear combination of the a; by Definition 2.5. That is, the a; do not span R*.

1

. 0 . . . .
For a more direct proof, [ 0 ] is not a linear combination of a;, a,, a3 and ay.

0

10. Since g;x; is in span {x;} for each i, Theorem 5.1.1 shows that span {a;x;} C span {x;}. Since
X; = a; ' (a;x;) is in span {a;x;}, we get span {x;} C span {a;x;}, again by Theorem 5.1.1,

12. We have U = span{x, ..., Xx} so, if y is in U, write y = #;X] + - - - + ;X where the #; are in R.
Then Ay = t1AX| + - - +11AX, = 110+ - + 1,0 = 0.

15. b. x=(x+y)—yisinU because x+Yy and —y = (—1)y are both in U and U is a subspace.

16. b. True. If we take r = 1 we see thatx = 1xisin U.

d. True. We have span {y, z} C span {x, y, z} by Theorem 5.1.1 because both y and z are in
span {x, y, z}. In other words, U C span {x, y, z}. For the other inclusion, it is clear that y
and z are both in U = span {y, z}, and we are given that x is in U. Hence span {x, y, z} CU
by Theorem 5.1.1.

f. False. Every vector in span { [ (1) ] , [ (2) ] } has second component zero.

75
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The Vector Space R”

20. If U is a subspace then S2 and S3 certainly hold. Conversely, suppose that S2 and S3 hold. It is here

22.

that we need the condition that U is nonempty. Because we can then choose some x in U, and so
0 =0x1isin U by S3. So U is a subspace.

b. First, 0is in U + W because 0 = 0+ 0 (and 0 is in both U and W). Now suppose that P and Q

are both in U + W, say p = x; +y; and q = X, +y, where x; and x, are in U, and y; and y,
are in W. Hence

PHq= (X1 +y)+(x2+Yy) = (X1 +x2) + (y; +¥2)

so p+qisin U+ W because X1 + X3 is in U (both x; and x, are in U), and y; +y, is in W.
Similarly
aP =a(x)+y;) = ax; +ay,

is in p + q because ax; is in p and ay; is in Q. Hence U + W 1is a subspace.

5.2 Independence and Dimension

. Yes. The matrix with these vectors as columns has determinant —2 # 0, so Theorem 5.2.3

applies.

. No. (1, 1,0,0)— (1,0, 1, 0)+(0, 0, 1, 1) — (0, 1, 0, 1) = (0, 0, 0, 0) is a nontrivial linear

combination that vanishes.

. Yes. Ifa(x+y)+b(y+2z)+c(z+x) =0then (a+c)x+ (a+b)y+ (b+c)z=0. Since we are

assuming that {x, y, z} is independent, this means a+c =0, a+b =0, b+ ¢ = 0. The only
solutionisa=b=c=0.

. No. (x+y)—(y+2z)+ (z+w) — (w+x) =0 is a nontrivial linear combination that vanishes.

. Writex; =(2, 1,0, —=1),xp=(—1, 1, 1, 1),x3=(2, 7, 4, 1), and write U = span {x1, Xp, X3 }.

Observe that x3 = 3x] +4x; so U = {x1, X»}. This is a basis because {x;, X, } is independent,
so the dimension is 2.

. Writex; =(—2,0,3,1),xo=(1,2, —1,0),x3=(-2,8, 5, 3),x4 = (—1, 2, 2, 1) and write

U = span {Xxi, Xp, X3, X4}. Then x3 = 3x] +4x; and x4 = X + X3 so the space is span {xy, x;}.
As this is independent, it is a basis so the dimension is 2.

. (a+b,a—b,b,a)=a(1,1,0, 1)+b(1, —1, 1,0)soU = span {(1, 1, 0, 1), (1, =1, 1, 0)}.

This is a basis so dim U = 2.

.(a=b, b+c, a, b+c)=ua(l, 0, 1, 0)+b(—1, 1, 0, 1)+¢(0, 1, 0, 1). Hence U =

span {(1, 0, 1, 0), (=1, 1, 0, 1), (0, 1, 0, 1)}. This is a basis so dim U = 3.

.Ifa+b=c+dthena=—b+c+d. Hence U ={(=b+c+d, b, ¢, d) | b, ¢, d in R} so

U = span {(—1, 1,0, 0), (1, 0, 1, 0), (1, 0, O, 1)}. This is a basis so dim U = 3.
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Leta(x+w)+b(y+w)+c(z+w)+dw=0,thatis ax+by+cz+ (a+b+c+d)w=0. As
{X, y, z, w} is independent, this implies thata =0,b=0,c=0and a+b+c+d = 0. Hence
d = 0 too, proving that {x+w, y+w, z+w, w} is independent. It is a basis by Theorem 5.2.7
because dim R* = 4.

Yes. They are independent (the matrix with them as columns has determinant —2) and so are
a basis of R? by Theorem 5.2.7 (since dim R3 =3).

Yes. They are independent (the matrix with them as columns has determinant —6) and so are
a basis of R3 by Theorem 5.2.7 (since dim R3 =3).

No. The determinant of the matrix with these vectors as its columns is zero, so they are not
independent (by Theorem 5.2.3). Hence they are not a basis of R* because dim R* = 4.

b. True. If sy +¢z = 0 then Ox+ sy + ¢z = 0, so s = t = 0 by the independence of {x, y, z}.
d.
f
h

False. If x # 0 let k = 2, x; = x and x, = —x. Then each x; # 0 but {x;, X, } is not independent.

. False. If y = —x and z = 0 then 1x+ ly + 1z = 0, but {Xx, y, z} is certainly not independent.

. True. The x; are not independent so, by definition, some nontrivial linear combination vanishes.

If rxo +sx3 + x5 = 0 then 0x; 4 rx; + sx3 + 0x4 + X5 + 0xg = 0. Since the larger set is independent,
this implies r =s =1 = 0.

If tyx; + (X1 +X2) + - - +1;(X] + X2+ - - + X¢) = 0 then, collecting terms in X1, X, ...,

(tito+-+u)xi+ (Rt )Xo+ A+ (o1 )X + 15X =0

Since {xi, X3, ..., X} is independent we get

h+n+--+4,=0

ot +4=0
1+t =0
t =0
The solution (from the bottom up) isty =0, #,_1 =0, ..., L, =0,#; =0.

b.

We show that A7 is invertible. Suppose A”x = 0x in R?. By Theorem 2.4.5, we must show that
x=0. Ifx= [ ; } then ATx = 0 gives as +ct = 0, bs +dt = 0. But then s(ax + by) +t(cx+
dy) = (sa+tc)x+ (sb+1td)y = 0. Hence s = t = 0 because {ax+ by, cx+dy} is independent.

Note first that each V~!x; is in null (AV) because (AV)(V~'x;) = Ax; = 0. If 1V~ Ix; + - +
4V~ 1x, = 0 then V_l(tlxl + -+ 4x) = 0 so 11x; + -+ + X, = 0 (by multiplication by

V). Thus t; = --- =t = 0 because {xi, ..., X;} is independent. So {V‘lxl, e, V_lxk}
is independent. To see that it spans null (AV), let y be in null (AV), so that AVy = 0. Then
Vy is in null A so Vy = 51X + -+ + 5,X, because {xj, ..., X,} spans null A. Hence y =

s1V7Ixg + 45V Ixy, as required.

We have {0} C U C W where dim{0} = 0 and dim W = 1. Hence dim U is an integer between 0
and 1 (by Theorem 5.2.8), so dim U =0 or dimU = 1. If dim U = 0 then U = {0} by Theorem
5.2.8 (because {0} C U and both spaces have dimension 0); if dim U = 1 then U = W again by
Theorem 5.2.8 (because U C W and both spaces have dimension 1).



78 = The Vector Space R"

5.3 Orthogonality

1. b {%(1, 1, 1), \/%(4, 1, =5), \/%(3, -3, 1)} where in each case we divide by the norm of
the vector.

3. b. Write e; = (1, 0, —1),62: (1, 4, 1),63 = (2, -1, 2). Then
ereo=140—-1=0,e1-e3=240—2=0,e-e3=2—-44+2=0

so {ej, ey, e3} is orthogonal and hence a basis of R3. Ifx= (a, b, c¢), Theorem 5.3.6 gives

X-€1

X =
ller]

e+ 2e2+H H2e3 _e +a+4b+ce +2a—l97+26e3

|| z||
d. Writee; =(1, 1, 1),e; =(1, —1, 0),e3 = (1, 1, —2). Then
ejreo=1—-140=0,e;-e35=1+1—2=0,ander-e35=1—1+0=0

Hence {e;, €5, e3} is orthogonal and hence is a basis of R3. If x = (a, b, ¢), Theorem 5.3.6
gives
. < TIPS
= Jerl?® e ¥ e
4. b. Ife;=(2, —1,0, 3) and e = (2, 1, —2, —1) then {e, e,} is orthogonal because e; - e; =
4—140—-3=0. Hence {e], ey} is an orthogonal basis of the space U it spans. If x =
(14, 1, —8, 5) is in U, Theorem 5.3.6 gives

2e :a+b+ce +a2be +a+b 26‘ e;

2e2+ 3

X-e X-e
X = ”elleel + e |T2 )= 4e1 + 10e2 =3e|+4e;

We check that these are indeed equal. [We shall see in Section 8.1 that in any case,

X — (H’:elee + IIX eITZ e2) is orthogonal to every vector in U]
1 €

5. b. The condition that (a, b, ¢, d) is orthogonal to each of the other three vectors gives the fol-
lowing equations for a, b, ¢, and d.

a —c +d =0

2a + b + ¢ —d =0

a — 3b + c =0

Solving we get:

1 - 1]0 10 -1 1]0
2 1 1 -1|o | = 0 13 3]0
1 -3 1 0]0 -3 2 -1]0
1o 1 0 1 oo £ |o
— |0 1 0| —=]0 10 —-%]0
0 0 —10 0 0 0 1 ,% 0

The solution is (a, b, ¢, d) =t(—1, 3, 10, 11), ¢t in R.
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12x + 7y (2x+17y) - (2x+7y)
4(x-x)+14(x-y)+ 14(y-x) +49(y-y)
4]x||> +28(x - y) +49 [y

36 — 56 +49

— 29

(x—2y)-(3x+35y) = 3(x-x)+5(x-y)—6(y-x)—10(y-y)
= 3|x|*—(x-y) - 10]ly|?
= 2742-10
— 19

False. For example, if x = (1, 0) and y = (0, 1) in R?, then {x, y} is orthogonal but x +y =
(1, 1) is not orthogonal to x.
True. Let x and y be distinct vectors in the larger set. Then either both are x;’s, both are y,’s, or

one is an x; and one is a y;. In the first two cases x-y = 0 because {x;} and {y,} are orthogonal
sets; in the last case x - y = 0 by the given condition.

True. Every pair of distinct vectors in {x} are orthogonal (there are no such pairs). As x # 0,
this shows that {x} is an orthogonal set.

9. Row iof AT is ¢! so the (i, j) entry of ATAis ¢/¢; = ¢;-¢;. Thisis 0if i # j, and 1 if i = j. That is

11.

12.

b.

ATA =1.

Take x = (1, 1, 1) and y = (ry, 2, r3). Then |x-y| < ||x||/||y|]| by Theorem 5.3.2; that is
|r1 412+ r3] < V/34/12 + 13 +r2. Squaring both sides gives

r% + r% + r% +2(riry+rirs+rr3) < 3(1% + r% + r%)
Simplifying we obtain ry 7y +rir3 +rars < 17 + 713 + 13, as required.

Observe first that
(x+y)- (x—y) = x> |ly|? (%)

holds for all vectors x and y in R".
If x+y and x —y are orthogonal then (x+y)- (x —y) = 0, so ||x||> = |ly||? by (). Taking
positive square roots gives ||x|| = ||y||-

Conversely, if ||x|| = ||y|| then certainly ||x||> = ||y||%, so () gives (x+y)- (x —y) = 0. This
means that x +y and x —y are orthogonal.

15. If A is an eigenvalue of ATA, let (AT A)x = Ax where x # 0 in R". Then:

||AX||2 = (AX)T(AX) = (XTAT)AX = XT(ATAX) = XT(QLX) = 7L||X||2

Since ||x|| # 0 (because x # 0), this gives A = HAX”; > 0.

[l
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5.4 Rank of a Matrix

2 11 2 -
211 0

4 2 3| 7o -
6 3 0 0

Hence,rankAzZand{[l —% %}T,[O 0 I}T}isabasisofrowA.Thus

[Nl
W = N =
=

S O O =
(=Rl e)
S O =N

{ [ 2 -1 1 }T , [ 0 01 ]T} is also a basis of row A. Since the leading 1’s are in columns
1 and 3, columns 1 and 3 of A are a basis of col A.

1 2 -1 3 1 2 -1 3 1 2 -1 3
d'[—3 -6 3—2]%[00 07]%[00 01}'
Hence, rankAzZand{[ 1 2 -1 3 ]T, [ 00 01 }T} is a basis of row A. Since the
leading 1’s are in columns 1 and 4, columns 1 and 4 of A are a basis of col A.

2. b. Apply the gaussian algorithm to the matrix with these vectors as rows:

1 -1 2 5 1 1 1 0 0 0 1 0 05 01
3001 4 2 7 0 -2 2 5 1 0 1 -1 -3 -1
11 o000l 7o 24277100 1 -3 3
5 1.6 7 8 0 -4 6 7 8 o0 o0 o o

Hence, {[1 10 0 0], [0 2 -2 =5 ~1]",[0 02 —3 6]} is a basis
of U (where we have cleared fractions using scalar multiples).

-6

0 ]

d. Write these columns as the rows of the following matrix:

-6 1 5 -6 1
-8 0 -4 4 0
[ 10]%[0 -8 8]%[0
12 0 -12 36 0
1 0 0
Hence,{[ 5},[ 1},{0}}isabasisofU.
-6 -1 1

3. b. No. If the 3 columns were independent, the rank would be 3.
No. If the 4 rows were independent, the rank would be 4, a contradiction here as the rank
cannot exceed the number of columns.

[ BEN N WV,

AW~
oo — W

N
O-&»—c\
—_ 1
1
(==l
oo — W
o =

d. No. Suppose that A is m X n. If the rows are independent then rank A = dim (row A) = m (the
number of rows). Similarly if the columns are independent then rank A = n (the number of
columns). So if both the rows and columns are independent then m = rank A = n, that is A is
square.

f. No. Then dim (nullA) =n—r=4—2 =2, contrary to null (A) = Rx where x # 0.

4. Let ¢j denote column j of A. If x = [ X1 o Xp }T € R" then Ax = x;¢1 + - - - +x,¢, by Definition
2.5. Hence

col A = span{cy, ..., ¢, } = {xj¢; +---+x,¢, | x; e R} = {Ax [ x € R"}
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7. b. The null space of A is the set of columns x such that Ax = 0. Applying gaussian elimination to
the augmented matrix gives:

35 5 2 0o 1 0 2 1o
10 2 2 1]o0 05 -1 -4 =30
11 1 =2 200|701 -1 -4 3|0
2 0 -4 -4 210 00 0 0 ofo0
1 0o 2 2 110 1 00 6 -5]0
01 -1 -4 =310 010 0 o0fo0
1o o0 4 16 12lo| 7|0 o0 1 4 3]0
00 0 0 010 00 0 0 o0fo0
6s + 5t
. . 0 .
Hence, the set of solutions is null A = —4s=3 | |s, tin R » = span B where
S
6 5
0 0 . . . . . . .
B = -4 |, | -3 . Since B is independent, it is the required basis of null A. We have
1 0
0 1

r = rank A = 3 by the above reduction, so n —r =5 — 3 = 2. This is the dimension of null A,
as Theorem 5.4.3 asserts.

8. b. Since A is m x n, dim (null A) = n — rank A. To compute rank A, let R = [ ry rp - Iy }
Then A =CR = [ rnC rnC --- rC ] by block multiplication, so

col A = span{r|C, rC, ..., r,C} = span{C}

because some r; # 0. Hence rank A = 1, so dim (null A) =n—rank A =n— 1.

9. b. LetA = [ ¢ - ¢, } where ¢; is the 7™ column of A; we must show that {e1, ..., ey} is
independent. Suppose that xj¢j + -+ +x,¢, = 0, x; in R. If we write x = [ x; -+ x, }T,
this reads Ax = 0 by Definition 2.5. But then x is in null A, and null A = 0 by hypothesis. So
x = 0, that is each x; = 0. This shows that {cy, ..., ¢,} is independent.

10.  b. If A2 = 0 then A(Ax) = 0 for all x in R”, that is {Ax | x in R"} C null A. But col A = {Ax | x
in R"}, so this shows that col A C null A. If we write r = rank A, taking dimensions gives
r=dim (col A) < dim (null A) = n—r by Theorem 5.4.3. It follows that 2r < n; that is r < 5.

12. We have rank (A) = dim[col (A)] and rank (AT) = dim [row (AT)]. Let {¢;, €5, ..., ¢} be a basis

of col(A); it suffices to show that {¢l, ¢I, ..., ¢]} is a basis of row (AT). Butif r1¢] +1c] +

e tkc,{ =0, 7; in R, then (taking transposes) fj¢; + €2 + -+ + ;¢ = 0 so each r; = 0. Hence

{cI, eI, ..., ¢]}is independent. Given v in row (AT) then v7 is in col (A), say v! = s1¢1 + 5202 +

-+ spc, sj in R, Hence v =si¢] +s2¢) +---+spel so {cl, I, ..., ¢l } spans row (AT), as
required.

15. b. Let{cy, ..., ¢,} be a basis of col A where r = rank A. Since Ax = b has no solution, b is not

in col A = span{cy, ---, ¢,} by Exercise 12. It follows that {¢i, ..., ¢,, b} is independent

[If ajcy +--- 4+ ayc+ab =0 then a = 0 (since b is not in col A), whence each a; = 0 by the

independence of the ¢;]. Hence, it suffices to show that col [A, B] = span {¢j, ---, ¢,, b}. It

is clear that b is in col [A, b], and each c; is in col [A, b] because it is a linear combination of
columns of A (and so those of [A, b]). Hence

span {cy, ..., ¢, b} C col[A, b]
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On the other hand, each column x in col [A, b] is a linear combination of b and the columns
of A. Since these columns are themselves linear combinations of the ¢, so X is a linear combi-
nation of b and the ¢;. That is, x is in span {cy, ..., ¢,, b}.

5.5 Similarity and Diagonalization

10.

12.

. det A= —5, det B= —1 (so A and B are not similar). However, tr A =2 = tr B, and rank A =

2 = rank B (both are invertible).

. trA=S5, tr B=4 (so A and B are not similar). However, det A =7 = det B, so rank A =2 =

rank B (both are invertible).

. trA=—-5=trB; det A =0 = det B; however rank A = 2, rank B =1 (so A and B are not

similar).

. We have A ~ B, say B= P 'AP. Hence B! = (P7!AP) "' =P~ 1A~ (P7)",s0A" ! ~ B!

because P! is invertible.

x=3 0 —6

ea(x)=1] 0o x+3 0 ‘ = (x+3)(x*> —5x —24) = (x+3)?(x — 8). So the eigenvalues are

50 x-2
A= -3, 7Lz = 8. To find the associated eigenvectors:
6 0 -6 101 o -1 0
M= 0 0 0 — | 0 0 o |;basiceigenvectors | 0 |, | 1 |.
o 00 0 1

6
];basic eigenvector { 0 }
5

'—‘O'—‘u-om
| |

L 1
S O =
S = O
OO'
TN

6
} [ } [ 0 } is a basis of eigenvectors, A is diagonalizable and

|

0 0 0 1o 0
:(x—4)2(x+1).For7L:4,{o 2 —2}-){0 1 —1];
2 -3 3 00 0

[« )
o O O

3
0 -
0

Ei=1|1 } . Hence A is not diagonalizable by Theorem 5.5.6 because the dimension of E4(A) =
1

1 while the eigenvalue 4 has multiplicity 2.

. If B=P~'AP and AF =0, then B* = (P~!AP)* = p~1AkP = P~ loP = 0.

. Let the diagonal entries of A all equal A. If A is diagonalizable then P~'AP = AI by Theorem

5.5.3 for some invertible matrix P. Hence A = P(AI)P~! = A(PIP~') = AL

. Let P 1AP=D= diag {41, A2, ..., A4,}. Since A and D are similar matrices, they have the

same trace by Theorem 5.5.1. That is

rtA=t(P'AP)=uD =M+ + -+,

. Tp(A)Tp(B) = (P~'AP)(P~'BP) = P~ 'AIBP = P~'ABP = Tp(AB)
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13.  b. Assume that A is diagonalizable, say A ~ D where D is diagonal, say D = diag (4, ..., 4;,)
where A1, ---, A, are the eigenvalues of A. But A and A7 have the same eigenvalues (Example
3.3.5)s0 AT ~ D also. Hence A ~ D ~ AT so A ~ AT as required.

17.  b. We use Theorem 5.5.7. The characteristic polynomial of B is computed by first adding rows 2
and 3 to row 1. For convenience, write s = a+b +c¢, k = a*> + b* + ¢ — (ab+ac+bc).

X—c —a —b xX—s x—s x—s x—s 0 0
Al I I A I
:(x—s)[2—(a—b)2—(a—c)(b_c)}
= (-9 —K)

Hence, the eigenvalues of B are s, Vk and —vk. These must be real by Theorem 5.5.7, so
k > 0. Thus a® + b* + c* > ab + ac + bc.

20. b. To compute c4(x) = det (x/ —A), add x times column 2 to column 1, and expand along row 1:

x -1 0 0 0 0
0 x -1 0 0 0
o 0 x -1 0 0
ca(x) = : :
0 0 0 0 - -1 0
0 0 0 0 - ox —1
—rp —r —n -3 —TIg—2 X—Fk—1
0 -1 0 0 0 0
x2 x -1 0 0 0
0 0o x -1 0 0
0 o 0 0 - -1 0
0 0 0 o0 x 1
—ro—rx —rp.  —rz —r3 —rk—2  X—TIq
Now expand along row 1 to get
x2 -1 0 0
0 x -1 0 0
(x) 0 o 0 - -1 0
0 0 0 - X —1

—ro—rix —rp —r3 - —Ip2  X—Ik-|

This matrix has the same form as xI — A, so repeat this procedure. It leads to the given expres-
sion for det (x/ —A).

5.6 Best Approximation and Least Squares

26 -2 12
z 12 —12 12

3 1 1 6
. b HereA:[§ 3 }],b:[g],x:{y}Hence,ATA:[z 0 12
3 8
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This is invertible and the inverse is
- ) 96 —120 -216 24 —30 —54
ATa)" ! = ﬁ “120 168 288 | = % 30 42 72
216 288 516 -54 72 129
Here the (unique) best approximation is
24 30 —54 44 —60 20
zZ—= (ATA)*IAT[) — % 30 42 7 15 | = % 138 | = ﬁ 46
-54 72 129 29 285

Of course this can be found more efficiently using gaussian elimination on the normal equa-
tions for z.

1 2 4
N I R RS PR H A
1 1
solve the normal equation (M M)A = M™y by inverting M” M:
Tan—11yT 1 [ 133 -2 10 1 [ 448 1] 64
A=(M"M) My:ﬁ[—m 4][42}:ﬁ'[—42}:ﬁ[—6}

Hence the best fitting line has equation y = ?—g — %x.

d. Analogous to (b). The best fitting line is y = —% — %x.

[N N

3. b. Now

T 1 1 1 1 } _g g 4 5 29
MM=1| -2 0 3 4 L 3 o | =5 ® 8
4 0 9 16 EEERT: 29 83 353
T 11 1 1 (1) 6
M'y=| -2 0 3 4 5 | =1 16
4 0 9 16 3 70

We use (MMT)~! to solve the normal equations even though it is more efficient to solve them
by gaussian elimination.

( T ) 1( 7 ) 1 3348 642 —426 6 1 540 127
A=M M) " (M'y) = pc | 642 571 —187 16 | = g | —102 | = | —.024
28 e —157 91 70 4248 822 194

Hence the best fitting quadratic has equation y = .127 — .024x + .194x2.

1 0o 0> 20 0 0 1
4.  b. Inthe notation of Theorem 5.6.3: y = [ ! ] M= [ [ - [ b 2]
: : s 5 |° 2 22 22 2 4 4 |-
10 3 32 23 3 9 8
14 36 34 230 0 -9 115 0 —46
Hence, MITM =1 36 9 9% ,and (MTM)—1 = 9L2 0 34 -36 | = % 0 17 —18 |,
34 90 85 -2 -3 76 —46 -18 38

Thus, the (unique) solution to the normal equation is
115 0 —46 41

z=M"M) 'MTy=1L1 o 17 —18 m | =L 33
( ) Y= 3 46 —18 38 103 46

The best fitting function is thus % [—23x+33x% +30(2)"].
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5. b. Herey= M=

O W = =

T 4 14 0 T o[ 7 35
M'M=1| 14 9 —-10 | and (M M)* =3 7 -2 -10
0 —10 2 35 —10 —49

Thus, the (unique) solution to the normal equations is

24 2 14 3 18
-ty [ 33 3] 2 g

Hence, the best fitting functions

55118 +21x* + 28 sin ()]

7. To fit s = a + bx where x = 12, we have

11
T 111 3 14
MM—[149}{}3}:[14 98]
95
T 1 1 1 231
wy=[1 3] [5]= (5]

Hence A= (MTM)"'MTy = g [ o } [ o } = 5% [ o } = [ o ] to two decimal places.
Hence the best fitting equation is

y=99.71 —4.87x = 99.71 — 4.87¢*

Hence the estimate for g comes from —%g = —4.87, g = 9.74 (the true value of g is 9.81).
Now fit s = a + bt + ct>. In this case

11 1 11 1 36 14
MIM=11 2 3 1 2 4| =1]96 14 36
1 4 9 1 3 9 14 36 98
1 1 1 95 [ 231
Mly=|1 2 3 80 | = | 423
1 4 9 56 | 919
Hence
T 1 T ! 76 —84 20 231 ] 404 101
A=M" M) (M =2 | -84 98 -24 03 | ==+ -6 | = =2
( ) (M) 4 20 24 6 | | 919 41 g ,é
so the best quadratic is y = 101 — %t - %tz. This gives —% = —%g so the estimate for g is g =9 in
this case.

9. We want ry, ry, r2, and r3 to satisfy

ro+50r; 4+ 18ry 4+ 10r; = 28
ro+40r; 4+ 20r, + 16r3 = 30
ro+35r1 4+ 14rp, +10r; = 21
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ro+40r1 4+ 12rp + 12r3 = 23
ro+30r1 + 161, + 14r; = 23

We settle for a best approximation. Here

1 50 18 10 28
1 40 20 16 30
A= 1 35 14 10 b= 21
1 40 12 12 23
1 30 16 14 23

80 3150 1320 1008
62 2390 1008 796

[1035720 —16032 10080 45300]

5 195 80 62
195 7825 3150 2390
ATA =

—16032 416 —632 800
10080 —632 2600 —2180
—45300 800 —2180 3950

Tav—1_ 1
(A A> — 50160

So the best approximation
1035720  —16032 10080  —45300 125 -5.19
_ T T —16032 416 —632 800 4925 o 0.34
z=(ATA)"'(ATb) = 50160 10080 —632 2600  —2180 2042 | = | 051
—45300 800  —2180 3950 1568 0.71

The best fitting function is

y=-5.1940.34x; +0.51x2 +0.71x3

10.  b. f(x) = ap here so the sum of squares is

s=(y1—ao)*+ (2 —ao)*+-+ (ya—ao)?

(vi —ao)*

I

I
—_

—2agy; +y12)

ap— 22)’: ao+ (Y.7)

— a quadratic in ag. Completing the square gives
s=nfa— 3"~ X024 (Ew)]

This is minimal when ag = %Z Vi.

Il
H'[\/]:

l\)

1 en 1

13.  b. Itsuffices to show that the columns of M = [ Do ] are independent. If ry +71

1 e

el
en ]

0
[ : ] , then rg + rie*i = 0 for each i. Thus, ri(e* — ") =0 for all i and j, so r; = 0 because
0
two x; are distinct. Then rg = rje*! = 0 too.

1
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5.7 An Application to Correlation and Variance

2.

4.

Let x = [ X| Xp -+ X10 } = [ 12 16 13 --- 14 } denote the number of years of education.
Then X = $5 ¥ x; = 153, and 52 = - ¥'(x; — X)2 = 9.12 (s0 5, = 3.02).
Lety = [ yroy2 - V1o } = [ 31 48 35 .-- 35 } denote the number of dollars (in thou-

sands) of yearly income. Then = {5 ¥.f; =40.3, and s = 17 ¥ (v; —¥)* = 114.23 (s0 s, = 10.69).
The correlation is r = X¥—1%% _ () 599

Osxsy

b. We have z; = a + bx; for each i, so
f= LY (b br) = (nat b w) =at b (L x) =arthe
Hence
2= 5 Y @22 = i Yllatbn) — (a+ b)) = 71 Y bR - 3)% = b2

The result follows because Vb2 = |b|.

Supplementary Exercises: Chapter 5

False. If »r = 0 then rx is in U for any Xx.
True. If x is in U then —x = (—1)x is also in U by axiom S3 in Section 5.1.

True. If rx + sy = 0 then rx+ sy + 0z = 0 so r = s = 0 because {Xx, y, z} is independent.

5 - B/ o

False. Take n = 2, x| = [ i ] and xp = [ :} } . Then both x; and x; are nonzero, but {x;, X, }
is not independent.

. False. If a = b = ¢ = 0 then ax + by + cz = 0 for any X, y and z.

—

l. True. If 1;X| + 12X + - - - + 1,X,, = 0 implies that each #; = 0, then {x;, X, ..., X, } is indepen-
dent, contrary to assumption.

1 -1 0
n.False.{lg ,[8], ?],[
0 0 0

p. False. {x, x+Yy, y} is never independent because 1x+ (—1)(x+y) + ly = 0 is a nontrivial
vanishing linear combination.

—_ o oo

] } is not independent.

r. False. Every basis of R? must contain exactly 3 vectors (by Theorem 5.2.5). Of course a
nonempty subset of a basis will be independent, but it will not span R if it contains fewer than
3 vectors.






6. Vector Spaces

6.1 Examples and Basic Properties

I. b

d.

No: S5 fails 1(x, y, z) = (1x, 0, 1z) = (x, 0, z) # (x, y, z) for all (x, y, z) in V. Note that the
other nine axioms do hold.

No: S4 and S5 fail: S5 fails because 1(x, y, z) = (2x, 2y, 2z) # (x, y, z); and S4 fails because
alb(x, y, z)] = a(2bx, 2by, 2bz) = (4abx, 4aby, 4abz) # (2abx, 2aby, 2abz) = ab(x, y, z).
Note that the eight other axioms hold.

b. No: Al fails — for example (x*> +x-+1) + (—x> +x+1) = 2x+2 is not in the set.

No: Al and S1 both fail. For example x+ x> and 2x are not in the set. Hence none of the other

axioms make sense.
Yes. First verify Al and S1. Suppose A = [ “ Z ] and B = [ - ] areinV,soa+c=b+d

c Z

a+x b+y

etz diw 1s in V because

andx+z=y+w. ThenA+B = [
(a+x)+(c+z)=(a+c)+(x+z2)=b+d)+(y+w)=(b+y)+(d+w)

Also rA = [ e ] isin V for all r in R because ra+rc =r(a+c) =r(b+d) =rb+rd.
A2, A3, S2, S3, S4, S5. These hold for matrices in general.

A4, [ g g } is in V and so serves as the zero of V.

A5. GivenA = [ “r’ ] witha+c=b+d, then —A = [ o } isalsoin V because —a—c =
—(a+c¢)=—(b+d)=—b—d. So —A is the negative of A in V.

Yes. The vector space axioms are the basic laws of arithmetic.

. No. S4 and S5 fail. For S4, a(b(x, y)) = a(bx, —by) = (abx, aby), and this need not equal

ab(x, y) = (abx, —aby); as to S5, 1(x, y) = (x, —y) # (x, y) if y # 0.
Note that the other axioms do hold here:

Al, A2, A3, A4 and AS hold because they hold in R2.

S1 is clear; S2 and S3 hold because they hold in R>.

. No. S3 fails: Given f: R — R and a, b in R, we have

[(a+b)f1(x) = f((a+Db)x) = f(ax+bx)
(af +bf)(x) = (af)(x) + (bf) (x) = f(ax) + f(bx)

These need not be equal: for example, if f is the function defined by f(x) = x*;
Then f(ax+ bx) = (ax+ bx)? need not equal (ax)? + (bx)? = f(ax) + f(bx).

89
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Note that the other axioms hold. A1-A4 hold by Example 6.1.7 as we are using pointwise

addition.

S2. a(f+g)(x) = (f+g)(ax) definition of scalar multiplication in V
= f(ax)+g(ax) definition of pointwise addition
= (af)(x)+ (ag)(x) definition of scalar multiplication in V
= (af+ag)(x) definition of pointwise addition

As this is true for all x, a(f+g) = af + ag.
S4. [a(bf)|(x) = (bf)(ax) = flb(ax)] = f[(ba)x] = [(ba) f](x) = abf](x) for all x,
soa(bf) = (ab)f.
S5. (1f)(x) = f(1x) = f(x) for all x, so 1 f = f.
n. No. S4, S5 fail: a* (b*X) = a* (bXT) = a(bXT)T = abX™" = abX, while (ab) xX = abX".
These need not be equal. Similarly: 1xX = 1X7 = X7 need not equal X.
Note that the other axioms do hold:
A1-AS. These hold for matrix addition generally.
Sl.axX =aX"isinV.
S2.ax(X+Y)=aX+Y) =a(XT+YT)=aXT +a¥T =axX +axY.
S3(a+b)*xX = (a+b)XT =aXT +bXT =axX +bxX.

4. Al (x, y) 4+ (x1, y1) = (x+x1, y+y1 + 1) isin V for all (x, y) and (x1, y;) in V.

5.

2. (6 y) 4+ (x1, y1) = (x+x1, y+y1+1) = (x1+x, yi+y+1) = (e, 1) + (31, ).
A3 (6 ¥) + (e, y1) + (62, ¥2)) = (6, ¥) +(x1+x2, yi +y2+1)
(x+(x1+x2), y+ (1 +y2+1) +1)
= (x+x1+x2, y+y1+y2+2)
(e ¥)+(x1, 1)) + (2, y2) = (x+x1, y+y1+1) + (x2, y2)

((c+x1) +x2, (y+y1+1)+y2+1)

= (x+x1+x2, y+y1+y2+2)

These are equal for all (x, y), (x1, y1) and (x2, y2) in V.
Ad. (x, y)+(0, =1) = (x+0, y+(—=1)+1) = (x, y) forall (x, y), so (0, —1) is the zero of V.
A5 (%, y)+(—x, =y—=2) = (x+(—x), y+(—=y—2)+1) = (0, —1) is the zero of V (from A4) so
the negative of (x, y) is (—x, —y —2).
S1. a(x, y) = (ax, ay+a—1)isinV forall (x, y) in V and a in R.

S2. a[(x, y)+ (x1, y1)] = alx+x,y+n+1) = (alx+x1),aly+y1+1)+a—1)
= (ax+axy, ay+ay;+2a—1)
a(x, y)+a(xy, y1) = (ax, ay+a—1)+ (ax;, ayy—a—1)

= ((ax+axy), (ay+a—1)+(ay;+a—1)+1)
= (ax+axy, ay+ay;+2a—1)
These are equal.

S4. alb(x, y)] = a(bx, by+b—1) = (a(bx), a(by+b—1)+a—1) = (abx, aby +ab — 1) =

(ab)(x, y).
S5. 1(x, y) = (1x, ly+1—1) = (x, y) forall (x, y) in V.

b. Subtract the first equation from the second to get x — 3y = v —u, whence x =3y + v —u.
Substitute in the first equation to get

33y+v—u)—2y=u
7y = 4u—3v
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4
y:7u—7v

Substitute this in the first equation to get x = %u — %V.

It is worth noting that these equations can also be solved by gaussian elimination using u and
v as the constants.

0

e

a+c=0,b+c=0,b+c=0,a—c=0

(=)

6. b au—l—bv—l—cw:ﬂbecomes[g 2]-1-[2 g]+[c C}:[

c —C

Equating corresponding entries gives equations for a and b.

The only solutionisa =b =c=0.

d. au+bv+cw = 0 means asinx+bcosx+cl = 0 for all choices of x. If x =0, %,

T, we get,
respectively, equations b+c¢ =0, a+c =0, and —b+c =0. The only solutionisa=b=c=

0.

7. b. 4Bu—v+w)—2[Bu—2v)—3(v—w)|+6(Ww—u—v)
= (12u—4v+4w) —2[3u—2v — 3v+ 3w] + (6w — 6u — 6v)
= (12u—4v+4w) — (6u— 10v+ 6w) + (6w — 6u — 6v)
=4w

10. Suppose that a vector z has the property that z+v = v for all vin V. Since 0+ v = v also holds for
all v, we obtain z+ v = 0+ v, so z = 0 by cancellation.

12.  b. (—a)v+av=(—a+a)v=0v=0. Since also —(av) +av =0 we get (—a)v+av=—(av)+av.
Thus (—a)v = —(av) by cancellation.
Alternatively: (—a)v = [(—1)a]v = (—1)(av) = —av using part 4 of Theorem 6.1.3.

13.  b. We proceed by induction on n (see Appendix A). The case n =1 is clear. If the equation holds
for some n > 1, we have

(a+ary+-+at+ap1)v = [(a1+ar+-+ay) +ay1]v

= (a1+a+-+apn)v+ay v by S3
(arv+apv+---+ayv)+ap v by induction

= aiV+ayv+---+a,v+a,41v

Hence it holds for n+ 1, and the induction is complete.

1 1

15. c. Since a # 0, a ! exists in R. Hence av = aw gives a_'av = a~'aw; that is 1v = 1w, that is
vV=w.
Alternatively: av = aw gives av—aw =0, so a(v—w) = 0. As a # 0, it follows that v—w = 0

by Theorem 6.1.3, thatis v=w.



92

Vector Spaces

6.2 Subspaces and Spanning Sets

. No. U is not closed under addition (for example u = 1 +x> and v =x —x

. Yes. U is a subset of P3 because xg(x) has degree one more than the degree of g(x). Clearly

0=x-0isin U. Given u = xg(x) and v = xh(x) in U (where g(x) and b(x) are in P,) we have

u+v=x(g(x)+h(x))is in U because g(x) + h(x) is in P,
ku =x(kg(x)) is in U for all k in R because kg(x) is in P,

. Yes. Asin (b), U is a subset of P3. Clearly 0 =x-0+ (1 —x)-0isin U. If u = xg(x) + (1 —

x)h(x) and v =xg; (x) + (1 —x)h;(x) are in U then

w-+v = xlg(x) + 1 (0] + (1 ) [h(x) + =y ()
ku = xfkg ()] + (1 - x)[kh(x)]

both lie in U because g(x) + g1(x) and h(x) 4 h;(x) are in P;.

3 are in U but

u+v=14xisnotin U). Also, the zero polynomial is not in U.

.Yes.ClearlyOz[g g}isinU.Ifu:[Z Z]andulz[“‘ Z:]areinUthenu—l—ulz

C1

at+a, b+b . .
[ cter did } is in U because

(a4+a))+(b+by) = (a+b)+(a1+by)
= (c+d)+(c +d1)
= (C+Cl)+(d+d1)

ku = [ o } is in U because ka+ kb =k(a+b) =k(c+d) =kc+kd.

. Yes. Here Oisin U asOB=0. If A and A; are in U then AB=0and AjB=0,s0 (A+A;)B=

AB+A|B=0+40=0and (kA)B =k(AB) = k0 =0 for all k in R. This shows that A+ A and
kA are alsoin U.

1

. No. U is not closed under addition. In fact, A = [ (l) 8 } and A| = [ 8 0 ] are both in U, but

A+A; = [(1) ?}isnotinU.

. No. U is not closed under addition. For example if f and g are defined by f(x) =x+ 1 and

g(x) =x*>+1, then f and g are in U but f + g is not in U because (f 4 g)(0) = f(0) +g(0) =
I1+1=2.

. No. U is not closed under scalar multiplication. For example, if f is defined by f(x) = x, then

fisin U but (—1)fis notin U (for example [(—1)f](3) = —31 so is not in V).

. Yes. 0is in U because O(x+y) =0=0+0=0(x) +0(y) for all x and y in [0, 1]. If f and g

are in U then, for all k£ in R:

(f+e)x+y)=flx+y)+gx+y)
= (f(x) +£() +(gx) +&())



I11.

. Suppose X = [ :

. va:su—l—tw,then[5 3]:s[2 _i}—i—t“
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= (f(x) +g)+(f(y)+e&())
=(f+8)x)+(f+8)V)

(kf)(x+y) = k[f (x+y)] = k[f (x) + f ()] = kLf ()] +k[f (¥)]
= (kf) (x) + (kf) (¥)

Hence f+ g and kf are in U.

X1 V1

] £0, say x; # 0. Giveny = let A be the m x n matrix with k"

Xn Yn
column x,:ly and the other columns zero. Then y = Ax by matrix multiplication, so y is in U.

Since y was an arbitrary column in R”, this shows that U = R

. We want r, s and  such that 2x?> — 3x+1 = r(x+1) +s(x> +x) +1(x> +2). Equating coefficients

of x2, x and 1 gives s+t =2, r+s = —3, r+2t = 1. The unique solution is r = =3, s = 0,
t=2.

. Asin(b), x = %(x-l— 1)+ %(xz-i-x) - %(xZ-I-Z).

. If v=su+rw then x = s(x> + 1) +t(x+2). Equating coefficients gives 0 = s, 1 = ¢ and

0 = s+ 2¢. Since there is no solution to these equations, v does not lie in span {u, w}.

1 —4 1 1

0 } . Equating corresponding entries gives
s+2t=1,—s+t=—4,2s+t=>5 and s = 3. These equations have the unique solution t = —1,
s =3, sovisin span {u, w}; in fact v=3u—w.

b. Yes. The trigonometry identity 1 = sin? x+cos?x for all x means that 1 is in span {sin2 X, cos? x} .

d. Suppose 1+ x% = ssin’x +1cos?x for some s and ¢. This must hold for all x. Taking x = 0

gives 1 = ¢; taking x = 7 gives 1 + 2 = —¢. Thus 2+ 2 = 0, a contradiction. So no such s
and ¢ exist, that is 1 4+x? is not in span {sinzx, cos?x}.

. Write U = span {1 +2x%, 3x, 1 —l—x}, then successively

%(3 )isin U
(1+x)—xisinU
|

2l

X
1
2

(14+2x*) —1]isinU

Since P, = span {1, x, x*}, this shows that P, C U. Clearly U C P5, s0 U = P,.

. The vectorsu—v = lu+(—1)v,u+v, and w are all in span {u, v, w} so span {u—v, u+w, w} C

span {u, v, w} by Theorem 6.2.2. The other inclusion also follows from Theorem 6.2.2 be-
cause

u=(ut+w)—w
v=—(u—v)+(u+w)—w
W=Ww

show that u, v and w are all in span {u—v, u+v, w}.
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No. For example (1, 1, 0) is not even in span {(1, 2, 0), (1, 1, 1)}. Indeed (1, 1, 0) =s(1, 2, 0) +
t(1, 1, 1) requires that s+¢ = 1, 2s+¢ = 1, t = 0, and this has no solution.

Write W = span {u, vy, ..., V,}. Since uis in V we have W C V. But the fact that a; # 0 means
1 n
Vi=gu—Zvy— - — By,
sovyisin W. Since vy, ..., v, are all in W, this shows that V = span {vy, vy, ..., v,} C W. Hence
V=W.

b. Ifuandu+vare in U then v= (u+v)—u= (u+v)+ (—1)uis in U because U is closed
under addition and scalar multiplication.

If U is a subspace then, u; +au; is in U for any u; in U and a in R by the subspace test. Conversely,
assume that this condition holds for U. Then, in the subspace test, conditions (2) and (3) hold for
U (because 1v = v for all v in V), so it remains to show that 0 is in U. This is where we use
the assumption that U is nonempty because, if u is any vector in U then u+ (—1)u is in U by
assumption, thatis 0 € U.

6.3 Linear Independence and Dimension

b. Independent. If rx> +s(x+ 1) +1(1 —x — x?) = 0 then, equating coefficients of x, x and 1, we
getr—t=0,5s—t=0,s5+¢t=0. The only solutionis r =s =1t = 0.

d. Independent. Ifr[i 1}+s[? 1]—}—1?[1 0]+u[l }—[ ] thenr—i—t—i—u-O
r+s+u=0,r+s+t=0,s+r+u=0. Theonlysolutlonlsr—s: =u=

(=)

b. Dependent. 3(x*> —x+43) —2(2x* +x+5)+ (x> +5x+1) =0
d. Dependent.Z[f(l) _?]-ﬁ-[_} ’}}4—[1 ”4_0[_? *é}:[g

1 6
+ xX2—5x+6 x2-9 0.

5
f. Dependent. - -

2x —cos?x = 0 for all x.

b. Dependent. 1 —sin
b. If r(2, x, 1) +s(1, 0, 1) +¢(0, 1, 3) = (0, 0, 0) then, equating components:

2r + s =0
xr + t =0
r + s + 3t = 0

-]

Gaussian elimination gives

2 1 010 1 1 3
x 0 1|0 — 2 1 0
1 1 3]0 x 0 1

(=N
=)}
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This has only the trivial solution r = s = ¢ = 0 if and only if x # - L. Alternatively, the coeffi-
cient matrix has determinant
1

2 0 2 1 0 1
det{x 0 1}:det[ x 0 l}z—det[l 3}2—(1+3x)
3 -1 0 3

1 1 1

This is nonzero if and only if x # —%.

. Independence: If r(—1, 1, 1)+s(1, —1, 1)+¢(1, 1, —1) = (0, 0, 0) then —r+s+¢ =0,
r—s+t=0,r+s—t=0. The only solutionis r =s =t = 0.

Spanning: Write U = span {(—1, 1, 1), (1, —1, 1), (1, 1, —1)}.

Then (1, 0, 0) = %[(1, 1, —=1)+(1, =1, 1)] is in U; similarly (0, 1, 0) and (0, O, 1) are in U.
As R3 = span {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, we have R3 C U. Clearly U C R3, so we have
R3=U.

. Independence: If 7(1 +x) +s(x+x?) +1(x> +x3) +ux® = 0 then

r4(r4+)x+ s+ + (t+u)x> =0

sor=0,r+s=0,s+t=0,t+u=0. The only solutionis r=s =t =u=0.

Spanning: Write U = span {1 +x, x+x2, X243, x3}. Then x° is in U; whence x* = (x2 +
x*) —x3 is in U; whence x = (x+x?) — x? is in U; whence 1 = (1 4+x) —x is in U. Hence
P3; = span {1, x, X2, x3} is contained in U. As U C P3, we have U = P3.

. Write U = {a+b(x+x*) | a, bin R} = span B where B = {1, x+x*}. But B is independent
because s +¢(x+x?) = 0 implies s = = 0. Hence B is a basis of U, so dim U = 2.

. Write U = {p(x) | p(x) = p(—x)}. As U C P,, write p(x) = a + bx+ cx*> be any member
of U. The condition p(x) = p(—x) becomes a + bx + cx> = a — bx+ cx?, so b = 0. Thus
U= {a+bx*|a, binR} = span {1, x*}. As {1, x*} is independent (s + tx* = 0 implies
s=0=1),itisabasis of U, so dim U = 2.

.WriteU:{A\A[_} é}:[_i é}A}.IfA:[x } Aisin U if and only if

=[] =[]

This holds if and only if x = y+w and z = —y, that is
a=[ = el Y]
Hence U = span B where B = {[ _i (1) ] , [ (1) (1) }} But B is independent here because

s| 4 s ]+els V] =0 6] meanss+r=0,5=0,—5=0,1=0,505=r=0. Thus B
isabasisof U, so dim U = 2.

cwiie U={ala] | 3| =] 0 1]} ira=]1 )] then Aisin U if and only if

][] s s [t )= )

This holds if and only if z = x —y and x = w; that is

A:[xfy H:x[} ?}ﬂ[_? H
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Thus U = span B where B = {[ i (1) ] , [ _(1) (1) ]} But B is independent because s [ i (1) } +

t[ " (1)]: [8 8]impliess:t:0. Hence B is a basis of U, so dim U = 2.

Z

CIFX = [ M ] the condition AX = X is [ R = [ - } and this holds if and only
w
0

y
= 0. HenceX:[g 5]:x[é 3}+y[3 (1,] So U = span B where B =
[0 1]}.AsBis independent, it is a basis of U, so dim U = 2.

. If the common column sum is m, V has the form

a q r
V:{{ b 5 ]\a,b,p,q,r,s,minR}:Spaanhere

p
b m-p-—

1

0

q
000 00 000 0 10 0 00 00 1 00 0
B= 000/, 00/, 1toof,|lo oof, o to|,{0o0 of, |00 1]5%.
111 -100 -100 0 10 0 -1 0 00 -1 00 -1

The set B is independent (a linear combination using coefficients a, b, p, g, r, s, and m yields
the matrix in V, and this is O if and only if a = b = p = g = r = s = m = 0). Hence B is a basis
of B,so dimV =7.

. A general polynomial in P3 has the form p(x) = a + bx + cx* +dx>, so

V= {(x2 —x)(a+bx+cx* +dx®) |a, b, ¢, din R}
= {a(x2 —x) +bx(x* —x) +ex* (6 —x) +dx>(x* —x) | a, b, ¢, d in R}
= span B
where B = {(x* —x), x(x* —x), x*(x* —x), x*(x* —x) }. We claim that B is independent. For
if a(x? — x) + bx(x* —x) +cx? (x* — x) +dx> (x> —x) = 0 then (a + bx+cx? +dx*) (x> —x) = 0,
whence a+ bx + cx* +dx*> = 0 by the hint in (a). Thus a = b = ¢ =d = 0. [This also follows
by comparing coefficients.] Thus B is a basis of V, so dim V = 4.

. No. If P3 = span {f1(x), f2(x), f3(x), fa(x)} where f;(0) = 0 for each i, then each polynomial

p(x) in P53 is a linear combination

p(x) = a1 fi(x) + axfa(x) +as f3(x) +as fa(x)

when the g; are in R. But then

p(0) = a1 f1(0) +a2£2(0) + a3 f3(0) +asf1(0) =0

for every p(x) in P3. This is not the case, so no such basis of P53 can exist. [Indeed, no such
spanning set of P3 can exist.]

?], [? i]}is a basis of invertible matrices.
Independent:r[é H-l—s[(l, }]-H[} H-}-u[? ”:[g 8}gives
r+s+t=0,s+u=0,t+u=0,r+s+t+u=0. The only solutionisr=s =t =u = 0.
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. [0 1] (1 1] (1 0] ..
Spanning: | o =1, ||~ |0 1 isin span B
0o 0] _[1 o] [1 o] .. B
Lol =11 0 1 isin span
fo o] _Jo t] o t] o o] ... B
o 1| =11 0 0 10 1s1n Span
(1 o] _J1t o] [oo .. B
o ol=10 1 0 1 isin span
0 1 0 0 0 0 (1 0
HenceMzzzspan{[o 0],[1 0],[0 1}, 0 0}}QspanB. Clearly span B C

My,.
f. Yes. Indeed, Ou+0v + Ow = 0 for any u, v, w, independent or not!

h. Yes. If su+¢(u+v) =0 then (s+t)u+rv=0,s0os+¢=0 and r = 0 (because {u, v} is
independent). Thus s =1 = 0.

j. Yes. If su+tv =0 then su+tv+0w =0, so s =t =0 (because {u, v, w} is independent).
This shows that {u, v} is independent.

1. Yes. Since {u, v, w} is independent, the vector u+ v+ w is not zero. Hence {u+v+w} is
independent (see Example 5.2.5).

n. Yes. If I is a set of independent vectors, then |I| < n by the fundamental theorem because V
contains a spanning set of n vectors (any basis).

If a linear combination of the vectors in the subset vanishes, it is a linear combination of the vectors
in the larger set (take the coefficients outside the subset to be zero). Since it still vanishes, all the
coefficients are zero because the larger set is independent.

We have su’ +1v = s(au+bv) +t(cu+dv) = (sa+tc)u+ (sb+td)v. Since {u, v} is independent,

we have
sw' +tv' =0 ifandonlyif sa-+tc=0andsb+td=0

ifandonlyif |5 5][7]=1]0]
Hence {u/, v'} is independent if and only if [ by } [ ! } = [ 0 } implies [ ! } = [ 0 } :
By Theorem 2.4.5, this is equivalent to A being invertible.
b. Independent: If r(u+v)+s(v+w)+1(w+u) =0then (r+¢)u+ (r+s)v+(s+1)w+0z=0.
Thus r+t=0,r+s5s=0, s+t =0 (because {u, v, w, z} is independent). Hence r=s=r=0.
d. Dependent: (u+v) — (v+Ww)+ (w+2z) — (z+u) = 0 is a nontrivial linear combination that

vanishes.

If rz+sz2=0, r, sin R, then z(r+sz) = 0. If z is not real then z # 0 so r+sz=0. Thus s =0
(otherwise z = ’T’ is real), whence r = 0. Conversely, if z is real then rz + sz2 =0 when r = z,
s=—1,s0 {z, zz} is not independent.

b. If U is not invertible, let Ux = 0 where x # 0 in R” (Theorem 2.4.5). We claim that no set
{A1U, AU, ...} can span M,,, (let alone be a basis). For if it did, we could write any matrix
Bin M,,, as a linear combination

B=a1A1U+aAyU+---
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Then Bx = a|AUX+ a2AUX+ - =040+ --- =0, a contradiction. In fact, if entry k of x is
nonzero, then Bx # 0 where all entries of B are zero except column &, which consists of 1’s.

33.  b. Suppose UNW =0. If su+rw =0 with u and w nonzero in U and W, then su = —tw is
in UNW = {0}. Hence su=0=1rw. Sos=0=1 (as u# 0 and w # 0). Thus {u, v}
is independent. Conversely, assume that the condition holds. If v # 0 lies in U N'W, then
{v, —v} is independent by the hypothesis, a contradiction because 1v+ 1(—v) = 0.

36.  b. If p(x) =ap+ajx+---+a,x" is in O, then p(—x) = —p(x), so

ao—a1x+a2xz+a3x3—|—a4x4—-~- = —ao—alx—azxz—a3x3 —a4x4—-~-

Hence ag = ay = a4 =---=0and p(x) = ajx+a3x® +asx> +---. Thus O, = span {x, 2, %0, }

is spanned by the odd powers of x in P,,. The set B = {x, X, X0, ... } is independent (because

{1, x, x*, ¥, x*, ... } is independent) so it is a basis of O,,. If niseven, B= {x, x°, x°, ..., x""1}

has 2 members, so dim O, = 2. If nis odd, B= {x, x>, x°, ..., x"} has -l members, so

dim 0, = L.

6.4 Finite Dimensional Spaces

1. b.B={(1,0,0), (0, 1, 0), (0, 1, 1)} is independent as r(1, 0, 0) +s(0, 1, 0)+1¢(0, 1, 1) =
0, 0, 0) implies r =0, s+¢ =0, =0, whence r = s =t = 0. Hence B is a basis by Theorem
6.4.3 because dim R = 3.
d. B= {1, X, X2 —x+ 1} is independent because rl1 —|—sx—|—t(x2 —x—1) =0 implies r —t = 0,
s—t =20, and t = 0; whence r = s =t = 0. Hence B is a basis by Theorem 6.4.3 because
dim P, = 3.

2. b. As dim P, = 3, any independent set of three vectors is a basis by Theorem 6.4.3. But we have
—(+3)+2(x+2)+ (x> —2x—1) =0, {x* +3, x+2, x> —2x— 1}, s0 is dependent. How-
ever any other subset of three vectors from {x2 +3, x+2, 2 —2x—1, x* —|—x} is independent

(verify).
3. b.B={(0,1,0,0),(0,0,1,0), (0,0, 1, 1), (1, 1, 1, 1)} spans R* because
(1,0,0,0)=(1,1,1,1)—(0, 1,0,0)—(0, 0, 1, 1) isin span B
(0,0,0,1)=(0,0, 1 —(0, 0, 1, 0) isin span B

1)
, 1)
and, of course, (0, 1, 0, 0) and (0, 0, 1, 0) are in span B. Hence B is a basis of R* by Theorem
6.4.3 because dim R* = 4.
d. B={1, x> +x, x¥*+1, x*} spans P3 because x> = (x*+ 1) — 1 and x = (x* +x) —x? are in
span B (together with 1 and x3). So B is a basis of P3 by Theorem 6.4.3 because dim P3; =4.

4. b. Letz=a+bi;a, binR. Then b # 0 as z is not real and a # 0 as z is not pure imaginary. Since
dim C = 2, it suffices (by Theorem 6.4.3) to show that {z, z} is independent. If rz+s7 =0
then 0 = r(a+bi) 4+ s(a—bi) = (r+s)a+ (r—s)bi. Hence (r+s)a =0 = (r—s)b so (because
aZ0#b)r+s=0=r—s. Thusr=5=0.
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b. The four polynomials in § have distinct degrees. Use Example 6.3.4.

b. {4, 4x, 4x2, 4x3} is such a basis. There is no basis of P53 consisting of polynomials have the
property that their coefficients sum to zero. For if it did then every polynomial in P3 would have
this property (since sums and scalar multiples of such polynomials have the same property).

b. Not a basis because (2u+v+3w) — (3u+v—w)+ (u—4w) = 0.
d. Not a basis because 2u— (u+w) — (u—w)+0(v+w) =0.

b. Yes, four vectors can span R> — say any basis together with any other vector.
No, four vectors in R3 cannot be independent by the fundamental theorem (Theorem 6.3.2)
because R? is spanned by 3 vectors (dim R? = 3).

We have det A = 0 if and only if A is not invertible. This holds if and only if the rows of A are
dependent by Theorem 5.2.3. This in turn holds if and only if some row is a linear combination of
the rest by the dependent lemma (Lemma 6.4.3).

b. No. Take X = {(0, 1), (1, 0)} and D = {(0, 1), (1, 0), (1, 1)}. Then D is dependent, but its
subset X is independent.

d. Yes. This is follows from Exercise 15 Section 6.3 (solution above).

Let {uy, ..., wy,}, m <k, be abasis of U so dim U =m. If v € U then W = U by Theorem 6.2.2,
so certainly dim W = dim U. On the other hand, if v ¢ U then {uy, ..., u,, v} is independent by
the independent lemma (Lemma 6.4.1). Since W = span {uy, ..., u,, v}, again by Theorem 6.2.2,
itis a basisof W and so dim W =1+ dim U.

b. The two-dimensional subspaces of R are the planes through the origin, and the one-dimensional
subspaces are the lines through the origin. Hence part (a) asserts that if U and W are distinct
planes through the origin, then U NW is a line through the origin.

b. Let v, denote the sequence with 1 in the n™ coordinate and zeros elsewhere. Thus vy =

(1,0,0,...),vi=(0, 1,0, ...) etc. Thenagvo+avi+---+a,v, = (ao, ai, ..., a,, 0,0, ...)

S0 agvo +aivy +---+ayv, = 0 implies a9 = a; = --- = a, = 0. Thus {vq, Vi, ..., V,} is an
independent set of n+ 1 vectors. Since n is arbitrary, dim V cannot be finite by the fundamental
theorem.

b. Observe that Ru = {su | s in R}. Hence Ru+Rv = {su+¢v|sin R, 7 in R} is the set of all
linear combinations of u and v. But this is the definition of span {u, v}.
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6.5 An Application to Polynomials

10.

11.

O = fx) =8 +x+1, 50 fD(x) =32+ 1, fO(x) = 6x, £ (x) = 6. Hence, Taylor’s

theorem gives

£ = FO) + 1) - 1)+ Lo (e 1)2 4 LD (13
=3+4(x—1)+3x—1)2 4 (x—1)

O %) = fx) =23 =32+ 3x, fD(x) =322 —6x+ 3, fO(x) =6x—6, fO)(x) = 6. Hence,

Taylor’s theorem gives

£ = FOM) + D) (x—1) + 50 (x— 1)2 + L0 (x—1)3
=14+0(x— 1)+ 2(x—1)2+1(x—1)°
=1+ (x—1)>

. The three polynomials are x> —3x+2 = (x —1)(x —2), x> —4x+3 = (x — 1) (x — 3) and x> —

5x+6=(x—2)(x—3),souse ap =3, a; =2, ap = 1, in Theorem 6.5.2.

. The Lagrange polynomials for ag = 1, a; =2, a, = 3, are

() = 3 =2)(=3)
6oy = (=D =3)
)(x—2)
)(3-2)

ey = A D(—2)

f(x) = f(1)00(x) + f(2)61(x) + £(3)62(x)
3 —2)(x=3)=T(x—1)(x=3)+ B x-1)(x-2)

 If r(x —a)? 4+ s(x —a)(x — b) +t(x — b)?> = 0, then taking x = a gives t(a—b)> =0, so t =

0 because a # b; and taking x = b gives r(b — a)2 =0, so r = 0. Thus, we are left with
s(x—a)(x—>b) = 0. If x is any number except a, b, this implies s = 0. Thus
B={(x—a)% (x—a)(x—b), (x—b)?} is independent in P,; since dim P, = 3, B is a basis.

. Have U, = {f(x) inP, | f(a) =0= f(b)}. Let {p1(x), ..., pn—1(x)} be a basis of P,_»; it

suffices to show that

B={(x=a)(x=b)p1(x), ... (x=a)(x=b)pn-1(x)}

is a basis of U,. Clearly B C U,,.
Independent: Let s;(x —a)(x—b)p1(x)+ - +sp—1(x —a)(x —b)py—1(x) = 0. Then (x —

a)(x—Db)[s1p1(x) + -+ sp—1Pn—1(x)] = 0, so (by the hint) s1p1(x) + -+ 5,1 pp—1(x) = 0.
Thus sy =sp=---=s,-1=0.
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Spanning: Given f(x) in P, with f(a) = 0, we have f(x) = (x —a)g(x) for some polynomial
g(x) in P,,_| by the factor theorem. But 0 = f(b) = (b—a)g(b) so (as b # a) g(b) = 0. Then
g(x) = (x—=Db)h(x) with h(x) = rip1(x) + -+ -+ ry_1pn—1(x), r; in R, whence
f(x) = (x—a)g(x)
= (x—a)(x—b)g(x)
= (x—a)(x=b)[rip1(x) + -+ ra_1pp-1(x)]
=ri(x—a)(x=b)p1(x) + -+ ra_1(x—a)(x—b)pu_1(x)

6.6 An Application to Differential Equations

1. b. By Theorem 6.6.1, f(x) = ce™ for some constant c. We have 1 = f(1) = ce™!, so ¢ = e. Thus
flx)=e'™.

d. The characteristic polynomial is x*> +x — 6 = (x —2)(x +3). Hence f(x) = ce? +de>* for

some ¢, d. Wehave 0= f(0) =c+d and 1 = f(1) = ce* +de 3. Hence,d = —cand c =

50 f(x) = S

2 o3

f. The characteristic polynomial is x*> — 4x +4 = (x —2)2. Hence, f(x) = ce* + dxe* = (c +
dx)e* for some ¢, d. We have 2 = f(0) =cand 0 = f(—1) = (¢ —d)e 2. Thus ¢ = d = 2 and
flx) =2(14x)e*.

h. The characteristic polynomial is x*> — a®> = (x —a)(x +a), so (as a # —a) f(x) = ce®™ +de
for some ¢, d. We have 1 = f(0) =c+d and 0 = f(1) = ce* +de . Thus d = 1—c and
c= whence

1
1—e2a
8% _ pa(2—x)

1—e2a

f)=c"+(1—-cle ™ =

j. The characteristic polynomial is x*> +4x+ 5. The roots are A = —2 41, so
f(x) = e *(csinx+d cosx) for some real ¢ and d.

We have 0= f(0) =d and 1 = f (%) = e "(c). Hence f(x) = ¢® *sinx.

4.  b. If f(x) = g(x)+2 then f' + f =2 becomes g’ + g = 0, whence g(x) = ce™* for some c. Thus
f(x) = ce™™ +2 for some constant c.

5. b Ifflx) = _%3 then f'(x) = —x* and f”(x) = —2x, so
F') + £ (x) = 6£(x) = —2x—x" +2x°

el

Hence, f(x) = =5~ is a particular solution. Now, if & = h(x) is any solution, write g(x) =
h(x) — f(x) = h(x) +%. Then
g'+g —6g=(N+n—6h)—(f"+f—6f)=0

So, to find g, the characteristic polynomial is x> +x — 6 = (x —2)(x +3). Hence we have
g(x) = ce 3 +de?, where ¢ and d are constants, S0

_ .3 2 3
h(x) =ce ™ +de™ — %
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6. b. The general solution is m(t) = 10(%)1/3. Hence 10(%)’/3 =5s0t= 311221/52)) =9.32 hours.

7. b. If m = m(r) is the mass at time ¢, then the rate m’(¢) of decay is proportional to m(r), that is
m'(t) = km(t) for some k. Thus, m’ —km = 0 so m = ce’ for some constant c. Since m(0) = 10,

we obtain ¢ = 10, whence m(t) = 10eX. Also, 8 = m(3) = 10e* so e = %, ek = (%)1/3
m(t) = 10(ek) = 10 (%),

b

9. In Example 6.6.4, we found that the period of oscillation is 3/—’% Hence % = 30 so we obtain

k= (&) =0.044.

Supplementary Exercises: Chapter 6

2. b. Suppose {Axy, ..., Ax,} is a basis of R". To show that A is invertible, we show that YA = 0
implies Y = 0. (This shows A7 is invertible by Theorem 2.4.4, so A is invertible). So assume

that YA =0. Let ¢, ..., ¢, denote the columns of I,,, s0 L, = [ ¢; ¢ -+ ¢, |. ThenY =
YI,=Y[e¢ ¢ -+ ¢ ]=[Yer Yeo -+ Yeu |, soitsuffices to show that Ye; = 0 for
each j. But ¢; is in R” so our hypothesis shows that ¢; = riAvy + - - +r,Av, for some r; in R.
Hence,

¢, =A(rvi+---+r.vs)

soYc;=YA(rivi+---+ryvy) =0, as required.

4. Assume that A is m x n. If X is in null A, then Ax = 0 so (ATA)x = AT0 = 0. Thus x is in null A”A,
sonull A C null ATA. Conversely, let x be in null AT A: that is ATAx = 0. Write

M
Ym

Then y3 +y3+---+y2, =y'y = (Ax)T (Ax) = x’ ATAx = x 0 = 0. Since the y; are real numbers,
this implies that y; =y, = --- =y, = 0; that is y = 0, that is Ax = 0, that is x is in null A.



7. Linear Transformations

7.1 Examples and Elementary Properties

. b. T(X)=XA where A = [

1
0
0
matrix algebra gives T (X +Y) =A(X+Y) =AX+AY =T(X)+T(Y)and T(rAd) = A(rX) =
rA(X) =rT(X).

d. T(A+B) =P(A+B)Q = PAQ+PBQ = T(A) +T(B); T(rA) = P(rA)Q = rPAQ = rT(A).
f. Here T[p(x)] = p(0) for all polynomials p(x) in P,,. Thus
T{(p+q)(x)] = Tp(x) +¢(x)] = p(0) +¢(0) = T[p(x)] + T[g(x)]
Trp(x)] = rp(0) = [T p(x)]

h. Here z is fixed in R” and T'(x) = x - z for all x in R”. We use Theorem 5.3.1:

T(x+y)=(x+y)-z=x2z+yz=T(x)+T(y)
T(rx)=(rx)-z=r(x-z) =rT(x)

joXv=_(r;---r,) andw=(s;---s,) then, v+w = (r; +s1---r, +5,). Hence:

T(v+w)=(ri+s1)ei+---+ (rn+sn)e,
= (rie;+---+rpe,) + (sie;+---+s,,) =T(v) +T(w)

Similarly, for a in R, we have av = (ar - - -ar,) so

T(av) = (ar))e1+---+ (arp)e, = a(riey +---+rye,) = aT (V)

10 0 0 10 0 .. 0 2.0 0 ... 0
0 1 0 0 0 -1 0 ... 0 00 0 ... 0
2. b LetA=| % %% o O p=1 0 0 O O thenA+B=| " ° % %1 Thus,
000 .. 0 0 0 0 .. 0 000 .. 0
T(A)=rankA=2,T(B)=rank B=2and T(A+B) = rank (A+B) = 1. Thus T(A+B) #
T(A)+T(B).

d. Here T(v) =v+u, T(w)=w+u,and T(v+w) =v+w+u. Thusif T(v+w)=T(v)+
T(w) then v+w+u= (v+u)+ (w+u), sou=2u, u=_0. This is contrary to assumption.
Alternatively, T(0) = 0+u # 0, so T cannot be linear by Theorem 7.1.1.

3. b. Because T is linear, T (3v) +2v;) = 3T (vy) +2T(v2) = 3(2) +2(-3) =0.

103
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d. Since we know the action of T on [ _i ] and [ i ], it suffices to express [ _; } as a linear

combination of these vectors.

[4]=r[4]ws]1]

Comparing components gives 1 = r+s and —7 = —r+s. The solutionis r =4, s = —3, so

rls]=rlela]sli]) =2 ][] =e 0] 0 )= [

. We know T'(1), T(x+2) and T (x> +x), so we express 2 —x + 3x” as a linear combination of

these vectors:
2—x+3x% =r - 14s(x+2)+1(x*+x)
Equating coefficients gives 2 =r+2s, —1 = s+t and 3 =¢. The solution is r = 10, s = —4
and f = 3, so
T(2—x43x2) =T[r-1+s(x+2)+1(x*+x)]

= rT(1) 45T (x+2)+1T(x* +x)

=5r+s+0

=46

In fact, we can find the action of T on any vector a + bx + cx” in the same way. Observe that
a+bx+cx? = (a—2b+2¢)- 1+ (b—c)(x+2) +c(x* +x)
for any a, b and ¢, so

T(a+bx+cx?) = (a—2b+2¢)T(1)+ (b—c)T(x+2) +cT (x> +x)
=(a—2b+2c)-5+(b—c)-1+c¢-0
=5a—9b+9c

This retrieves the above result whena =2, b = —1 and ¢ = 3.

. Since B = {(2, —1), (1, 1)} is a basis of R?, any vector (x, y) in R? is a linear combination

(x, y) =r(2, —1)+s(1, 1). Indeed, equating components gives x =2r+s and y = —r+s 0
r= %(x—y), s = %(x-i—Zy). Hence,
r(2, —=1)+s(1, 1)]
(2, —=1)+sT(1, 1)
x=y)(1, =1, )+ 3(x+2y)(0, 1, 0)
3(x=), v, 3(x—y))
(x—y, 3y, x—y)
In particular, T (v) = T(—1, 2) = £(-3, 6, =3) = (-1, 2, —1).
x—y

This works in general. Observe that (x, y) = =5%(2, —1) + x+32y (1, 1) for any x and y, so since

T is linear,

T(x,y)=T

I
~
N

~—~

I
W=~/ W|—
[—

T(x, y) =272, —1)+227(1, 1)
for any choice of 7(2, —1) and T'(1, 1).
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d. SinceB:{[é 8}, [ (1) (1)], [ i 8], [ 8 (1)]}isabasisoszz,everyvector [2’ Z] is
a linear combination

Lea]=rlo s ][t o Jae s [l a 1]

Indeed, equating components and solving for r, s, t and u givesr =a—c+b,s=b,t =c—b,

u=d. Thus,
rles]=m[o ]t [V e 3 S ]ear[30]
=(a—c+b)-34+b-(=1)+(c—b)-0+d-0
=3a+2b—3c

b. Since T is linear, the given conditions read

T(v)+2T(w)=3v—w
T(v)—T(w)=2v—4w

Add twice the second equation to the first to get 37(v) = 7v — 9w, T(v) = Zv — 3w. Similarly,

)=3
subtracting the second from the first gives 37 (w) = v+ 3w, T'(w) = % + w. [Alternatively,
we can use gaussian elimination with constants 3v —w and 2v — 4w.]

b. Since {vy, ..., v, } is a basis of V, every vector v in V is a unique linear combination v =
rivi+---+ryvy, r;in R. Hence, as T is linear,

T(V)=nTM)+ - +rT(Vn) =ri(=vi)+ - +r(—Va) = —v=(=1)v
Since this holds for every v in V, it shows that T = —1, the scalar operator.

{1} is a basis of the vector space R. If T : R — V is a linear transformation, write 7' (1) = v. Then,
forallrinR:

T(r)=T(r-1)=rT(1)=1rv
Since T'(r) = rv is linear for each v in V, this shows that every linear transformation 7 : R — V
arises in this way.

b. Write U = {ve V| T(v) € P}. If vand v, are in U, then T(v) and T(v;) are in P. As P is
a subspace, it follows that T(v+v;) = T(v) +T(v;) and T(rv) = rT(v) are both in P; that
is v+ vy and rv are in U. Since 0 is in U—because 7'(0) = 0 is in P—it follows that U is a
subspace.

Assume that {v, T(v)} is independent. Then T(v) # v (or else 1v+ (—1)T(v) = 0) and similarly
T(v) # —v.

Conversely, assume that T(v) # v and T(v) # —v. To verify that {v, T(v)} is independent, let
rv +sT(v) = 0; we must show that r = s = 0. If s # 0, then T'(v) = av where a = —%. Hence
v =TI[T(v)] = T(av) = aT(v) = a®v. Since v # 0, this gives a = +1, contrary to hypothesis. So
s =0, whence rv=0and r =0.

b. Suppose that T : P, — R is a linear transformation such that T(xk) T (x)¥ holds for all k >
0 (where x = 1). Write T(x) = a. We have T(x}) = T(x)* = a* = E(xk) for each k by
assumption. This gives 7' = E, by Theorem 7.1.2 because {1, X, X2, X x } 18 a basis
of P,,.
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7.2 Kernel and Image of a Linear Transformation

1. b. We have ker Ty = {x | Ax = 0}; to determine this space, we use gaussian elimination:
2 1 -1 3]0 1o 3 1]0 0
1o 3 1]{o|l—=]0o1 =7 1|0|— 0

1 0 1 0

1 -4 210 -7 110

35—t r -3

Hence ker T4 = { [ 75;’ ] s, tin R} = span { Z ] } These vectors are inde-
t L O

pendent so nullity of 7y = dim (ker T) = 2. Next
imTy = {Ax|xin]R4}
2 1 -1 3
= 10 31
{[ 11 —4 2] ]
2 1 -1 3
Ut
1 1 —4 2

Thus im T4 = col A as is true in general. Hence dim (im 74) = dim (col A) = rank A, and we
can compute this by carrying A to row-echelon form:

2 1 -1 3 10 3
1o 3 1 |—=|o0o 1 =7
11 -4 2 00 0
Thus dim (im 74) = rank A = 2. However, we want a basis of col A, and we obtain this by
writing the columns of A as rows and carrying the resulting matrix (it is A7) to row-echelon

form:
2 11 1o 1 1o 1
1o 1 0 1 -1 0 1 -1
43 4| 7lo 3 3| 7loo0 o
31 2 0 1 -1 00 0

1 0
Hence, by Lemma 5.4.2, { [ 0 } , { 1 } } is a basis of im 74 = col A. Of course this once
1 —1

(=
(=N =]

3 1
-7 1
0 0

1
-

I 1

|

—_ O = =

r, s, t, uin ]R}

S - -

again shows that rank 7y = dim (col A) = 2.

d. ker Ty = {x| Ax =0} so, as in (b), we use gaussian elimination:

2 1 0 1 -1 3 1
1 -1 3 0 3 -6 0
1 2 -3 - 0 3 —6 - 0
0 3 -6 0 3 —6 0

—t
Hence, ker T = { [ 2 }

t

oo — o
|

[=R = ST

| I

-1
tin R} = span { [ 2 } } Thus the nullity of T is dim (ker T4) =
1

1. Asin (b), im Ty = col A and we find a basis by doing gaussian elimination on A”:
2 1 1 0 -1 2 3 1o 11
1 -1 2 3| —=|lo0o 3 3 6|—=]01 -1 -2
0 3 -3 —6 0 3 -3 -6 00 0 0

1 0
Hence, im T = col A = span { [ (1) ] , [ _} ] }, so rank Ty = dim (im Ty) = 2.
1 )
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j. T :Mp — My, is given by T(X) = XA where A =
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b. Here T =P, — R? given by T(p(x)) = [ p(0) p(1) |. Hence

ker T = {p(x) | p(0) = p(1) = 0}
If p(x) = a+bx+cx? is in ker T, then 0 = p(0) = a and 0 = p(1) = a+ b+ c. This means
that p(x) = bx — bx*, and so ker T = span {x—x*}. Thus {x—x?} is a basis of ker 7. Next,
im 7 is a subspace of RZ. We have (1, 0) = T(1 —x) and (0, 1) = T'(x) are both in im T, so
im 7 = R?. Thus {(1, 0), (0, 1)} is a basis of im 7.

. Here T : R? — R* given by T(x,y, z7)=(x, x, y, y). Thus,

ker T ={(x,y,2) | (x,x,y,y)=(0,0,0,0)} ={(0, 0, z) | zin R} = span {(0, 0, 1)}
Hence, {(0, 0, 1)} is a basis of ker 7. On the other hand,
im7 ={(x, x, y, y) | x, yin R} = span {(1, 1, 0, 0), (0, 0, 1, 1)}

Then {(1, 1, 0, 0), (0, 0, 1, 1)} is a basis of im 7.
b

. Here T : My, — Ris givenby T [ . ] =a+d. Hence

wr={[ ] ora=o}~{(: 2]
S {[3 ) [24)[2 1))

Hence, {[ (1) 7(1) } , [ g (1) } , [ (1) 8 }} is a basis of ker T' (being independent). On the other
hand,

a, b, cin ]R}

im7={a+d|[ ¢ ] inMn} =R
So {1} is a basis of im T'.

.T:R*"—-R,T(ry, rp, ..., ry) =ri+ry+---+ry,. Hence,
ker T ={(r;, 25 ... tn) | ri+r2+--+r,=0}
:{(l”l, r, ..., rp—1, —n —---—rnfl) | ri iIl]R}
=span {(1,0,0, ..., —1), (0, 1,0, ..., —1), ..., (0,0, 1, ..., —1)}

This is a basis of ker 7. On the other hand,
imT={ri+--+r,|(r,r, ..., ) isinR"} =R
Thus {1} is a basis of im 7.
0
0

SR D I P
—wan{[3 5[ 1]

Thus, { [ 8 (1) ] , [ g (1) } } is a basis of ker T (being independent). On the other hand,

xzinRp=span {| § 3. [} 0]}

Thus,{[(l) (1)], [(1) ?}}isabasisofimT.

—

riting X = [x y}:

Z w

y, win ]R}

imT:{XA|XinM22}:{[§ ;‘}
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. We have T : V — R? given by T(v) = (P(v), Q(v)) where P: V — R and Q: V — R are linear

transformations. 7 is linear by (a). Now

kerT={v|T(v)=(0,0)}
={v|P(v)=0and Q(v) =0}
={v[P(v)=0;N{v|Q(v) =0}
= ker PN ker Q

kerT={(x,y,2) | x+y+2z=0,2x—y+3z=0, z—3y =0, 3x+4z=0}. Solving:

Wl

Wl

S o= O
[=NeNele)

1
3
1
4

wWOoN
|
W

0 11 1o |
0 0 -3 1]0 0
ol 7o =3 1lo| 7 |o
0 0 -3 1]0 0

Hence, ker T = {(—4t, t, 3t) |t in R} = span {(—4, 1, 3)}. Hence,
{(1, 0, 0), (0, 1, 0), (—4, 1, 3)} is one basis of R3 containing a basis of ker T'. Thus

S o

{T(1,0,0), T, 1,0} ={(1, 2,0,3), (1, -1, =3, 0)}

is a basis of im T by Theorem 7.2.5.

. Yes. dim(im7) = dimV — dim(ker7) =5—-2=3. As dimW =3 and im T is a 3-

dimensional subspace, im 7 = W. Thus, T is onto.

. No. If ker T =V then T(v) =0 forall vin V, so T = 0 is the zero transformation. But W need

not be the zero space. For example, T : R? — R? defined by T'(x, y) = (0, 0) for all (x, y) in
RZ.

. No. Let T : R? — R? be defined by T(x, y) = (y, 0) for all (x, y) € R%. Then ker T = {(x, 0) |

xeR}=imT.

. Yes. We always have dim(im 7) < dim W (because im T is a subspace of W). Since

dim (ker 7)) < dim W also holds in this case:
dimV = dim (ker T) 4+ dim(im 7) < dim W 4+ dim W = 2 dim W

Hence dim W > % dim V.

i. No. T :R? — R? given by T (x, y) = (x, 0) is not one-to-one (because ker 7 = {(0, y) | y € R}

is not 0).

. No. T : R* — R? given by T (x, y) = (x, 0) is not onto.
. No. Define T : R> — R? by T'(x, y) = (x, 0), and let v{ = (1, 0) and vo = (0, 1). Then {v{, v»}

spans R?, but {T(v{), T(v2)} = {v1, 0} does not span R?.

. Given w in W, we must show that it is a linear combination of 7 (vy), ..., T(v,). As T is onto,

w = T(v) for some v in V. Since V = span {vy, ..., v,} we can write V= r|v| + -+ r,v,
where each r; is in R. Hence

w=T)=T(rivi+-+rvy) =nrnT(vi)+-+rT(v,)
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b. If T is onto, let v be any vector in V. Thenv=T(ry, ..., r,) for some (ry, ..., r,) in R"; that
iISV=ryvi+---+r,v,isin span {vy, ..., v,}. Thus V = span {vy, ..., v,}. Conversely, if
V = span {vy, ..., V,}, let v be any vector in V. Then v is in span {vy, ..., v,} sory, ..., r,

exist in R such that
V:I’1V1—|—~-~—|—rnVn:T(r1, ey rn)

Thus T is onto.

The trace map 7 : My, — R is linear (Example 7.1.2) and it is onto (for example,
r=tr[diag (r, 0, ..., 0)] = T [diag (r, O, ..., 0)] for any r in R). Hence the dimension theorem
gives dim (ker 7) = dim M,,, — dim (im T) = n> — dim (R) = n®> — 1.

Define Ty : R" — R™ and Tp : R" — R¥ by Ty(x) = Ax and T(x) = Bx for all x in R”. Then the
given condition means ker T4 C ker T, so dim (ker 74) < dim (ker 7). Hence

rank A = dim (im 7)) = n— dim (ker 74 ) > n — dim (ker 7p) = dim (im 7) = rank B

b. Write B = {x— Lx2—1, ..., x"— 1}. Then B C ker T because T(xk— 1)=1-1=0 for
all k. Hence span B C ker T. Moreover, the polynomials in B are independent (they have
distinct degrees), so dim (span B) = n. Hence, by Theorem 6.4.2, it suffices to show that
dim(ker T) = n. But T : P, — R is onto, so the dimension theorem gives dim (ker 7') =
dim (P,) — dim (R) = (n+ 1) — 1 = n, as required.

If we can find an onto linear transformation 7 : M,,;, — M,,, with ker T = U and im T =V, then
we are done by the dimension theorem. The condition ker 7 = U suggests that we define 7" by
T(A) = A —AT for all A in M,,,,. By Example 7.2.3, T is linear, ker T = U, and im T = V. This is
what we wanted.

Fix a column y # 0 in R”, and define T : M,,;;, — R by T(A) = Ay for all A in M,,,,,. This is linear
and ker 7' = U, so the dimension theorem gives

mn = dim (M,,,) = dim (ker 7) + dim (im 7)) = dim U 4 dim (im 7T")

Hence, it suffices to show that dim (im 7') = m, equivalently (sinceim 7 C R™) that T is onto. So
let x be a column in R™, we must find a matrix A in M,,,,, such that Ay = x. Write A in terms of its

columns as A = [ i G - G, } and write y = [ Vi Y2 - Yn ]T. Then the requirement that
Ay = X becomes

Y1
2

x=[C G - G| | =0C+nC+-+nG, (%)

Yn

Since y # 0, let y; # 0. Then Ay = x if we choose Cj, = yk_lx and C; = 0 if j # k. Hence T is onto
as required.

b. Choose a basis {uy, ..., u,} of U and (by Theorem 6.4.1) let {uy, ..., w,, ..., u,} be a basis
of V. By Theorem 7.1.3, there is a linear transformation S : V' — V such that

S(lli):lli 1f1§z§m
S(u)=0 ifi>m
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Hence, u; is in im S for 1 <i <m, whence U C im S. On the other hand, if w is in im S, write
w = S(v), vin V. Then r; exist in R such that
V=rap+- iyt Uy
SO

W:VlS(lll)+"'—|—VmS(llm)—|—-~-—|—l’nS<lln)
:r1u1+"'+rmum+0

It follows that wis in U, so im S C U. Then U = im § as required.

7.3 Isomorphisms and Composition

1. b. T isone-to-one because T'(x, y, z) = (0, 0, 0) means x =0, x+y =0 and x+y-+z = 0, whence
x=y=2z=0. Now T is onto by Theorem 7.3.3.
Alternatively: {T'(1, 0, 0), T(0, 1, 0), T(0, 0, 1)} ={(1, 1, 1), (0, 1, 1), (0, 0, 1)} is inde-
pendent, so 7T is an isomorphism by Theorem 7.3.1.

d. T is one-to-one because 7 (X) =0 implies UXV = 0, whence X = 0 (as U and V are invertible).
Now Theorem 7.3.3 implies that 7 is onto and so is an isomorphism.

f. T is one-to-one because T (v) = 0 implies kv = 0, so v = 0 because k # 0. Hence, T is onto if
dim V is finite (by Theorem 7.3.3) and so is an isomorphism. Alternatively, 7" is onto because
T(k~'v) = k(k~'v) = v holds forall vin V.

h. T is onto because T(AT) = (AT)T = A for every n x m matrix A (note that A7 is in M, so
T(AT) makes sense). Since dim M,,, = mn = dim M,,,, it follows that T is one-to-one by
Theorem 7.3.3, and so is an isomorphism. (A direct proof that T is one-to-one: T(A) =0
implies AT = 0, whence A = 0.)

4. b. ST(x,y,2)=S(x+y, 0, y+2z)=(x+y, 0, y+2); TS(x, y, z2) =T(x, 0, ) = (x, 0, z). These
are not equal (if y # 0) so ST # T'S.
d. ST[’CI Z]:S[Z Z]:[g 2};TS[“ Z}:T[g 2}:[2 g]Thesearenotequal

c

for some values of a, b, ¢ and d (nearly all) so ST # T'S.

5. b T*x,y)=TI[T(x,y)]=T(x+y, 0) = (x+y+0, 0) = (x+y, 0) = T(x, y). This holds for all
(x, y), whence T> =T.

21 a b - a b - 1| at+c b+d 1 a+c b+d
d. T|:cd:| - T<T[cd])_T<§[a+c b+d >_§T[a+c b-l—d}
1 [ (a+c)+(at+c) (b+d)+(b+d) ] _ 1| atec b+d } _T [ a b ]
— 4| (ato)+(at+c) (b+d)+(b+d) | T 2| atc b+d | c d
This holds forall | ¢ |,s07% =T

6. b. Noinverse. Forexample T'(1, —1, 1, —1) = (0, 0, 0, 0) so (1, —1, 1, —1) is a nonzero vector
in ker T. Hence T is not one-to-one, and so has no inverse.
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d. Tisone—to—onebecauseT[i’ Z]:[g 8]impliesa+2c:0:3c—aandb—|—2d:0:

3d — b, whence a =b = c=d = 0. Thus T is an isomorphism by Theorem 7.3.3. If
A e S LS A e a S e R T

x+2z=a
—x+3z=c
y+2w=>b
—y+3w=d

The solution is x = %(3a—2c), 7= %(a—l—c),y = %(3b—2d>, w= %(b—f—d). Hence
—1[a b 3a—2¢ 3b-2d
T [c d]:%[ a+c b+d i| (*)

A better way to find 7~! is to observe that 7(X) = AX where A = [ _i § ] . This matrix is

invertible which easily implies that 7" is one-to-one (and onto), and if S : My, — M»» is defined
by S(X) =A~!X then ST = 1p1,, and T'S = lyy,,. Hence S = T~ by Theorem 7.3.5. Note that

A7l = % [ ? _% } which gives (x).

f. T is one-to-one because, if p in P, satisfies T(p) = 0, then p(0) = p(1) = p(—1) =0. If
p = a+bx—+cx*, thismeansa=0,a+b+c=0anda—b+c=0, whencea=b=c=0,
and p = 0. Hence, T~! exists by Theorem 7.3.3. If T~!(a, b, ¢) = r +sx+1x?, then

(a, b, ¢) =T (r+sx+tx*) = (r, r+s+1t, r—s+t)
Thenr=a,r+s+t=b,r—s+t=c,whencer=a, s = %(b—c),t: %(b—l—c—Za). Finally

T Ya, b, ¢) =a+ 1(b—c)x+ %(b—i—c—Za)x2

b. Tz(x, y)=T[T(x, y)]=T(ky—x, y) = (ky— (ky—x), y) = (x, y) = Ip2(x, y). Since this
holds for all (x, y) in R2, it shows that 7% = 2. This means that T-1=T.

d. It is a routine verification that A2 = I. Hence
T?(x) = T[T (x)] = A[AX] = A’x = Ix = x = Ly, (X)
holds for all x in My,. This means that 7% = M, and hence that T-1=T.

b. T*(x, 3,z w) = T[T(x,y, 2 w)]=T(-y, x=y, z, W)
(=(x=y), —y=(=y), 2 =(=w)) = —x, —x, 2, w)
T3x, y,z,w) = T [Tz(x, v, Z, w)] =T(y—x, —x,z, w) = (x, ¥, 2, —w)
ToM, y,z,w) = T[Ty zw)] =T [x 3z —w] = (% 3, 2, w) = lpa(x, 5, 2, W)
Hence, T° = I 4 so T—! = 7. Explicitly:

T 'y, zow)=T*[T(x, y, 2, W) =T*(x, y, 2, —w) = (y—x, —x, 2, —W)
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b. Define S : M,,, — M,,, by S(A) = U ~'A. Then

ST(A)
TS(A)

S(T(A) =U"YUA)=A =1y, (A)soST = ly,,

nn

T(S(A)=UU'A)=A=1y, (A)soTS=ly,,

Hence, T is invertible and 7-! = S.

b. Given V 1> w £> U with T and S both onto, we are to show that S7 : V — U is onto. Given
u in U, we have u = S(w) for some w in W because S is onto; then w = T'(v) for some v in V
because 7 is onto. Hence,

This shows that ST is onto.

b. If u lies in im RT write u = RT(v), v in V. Thus u = R[T(v)], where T(v) in W, so u is in
imR.

b. Given V 5> U 5 W with ST onto, let w be a vector in W. Then w = S T(v) for some v in V
because ST is onto, whence w = S[T(v)] where T(v) is in U. This shows that S is onto. Now
the dimension theorem applied to S gives

dim U = dim (ker S) 4+ dim (im S) = dim (ker §) + dim W
because im § = W (S is onto). As dim (ker S) > 0, this gives dim U > dim W.

If 72 = 1y then TT = ly so T is invertible and 7! = T by the definition of the inverse of a
transformation. Conversely, if 7! =T then T2 =TT~! = 1y.

Theorem 7.2.5 shows that {7 (e;), T(ez), ..., T(e,)} is a basis of im T. Write

U = span {ej, ..., e.}. Then B={eq, ..., e,} isabasisof U,and T : U — im T carries B to the
basis {T(e1), ..., T(e;)}. Thus T : U — im T is itself an isomorphism. Note that 7 : V — W may
not be an isomorphism, but restricting 7" to the subspace U of V does result in an isomorphism in
this case.

b. We have V = {(x, y) | x, y in R} with a new addition and scalar multiplication:

(x, y) @ (x1, y1) = (x+x1, y+y1 +1)
a® (x,y) = (ax, ay+a—1)

We use the notation @ and © for clarity. Define
T:V—-R2byT(x,y)=(x, y+1)
Then T is a linear transformation because:

T{(x, )@ (x1, y1)] =T (x+x1, y+y1 +1)
=(x+x, (y+y+1)+1)
= y+ 1)+, yi+1)
=T(x, y)+T(x1, y1)
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T(a®(x,y)]=T(ax, ay+a—1)
= (ax, ay+a)
=a(x, y+1)
=aT(x, y)

Moreover T is one-to-one because 7'(x, y) = (0, 0) meansx =0=y+1, so (x, y) = (0, 1), the
zero vector of V. (Alternatively, T (x, y) = T(x, y1) implies (x, y+ 1) = (x1, y; + 1), whence
x=x1, y=y1.) As T is clearly onto R2, it is an isomorphism.

. TSxo, x1, ...) =T]0, x9, x1, ...) = [x0, X1, ...) so TS = 1y. Hence TS is both onto and

one-to-one, so 7 is onto and S is one-to-one by Exercise 10. But [1, 0, 0, ...) isin ker T while
[1, 0,0, ...)isnotin im S.

. If p(x) isin ker T, then p(x) = —xp/(x). If we write p(x) = ap+ayx+- -+ a,x", this becomes

aotax+-+ap_ 17" ' tax = —ajx —2ax> — - — nayx’
Equating coefficients gives ag = 0, a; = —ay, ap = —2ay, ..., a, = —na,. Hence we have,
apg=a; =---=a,=0,s0 p(x) =0. Thus ker T = {0}, so T is one-to-one. As T : P, — P,

and dim P, is finite, this implies that 7 is also onto, and so is an isomorphism.

. If TS = 1y then, given w in W, T[S(w)] = w, so T is onto. Conversely, if T is onto, choose a

basis {e}, ..., ., €41, ..., €,} of V such that {e,,, ..., e,} is abasis of ker 7. By Theorem
7.2.5,{T(ey), ..., T(e,)} isabasis of im T'=W (as T is onto). Hence, a linear transformation
S:W — V exists such that S[T(e;)] =e; fori =1, 2, ..., r. We claim that TS = 1y, and we
show this by verifying that these transformations agree on the basis {7'(e1), ..., T(e;)} of W.
Indeed

TS[T(e)] = T{SIT(e)]} = (&) = lw [T (e)]

fori=1,2, ..., n

. If T = SR, then every vector 7(v) in im 7 has the form 7'(v) = S[R(v)], whence im 7 C im S.

Since R is invertible, S = TR~! implies mSC im7,s0o im S =im 7.

Conversely, assume that im § = im 7'. The dimension theorem gives
dim (ker S) =n— dim (im S) =n— dim (im 7) = dim (ker T)

Hence, let{e;, ..., e,, ..., e,}and {f}, ..., f., ..., f,} be bases of V such that {e, ., ..., €,}
and {f.,1, ..., f,} are bases of ker S and ker T, respectively. By Theorem 7.2.5,

{S(e1), ..., S(e;)} and {T(f}), ..., T(f;)} are both bases of imS =1im7T. Soletg,, ..., g,
in V be such that

Sei) =T(g)
foreachi=1, 2, ..., r.
Claim: B={g,, ..., &, fr41, ..., f,} isabasis of V.
Proof. It suffices (by Theorem 6.4.4) to show that B is independent. If

aig+---+ag +bf1+---+b,f,=0
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apply T to get

0=a1T(g))+ - +aT(g)+br1T 1)+ +Db,T(£)
=aiT(g)+ - +aT(g)+0
because T (f;) = 0 if j > r. Hence a; = --- = a, = 0; whence 0 = b, 1f,1| + - + b,f,. This

gives b,y = --- = b, = 0 and so proves the claim.
By the claim, we can define R: V — V by

R(g)=e fori=1,2,...,r
R(fj))=e; forj=r+1,...,n

Then R is an isomorphism by Theorem 7.3.1, and we claim that SR = 7. We show this by
verifying that SR and T have the same effect on the basis B in the claim. The definition of R

gives
SR(g;) =S[R(g;))] =S(e;) =T(g;) fori=1,2,...,r
SR(f;) =Slej] =0=T(f;) forj=r+1,....n
Hence SR=T.
29. As in the hint, let {e;, e, ..., €., ..., e,} be a basis of V where {e,;1, ..., €,} is a basis of

ker T. Then {T(e;), ..., T(e,)} is linearly independent by Theorem 7.2.5, so extend it to a ba-
sis{T(e1), ..., T(e;), Wyi1, ..., Wy} of V. Then define S: V — V by

S[T(ei)] =¢ forl1<i<r
S(wj):ej forr<j<n

Then, S is an isomorphism (by Theorem 7.3.1) and we claim that 7ST = T. We verify this by
showing that T7ST and T agree on the basis {ey, ..., e, ..., €,} of V (and invoking Theorem 7.1.2).

If1<i<r TST(e;) =T (S[T(e;)]) =T(e;)
If r+1< j<n: TST(e;) = TS[T(e;)] = TS[0] = 0 = T (e;)

where, at the end, we use the fact that e; isin ker 7 for r +1 < j <n.

7.4 A Theorem about Differential Equations

This section contains no exercises.
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7.5 More on Linear Recurrences

1. b. The associated polynomial is
p(X)=x—Tx+6=(x—1)(x—2)(x+3)

Hence, {[1), [2"), [(—3)")} is a basis of the space of all solutions to the recurrence. The
general solution is thus,

ben) = all) +5[2") +¢[(=3)")

where a, b and ¢ are constants. The requirement that xo = 1, x; = 2, x, = 1 determines a, b,
and c. We have
Xp=a+b2"+c(=3)"

for all n > 0. So taking n =0, 1, 2 gives

a+b+c=xg=1
a+2b—3c=x1=2

a+4b+9c=x; =1
; ; 15 8 3
The solution is a = 55, b = 55, ¢ = — 55, SO

X = (15+2"3 4+ (=3)"1) n>0

2. b. The associated polynomial is
p(x)=x—3x4+2=(x—1)%(x+2)

As 1 is a double root of p(x), [1") =[1) and [n1") = [n) are solutions to the recurrence by
Theorem 7.5.3. Similarly, [(—2)") is a solution, so {[1), [n), [(—2)")} is a basis for the space
of solutions by Theorem 7.5.4. The required sequence has the form

[n) = all) +bln) +¢[(=2)")

for constants a, b, c. Thus, x, = a+bn+c(—2)" forn > 0, so taking n = 0, 1, 2, we get

a —+ c = Xxy9 =
a + b — 2¢ = x3 = -1
a + 2b + 4c¢ = Xy =

The solution is a = g, b= —g, c= g, SO

Xp=7g[5—6n+ (—2)"”} n>0
d. The associated polynomial is

p(x)=x =3 4+3x—1=(x—1)3
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Hence, [1") = [1), [n1") = [n) and [n*1") = [n?) are solutions and so {[1), [n), [n?)} is a basis
for the space of solutions. Thus
X, =a- 1 + bn + cn?

a, b, c constants. As xo =1, x; = —1, xo = 1, we obtain
a + b + ¢ = x = -1
a + 2b + 4c¢ = Xy =

The solutionisa=1,b=—4,c =2, so
xnzl—4n—|—2n2 n>0

This can be written
X, =2(n—1)>—1

3.  b. The associated polynomial is
p(x)=x*—(a+b)x+ab= (x—a)(x—b)
Hence, as a # b, {[a"), [b")} is a basis for the space of solutions.

4. b. The recurrence x4 = —X,+2 + 2x,+3 has ro = 0 as there is no term x,,. If we write y, = x,, 12,

the recurrence becomes
Ynt2 = —Yn +2¥n+1

Now the associated polynomial is x> —2x+ 1 = (x — 1)? so basis sequences for the solution
space for y, are [1") =1, 1, 1, 1, ...) and [n1") = [0, 1, 2, 3, ...). Asy, = x,42, corre-
sponding basis sequences for x, are [0, 0, 1, 1, 1, 1, ...) and [0, O, O, 1, 2, 3, ...). Also,
[1,0,0,0,0,0,...)and [0, 1, 0, 0, O, O, ...) are solutions for x,, so these four sequences
form a basis for the solution space for x;,.

7. The sequence has length 2 and associated polynomial x> + 1. The roots are nonreal: A; = i and
A, = —i. Hence, by Remark 2,

[+ (=) =1[2,0, =2,0,2,0, =2, 0, ...) and [i(i" — (=i)")) = [0, =2, 0, 2, 0, =2, 0, 2, ...)

are solutions. They are independent as is easily verified, so they are a basis for the space of solutions.



8. Orthogonality

8.1 Orthogonal Complements and Projections

1. b. Write x; = (2, 1) and x, = (1, 2). The Gram-Schmidt algorithm gives
€ =X = (2 1)
e =X — 12 = ilzel
— (1,24 1)

L{(5. 10)— (8, 4)}
g(—1, 2)

In hand calculations, {(2, 1), (—1 )} may be a more convenient orthogonal basis.
= (1,

d. Ifx;=(0,1, 1),x, = (1, 1, 1),x 1, —2, 2) then
€ =X = (O 1, 1)
e = Z—G‘Z‘ﬁge (1,1, 1)=2(0, 1, 1) =(1, 0, 0)

er=(1,-2,2)-3(0, 1, 1)—1(1, 0, 0) = (0, -2, 2)

X3- el X3-€

1 2
e [leal]

€3 = X3 —

2. b. Writee; =(3, —1, 2) ande; = (2, 0, —3). Then {e;, e;} is orthogonal and so is an orthogonal

basis of U = span {e;, e;}. Now x = (2, 1, 6) so take

X| = projy X = —H’Zeulzel + X e,
1

llea]?
=13, -1,2)—- (2,0, -3)
= 1-(271, —221, 1030)

Then X, = X —X; = ﬁ(%, 402, 62). As a check: x; is orthogonal to both e; and e, (and so

isinU?b).

d Ifep=(1, 1,1, 1),e= (1,1, =1, —1),e3=(1, =1, 1, =1) and x = (2, 0, 1, 6), then

{ey, ey, e3} is orthogonal so take

= Projy X =, |\2el+|| o2 T e jre
=91, L, L 1) =3(1, 1, =1, =1) = 3(1, =1, 1, —1)
=1(1,7, 11, 17)

Then, X =X —X| = i(7, -7, -7,7)= %(1, —1, —1, 1). Check: x; is orthogonal to each e;,

hence x; is in U+.

117
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10.

14.

Orthogonality

f. Ife; =(1, —1,2,0)and e; = (—1, 1, 1, 1) then (as x = (a, b, ¢, d))

X| = projy x = &EEE (1, —1, 2, 0) + =Bt (1 ] 1, 1)
_ (5075b+073d —5a+5b— c+3d a—b+11c+3d 73a+3b+3c+3d)
- 12 ’ 12 12 ’ 12

(7a+5bfc+3d Sa+7b+c—3d —a+b+c—3d 3a73b73c+9d)
12 ’ 12 ’ 12 ’ 12

X) =X—X| =

a. Writee; = (2, 1, 3, —4) ande; = (1, 2, 0, 1), so {e;, ey} is orthogonal.
Asx=(1, -2, 1, 6)

. _ X-€
projy X = €1+ e

=22, 1,3, ~4)+3(1,2,0,1)= (-3, 1, -7, 11)

c. projyx=—13(1,0,2, =3)+=(4,7,1,2)=5(-3, 1, =7, 11).
b. U = span {(1, —1, 0), (—1, 0, 1)} but this basis is not orthogonal. By Gram-Schmidt:

— (1, -1, 0)

(
=(-1,0,1)— (*1[‘8: 1_)'1{1’0)];’ 01, -1, 0) = -1(1, 1, —2)

Soweuse U = span {(1, —1, 0), (1, 1, —2)}. Then the vector x; in U closesttox = (2, 1, 0)
is

X| = Projy X = 2—;+0(1’ -1, 0)-1—#(1, 1, =2)=(1,0, —1)
d. The given basis of U is not orthogonal. The Gram-Schmidt algorithm gives
e, =(1,-1,0,1)
=(1,1,0,0)=(1, 1,0, 0)—%e; = (1, 1, 0, 0)
=(1,1,0,1)—%(1, =1,0, 1)=3(1, 1,0, 0) = £(—1, 1, 0, 2)

Givenx = (2, 0, 3, 1), we get (using €5 = (—1, 1, 0, 2) for convenience)
projy x=3(1, =1, 0, 1)+ 3(1, 1, 0, 0) + 2(~1, 1, 0, 2) = (2, 0, 0, 1).
b. Here A= |, o _7 | } [(1) B é}%[é R H.Hence,AxT:Ohasx:

(s—t,3s,s,t)=s(1,3,1,0)+¢(—1,0,0, 1).
Thus U+ = span {(1, 3, 1, 0), (=1, 0, 0, 1)}.

. If x = projy x then x is in U by Theorem 8.1.3. Conversely, if x is in U, let {f, ..., f,,} be an

orthogonal basis of U. Then the expansion theorem (applied to the space U) gives x =) ; Hfﬁz | =
projy; x by the definition of the projection.

Let {f}, ..., f,} be an orthonormal basis of U. If x is in U then, since [/f;|| = 1 for each i, so
x = (x-f))f; +-- -+ (x-£,)f, = proj, x by the expansion theorem (applied to the space U).

yi

If {y;, ..., y,,} is a basis of U", take A = T . Then Ax = 0 if and only if y! x = 0 for each

Ym
0

i; if and only if y; - x = 0 for each i; if and only if x is in (U+)* = U+ = U. This shows that
U={xinR"|Ax=0}.



8.2. Orthogonal Diagonalization

17.  d. If AAT is invertible and E = AT (AAT)~'A, then
E*=AT(AAT) 1A - AT(AAT)TA = ATI(AAT)'A=E
ET — [AT(AAT)AA]T AT [(AAT)A}T (ATYT
AT [<AAT)T]—1A AT [(AT)TAT}—lA
—AT [AAT]'A=E
Thus, E2=E =ET.

8.2 Orthogonal Diagonalization

119

1. b. Since 3% +4? = 52, each row has length 5. So { » _: ] is orthogonal.

W Ll
|
Wl
| IS
I
W=
| — |

d. Each row has length va? +b% # 0, so ﬁ [ .
f. The rows have length v/6, v/3, /2 respectively, so

is orthogonal.
h. Each row has length /4436 +9 = /49 = 7. Hence

| 2 6 -3
= 7 3 2 6
-6 3 2

U

SIS ENTICN
STERNT-N

is orthogonal.

2. Let P be orthogonal, so P~! = PT. If P is upper triangular, so also is P!, so P~! = PT is both upper
triangular (P~!) and lower triangular P”). Hence, P~! = PT is diagonal, whence P = (P~!)~ ! is
diagonal. In particular, P is symmetric so P~! = PT = P. Thus P> = I. Since P is diagonal, this

implies that all diagonal entries are +1.

x—1

5. boealx) =" ! ’:x(x—Z).
Hence the eigenvalues are A; =0, A, = 2.
A=0:] ] _i]—)[(l) 7(1)];E0(A):span{[”}

Ao =2 } }}a[é é];Ez(A)Zspan{[fﬂ}

Note that these eigenvectors are orthogonal (as Theorem 8.2.4 asserts). Normalizing them

gives an orthogonal matrix
p[
-

Then P~ = PT and PTAP = [ 8 (2) ]
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d. ca(x) =

Orthogonality

x—3 0 -7

0 x5 0 |=(x—5)(x*—6x—40)= (x—5)(x+4)(x— 10). Hence the eigen-
-7 0 x—3

values are 41 =5, A, =10, A3 = —4.
2 0 -7 1 0 0

/11:5:{ 0 0 0}%[0 0 1};E5(A):span{{l}}
0 0 0

-7 0 2

-

(=]

(=]

7 0 -7 1 0 -1 1
Ap=10: | o 5 o —>[0 1 0];E10(A):span OH
0 0 0 1

-7 0 7

-7 0 -7
Note that the three eigenvectors are pairwise orthogonal (as Theorem 8.2.4 asserts). Normal-
izing them gives an orthogonal matrix

-7 0 -7 1 0 1 1
Az = —4: 0 -9 o]—>{o 1 0];E_4(A):span{{ 0
0 1

0 5 5 0 1 1
V2 V2
P=|1 0 0 = % { N ]
1 1
o X -4 0 1 -1
| 5 0 0
Then P~ = PT and PTAP=1| 0 10 o0
0 0 —4
x—5 2 4 x—9 0 9—x x—9 0 0
CA()C> = 2 x—38 2 = 2 x—38 2 = 2 x—8 4
4 2 x—5 4 2 x—5 2 x—1
_ x—38 4 . 2 . 2
= (x=9)| 7 I [ = (=9 —9%) =x(x—9)".

The eigenvalues are A} =0, A, =9.

-5 2 4 1 -4 1 1 —4 1 10
11:0:[2—8 2}%{0—13 9}%[0 1_%}_)[01 .
4 2 -5 0 18 -9 0 0 00
-1
2 .
i
However, these are not orthogonal and the Gram-Schmidt algorithm replaces [ 2 | withZ, =
0
1 3
[ —4 }.HenceP: .
1
0
9
0

HE

We note in passing that 2 | and [
1

4 2 4 IR -1
12:9;{2 1 2]—){0 0 0 ;E9(A):span{{ 0},
4 2 4 0 0 0] 1

I % s 2v2 3 1] . ,
i (1) % =3/ v2 0 -4 | is orthogonal and satisfies P* AP =
P 5 i 2v2 3 1

o oo

1
2

2

2 -2 1 0
[ 12 2 } also satisfies QT AQ = { 0
2 -2 0
2

0 0
% 9 0 |.
1 0 9
h. To evaluate c4(x), we begin adding rows 2, 3 and 4 to row 1.
x—3 -5 1 -1 x—8 x—8 x—8 x—8
- -5 x-3 -1 1 || -5 x-3 -1 1
CA(X) = 1 -1 x=3 -5 | 1 -1 x-3 -5
-1 1 -5 x-3 -1 1 -5 x-3
-8 0 0 0 x+2 4 6
_ -5 x—2 4 6 . ( _ 8) o 4 _6
= 1 2 x-4 -6 |TW 5 . X
-1 2 4 x-2 AT
x+2 4 6 x—2 4 6
= (_x—8> X X 0 = (_x—8> 0 X 0
2 —4 x-2 6 —4 x-2
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3.5 1 -1 3 -5 1 -1
) B 8 -8 0 0
M =0: 1 -1 -3 -5 | I -1 -3 -5

S o ~=O

10 0 1 —1
01 0 —1 1
1o o1 1]° E_4(A) = span -1
00 0 0
5 -5 1 -1 1 -1 5 -5 1 -1 0 0
505 1 1 0 0 -24 24 o 0 1 -1 |.
A3=38 I -1 5 5| 7lo o 24 24|70 00 ol}>
1 1 -5 5 0o 0 0 0 0 0 0 0
1 0
1 0
Eg(A) = span o |51
0 1
1 1 1
E] 712 ? 0 1 -1 \/E 0 0 0 0 0
_1 1 L 0 ] 1 V2 0 . 0 —4 0 0
_ 22 V2 _1 T _
Hence, P = Loy oo Tl o L s | glvesP AP=1|, o 5 o |-
20 v 3 0 0 0 8
I 11 0 V2
roma 0 x e a 0 2 2 2 2 .2
6. ca(x) = e xo :x) I -l-a‘ T =x(x =) —ax=x(x" — k7).

10.

I11.

Hence ca(x) = x(x — k) (x + k), where k> = a4 ¢, so the eigenvalues are A; =0, Ay =k, A3 = —
They are all distinct (k # 0, and a # 0 or ¢ # 0) so the eigenspaces are all one dimensional.

pmorl 18] = ] 2]}
azzkzlg_ _?j_ Z] “]:[H;E}‘(A):Span{[ ]}
o[ 32w [ 2]

These eigenvalues are orthogonal and have length, k, v/2k, v/2k respectively. Hence,
C\/_ a a 0 0 0
P= ﬁ [ —aoﬂ l; —IZ } is orthogonal and PTAP = [ g g 72 }

(=]

o =9

Similar to Example 8.2.6, ¢ has matrix A = [ } with eigenvalues A} = —3 and A, = 2 and
2
1

2
-2
corresponding eigenvectors X; = [ _é ] and x; = [ ] respectively. Hence P = f [ _é f } is

orthogonal and PTAP = [ _(3) (2) } Let

[ " } =y=P'x= % [ Pl } ; SOy = ﬁ(—xl +2x;) and y, = ﬁ(% +x2).
Then g = —By% + Zy% is diagonalized by these variables.

(c) = (a). By Theorem 8.2.1 let P"'AP = D = diag (A, ..., A,) where the A; are the eigenvalues
of A. By (c¢) we have A; = +1 for each i. It follows that

D? = diag (A2, ..., A}) = diag(1, ..., 1) =1
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13.

15.

18.

21.

23.

Orthogonality

Since A = PDP~!, we obtain A> = (PDP~')?> = PD?P~! = PIP~! =I. Since A is symmetric, this
proves (a).

b. Let A and B be orthogonally similar, say B = PT AP where P’ = P~!. Then B> = PTAPPTAP =
PTAIAP = PTA?P. Hence A? and B? are orthogonally similar.

Assume that (Ax) -y = x- Ay for all columns x and y; we must show that AT = A. We have (Ax) -y =
x” ATy and x - Ay = x” Ay, so the given condition asserts that

XTATy = XTAy for all columns x and y. ()

But if E; denotes column j of the identity matrix, then writing A = [a,— j] we have
e/ Ae; = a;; for all i and j.

Since (*) shows that A7 and A have the same (i, j)-entry for each i and j. In other words, AT = A.

Note that the same argument shows that if A and B are matrices with the property that x” By = x” Ay
for all columns x and y, then B = A.

b. If P= [ cosb ~ sin® } and Q = [ cosB sinf ] then P and Q are orthogonal matrices, det P = 1

—sin® cos@ sin@ —cos6
and det Q = —1. (We note that every 2 x 2 orthogonal matrix has the form of P or Q for some
0.)

d. Since P is orthogonal, PT = P~! Hence
PT(1-Py=P"'—P'P=P' —1=—(1-P")=—(1-P)"
Since P is n X n, taking determinants gives
det PT det (I — P) = (—1)" det[(I — P)T] = (—1)" det (I — P)

Hence, if I — P is invertible, then det (I — P) # 0 so this gives det PT = (—1)"; that is det P =
(—1)", contrary to assumption.

By the definition of matrix multiplication, the (i, j)-entry of AAT isr;-r ;. This is zero if i # j,

and equals ||r;||? if i = j. Hence, AAT = D = diag (||r{||%, |[r2||%, ..., ||ra/|?). Since D is invertible
(||r,-H27éOforeach i), it follows that A is invertible and, since row i of A is [ali ag -+ aji - am-]
1
. . le¢ I
T 0 .
AT=ATD ' = | & - @ - a o
: : : 0 0 . i

-
[l

aji

sl

Thus, the (i, j)-entry of A=!is

b. Observe first that I — A and I +A commute, whence I — A and (I +A)~! commute. Moreover,
[(1+A)]" = [1+4)7] ' = (1T +AT)"! = (I—A)~". Hence,

PPT =(I-A)(I+A)[1-A)(1+A)1T
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I+A) 7+ N a-a)T
(I+A)~ 11— A) (I+A)

10.

12.

)

1
! ].ThenA:UTUwhereU: [ ? V2 } =

2
0 S
20 4 5 20 4 5 20 4 5
d. 4 2 3| =0 & 2|0 & 2],
35 0 2 0o 0 3

NS

i 1]

2

% 7 iR 60V5 12v5 155
Hence, U= | 0 & &% | = 31—0 0 630 10v30 |,andA=UTU.
00 25 0 0 5V15

b. If A is positive and k is odd, then A is positive.

Assume X # 0 is a column. If A and B are positive definite then x” Ax > 0 and x’ Bx > 0 so
x'(A+B)x =x"Ax+x"Bx>0+0=0

Thus A + B is positive definite. Now suppose r > 0. Then x” (rA)x = r(x’ Ax) > 0, proving that rA
is positive definite.

Given x in R”, x” (UTAU)x = (Ux)TA(Ux) > 0 provided Ux # 0 (because A is positive definite).
Write U = [ cl - Cp } where ¢; in R" is column j of U. If 0 # x = [xl e X }T, then
Ux =Y xjc; # 0 because the c¢; are independent [rank of U is m].

Since A is symmetric, the principal axis theorem asserts that an orthogonal matrix P exists such that
PTAP = D = diag (A, A2, ..., A,) where the 4; are the eigenvalues of A. Since each A; > 0, v/A;
is real and positive, so define B = diag (v41, VA2, ..., V/A4;). Then B = D. As A = PDP”, take
C = PBPT. Then

C? = PBPTPBP! = PB?PT = PDPT = A
Finally, C is symmetric because B is symmetric (CT = P"TB"PT = PBPT = C) and C has eigen-
values v/A; > 0 (C is similar to B). Hence C is positive definite.

b. Suppose that A is positive definite so A = UOT Uy where Uy is upper triangular with positive

diagonal entries d, da, ..., dy. Put Dy = diag (dy, da, ..., dy). Then L = Ul Dy is lower
triangular with 1’s on the diagonal, U = Dy, Uy is upper triangular with 1’s on the diagonal,
and A = LD3U. Take D = D}.
Conversely, if A = LDU as in (a), then AT = UTDL”. Hence, AT = A implies that U DLT =
LDU, so UT = L and LT = U by (a). Hence, A =UTDU. If D = diag (d;, da, ..., d,), let
D, = diag (\/d1, V>, ..., \/dy). Then D= D3 so A=UTD}U = (D,U)"(D\U). Hence, A
is positive definite.
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8.4 QR-Factorization

1. b. The columns of A are ¢; = [ f } and ¢ = [ } ] First apply the Gram-Schmidt algorithm

o=}

f2:C2—

=
s
I
—
—_——
[ —
|
(941198}
—
[ I
I
—
u'lelh—
[ I

Now normalize to obtain

_ 1l e 112
4 = ey _\/5[1]
i -

4@ = eyt = %[ 2}
2

HenceQ:[ql (lz]:%[l 7;
(8.5) preceding Theorem 8.4.1:

[l e ] _[V5
L= s =1

| SSS—

is an orthogonal matrix. We obtain R from equation

3
']
Then A = OR.
d. The columns of A are ¢; = [ 1 -1 0 1 ]T, c = [ 1 01 —1 ]Tand
= [ 01 10 ]T. Apply the Gram-Schmidt algorithm

| IS
I
S
@)}
| —
(=)

S5

fi=c;=[1 -1 0 1]"
T

Q:Q—ﬁﬁﬁ (101 -1 -3A=[101 —1]

T

fy =5 — 2uf — 2
(o1t 1 o] =3[t -to1] =101 1]
=270 11 1]
Normalize
Qi=pfi=2[1 -1 0 1]
@:ﬁ@:%[lOl—uT
:%—:%[0111f
110
Hence Q = [ q 9 q3 = % [ (1) (1) } ] has orthonormal columns. We obtain R from
equation (8.5) preceding Theorem 8.4 1 o

> Sk

S-S
oS O W

Il oa oeq V3
R = 0 2l e-q | = 0
0 0 lie]] 0

| I |
I
S
w
1
S W O
N
|

Then A = OR.
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2. b. If A= QR is a QR-factorization of A, then R has independent columns (it is invertible) as does
Q (its columns are orthonormal). Hence A has independent columns by (a). The converse is
by Theorem 8.4.1.

8.5 Computing Eigenvalues

I b A=] 3 j]ThencA(x):

IfA =—1: [72 7%}%[8 é];eigenvector: [ 7; ]

x+2

A== -1 2= 4
If A, = 4: [ ’; 72 ] — [ (1) (2) ];dominant eigenvector = [ _? ]

Starting with xg = [ i ] , the power method gives x| = Axg, X = AXq, ... :

w=[ 2oe= H]ou=[ 8] x=] 2]
These are approaching (scalar multiples of) the dominant eigenvector [ _f ] The Rayleigh
quotients are ry = XL k=0, 1,2, ...,s0r9 =1, r; =3.29, r, = 4.23, r3 = 3.94. These

[l
are approaching the dominant eigenvalue 4.
x—3 -1

d. A= [ i (1) ]; calx) =" = x> —3x— 1, so the eigenvalues are A; = %(3-1—\/13),
A» = 1(3—+/13). Thus the dominant eigenvalue is A; = 3(3 ++/13). Since 4j4, = —1 and

A+ Ay =3, we get
M=3 -1 1 =2
A

so a dominant eigenvector is [ ’11' ] . We start with xg = [ } } .

Then x| =Ax;, k=0, 1, ... gives
4 13 43 142
= oe= [V oe= 0] x=] ]

These are approaching scalar multiples of the dominant eigenvector [ 2111 } = [ 3'3012 776 } The

Xk Xk+1 .

Rayleigh quotients are ry = Il -
k

ro =25, r =329, rp =3.30270, r3 = 3.30278

These are rapidly approaching the dominant eigenvalue A; = 3.302776.

x—3 -1
-1 X

A = % [3 —/ 13} = —0.302776. The QR-algorithm proceeds as follows:
A1:|:? é}:Qllehertezx/%[? 7;},R1:\/%|:100 ?]

2 boA=[] ) |reat) =

=x>—3x—3; 4y = 5 [3+/13] =3.302776 and
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_ D U I N 1 31 _ 1 109 3
AZ_RIQI_E[ 1 -3 } —QszwhereQz—m[ 1 -33 ]’R2—m[ 0 10 ]
_ _ 1 [360 1 ] _ [ 3302752 0009174
A3 =R = 15 [ 1 -33 } = [ 0.009174  —0.302752 ]
The diagonal entries already approximate A; and A; to 4 decimal places.

4. We prove that A,{ = Ay for each k by induction in k. If k = 1, then A| = A is symmetric by hypothesis,
so assume A = Ay for some k > 1. We have Ay = QiRy so Ry = O 'Ay = QF Ay because O is
orthogonal. Hence

Ars1 = ReQx = O ArQx
SO
Al = (0FAOK)" = OFAL O[T = O AkQk = Axia
The eigenvalues of A are all real as A is symmetric, so the QR-algorithm asserts that the A; converge

to an upper triangular matrix 7. But 7 is symmetric (it is the limit of symmetric matrices), so it is
diagonal.

8.6 Singular Value Decomposition

4. b. toy, ..., to;.
7. If A =UZXVT then X is invertible, so A~ = VX 1UT is a SVD.

8. b. FirstATA=1,s0%4 =1,.

R
_
A = 2[1—1][01
I
I

I
1
|
O =
— O
—_

13. b IfxeR"thenx! (G+H)x=x"Gx+x'Hx>0+0=0.

0

B
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8.7 Complex Matrices

I. b
d
2. b

=PI+ 2 (12 = IF DT AT D+ 1+ 1= 6

4 =P P =i 20 = AT+ D+ (T D) +4= V13

Not orthogonal: ((i, —i, 2+1), (i, i, 2—10)) = i(—i)+ (=) (=) + (2+i)(2+i) =3+ 4i

d. Orthogonal: ((4+4i, 2+1i, 2i), (—1+1i, 2, 3—2i)) = (4+4i)(—1 — i)+ 2 +i)2+ (2)(3+

2i) = (—8) + (44 2i) + (—4 +6i) = 0.

b. Not a subspace. For example, i(0, 0, 1) = (0, 0, i) isnotin U.

d. Ifv=(v+w, v—2w, v)and w= (V+w/, v/ —2w/, V') are in U then

3.

4. b
d.

5. b

v+w=((v+V)+(w+w), v+v)=2(w+w'), (v+V))isinU
zv=(zv+zw, zv—2zw, zv) isin U
0= (0+0,0—20, 0)isin U

Hence U is a subspace.

Here U = {(iv+w, 0,2v—w) v, weC} ={v(i, 0, 2) +w(l, 0, —1) |v, we C} =
span {(7, 0, 2), (1, 0, —1)}.
If z(i, 0, 2) +1(1,0, —1) = (0, 0, 0) with z, t € C, then iz+t =0, 27—t = 0. Adding gives
(2+1i)z=0,s0z=0; and sot = —iz=0. Thus {(i, 0, 2), (1, 0, —1)} is independent over C,
and so is a basis of U. Hence dimc U = 2.
U={(u, v, w)|2u+(14+i)v—iw=0;u, v, w € C)}. The condition is w = —2iu+ (1 —i)v,
SO

U={(u, v, 2iu+(1—i)w)|u, veC}=span{(1, 0, —=2i), (0, 1, 1 —i)}
If z(1, 0, —2i)+1(0, 1, i—1) = (0, 0, 0) then components 1 and 2 give z =0 and # = 0. Thus
{(1, 0, —=2i), (0, 1, 1 —1i)} is independent over C, and so is a basis of U. Hence dimc U = 2.

A:[j 3] AH =AT = [3 ] Al = 13[2 _3]Hence,Aisnothermitian(A;«éAH)
and not unitary (A # A1), However, AA" = 131 = AP A, 50 A is normal.

. _ qT
A=t Jlar=@r=]1 ] =
normal. But, AA¥ = A2 = 2] 50 A is not unitary.

A= [ l-li-i lj’ } Here A=AT so A =A = [ _ I:ii ] = A (thus A is not hermitian). Next,

[ ! :f ] = A. Thus A is hermitian and so is

1

AAT = [ 21:‘ > ] # 1 s0 A is not unitary. Finally, AfA = [ o ] + AAH 50 A is not

normal.

A_\/_II[Z fz}.HereK:\/—%m[i _ZZ]SOAH \/_|z|[

2
if z=7; that is A is hermitian if and only if z is real. We have AAH = Tllz [ 2‘5' 2&2 ] =1,
Z

IS IREall

- ] . Thus A = A if and only

and similarly, A”A = I. Thus it is unitary (and hence normal).
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8. b A:[ ; 3*"},cA(x): [ o *3“}:xz—sx—6:(x+1)(x—6).

10.

I11.

14.

d.

3+i 1 x—1
. -5 =3+ 3+i 2 : : —2
Eigenvectors for A} = —1: [ 4y 1+’ ] — [ g’ 0 ];aﬂ eigenvector 1s X; = [ 34 }
. 2 34 2 =34 : : 3—i
Eigenvectors for A, = 6: [ 3 5+’ ] [ 0 0+l } ; an eigenvector 18 X = [ 2 ] .

As x; and x, are orthogonal and ||x;|| = ||x2|| = V14, U = \/% [ ;ﬁi 32" | is unitary and
vtau = 7§ ¢ -

A= 20 et =

x—=2 —1-i

it a3 =x2—5x+4= (x—1)(x—4).

: [ IR R 1ot ] N
Eigenvectors for A; = 1: [ i4i -2 ] — [ a0 }, an eigenvector is X; = [ 4
E; tors for do — 4= | 2 =i ] [ 1k 0]l e toris x, — | 1
igenvectors for A, =4: | 7, | o o |s;aneigenvectorisx; = | ,_, |.
: _ _ S T S T R T
Since x| and x; are orthogonal and ||x|| = ||xz|| = v/3, U = e [ - ., | is unitary and

vtau = 1.

1 0 0 x—=1 0 0 5
f.A=]0 1 1+i [5ea(x)=] 0 x-1 -1-i |=(x—1)(x"—=3x) = (x—1)x(x—3).
0 1—i 2 0 —l1+i x-2
. 0 0 0 0 1 0 . . 1
Eigenvectors for Ay =1: | 0 0o -1-i [ — | 0 0 1 [;aneigenvectorisx; = |0 |.
0 —14+i -1 0 0 0 0
-1 0 0 1 0 _ _ 0
IfAy=0:| o -1 —1-i | — |0 1 1+i |;aneigenvectorisxy = | 1+i |.
0 —l+i —i 00 0 -1
_ 20 0 1 0 0 _ _ 0
Eigenvectors for A3=3: [ 0 2 -1-i [ = | 0 -1+i 1 |;aneigenvectorisxz=| 1 |.
0 —l1+i 1 0 0 0 1—i

b.

1 VA 0
Since {X, X2, X3} is orthogonal and ||x; || = ||x3]| = /3, U = 7 [ 0 1+i 1 } is orthog-
0

-1 1-i

(1) Ifz= (21, 22, ..., z) then ||z||* = |z1|* + |22]* + -+ + |za|>. Thus ||z|| = 0 if and only if
|zi| =---=|zx| =0, ifand only if z= (0, O, ..., 0).
(2) By Theorem 8.7.1, we have (A1z, w) = A(z, w) and (z, Aw) = A(z, w). Hence

1
onal and U*AU = { 0
0

[N ool
w o o

A2l = (Az, 22) = A.(z, A7) = AR(z, 2) = [A ] [z]
Taking positive square roots gives ||Az|| = |A]]|z]|.

If A is hermitian then A = A”. If A = [a;;], the (k, k)-entry of A is dy. and the (k, k)-entry of
AT is ag. Thus, A = AT implies that ay; = ay for each k; that is ay is real.

Let B be skew-hermitian, that is BY = —B. Then Theorem 8.7.3 gives
(B*)H = (B")> = (—B)* = B?, so B is hermitian
(iB)¥ = (—i)B" = (—i)(—B) =B, so iB is hermitian.

If Z=A+ B where A" = A and B = —B, then Z/ = A" + B =V — B. Solving gives
Z+ZH =2V andZ—ZH =2B,soV = 1(Z+2") and S = 1(Z+Z"). Hence the matrices A



16.

18.

21.

.vaz[j.
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and B are uniquely determined by the conditions Z = A + B, A" = A, B = —B, provided such
A and B exist. But always,

N
I
N
_|_

zM+3(z—2")

1

2
and the matrices A = 3(Z+Z") and B = J(Z —Z") are hermitian and skew-hermitian respec-
tively:

. If U is unitary, then U~! = U". We must show that U~! is unitary, that is (U~')~! = (U~1)H,

But
(U—l)—l —U = (UH)H _ (U—l)H

] 1

é then V is hermitian because V = | ! _é ] =VT butiV = [ ; _(1) } is not

hermitian (it has a nonreal entry on the main diagonal).

. Given A = [ _(1) (1) ], let U = [ i Z } be invertible and real, and assume that U 'AU =

b s au=U [ b s
¢ d | _ | ab au+bv
[—a —b:|_|:cl CH+dV:|

Equating first column entries gives ¢ = aA and —a = cA. Thus, —a = (aA)A = aA? so (1 +
A%)a = 0. Now A is real (a and ¢ are not both zero so either A = cordA=-%),s01l +A%£0.

Thus a = 0 (because (14 A?)a = 0) whence ¢ = aA = 0. This contradicts the assumption that
A is invertible.

8.8 An Application to Linear Codes over Finite Fields

1.

b. The elements with inverses are 1, 3, 7, 9: 1 and 9 are self-inverse; 3 and 7 are inverses of each

other. As fortherest,2-5=4-5=6-5=8-5=01in Zjg so 2, 5, 4, 6 and 8 do not have
inverses in Zjg.

. The powers of 2 computed in Zjq are: 2,4, 8, 16 = 6,32 =2, ..., so the sequence repeats: 2,

4,8,16,2,4,8, 16, ....

. If 2a = 0 in Zjo then 2a = 10k for some integer k. Thus a = 5k so a =0 or a =5 in Zo.

Conversely, it is clear that 2a =0in Zpifa=0ora = 5.

b. We want a number a in Z9 such that 11a = 1. We could try all 19 elements in Z;9, the one

that works is a = 7. However the euclidean algorithm is a systematic method for finding a. As
in Example 8.8.2, first divide 19 by 11 to get

19=1-11+8
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Then divide 11 by 8 to get

11=1-8+3
Now divide 8 by 3 to get

8§=2-3+2
Finally divide 3 by 2 to get

3=1-2+1

The process stops here since a remainder of 1 has been reached. Now eliminate remainders
from the bottom up:

1=3-1-2=3-(8-2-3)=3-3-8
=3(11-1-8)—8=3-11—-4-8
=3.11-4(19-1-11)=7-11-4-19

Hence 1 =7-11—-4-19=7-111in Z;9 because 19 =0 in Z9.

. Working in Z7, we have det A =15—-24 =144 =50, so A~ ! exists. Since 57! =3 in Z7,

S Y E T )

. Gaussian elimination works over any field F in the same way that we have been using it over

R. In this case we have F = Z7, and we reduce the augmented matrix of the system as follows.
We have 5-3 =1 in Z7 so the first step in the reduction is to multiply row 1 by 5 in Z7:

301 4 3 15 6 1 15 6 1 15 6 1 10 5 3
[4311}%[4311]6[0454}_)[0131]%[0131]

Hence x and y are the leading variables, and the non-leading variable z is assigned as a param-
eter, say z = t. Then, exactly as in the real case, we obtain x =3 +2¢,y = 1+4¢, 7 =1t where ¢
is arbitrary in Z7.

. If the inverse is @ + bt then 1 = (1 4+1)(a+bt) = (a—b) + (a+ b)t. This certainly holds if

a—b=1and a+b =0. Adding gives 2a = 1, thatis —a = 1 in Z3, thatis a = —1 = 2. Hence
a+b=0givesb=—a=1,s0a+bt =2+t; thatis (14¢)~! =24¢. Of course it is easily
checked directly that (1 +¢)(2+¢) = 1.

. The minimum weight of C is 5, so it detects 4 errors and corrects 2 errors by Theorem 8.8.5.

. The linear (5, 2)-code {00000, 01110, 10011, 11101} has minimum weight 3 so it corrects 1

error by Theorem 8.8.5.

. The code is {0000000000, 1001111000, 0101100110, 0011010111,

1100011110, 1010101111, 0110110001, 1111001001 }.
This has minimum distance 5 and so corrects 2 errors.

. C={00000, 10110, 01101, 11011} is a linear (5, 2)-code of minimal weight 3, so it corrects

single errors.

. G=[1 u ] where uis any nonzero vector in the code. H = [ " ]

I
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8.9 An Application to Quadratic Forms

_ 1 la-=n ] _[1 o0
1 b'A_[%(—H-l) ' ]_[0 2}
1 12+4)  L(-1+5) 1 3
d A= l4+2 1 fo-2) | =1]3 1
50 b2 3 2 -1

x—1

2. b g=x"Ax where A = [1 f].cA(x): >

IERIE
),2:—1:[:2 > —>[

-2
x—1

Hence, P = % [ Lo ] is orthogonal and PTAP = [ .

. _ T . L
As in Theorem 8.9.1, take y = P' x = 7

K

y1

Finally, g = 3y%
is 2 (the number of nonzero eigenvalues).

41

7 4 4
d. g =xTAx where A = { 41
4 -8 1
-7 4 -4
calx)=| -4 x-1 8 |=
4 8 a-1
-7 -8 -4
— —4 x+7 8
0 0 x-9
2 -4 -4 1 -2 -2
M=9: ] 4 8 8|[—=]0 0 o0
4 8 8 0 0 0
16 -4 4 4 1 1
A = —9: 4 -10 8| —=1]0 -9 9l =
4 8 10 0 9 -9

eigenvectors are orthogonal and each has length 3. Hence, P =

9 0 0
onal andPTAP:[O 9 0 }.Thus
0 0 -9
2 2 -1 x
y:PTx:%{ 2 -1 2:|{x;:|:
—1 2 2 X3
SO
yi :%[2X1+2X2—X3]
2 :%[le—)Q—l—Z)@]
y3 = %[—xl + 2x + 2x3]

will give g = 9y% + 9y%

X1
X2

x—17
—4

(=N

0

2 2
; orthogonal eigenvectors { 2 ], [ -1 }

(=3 =]

W —

= x> —2x—3=(x+1)(x—3)
. ] so an eigenvector is x| = [ | ]

. . 1
0 ; SO an eigenvector 1S Xy = [ 1 ]

0
-1

S
J=3l
= %@(xl +xp) and y, = \/%(xl —X7)

X1 +x2
X —X2

} . Then

— y%, the index of ¢ is 1 (the number of positive eigenvalues) and the rank of ¢

-8 } . To find c4(x), subtract row 2 from row 3:

—4 —4
x—1 8
—x+9 x-9

= (x—9)%(x+9)

-1
2
-1 |; eigenvector . These
0

—1
2
2

is orthog-

2x1 4+ 2x3 — x3
2x1 —x2 +2x3

—x1 +2x2 +2x3

—9y3. The index of ¢ is 2 and the rank of g is 3.
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5 2

f. g =xTAx where A = { 2 8
—4 2
ca(x) =

4 2 4 2 1

M=9 |21 2|=]0o0

4 2 4 0 0

-5 2 4 1
),2:O;|:2—8 2}%[0
4 2 -5 0

S O™

; orthogonal eigenvectors are | 2

—4
—18
18

1 1 0 -1
9 — 0 2 -1
-9 0 0 0

To find c4(x), subtract row 3 from row 1:

2 4 x—9 0 —x+9
x—38 2 = 2 x—38 2
2 x—35 4 2 x—5
0
x—38 4 :x(_x—g)z
2 x—1

)
and {

1

] ; an eigenvector is [

These eigenvectors are orthogonal and each has length 3. Hence P = % 2

thogonal and PTAP = {

then

9 0 O
09 o |.If
0 0 0
-2 2 1 X1
y:PTX:% 1 2 =2 X2
2 1 2 X3

N
N =

y3

[OSTE SRS o u oS T TE

(—2)61 +2x7 +X3)
(X1 +2x7 — ZX3)
(ZX1 +x+ ZX3)

gives g = 9y% + 9y%. The rank and index of ¢ are both 2.

h. ¢ =x"Ax where A = {

1 1 0
A =2 {1 2 -1
0 -1 1
0 1 0
/12— 1: [ 1 —1 }

0 - 0

-2 1 0

A3=—1: { -1 -1

0 -1 =2

1 -1
—1 0
0 1

0
1
1

} . To find c4(x), add row 3 to row 1:

1 0 x—1 0 x-1
x -1 | =] 1 x -1
—1 x-1 0 -1 x—1
0 0
o2 |=x-1)x=-2)(x+1)
-1 x-1
1o ) ) -1
— | 0 1 -1 [;an eigenvector 1s 1
00 0 1
1 0 -1 ) . 1
— | 0 1 0 [;aneigenvectoris | 0 |.
00 0 1
-1 1 0 1 ) .
-2 | — | 0 1 2 |;aneigenvector 1s
-2 0 0 0
NG ' V2 V3 1
2 e
* =7 V20 2
-% V2 V3 -1
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then

Vi = %(—xlﬂ”@ +x3)
y2 = = (x1 +x3)

gives ¢ = 2y7 +y5 —y3. Here ¢ has index 2 and rank 3.

3. b.q:3x2—4xy:XTAxwhereX:[;‘],A:[_; 7(2)].CA(I): 2 =—4)@+1)
A= [é i}%[é g];aneigenvectoris[j]
—1: [ 3 B ]—>[g _é];aneigenvectoris[é}.

Hence, P = -1 7 [ _? é ] gives PTAP = [ 3 _(1) } Ify=P'x= [;‘i ],thenxl = %(Zx—y)
and y; = %(x—i— 2y). The equation g = 2 becomes 4x7 —y? = 2, a hyperbola.
d. g =222 +4xy+5y2 = xT Ax where x — [ ' },A: [ 2 2 ]

2 s
In this case ca(t) = | ') % ‘ =({t—1)(t—6).

M =6: [_g 7?]—)[(2) 7é];aneigenvect0ris[é].
A= :[:é _i]—)[é é};aneigenvectoris[_?].
Hence,P:%[é _f]givesPTAP:[g ?]Ify:PTX:[ii],thenxlzﬁ(x—l—Zy),

yi = %(Zx—y) and g = 1 becomes 6x7 +y7 = 1. This is an ellipse.

4. After the rotation, the new variables x; — [ i: ] are related to x — [ § } by x = Ax; where A =

cos® —sin6
sin 6 cos 6

] (this is equation (8.8) preceding Theorem 8.9.2, or see Theorem 2.6.4). Thus x =

x1cos @ —y; sin @ and y = x; sin 6 +y; cos 0. If these are substituted in the equation ax® + bxy +cy* =
d, the coefficient of x;y; is

—2asin 6 cos O + b(cos’ @ —sin” @) + 2¢sin O cos @ = bcos26 — (a— ¢) sin28.
This is zero if 0 is chosen so that

_ a—c : — b
cos260 = R, and sin26 EEpm—s

2 2
Such an angle 26 exists because L/b2+ = } [\/bZ } =1.
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o X1 1 2 -2
7. b. The equation is X’ AX+Bx =7 wherex= | » |[,A=| 2 3 o |,B=
X3 2 0 3
-1 -2 2 —1 -2 2 r—1 -4
cA(x): -2 -3 0 |=| -2 -3 0 |=]| -2 -3
2 0 t—3 0 t—3 -3 0 0 t—3
= (1=3)(12—4r—5)=(—3)(t—=5)(t+]1)
2 2 2 1 0 o ' _ 0
AM=3|-2 0o0|—=]0 1 -1/|;aneigenvectoris | I
2 0 0 00 0 1
4 -2 2 2 2 0 1 0 1 ‘ ‘
=52 20| 0 2 2| —1|0 1 1 |;aneigenvector is 1
20 2 0 2 2 0 0 0 -
2 2 2 11 -1 1 0 —2 ' ' 2
As3=—1:] -2 -4 o|—=|0 -2 —2(—|0 1 1 |;aneigenvectoris | —I
2 0 -4 0 2 -2 00 0
0 % % ) 0 V2 2 ' 30
Hence, P = ? 7$ flﬁ =7 V3 v2 -1 | satisfies PTAP = g (5)
2 +% NG \/g —\/E 1
[ Vi :| PT | [ \/_\/§(X2+x3)
y e V2 = X=—+ 2(x1 +x27X3)
3 \/6 2x1 — X3 + X3

0.

then
(2 +x3)
y2 = %(xl +x2 —x3)
%(2)61 —xp +x3)
As P~! = PT we have x = Py so substitution in x’ AX + Bx = 7 gives

y! (PTAP)y+ (BP)y =7

AsBP=J[ 63 11V2 4]=| —3y2 15 206 | thisis

3y7 4+ 593 — 3 — (3V2)y1 + (V3)y2 + (3V6)ys = 7

g(x) =x"UTUx = (Ux)" (Ux) = |Ux]|?

So take y = Ux as the new column of variables.

1

b. We have A = UTU where U is upper triangular with positive diagonal entries. Hence
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8.10 An Application to Constrained Optimization

This section contains no exercises.

8.11 An Application to Statistical Principal Component
Analysis

This section contains no exercises.






9. Change of Basis

9.1 The Matrix of a Linear Transformation

1. b. Cp(v)= { 0 } because v = ax? +bx+c = ax* + (2b—c)(x+ 1)+ (¢ — b) (x +2).

c—b

d. CB(V) =

N—

R
v=(a, b, ¢)=3[(a—b)(1, =1, 2)+(a+b)(1, 1, —1) + (—a+3b+2¢)(0, 0, 1)]
2. b Mps(T) =[ Cp[T(1)] Cp[T(x)] CD[T(xz)]}:[_f j _;]Comparingcolumns gives

colr)=[ 3] colrwl=|

Hence
T(1)=2(1,1)—(0, 1) = (2, 1)
T(x) =1(1, 1)+0(0, 1) = (1, 1)
T(x*)=3(1,1)—2(0, 1) = (3, 1)
Thus
T(a+bx+cx?) =aT(1)+bT(x)+cT(x?)
=a(2, 1)+b(1, 1)+¢(3, 1)
=2a+b+3c,a+b+c)
o n ) = [ofr[L 8]} eofr[3 1]} eofr[1a]} o fr[s 0] ]
- _CDi[é oIy eof[V oy eofls s ]h eofls 1]}
Tt 0 0 O
<[4
d. Mps(T) = [Cp[T(1)] Cp[T(x)] Cp[T(x?)]]
= [ Cp(l) Cp(x+1) Cp(x*+2x+1) |
= 0o 1 2

137
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4. b. Mpg(T)=[ Cp[T(1, 1)] Cp[T(1,0)] |=[Cp(1,5,4,1) Cp(2,3,0,1)]= [

We have v= (a, b) =b(1, 1)+ (a—b)(1, 0) so Cp(v) = [ afb ] Hence,

Cp|T(v)] =Mpp(T)Cg(v) = [ > ] [ L ] —

Finally, we recover the action of 7':

2a—b
3a+2b

4b
a

|

— A o=
—_— 0 W W
| I |

T(v) = (2a—b)(1, 0, 0, 0) + (3a+2b)(0, 1, 0, 0)+4b(0, 0, 1, 0) +a(0, 0, 0, 1)

= (2a—b, 3a+2b, 4b, a)

d. Mpp(T) = ] Cp[T(x)] CD[T(XZ)]}

]CD(L 0) Cp(0, 1) ]

-1
o ]
x +cx? so Cp(V) = { b ] Hence

c

SN
ENEE

ISIESIE
M
ol (=)
ol —t

= —————
D9 — 19—
_ -
-

S

We have v=a -+

ColT ()] = Mps(T)Cs (M) = [ | 1 1| [ ; } _

Finally, we recover the action of 7T':

T(v)=%(a+b—c)(1, =1)+3(a+b+c)(1, 1) = (a+b, c).
canr) = [eofr[ 8]} afr[s 1]} efr[t ]} ofr]
= [Glos] o] o] ol ]

WehaveV:[Z'_OZ}O:Oaié 8]-1—19[8 é]-l—c[(f 8}"“{[3 ?},
SOCB(V)ZIE HCHCCCD[T(V)]ZMDB(T)CB(V)Z[é (f (f §] g :[

Finally, we recover the action of 7T':

TW=al g |+l o |+era| ) o]+

5. b. Have R3 1> R4 i> R2. Let B, D, E be the standard bases. Then

Mgp(S) = [ Cg[S(1, 0,0, 0)] Cg[S(0, 1, 0, 0)] Cg[S(0,0, 1,0)] Cg[S(0, 0,0, 1)] ]

[ Ce(1,0) Cg(1,0) Cp(0.1) Cg(0, —1) ]
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Cp[T(1, 0,0)] Cp[T(0, 1,0)] Cp[T(0,0,1)] ]
Cp(1,0,1, =1) Cp(1,1,0,1) Cp(0,1,1,0) ]

—— ——— —
|
—_— 0 =

We have ST (a, b, ¢c) =S(a+b, c+b, a+c, b—a) = (a+2b+c, 2a—b+c). Hence
C

£ [ST(1,0,0)] Cg[ST(0, 1,0)] Cg[ST(0,0, 1)] ]
Ce(1,2) Cg(2,—1) Cg(1,1) ]

1201
=12 -1 1

With this we confirm Theorem 9.1.3 as follows:

(
Mgp(ST) = |
=

S = = O

BRI

—_ O = =

Mgp(S)Mpp(T) = [ (1) (1) (1’ _(1) ] [ (}

d. Have R3 5 P, % R2 with bases B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, D = {1, x, ¥},
E={(1,0), (0, 1)}.

Mgp(S) = [ Ce[S(1)] Ce[S(x)] CE[S(x?)] ]
=[ Cg(1,0) Cg(-1,0) Cg(0,1) ]

CplT(1,0,0)] Cp[T(0, 1, 0)] Cp[T(0,0, 1)] ]
Cp(1—x) Cp(—1+x*) Cp(x) ]

The action of ST is ST (a, b, ¢) = S [(a—b) + (c —a)x+bx*| = (2a— b —c, b). Hence,

Mgp(ST) = [ Ce[ST(1, 0, 0)] Cg[ST(0, 1, 0)] Cg[ST(0, 0, 1)] ]
=[ Ce(2,0) Cg(-1,1) Cg(-1,0) ]

2 -1 4
=lo 1 o

Hence, we verify Theorem 9.1.3 as follows:

Mep(SMos(T) = § 5 | | [i 0 ”=[§ o | = Mes(sT)
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7. b Mpp(T) = [ CplT(1,0,0)] Cp[T(0,1,0)] Cp[T(0,0,1)] ]
= ,1) Cp(1,0,1) Cp(1,1,0) ]

0 1
— 10 1
11
IfT-Ya, b, ¢) = (x, y, z) then (a, b, ¢) =T (x, y, 2) = (y+2, x+2, x+). Hence, y+z=a,
x+z=>b, x+y = c. The solution is
T*I(a, b,c)=(x,y,2)= %(b-l—c—a, a+c—b,a+b—c)

Hence,

This matrix is Mpg(T

d. Mpp(T) = [CD[
= [ Cp(

1 1
= 0 1
0 0 1

If T-Y(a, b, ¢) = r+sx+tx?, then (a, b, ¢) = T(r+sx+tx*) = (r+s+t, s+t, t). Hence,
r+s+t=a,s+t=>b,t =c;thesolutionist =c,s =b—c,r=a—>b. Thus,

T Ya, b, ¢) =r+sx+1x*> = (a—b) + (b —c)x+cx?
Hence,

Mpp(T

[ Cs[T71(1,0,0)] C[T7'(0,1,0)] Cp[T~1(0, 0, 1)] ]
[ Ca( (—14+x) Cp(—x+x) ]
-1

as Theorem 9.1.4 asserts.

o

This matrix is Mpp(T)

v <[ofr[33)) alrfs 1]} frlt 1) afr[; )]
_C;D(ll,l,(f)]o Cp(1,1,0,0) Cp(1,1,1,0) Cp(0,0,0, 1) ]

This is invertible and the matrix inversion algorithm (and Theorem 9.1.4) gives

|
—_
- o oo

Mpp(T™") = [Mpp(T)] " = [ 0 _(1) I

If v=(a, b, ¢, d) then

|
—_
—-— o oo

Csl[T ™" (v)] = Mps(T~")Cp(v) = [

| I |
—
U >
L 1
I
—
ST
Lo |
SIS
| I |
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21.
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Hence, we get a formula for the action of 77!
TN a b e d) =T W) =(a=b) | § §|+b=c)[§ §]+e[ ) 0 ]+a|0 V]
| a=b b-c
=[]

T (ey)}, we have Cp [T (e;)] = C; = column j of I,. Hence,

Mpp(T) = [ Cp[T(e1)] Cp[T(er)] Cp [T (e,)] |
=[a G Co | =1
b. Define T : P, — R*"! by T[p(x)] = (p(ao), p(ai), ..., p(a,)), where aq, ..., a, are fixed
distinct real numbers. If B= {1, x, ..., X"} and D C R+ is the standard basis,
Mpp(T) =] Cp[T(1)] Cp[T(x)] Cp|[T(x*)] Cp[T(x")] |
= [CD(l, 1, ..., 1) Cplag, ai, ..., an) CD(a(Z), a%, caz) e Cp(ag, df, ..., aﬁ)]
1 ap a% —oag
B 1 o a% al
1 a a2 a

Since the a; are distinct, this matrix has nonzero determinant by Theorem 3.2.7. Hence, T is
an isomorphism by Theorem 9.1.4.

d. Assume that V5 w 7 U. Recall that the sum § +T : W — U of two operators is defined by
(S+T)(w)=S(w)+T(w) for all win W. Hence, for vin V:

[(S+T)R](v) = (S+T)[R(v)]
=S[R(V)] + T[R(v)]
= (SR)(v) + (TR)(v)

= (SR+TR)(v)

Since this holds for all v in V, it shows that (S+7)R = SR+ TR.

b. If P and Q are subspaces of a vector space W, recall that P+Q ={p+¢q|pin P, gin Q} isa
subspace of W (Exercise 25 Section 6.4). Now let w be any vector in im (S+ 7). Then w =
(S+T)(v) =S(v)+T(v) for some v in V, whence w is in im S+ im 7. Thus, im (S+7) C
imS+imT.

b. If T is in X0, then T(v) = 0 for all v in X;. As X C X, this implies that 7'(v) = 0 for all v in

X that is 7 is in X°. Hence, XP C XY,

b. We have R : V — L(R, V) defined by R(v) = Sy. Here Sy : R — V is defined by Sy(r) = rv.

R is a linear transformation: The requirements that R(v+ w) = R(v) + R(w) and R(av) =
aR(v) translate to Sy+w = Sy + Sy and S,y = aSy. If r is arbitrary in R:

Syiw(r) =r(v+w) =rv+rw = Sy(r) + Sw(r) = (Sy +Sw)(r)
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Sav(r) = r(av) = a(rv) = a[Sy(r)] = (aSy)(r)

Hence, Sy+w = Sy + Sw and S,y = aSy so R is linear.

R is one-to-one: If R(v) = 0 then Sy = 0 is the zero transformation R — V. Hence we have
0 = Sy(r) = rv for all r; taking r = 1 gives v = 0. Thus ker R = 0.

Ris onto: Given T in L(RR, V), we must find v in V such that T = R(v); that is T = Sy. Now
T : R — V is a linear transformation and we take v = 7'(1). Then, for r in R:

Sy(r)=rv=rT(1)=T(r-1)=T(r)
Hence, Sy = T as required.

25.  b. Given the linear transformation 7 : R — V and an ordered basis B = {by, by, ..., b,} of
V, write T(1) = ajb; + asby + - - - + a,b,, where the a; are in R. We must show that T =
a1S1+aS> + - - + a,S, where S;(r) = rb; for all r in R. We have

(a1S1+axSo+---+anSy)(r) = a1S1(r) + a2S>(r) + - - + @Sy (r)
=ay(rby) +ax(rby) +---+a,(rby)
=rT(1)
=T(r)

for all r in R. Hence a1S1+axS>+---+a,S, =T.

27. b. Given vin V, write v =rib; + by +---+r,b,, r; in R. We must show that r; = E;(v) for
each j. To see this, apply the linear transformation E;:

Ej(V) :Ej(l”lbl—|—l"2b2—|—~-~—|—l”jbj—|—-~-—|—rnbn)
:rlEj(bl)-i—rzEj(bz)+---+rjEj(bj)—i—---—i—rnEj(bn)

using the definition of E;.

9.2 Operators and Similarity

3 1
-3 -1 3
10

1

1. b. Phop= [ CD(X) CD(1+)C) CD()CZ) ] = { (l) :

x=—324+1(x+3)+0(x*—1)
T+x=(=1)-2+1(x+3)4+0(x*—1)
=1 240 +3)+1(x* 1)

1 -3 -2 1
3 2 2 0 | because
0 0 2
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Given v = 1 +x+x2, we have

as expected.
1o -1
 Psep=[ Ca(l +x+22) Cs(l—x) CB(—l-l-xz)}:{i | 0]

o1
Ppcp=1]Cp(l) Cp(x) Cp(x?) | :% { _i j é } because

=3[0 +x+x) +(1—x) — (=1 +x%)]
x= % [(1 +x+x2)=2(1—x)—(—1 +x2)}
=11 +x+x) + (1 —x)+2(—1+x7)]

The fact that Pp, g = (Pg._p)~ ! is verified by multiplying these matrices. Next:

Ppep=[Ce(1+x+x?) Ce(l1—x) Cp(—1+4x%)]= [ T o}

1
0
0

(=R -]

Ppep= [ Ce(1) Cg(x) Cg(x?) ] = [ ?

143

where we note the order of the vectors in E = {xz, x, 1 } Finally, matrix multiplication verifies

that P, pPp. p = Pg B.

. LetB={(1, 2, —1), (2, 3, 0), (1, 0, 2)} be the basis formed by the transposes of the columns

of A. Since D is the standard basis:

1 2 1
Pph = [ CD(l, 2, —1) CD(Z, 3, O) CD(l, 0, 2) } = [ 2 3 0 :| =A
-1 0 2
Hence Theorem 9.2.2 gives
6 —4
A" = (Ppep) ' =Pgep=[ Cp(1,0,0) Cp(0,1,0) Cp(0,0,1)]= [ 4 3
3 -2

because

(1,0,0)=6(1, 2, —1)—4(2, 3, 0)+3(1, 0, 2)
(0, 1, 0) = —4(1, 2, —1)+3(2, 3, 0)—2(1, 0, 2)
(0,0, 1)=—3(1, 2, —=1)+2(2, 3, 0)— 1(1, 0, 2)

|
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7. b. Since By = {1, x, x*}, we have

1
P=Pgyep = Cpy(1—22) Cpy(l+x) c30(2x+x2)}:{_?

S = =

- N O
—_

Mp,(T) = [ Cp,[T(1)] Cg,[T(x)] Cp[T(*)] ]
= [ CBO(1+x2) Cg,(1+x) CBO(x+x2) }

N

1
= 0 1
1

Finally
Mg(T) = [ Cs[T(1—22)] Cp[T(1+x)] Cp[T(2x+22)] ]
=[Cp(1—x) Cp(24+x+x?) Cp(2+3x+x?) |

because

1—x=—2(1-x%)+3(1+x) —2(2x+x?)
24x+x2==3(1—x*)+5(1+x) —2(2x+x%)
243x4+x2 = —1(1 —x*) +3(1 +x) +0(2x +x?)

The verification that P~ Mg, (T )P = Mg(T) is equivalent to checking that Mg, (T)P = PMp(T),
and so can be seen by matrix multiplication.

Iap_ [ 5 =2 29 —12 3 21 _[5 =2 321 _[1 o
8. b P AP—[—7 3][70 —29][7 5}—[7 —3}[7 5}—[0 —1]-
Let B= { [ g ] , [ 2 ] } consist of the columns of P. These are eigenvectors of A correspond-
ing to the eigenvalues 1, —1 respectively. Hence,

o= [eo(n[2]) eo(n[2])]-[a[2] @] 2]]-[4 2]
9. b. Choose a basis of R?, say B = {(1, 0), (0, 1)}, and compute

My(1) = [ CH{T(1,0)] Cu[T(0, 1] ] =] Cu(3.2) Cs(5.3)]=[3 3]

Hence, cr(x) = cppy(r)(x) = } x:23 x:53 ‘ = x> —6x — 1. Note that the calculation is easy

because B is the standard basis, but any basis could be used.

d. Use the basis B = {l, X, x2} of P, and compute

Mp(T)

[ CB[T(1)] Cp[T(x)] Cp[T(x*)] ]
[ Ce(1+x—2x%) Cp(1—2x+x*) Cp(—2+x) |
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Hence,

x—1 -1 2
—1 x+2 -1
—x+3 0 x—2

Hence,

0 —1 0 x+1
x—1 0 1 0 x—1 1 4
— (x—l) 0 x+1 0 || -1 o0 0 = x
-1 0 x+1 0 -1 x+1

12. Assume that A and B are both n x n and that null A = null B. Define T : R" — R" by T4 (x) = Ax for
all x in R”; similarly for 7. Then let T = T4 and S = 7. Then ker S = null B and ker 7 = null A
so, by Exercise 28 Section 7.3 there is an isomorphism R : R" — R” such that T = RS. If By is the
standard basis of R”, we have

A = Mg,(T) = My, (RS) = My, (R)M3,(S) = UB

where U = Mp,(R). This is what we wanted because U is invertible by Theorem 9.1.4.

Conversely, assume that A = UB with U invertible. If x is in null A then Ax = 0, so UBx = 0,
whence Bx = 0 (because U is invertible), that is x is in null B. In other words null A C null B. But
B=U"'A so null B C null A by the same argument. Hence null A = null B.

16.  b. We verify first that S is linear. Showing S(w+v) = S(w)+S(v) means showing that Mp(T,,+,) =
Mp(T,) +Mp(T,). If B={b1, by} then column j of Mp(T,,+,) is

CB[TW+V(bj)] = CB[(W-i-V)bj] = CB(ij -l-vbj) = CB(ij) -l-CB(vbj)

because Cp is linear. This is column j of Mp(T,,) + Mp(T,), which shows that S(w+v) =
S(w) 4+ S(v). A similar argument shows that Mp(T,,) = aMp(T,), so S(aw) = aS(w), and
hence that S is linear.

To see that S is one-to-one, let S(w) = 0; by Theorem 7.2.2 we must show that w = 0. We
have Mp(T,,) = S(w) = 0 so, comparing j"" columns, we see that Cp[T;,(b;)] = Cg[wb,] =0 for
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Change of Basis

Jj =1, 2. As Cp is an isomorphism, this means that wb; = 0 for each j. But B is a basis of C and
1 isin C, so there exist » and s in R such that 1 = rb; +sb>. Hence w = wl = rwbq +swb, =0,
as required.

Finally, to show that S(wv) = S(w)S(v) we first show that T,,T;, = T,,,. Indeed, given z in C,
we have

(TwTy)(z) = Tw(Tu(z)) = w(vz) = (wv)z = Th(2)
Since this holds for all z in C, it shows that 7,, T, = T,,,,. But then Theorem 9.2.1 shows that

S(wv) = My(T, T,) = Mp(T,,)M5(T;) = S(w)S(v)

This is what we wanted.

9.3 Invariant Subspaces and Direct Sums

2.

3.

6.

8.

b. Letve T(U),say v=T(u) whereu € U. Then T(v) = T[T (u)] € T(U) because T(u) € U.
This shows that 7 (U) is T-invariant.

b. Given vin S(U), we must show that 7(v) is also in S(U). We have v = S(u) for some u in U.
As ST =TS, we compute:

T(v) =T [S(w)] = (TS)(u) = (ST)(u) = S[T (u)]
As T(u) isin U (because U is T-invariant), this shows that 7(v) = S[T (u)] is in S(U).

Suppose that a subspace U of V is T-invariant for every linear operator 7 : V — V; we must show
that either U =0 or U = V. Assume that U # 0; we must show that U = V. Choose u # 0 in U, and
(by Theorem 6.4.1) extend {u} to a basis {u, e, ..., e,} of V. Now let v be any vector in V. Then
(by Theorem 7.1.3) there is a linear transformation 7' : V — V such that 7(u) = v and T'(e;) =0
for each i. Then v = T (u) lies in U because U is T-invariant. As v was an arbitrary vector in V, it
follows that V =U.

[Remark: The only place we used the hypothesis that V is finite dimensional is in extending {u} to
a basis of V. In fact, this is true for any vector space, even of infinite dimension.]

b. We have U = span {1 —2x2, x+x2}. To show that U is T-invariant, it suffices (by Example
9.3.3) to show that T'(1 —2x?) and T (x +x?) both lie in U. We have

T(1—2x%) =3+43x—3x> =3(1 —2x%) +3(x +x%) } (*)

T(x+x2) = —1+2x* = —(1-2x%)

So both T(1 —2x?) and T (x +x?), so U is T-invariant. To get a block triangular matrix for T
extend the basis {1 —2x%, x +x2} of U to a basis B of V in any way at all, say

B={1 — 2%, x+x2, x2}



0.

10.

9.3. Invariant Subspaces and Direct Sums = 147

Then, using (x), we have
Mp(T)=[ Cp[T(1-2:2)] Cp[T(x+x?)] Cg[T(x*)] ]:[3 é i}

where the last column is because T (x?) = 1 +x+2x? = (1 — 2x?) + (x +x2) +3(x?). Finally,

x—=3 1 -1
-3 X —1
0 0 x-3

1
X

= (x—3)(x* —3x+3)

=(x—3)

cr(x) =

b. Algebraic Solution. If U is T-invariant and U # {0}, U # R?, then dim U = 1. Thus U = Ru

where u # 0. Thus 74 (u) is in Ru (because U is T-invariant), say T4 (u) = ru, that is Au = ru,
whence (r/ —A)u = 0. But

det(rl —A)=| "% =m0 | — (r—cos0)?+sin>6 #£0as sin@ % 0(0 < 6 < )

sin 6 r—cos@

Hence, (r] —A)u = 0 implies u = 0, a contradiction. SoU =0 or U = R2.

Geometric Solution. If we view R? as the euclidean plane, and U # 0, R2, is a T4-invariant
subspace, then U must have dimension 1 and so be a line through the origin (Example 5.2.13).
But T} is rotation through 6 counterclockwise about the origin (Theorem 2.6.4), so it will move
the line U unless 6 = 0 or 6 = 7, contrary to our assumption that 0 < 6 < 7. So no such line
U can exist.

. IfvisinUNW, thenv = (a, a, b, b) = (c, d, ¢, —d) for some a, b, ¢, d. Hence a =c,a=d,

b=cand b= —d. It follows thatd = —d soa=b=c=d =0; thatis UNW = {0}. To see
that R* = U + W, we have (after solving systems of equations)

(1,0,0,0)=14(1, 1, -1, —1)+;( —1,1, 1)isinU4+W
(0,1,0,00=3(1, 1, 1, 1)+ 3(~1, I, =1, —1)isinU+W
(0,0, 1,0)=3(=1, =1, L, )+ 3(1, 1, 1, =1)isinU+ W
0,0,0, )=2(1, 1, 1, )+ 3(~-1, =1, =1, ) isinU+W

Hence, R* = U +W. A simpler argument is as follows. As dim U =2 = dim W, the subspace
U @ W has dimension 2+ 2 = 4 by Theorem 9.3.6. Hence U & W = R* because dim R* = 4.

.IfAisinUNW, then A = [ ] Z}:[ ¢ ]forsomea b,c,d,whencea=b=c=d=0.

—c d
Thus, U NW = {0}. Thus, by Theorem 9.3.7

dm(UeW)=dimU+dimW =2+2=4

Since dim My, =4, we have U & W = Mj;. Again, as in (b), we could show directly that each
0 0 1 0 0 0 07].. .
Of[oo}’[o 0},[10],[01]1smU—l—W.

14. First U is a subspace because OF =0, and AE = A and A|E = A implies that

(A+A))E=AE+A|E=A+A| and (rA)E =r(AE) =rAforall r € R
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Change of Basis

Similarly, W is a subspace because OE = 0, and BE = 0 = B} E implies that we have (B+ B )E =
BE +BjE =0+0=0and (rB)E = r(BE) = r0 =0 for all r € R.

These calculations hold for any matrix E; but if E> = E we get M,,, = U @ W. First UNW = {0}
because X in U NW implies X = XE because X is in U and XE = 0 because X is in W, so X =
XE =0. To prove that U + W = M,,, let X be any matrix in M,,,. Then:

XEisinU because (XE)E =XE?>=XE
X —XEisinW because (X —XE)E=XE—-XE?>=XE-XE=0.

Hence X = XE + (X — XE) where XE is in U and (X — XE) is in W; that is X is in U +W. Thus
M,, =U+W.

By Theorem 6.4.5, we have dim (U NW)+ dim (U +W) = dim U + dim W = n by hypothesis. So
if U+W =V then dim (U + W) = n, whence dim (U NW) = 0. This means that U "W = {0} so,
since U +W =V, we have proved thatV =U @ W.

b. First, ker Ty is Ty-invariant by Exercise 2. Now suppose that U is any Ty-invariant subspace,
U#0,U #R? Then dimU =1, say U = Rp, p # 0. Thus p is in U so Ap = Ty(p) is in
U, say Ap = Ap where A is a real number. Applying A again, we get A”p = AAp = A°p. But
A? =0, so this gives 0 = A%p. Thus A2 =0, whence A =0 and Ap = Ap = 0. Hence p is in
ker Ty, whence U C ker T4. But dim U = 1 = dim (ker T ), so U = ker Tj.

Let B be a basis of U and extend it (using Theorem 6.4.1) to a basis B of V. Then Mp(T) =

[ MB‘O(T) 4 ] by Theorem 9.3.1. Since we are writing 7; for the restriction of T to U, Mp, (T) =

Mg, (T1). Hence,

er(x) = det[xl — Mp(T)] = det [ /T ]
= det[x] —Mp,(T1)] det [xI —Z] = c7,(x) - q(x)
where ¢(x) = det [xI —Z].

b. We have T : P3 — Pj given by T'[p(x)] = p(—x) for all p(x) in P3. We leave it to the reader to
verify that 7 is a linear operator. We have

T*[p(x)] = T{T[p(x)]} = T[p(—x)] = p(—(—x)) = p(x) = Ip,(p(x))
Hence, T? = lp,. As in Example 9.3.10, let
Ur={px) | T[p(x)] = p(x)} = {p(x) | p(—x) = p(x)}
U ={px) | T[p(x)] = —p(x)} ={p() | p(—x) = —p(x)}

These are the subspaces of even and odd polynomials in P3, respectively, and have bases
B =11, xz} and B, = {x, x3}. Hence, use the ordered basis B = {1, X2, x, x3} of P3. Then

[ Mg (T 0 [n o
MB(T>_[ n?) MBZ(T)]—[é 712]

as in Example 9.3.10. More explicitly,

Mg(T) = [ C5[T(1)] Cp[T(x*)] Cp[T(x)] Cp[T(x)] ]
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I
%
—~

-

) Cp(x¥*) Cp(—x) Cp(—x°) |

0 0
1 0
0 -1
0 0

[ o
~ |10 -n

d. Here T?(a, b, ¢) = [—(—a+2b+c)+2((b+c)+(—c), (b+c)—c), —(=c)]=(a, b, ¢), so

T2 :2R3‘

Note that 7'(1, 1, 0) = (1, 1, 0), while (1, 0, 0) = —(1, 0, 0) and T(0, 1, —2) = —(0, 1, —2).
Let By ={(1, 1,0)} and B, ={(1, 0, 0), (0, —1, 2)}. These are bases of U; =R(1, 1, 0) and
U, =R(1,0,0)+R(0, 1, —2), respectively. So if we take B={(1, 1, 0), (1, 0, 0), (0, —1, 2)}

—1 0 Mg, (T) 0 1 0 0
then Mg, (T) =[1] and Mp,(T) = [ o 1 ] Hence Mp(T) = | ™, M, (T) ] =0 o

. Givenv, T[v—T(v)] =T(v) —=T?(v) = T(v) = T(v) = 0, so v—T(v) lies in ker T. Hence

v=(v—T(v))+T(v)isin ker T+ im T for all v, thatis V = ker T 4+ im 7. If v lies in
ker TNim T, write v="T(w), winV. Then 0 =T (v) = T?(w) = T(w) = v, so ker TNim T =
0.

. We first verify that 72 = T'. Given (a, b, ¢) in R3, we have

T?(a, b, ¢)=T(a+2b, 0, 4b+c) = (a+2b, 0, 4b+c) =T(a, b, ¢)
Hence T2 = T. As in the preceding exercise, write
U ={v|T(v)=v} and Uy={v|T(v)=0} = ker(T).

Then we claim that R* = U; @ U,. To show R?® = U; + Ua, observe that v =T (v) + [v— T (V)]
for each v in R?, and 7' (v) is in U; [because T[T (v)] = T?(v) = T(v)] while v — T (v) is in U,
[because T[v — T (v)] = T (v) — T?(v) = 0]. Finally we show that U; NU, = {0}. For if v is in
Uy NU, then T(v) =vand T(v) = 0 so certainly v = 0.

Next, we show that U; and U, are T-invariant. If v is in U; then T(v) is also in U; because
T[T (v)] = T?(v) = T(v). Similarly U, is T-invariant because, if v is in Us, that is T(v) = 0,
then T[T (v)] = T?(v) = R(v) = 0; that is T (v) is also in Uj.

It is clear that T'(a, b, ¢) = (a, b, c) if and only if b = 0; thatis U; = {(a, 0, ¢) | b, cin R},
so By ={(1, 0, 0), (0, 0, 1)} is a basis of U;. Since T'(v) = v for all v in U; the restriction of
T to U, is the identity transformation on Uy, and so has matrix .

Similarly, T'(a, b, ¢) = (0, 0, 0) holds if and only if a = —2b and ¢ = —4b for some b, so
Uy =R(2, —1, 4) and B, = {(2, —1, 4)} is a basis of U,. Clearly the restriction of T to U, is
the zero transformation, and so has matrix 0, — a 1 x 1 matrix.

Finally then, B=B; UB, = {(1, 0, 0), (0, 0, 1), (2, —1, 4)} is a basis of R? (since we have

shown that R3 = U; @ U,), so T has matrix [ MB‘O(T) MBZO(T) ] = [ Ié (?1 }

. We have Tf% AV =T7, 2Ty, (V)] = T, ,[f(v)z] = f[f(V)z]z = f(v)f(z)z. This expression

equals Ty, ,(v) = f(v)z for all v if and only if
fV)(z— f(z)z) =0
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for all v. Since f # 0, f(v) # 0 for some v, so this holds if and only if
z=f(z)z
As z # 0, this holds if and only if f(z) = I.

30. b. Let A be an eigenvalue of T. If A is in E; (T) then T(A) = AA; that is UA = AA. If we write
A= [ Py P - P, } in terms of its columns p;, p,, ..., P, then UA = LA becomes

Ulpr po = P ]=2[p P2 -~ Py ]
[Upy Upy -+ Up, |=[Ap1 Apy -+ Ap, |
Comparing columns gives Up; = Ap; for each i; that is p; is in E, (U) for each i. Conversely,

if p;, po, .-, P, are all in E; (U) then Up; = Ap; for each i, so T(A) = UA = LA as above.
Thus A is in E; (T).



10. Inner Product Spaces

10.1 Inner Products and Norms

1. b. PSfails: (0, 1, 0), (0, 1, 0)) = —1

The other axioms hold. Write x = (x1, x2, x3), Y = (y1, ¥2, y3) and z = (z1, 22, 23)-

P1 holds: (x, y) = x1y; —x2y2 +x3y3 is real for all x,

yin R”.

P2 holds: (X, y) =x1y1 —X2y2 +x3y3 = y1x1 — y2x2 +y3x3 = (¥, X)
P3holds: (x+y,z) = (x+y1)z—(2+y2)+(*x3+y3)53

= (x121 =022+ x323) + (V121 — Y222 +y323) = (X, 2) + (¥, )
P4 holds: (rx, y) = (rx1)y1 — (rx2)y2 + (rx3)y3 = r(x1y1 — x2y2 +x3y3) = r(X, y)
d. P5fails: (x—1,x—1)=0-0=0

P1 holds: (p(x), g(x)) = p(1)g(1) is real.
P2 holds: (p(x), q(x)) = p(1)g(1) = q(1)p(1) = {(q(x), p(x))
P3 holds: (p(x) +r(x), qx)) = [p(1)+r(1)]q(1)=p(1)q(1)+r(1)q(1)

= (p(x), q(x)) +(r(x), q(x))
P4 holds: (rp(x), q(x)) = [rp(1)]q(1) =r[p(1)q(1)] = r{p(x), q(x))

f. P5 fails: Here (f, f) =2f(0)f(1)

P1 holds: (f, g) = f(1)g(0)+ f(0)g(1) is real.
P2 holds: (f, g) = f(1)g(0) +f(0)g(1) = g(1)£(0) +£(0)f(1) = (g. f)
P3holds: (f+h, g) = (F+h)(1)g(0)+(f+h)(0)g(1)

= (1) +A(1)]g(0) +[f(0) +h(0)]g(1)

= [f(1)g(0) +£(0)g(1)] + [1(1)(0) +1(0)g(1)] = (f, &) + (R, &)
P4 holds: (rf, h) = (rf)(1)g(0)+ (rf)(0)g(1) = [r- f(1)]g(0) +[rf(0)]g(1)

= r[f(1)g(0) + f(0)g(1)] =r(f. g)

2. If {, ) denotes the inner product on V, then (u;, uy) is a real number for all u; and u; in U.
Moreover, the axioms P1 — P5 hold for the space U because they hold for V and U is a subset of V.

So (, ) is an inner product for the vector space U.

3. b ||fI? = [Frcos’xdx = [T L[1 4 cos(2x)]dx = 1 [x—i—%sin(Zx)TLr = 7. Hence f = ﬁf is a

unit vector.
2 -1 1 -1
d. VP =tvowy=v"| S ]v=00 ]

(2]

Hence v = —— _3 1s a unit vector in this space.
AR AR p

17

4. b.du,v)=|u—-v|]|=(1,2, -1,2)=(2, 1, -1, 3)|| =

151

I(=1, 1, 0, =1)|| = V3.
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d. |If—gll* = /7. (1 —cosx)?dx = [™ 3 —2cosx+%cos(2x)ltdx because we have cos?(x)
L[1 + cos(2x)]. Hence If—glI* = [3x —2sin(x) +%sin(2x)]_n = 3[n— (—x)] = 37. Hence

d(f, g) = V3.

8. The space D,, uses pointwise addition and scalar multiplication:

(f+g)(k) = f(k) +g(k) and (rf)(k)=rf(k)

forallkzl 2, ..., n.
L {f. 8) = F(1)g(1)+ £(2)g(2) +--+ F(n)g(n) is real.
2 (f.¢) = {(1)g>(1)+f(2)g(2)+~~+f(n)g(n))Zg(l)f(l)+g(2)f(2)+~~+g(n)f(n)
= & f
P3. (f+h g = (f+m)(1)g(1)+(f+1)(2)g(2)+---+(f+h)(n)g(n)
= [f()+r)]e(1) +[f(2) +h(2)|g(2) +-- -+ [f(n) +h(n)|g(n)
= (e +/(2)g(2)+---+f(n)g(n)] +[h(1)g(1) +h(2)g(2) +- -+ h(n)g(n)]
= (f.8)+({hg)
P4 (rf,8) = (rf)(D)e(1)+(rf)(2)8(2) +---+ (rf)(n)g(n)
= [f(D]e(V) +1[rf(2)]g(2) +- +[r (n)]g(n)
= r[f(Ng(1)+f(2)8(2) +---+ f(n)g(n)] = r(f. g)
P5. (f, f) = f(1)*+ f(2)%+---+ f(n)> > O forall . If (f, f) =0 then
f(1)y=f(2)=---= f(n) =0 (as the f(k) are real numbers) so f =0

12.  b. We need only verify P5. [P1 — P4 hold for any symmetric matrix A by (the discussion preced-

ing) Theorem 10.1.2.] If v = [ " } :

1%

(v, v)=viAv=[v v ] [ B _;} [t; ]
= 5v%—6v1v2+2v%
=35 [v% gvlvz-i- 25\/2] %v%—i—ZV%
=5 ( Vz) + lv%
=3 |:(5V1 —3n) —|—v2}

Thus, (v, v) > 0 for all v; and (v, v) = 0 if and only if 5v; — 3v; = 0 = v,; that is if and only

ifvi =v, =0 (@.e. v=0). So P5 holds.
d. Asin (b), consider v = [ V' ]

V2

= 3(v1 + vlvz + 16\/%) - Ev% +6v3
=3(n + §V2) + 413
= 1 [(3vi+4v2)? +243]

Thus, (v, v) > 0 for all v; and (v, v) = 0 if and only if 3v; +4v, = 0 = v,; that is if and only

if v =0. Hence P5 holds. The other axioms hold because A is symmetric.



10.1. Inner Products and Norms 153

13. b IfA= [ Z; Z; }, then g;; is the coefficient of v;w; in (v, w). Here aj; = 1, aip = —1 = ayy,

and arp = 2. Thus, A = [ 7} _é } . Note that a;; = a1, so A is symmetric.

1 0 -2
d. Asin(b):A:[ 0 2 o]_
2 0 5

14. As in the hint, write (x, y) = XTAy. Since A is symmetric, this satisfies axioms P1, P2, P3 and P4
for an inner product on R”"—(and only P2 requires that A be symmetric). Then it follows that

0=(x+y, x+y) = (X, xX)+ (X, ¥) +(y, X) +(y, y) =2(x, y) for all x, y in R".

Hence (x, y) = 0 for all x and y in R". But if e; denotes column j of 1,, then (e;, €;) = el Ae; is the
(i, j)-entry of A. It follows that A = 0.

16. b. (u—2v—w,3w—v) = 3(u, w)—6(v, w) —3(w, w) — (u, v) +2(v, V) + (W, V)
= 3(u, w) = 5(v, w) = 3[w[* — (u, v) +-2]v|]®
= 3.0-5-3-3-3—(—-1)42-4
= —15

20. (1) (u, v+w) 2 (Vv+w, u) B (v, u) +(w, u) £ (u, v) + (u, w)

(2) (v, rw) 2 (rw, v) 2 r{w, V) 2 r{v, w)

(3) By (1): (v, 0) = (v, 0+0) @ (v, 0) + (v, 0). Hence (v, 0) = 0. Now (0, v) =0 by P2.

(4) If v=0then (v, v) = (0, 0) = 0 by (3). If (v, v) = 0 then it is impossible that v # 0 by P5, so
v=0.

22. b, (Bu—4v,5u+v) = 15(u, u)+3u, v) —20(v, u) —4(v, v)
— 15 ]ul — 17(u, ) — 4 ]v|]

d. |lut+v|[?=(@+v,u+v) = (u, u)+u, v)+ (v, u) +4({v, v)
2 2
[ul[”+2(u, v) +[|v]|

26. b. Here

W={w|winR’andv-w=0}
={(x . 2) [x—y+2z=0}
={(s, s+2¢t,1)|s, tin R}
= span B

where B={(1, 1, 0), (0, 2, 1)}. Then B is the desired basis because B is independent
[In fact, if s(1, 1, 0) +¢(0, 2, 1) = (s, s+2¢, 1) = (0, 0, 0) then s =¢ = 0].

28. Write u = v— w; we show that u = (0. We are given that
(a, vi) =(v—w, v;) = (v, v;) = (W, v;) =0
foreach i. AsV = span {vy, ..., v, }, writew = r{v| +--- +r,Vp, r; in R. Then

||ll||2 = <ll, ll> = <ll, ryviy ++rnvn>
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=ri(u, vi)+---+rp(u, vp)
=0

Thus, |jul| =0,sou=0.

29. b. If u= (cos®, sin@) in R? (with the dot product), then |lu|| = 1. If v = (x, y) the Schwarz
inequality (Theorem 10.1.4) gives

(w, )2 < Jul Pl < 1-|Jv]* = |v))?

This is what we wanted.

10.2 Orthogonal Sets of Vectors

(e, e)=[1 1 1]“ z éH(}]:[s 1 3]{”:0
f.0) =11 1]“ z éH—%]:H 1 3]{—%]:0
()= -1 0 1][§ ! éH%]:[_l 0 1}“}:0

Thus, B is an orthogonal basis of V and the expansion theorem gives

_ (v f1>f v, f2>f + v, >f
i T e 2 )
3a+b+3c datbticq, + c 2ae + 3a— 6b+3c e;

<

=4 [(6a +2b+6¢)e; + (7c —Ta)e; + (a—2b+c)es]

al

‘ Z}, [C/ Zj }>:aa’+bb’—|—cc’—|—dd’. Now write B = {fy, f,, f3, f4}
where f; = [(1) (l)],fzz [(1) —(1) },f3: [? é],f4: [ _(1) (1)] Then B is orthogonal be-

d. Observe first that <

cause
<f1,f2>:1—|—0—|—0—1:0 <f2, f3>:0+0—|—0—|—0:()
<f1, f3>:0—|—0—|—0—|—020 <f2, f4>:0—|—0—|—0+020
(£, £4) =04+0+0+0=0 (3, f,) =04+1+0+—-1=0

The expansion theorem gives

—wle  (vEye | (v, f3>f (v, f4>f
Ve T s 2 T s B T

= (58 (5D b (5 t+ (559
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2. b. Writeb;=(1, 1, 1),by =(1, —1, 1),bs = (1, 1, 0). Note that in the Gram-Schmidt algorithm
we may multiply each e; by a nonzero constant and not change the subsequent e;. This avoids
fractions.

fi=b;=(1,1,1)
<b27 el>f
llex

=(1, -1, )= (1, 1, 1)
= %(1 —5, 1); use e3 = (1, —5, 1) with no loss of generality

fr =by—

f3— by — Pofug el
3T T P T el

=(1,1,0)=3(1, 1, )= {5l (1, =5, 1)
= 51(10, 10,9) — (5, 5, 5) + (1, =5, 1)]
:%(3, 0, —2); use f3 = (3, 0, —2) with no loss of generality

\/

\_/A

So the orthogonal basis is {(1, 1, 1), (1, =5, 1), (3, 0, —=2)}.

/

3. b. Note that < [ : Z ] , [ 4 Z; ]> = ad + bb' + cc’ +dd'. For convenience write

C

blZ[é i]’bF[i ?]’bszu ?}’b4:[o 0] Then:

For the rest of the algorithm, use f; = [ ; 7? ] , the result is the same.

. (b3, f)e (b3, f))
B=bs = =T k2

I B ) 21 1 21 =2
— 10 1| 3|0 1| 153 1
_ 1| 1 =2
— 5] 2 1

1

Now use f4 = [ 5 _% ] , the results are unchanged.

T . (ba.f)p  (bafo)e  (bs f3)
! 6 T R 2T )

_[1 o0 1[1 1 11
—[0 0]_§[01]_B[3 1}_
_ 111 0
-2 [ 0 -1 ]

Use f4 = [ (1) f)l for convenience. Hence, finally, the Gram-Schmidt algorithm gives the

orthogonalbasis{[(l) }], [; _f], [_é _f], [(1) _(1)]}.

=

—

|

N —
|

—_ N

[ I
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4 b. fi=1
_ (x, f1) 2.1
fr =x ‘Tlelzfl x—5-1=x—1
2 (P f) (2, £) 283 4/3 2 2
f3—x — )‘lel‘lé fl— )‘C|f2H% fz—x —Tl—m(x—l)—x —2X+§

6. b [x y z w]isinULifandonlyif
x+y=[x y zw]-[1100]=0
Thus y = —x and

UL:{[x —X z w]\x,z,win]R}
=span{[1 -1 0 0],[0 0 10],[000 1]}

Hence dim U+ =3 and U = 1.
d. If p(x) = a+bx+cx?, pisin UL if and only if

1
0= (p, x) :/0 (a+bx+cx2)xdx: %"‘%4‘%

Thus a = 2s+t, b = —3s, ¢ = —2t where s and ¢ are in R, so p(x) = (25 +1) — 3sx — 2¢x°.
Hence, U+ = span {2 —3x, 1 —2x?} and dim U+ =2, dimU = 1.

a b |. . . .
f. {c d]lsmUlfandonlylf

o=(l¢ ][0 o])=a+p
o=([¢ &) [15])=ate
o=([2 3] [1 9]y —arcra

Thesolutiond:O,b:c:—a,soUL:{[ “ 78”ainR}:span{[_} 7(1)}}.Thus
dim U+ =1 and dim U = 3.

7. b Writeby= | ¢} |.ba=| | | |.andby=|§ { | Then {by, bo, bs} isindependent but
not orthogonal. The Gram-Schmidt algorithm gives

fi=bi=|; !

b, f 1 1 1 0 1 1
fz:szufauZl)fl:[l *1}_3[0 1}:[1 *1}

f _ (b3, f1>f (b3, f2>f
=bs =Tt = Tk

}—%[é?}—%[i 0]
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14.
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IfE, = [ _(1) (1) ] then {E|, E, E}} is an orthogonal basis of U. If A = [ § é } then

(A, E3) !
2
|| £4]]

J«2[ 2]+ 0]

: A — <A, E1>E <A» E2>E
Projy A= Bt g et

is the vector in U closest to A.

. We are given U = span{1, 1 +x2}, and applying the Gram-Schmidt algorithm gives an or-

thogonal basis consisting of 1 and

1422, 1 14021+ (1412) 1+ (14221
(1+x2)_<JHrfl\2 = (1427 - )+(1:1+)1+(Jr : = -3+

We use U = span {1, 5—3x?>}. Then Theorem 10.2.8 asserts that the closest vector in U to x
is

. x, 1 , 5-3x% _
projy x = <H1H2>1+ T|"5_3x2”2(5—3x2) =34+ 2(5-3%) =3 (1+24)

Here, for example (x, 5 —3x%) = 0(5) 4+ 1(2) +2(—7) = —12, and the other calculations are
similar.

. {1, 2x— 1} is an orthogonal basis of U because (1, 2x—1) = fol(Zx— 1)dx = 0. Thus

2

=321+ 13 2x—1)

241, 2x—1
1+ <XH—;X*1H2 L (2x—1)

Hence, x> +1 = (x+ %) + (2 —x+ %) is the required decomposition. Check: x> — x + é is in
U+ because

1
(*—x+1, 1):/ (P —x+1)dx=0
0

1
(xz—x—l—%, 2x—1>:/0 (xz—x-i-%) (2x—1)dx=0

. We have (Vv+w, v—w) = (v, V) — (v, W) + (w, v) — (u, u) = ||v]|* = |w||*. But this means

that (v+w, v—u) = 0 if and only if ||v|| = ||w/||. This is what we wanted.

. If visin U~ then (v, u) = 0 for all w in U. In particular, (v, u;) =0 for 1 <i <n, so vis in

{ug, ..., um}L. This shows that U+ C {uy, ..., um}L. Conversely, if vis in {uy, ..., um}L

then (v, u;) =0 for each i. If wis in U, write u = rjuj + - - - + rpyWy, r; in R. Then
<V’ ll> = <V’ 7'1U1+"'—|—7‘mllm>
=ri(v,uy)+ -+ ru(v, uy)
=r-04+---4+r,-0
=0

As u was arbitrary in U, this shows that v is in U; that is {uy, ..., um}L cut.
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18.

19.

20.
23.

Inner Product Spaces

b. Write e; = (3, —2, 5) and e = (—1, 1, 1), write B = {ej, e}, and write U = span B. Then

B is orthogonal and so is an orthogonal basis of U. Thus if v = (-5, 4, —3) then

projy v = el + €2
=28(3, -2, 5)+5(-1 1, 1)
= (-5, 4, =3)
=v
Thus, v is in U. However, if v| = (—1, 0, 2) then

H 2||
3—(3 ~2,5)+3(-1, 1, 1)
%(—17, 24, 73)

As v # projy vi, vq is notin U by (a).

. The plane is U = {x | x-n = 0}, so span {nxw, w—(ﬁ)n} C U. Since dimU = 2,

it suffices to show that B = {n X W, W— <”‘:l—lv|vz n ; is independent. These two vectors are

orthogonal (because (n x w)-n = 0= (nx w)-w). Hence B is orthogonal (and so independent)
provided each of the vectors is nonzero. But: n x w # 0 because n and w are not parallel, and
w— Wn is nonzero because w and n are not parallel, and n- (w — ﬁn) =0.

. Cg(b;) is column i of P. Since Cg(b;) - Cg(b;) = (b;, b;) by (a), the result follows.

. Let V be an inner product space, and let U be a subspace of V. If U = span{fj, ..., f,,}, then

m
proj; v = Z <||f|\2>f by Theorem 10.2.7 so || proj, v||*> = Z< > by Pythagoras’ theorem.

1631

So it sufﬁces to show that || proj,, v||* < [|v||.

Given v in V, write v = u+w where u = proj,, vis in U and w is in U*. Since u and w are
orthogonal, Pythagoras’ theorem (again) gives

2 2 2 2 : 2
V17 = [lall” +{Iw[l" = [Jufl® = [ projy v||

This is what we wanted.

10.3 Orthogonal Diagonalization

1. b IfB:{El,Ez,E3,E4}whereE1:[}) 8],E2:[8 (l)],E3:[(l) g}

and E4 = [ 8 (1) ] , then B is an orthonormal basis for My, and

T(E)) = [ . } — _E,+E;
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TE)= | | |=-E+E
T(Es)=| ! g}:EﬁLzEg
T(E) =" ”:Eﬁza

Hence,

Mp(T) = | CB[T(E1)] C[T(Ey)] C[T(E3)] Cp[T(Es)] ]

As Mp(T) is symmetric, T is a symmetric operator.
. If T is symmetric then (v, T(w)) = (T(v), w) holds for all vand w in V. Given r in R:
(v, (') (W) = (v, rT(w)) = r{v, T(w)) = r(T(v), W) = (rT(v), w) = ((rT)(v), W)
for all vand w in V. This shows that rT is symmetric.
. Given v and w, write T~!(v) = v; and T~ (w) = w;. Then
(T7H(v). w) = (vi, T(w1) = (T(v1), wi) = (v, T~ (w))
This shows that 7! is a symmetric operator.

.IfE={e;=(1,0,0), e 0, 1, 0), e3 = (0, 0, 1)} is the standard basis of R>:

(e1)] Ce[T(e)] Cp[T(e3)] ]
~1,0) Cg(~1,7,0) Cg(0,0,2)]

E
E
7 -1
-1 7
0 0

=
c
-[c
[

0
Thus, cr(x)=| 1 =7 0 |=(x—6)(x—8)(x—2)so the eigenvalues are A} =6, 1, = 8,

and A3 = 2, (real as Mp,(T) is symmetric). Corresponding (orthogonal) eigenvectors are X; =
1 1 0
[ 1 },ng [ -1 },andX3: [0 ],so
0 0 1
1 1 0
1 1
{ﬂé]’ﬁ[é}’ H}

is an orthonormal basis of eigenvectors of Mg (T'). These vectors are equal to Cg [7 (1, 1, O)]

Ck [%(1, -1, O)], and Cg [(0, 0, 1)] respectively, so

{1 1,0), 5501, -1,0). (0,0, 1)}

is an orthonormal basis of eigenvectors of 7.
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12.

14.

Inner Product Spaces

d.

2)

If By = {1, X, x2} then

Mg, (T) = [ C,[T(1)] Cpo[T(x)] Cpo[T(x*)] ]
:[CBO<_1+x2) CBO(3X) CBo(l_xz)]
:[éé’ é}
10 -1
x+1 0 —1
Hence, cr(x)=| 0 x-3 0 |=x(x—3)(x+2)sothe (real)eigenvaluesare A\; =3, 1, =0,

—1 0 x+1
0 1 1
A3 = —2. Corresponding (orthogonal) eigenvectors are x| = [ 1 }, Xy = { 0 ], X3 = [ 0 },
0 1 -1

V2 V2
have the form Cg,(x), Cg, [%(1 —l—xz)] , and Cg, [%(1 —xz)], respectively, so

{x, L1+, %(1-%)}

is an orthonormal basis of eigenvectors of T'.

0 [ 1 1
SO { { 1 } , =1 0 } € { 0 } } is an orthonormal basis of eigenvectors of Mp (7). These
0 1
(

Write A = [ a?’ } and compute:

us(r)=[es(r[4 7)) a(r([V8]) a(r[is]) a(r[db])]
SBI[Z’OSO}] e[ b o] alo o] s ] ]
NP

Hence,

cr(x) = det[xI — Mp(T)] = det{[»g 0 } _ [g 0 ]}

— det [ aea 0 } — det (xI —A) - det (xI —A) = [ca(x)]2

We prove that (1) = (2). If B={fy, ..., f,} is an orthonormal basis of V, then Mp(T) = [a;;]
where a;; = (f;, T(f;)) by Theorem 10.3.2. If (1) holds then aj; = (f;, T(f;)) = —(T(f;), fi) =
—(f;, T(£;)) = —a;;. Hence [My(T)]" = —My(T), proving (2).
We have

Mp(T") = [ Cp[T'(f1)] Co[T'(£2)] -~ Cp[T'(fa)] ]

Hence, column j of Mp(T’) is

() 7(0)
by the definition of 7’. Hence the (i, j)-entry of Mp(T’) is (f;, T(f;)). But this is the (j, i)-
entry of Mg(T) by Theorem 10.3.2. Thus, Mg(T’) is the transpose of Mg(T).
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10.4 Isometries

2. b. WehaveT [ . } = [ . } = [ 7(1) _(1) } [ ; ] so T has matrix [ 7(1) —(1) ], which is orthogonal.
Hence T is an isometry, and det7 = 1 so T is a rotation by Theorem 10.4.4. In fact, T
sin @ cos O

Theorem 2.6.4; see also the discussion following Theorem 10.4.3). This can also be seen
directly from the diagram.

is counterclockwise rotation through 7. (Rotation through 6 has matrix [ cosf - —sinf } by

d. We have T [ ) ] = [ - } = [ 7(1) _é ] [ ) } so T has matrix [ 7(1) _(l) } This is orthogonal,

—a

so T is an isometry. Moreover, det T = —1 so T is a reflection by Theorem 10.4.4. In fact,
T is reflection in the line y = —x by Theorem 2.6.5. This can also be seen directly from the
diagram.

y
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Hence, det T =1 so T is a rotation. Indeed, (the discussion following) Theorem 10.4.3 shows
that 7 is a rotation through an angle 6 where cos 0 = %, sin@ = %; thatis 6 = %.

a 1 \/cha 1 -1 0 \/3_‘ a 1 -1 0 \/5
3. b.T|b|=5|Vate |=5| V3 0 1 b |,s0 T has matrix 5 | v3 o 1 |. Thus,
c 2 0 2 0 ¢ 0 2 0
x+b o0 -4 x+1 0 -4 TR ) s
— 3 J— 3 J— 2 2 J—
a@=| -4 A= 0 et =T N == (P 1)
0 —1 X 0 -1 X

Hence, we are in (1) of Table 10.1 so T is a rotation about the line Re with direction vector

1
e= [ ﬁ } , where e is an eigenvector corresponding to the eigenvalue 1.
3

a a 1 0 0 a 1 0 0
d.T{b]:{—b}:{O -1 0}{b},soThasmatrix{0 -1 0].Thisisorthogonal,

c —c 0 0 -1 0 0 -1
so T is an isometry. Since cz(x) = (x— 1)(x+ 1)?, we are in case (4) of Table 10.1. Then

0
direction vector e, that is the x-axis.

a atc 10 1 a 1 0 1
L | — 1L _ i L _
f. T[f]—ﬂ{ Cﬁab]—ﬁ{(l) f ?} {b},soThasmatnxﬁ[? V2 ?].Hence,

0

1
e= { 0 | is an eigenvector corresponding to 1, so T is a rotation of 7 about the line Re with

=(@+1)| " = (e 1) (2= V2x+1)

0
Thus we are in case (2) of Table 10.1. Now e = [ 1 } is an eigenvector corresponding to the
0

eigenvalue —1, so 7T is rotation (of %’) about the line Re (the y-axis) followed by a reflection
in the plane (Re)™ — the xz-plane.

6. Let T be an arbitrary isometry, and let a be a real number. If aT is an isometry then Theorem 10.4.2
gives
IVl = l[(aT)(¥) || = [la(T (¥))[| = [al [|T (V)| = lal||v]| holds for all v.

Thus |a| = 1 so, since a is real, a = £1. Conversely, if a = £1 then |a| = 1 so we have ||(aT)(v)|| =
la|||T(v)|| = 1||]T(v)| = ||v|| for all v. Hence aT is an isometry by Theorem 10.4.2.

12.  b. Assume that S =Syo7 whereuisinV and T is an isometry of V. Since T is onto (by Theorem
10.4.2), let u = T (w) where w € V. Then for any v € V, we have

(T 0Sw)(v) = T(W+v) = T(W) +T(v) = S (T(¥)) = (Spw o T)(V)

Since this holds for all v € V, it follows that T o Sy = Sy(w) o T
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10.5 An Application to Fourier Approximation

The integrations involved in the computation of the Fourier coefficients are omitted in 1(b), 1(d), and 2(b).

||
N|=|

(COSX—|— c0s3x + c0s5x)

I. b fs
d fs=2+ (smx— Slr122x + 51r133x N 51r41t4x + smSSx) N % (COSX-I— cos3x + c05325x>

-PIFI

2 8 [ cos2x cosdx | cosbx
2. b T T (22—1 + 421 + 62—1>

4. We use the formula that cos(6 £+ ¢) = cosOcos¢ F sinBOsing, so that 2cosOcos@ = cos(6 —
¢)cos(0+¢). Hence:
T T
/ cos(kx) cos(fx)dx = 1 / {cos[(k — £)x] +cos[(k+£)x] } dx
0 0
_ 1 [sin[(k+£)x] +sin[(k—£)x]]”
2|7 kL (k—0)
= 0ifk#L.







11. Canonical Forms

11.1 Block Triangular Form

x+5 -3 1 x+1 —x—1 0 x41 0 0
I. boca(x)=] 4 x2 -1|=| 4 x2 —1|=| 4 xt2 -1 [=(x+1)>.
4 -3 x 4 -3 x 4 1 X
Hence, A; = —1 and we are in case k = 1 of the triangulation algorithm.

4 4 3 -1 4 -3 -1 1 0
—[—A=|4 3 1| =0 0o o0]; =1|1], =] 1
EEE IR ERRIE R HE R

Hence, {p;;, p,} is abasis of null (—/ —A). We now expand this to a basis of null [(— —A)?].

However, (—I —A)? = 0o null [(— —A)?] = R3. Hence, in this case, we expand {p;, p;}
0

to any basis {p;, Pi2» P13} of R?, say by taking p;3 = { 0 } . Hence

1

10 0] _ | 1o 1
P= [ P11 P12 P13 ] = |1 1 o | satisfiesP AP = 0 -1
1 -3 1 0 0 -1
as may be verified.
x+3 1 0 x+3 1 0 43 1 0
d. ca(x)=| 4 x+1 3 |[=| 4 x+1 3 [=| 4 x2 3 |=(x—1)>x+2).
—4 2 x—4 0 —x+1 x—1 0 0 1
Hence A; = 1, A3 = —2, and we are in case k = 2 of the triangulation algorithm.

4 1 0 4 1 0 -1
I—A:[—42—3]—>[03—3];p11:{4}
-4 2 -3 00 o0 4

Thus, null (/ —A) = span {p;, }. We enlarge {p;;} to a basis of null [(—A)?]

M BRI RN PR g ;
— —= — — — ; —= s —
-12 -6 3 0 0 0 P11 4 P12 2

Thus, null [(I—A)?] = span {p;, p;,}. As dim [G}, (A)] =2 in this case (by Lemma 11.1.1),
we have G, (A) = span {p;, p;}. However, it is instructive to continue the process:

A3 4 2 -1
I— — 4 -2 1

( ) { 4 -2 1 }
whence

(I-A)7°=9 { 4o _i } =3(1—-A)?

-4 2
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This continues to give (I —A)* = 32(I —A)?, ..., and in general (I —A)* = 3k=2(1 — A)? for
k > 2. Thus null [(I—A)"} — null [(I—A)z} for all k > 2, 50

Gy, (A) = null | (1=4)’] = span {py. P12}

as we expected. Turning to Ay = —2:

110 110 110 -1
—2[—A:[—4 -1 —3}%{03—3}%{01—1};1)21:{ 1}
4 2 -6 06 —6 00 0 1
Hence, null [—-21 — A] = span {p,; }. We need go no further with this as {p;;, P12, P21} is a
basis of R3. Hence

1 0 1 1 0
P:[pll P12 le}:{ j é i] satisﬁesP‘lAP:[g (1) (2)}

as may be verified.

f. To evaluate c4(x), we begin by adding column 4 to column 1:

x+3 -6 -3 -2 x+1 -6 -3 -2 x+1 -6 -3 -2
(x) = 2 x=3 -2 2| _ | 0 x=3 —2 2| _ | 0 x-3 -2 =2
CAX)=1 1 3 x 1| o =3 x 1|~ o -3 x -1
1 -1 -2 x x+1 -1 -2 X 0 5 1 x+2
x—3 -2 -2 x—=3 -2 0 x—=3 -2 0
=@x+1)| 3 x -1 |=x+1| 3 x —x-1|=x+1)] 2 x+1 0
5 1 x+2 1 x+1 5 1 x+1
_ 1| x-3 =2 . 2 2
=+ ) = e 2 )
Hence, A; = —1, A, = 1 and we are in case k = 2 of the triangulation algorithm. We omit the

details of the row reductions:

2 -6 -3 -2 1

2 -4 -2 =2 0

—I-A= 1 =3 -1 -1 | 7o
1 0

-1 -2 -1

SO = O
SO = OO
|
SO O =
—_ 1

.o

=

—_

—_
1
—_o o ~
—_ 1

S13023 1313 |
2 | 8 12 8 8 0
(“I-A)=| ¢ 10 6 6|0
| 3 5 3 3 0

(=i ]
|
(=N
|
(= eiNei
|

o

=

—_

—_
1
—_ o O —
|

-

=

—_

[\S]
1
O = O =
|

We have dim |G, (A)] =2 as A; = —1 has multiplicity 2 in c4 (x), s0 G, (A) = span {p;, P2}
Turning to A, = 1:

4 -6 -3 -2 1 0 0 -5 5
2 2 -2 2 01 0 -2 |. ]2
I-A= |71 35 | 1]%[0 01 —2 [»P2a1= | 2
L1 -1 2 1 000 0] 1]
T 1 -1 1 57 1 1.0 07 r5 1
2 | o o o o 00 1 0], ]2 I
(I-A)=| 5, 5 5 _>[0 00 1 |Pa=|2 ’pzz_l 0]
11 -5 3| 00 0 0] 1] 0
Hence, G,,(A) = span {p,;, Py, } using Lemma 11.1.1. Finally, then
115 —1 )
. oo 2 -1 . Iap_ | 0 -1 0 o
P=[pPy P2 Par P2 ]=|0 1 > o ] givesPAP=1| | ., ]
1 0 1 o0 0 0 0 1

as may be verified.
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4. Let B be any basis of V and write A = Mp(T). Then c7(x) = ca(x) and this is a polynomial: ¢ (x) =
ap+ayx+ -+ a,x" for some g; in R. Now recall that Mp : L(V, V) — M, is an isomorphism
of vector spaces (Exercise 9.1.26) with the additional property that Mp(T*) = Mp(T)* for k > 1
(Theorem 9.2.1). With this we get

Mpcr(T)| =Mplaply + a1 T+ +a,T"|
=aoMp(ly)+aMp(T)+ - +a,Mp(T)"
=apl +a1A+---+a,A"
=ca(A)
=0

by the Cayley-Hamilton theorem. Hence c7(7) = 0 because Mp is one-to-one.

11.2 Jordan Canonical Form

a 1 0 01 0 01 0 b 0 0 o1 07
2. 10 a0 00 1 |=]0 01 0 a 1 |,and | 0 0o 1 | isinvertible.
0 0 b 1 0 0 1 0 0 0 0 a 10 0






A. Complex Numbers

. X

. 1245i = (24xi)(3 —2i) = (6 4+ 2x) + (—4 + 3x)i. Equating real and imaginary parts gives
6+2x=12, —4+3x=15,s0x=3.

. 5= (2+xi)(2—xi) = (4+x*) +0i. Hence 4 +x> = 5, sox = £1.

C(B=2i)(1+i)+3+4i|=(5+i)+V/O+16=10+i

3-2i  3-7i . (3=20)(1+)  (3-T7i)(2+3i)
= — 23— (=)(i+) _ (2=31)(2+3i)
+i 27550

oot

- %"‘%Z

f. 2-i)P=02-i)?Q-i)=0B-4)2—-i)=2—11i
C(1=i)2(240)? = (—2i)(3+4i) =8 —6i

. iz+1=i+z—6i+3iz=—5i+ (14 3i)z. Hence 1 +5i = (1+2i)z, so

14+5i  (45)(1-28) _ 1143i _ 11 +

= U3
T TH2i T (I+2i)(1-2i) ~ 1+4 T 35 TS

. 22 =3 —4i. If z = a+ bi the condition is (a®> — b*) + (2ab)i = 3 — 4i, whence a*> — b*> =
3 and ab = —2. Thus b = ’72, S0 a® — ;—2 = 3. Hence a* —3a* — 4 = 0. This factors as
(a> —4)(a®>+1) =0, so a = £2, whence b = F1. Finally, z = a + bi = £(2 — ).

. Write z = a + bi. Then the condition reads

(a+bi)(2—i)=(a—Dbi+1)(1+i)
(2a+b)+(2b—a)i=(a+1+Db)+(a+1-0b)i

Thus 2a+b=a+1+band2b—a=a+1—b;whencea=1,b=1,s0z=1+1.
cx= b0/ = L1+
H(-9) V(57422 = f[5+v0] =2 4

. If x = re'® then x> = —8 becomes ¢3¢ = 8¢™. Thus r> = 8 (whence r = 2) and 30 = 7+ 2kT.
Hence 6 = £ +k- %’T, k=0, 1, 2. The roots are

2673 = 1 +/3i (k=0)
2e™ = 2 (k=1)
2657Ii/3:1_\/§i (k:2)
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6.

8.

10.

11.

12.

18.

Complex Numbers

d. If x = re '® then x* = 64 becomes r*e*® = 64¢"0. Hence r* = 64 (whence r = 2v/2) and
40 =042km; 0 = k%, k=0, 1, 2, 3. The roots are

272" =22 (k=0)
2V2e™1% = 2:/2i (k=1)
272" = —2V/2 (k=2)
27263 = _2\/2i (k=3)

b. The quadratic is (x —u)(x— ) = x> — (u+u)x+uti = x> —4x+ 13. The other root is & = 2 + 3i.
d. The quadratic is (x —u)(x—%) = x> — (u+u)x+ui = x> — 6x+25. The other root is 7 = 3 +4i.

If u = 2 — i, then u is a root of (x —u)(x — %) = x* — (u+0)x + ui = x*> — 4x+5.
If v = 3 — 2/, then v is a root of (x —v)(x —¥) = x> — (v4+V)x+ v = x> — 6x+ 13.
Hence u and v are roots of

(x> —4x+5) (x> —6x+ 13) = x* — 10x> + 424> — 82x+ 65

b. Taking x = u = —2: x> +ix — (4 —2i) =4 —2i—4+2i = 0. If v is the other root then u+v = —

(i is the coefficientof x) sov=—u—i=2—1.
d. Takingx=u=—2+i: (—=2+i)> = 3(1—i)(-2+i)—5i
(3—ri)+3(—1+43i)—5i
= 0.

If v is the other root then u +v = —3(1 —i),sov=—-3(1 —i) —u = —1+2i.

b. xz—x—l—(l—i)—Ogivesx—l[l:t —4(1—i)| =1 [1£V/=3+4i]. Write w = /=3 +4i
so w?> = =3 +4i. If w = a+ bi then w? —(a - 2) + (2ab)i, so a> — b* = —3, 2ab = 4. Thus
b=2d—-%=-3, a4+3a —4=0, (@*+4)(a*—1)=0,a=+1,b=42, w==%(1+2i).
F1na11y the roots are S [1 £w] = 1 +1i, —i.

d. x2—3(1—i)x—5i=0givesx =1 [3(1—1):& 9(1—i)2+201} = 1[3(1—i) £ V20 It w =
\/2i then w? = 2i. Write w = a + bi so (a*> — b*) + 2abi = 2i. Hence a* = b* and ab = 1; the
solution is @ = b = =1 so w = £(1 +1i). Thus the roots are x = $(3(1 —i) £=w) =2 —i, 1 —2i.

b. |z— 1| =2 means that the distance from z to 1 is 2. Thus the graph is the circle, radius 2, center
at 1.

d. If z=x+yi, then z = —Z becomes x + yi = —x+ yi. This holds if and only if x = 0; that is if
and only if z = yi. Hence the graph is the imaginary axis.

f. If z=x+yi, then im z =m- re z becomes y = mx. This is the line through the origin with slope
m.

b. —4i =43/

d. ‘—4—1—4\/51" =4v1+3=28and cosp = % = % Thus ¢ = 3, so 6 = 3 T and we have —4 +
44/3i = 8?13,
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20.

23.
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|—646i| =6y/1+1=6v2and cosp = 5~ = % Thus ¢ =% 500 = %’; whence —6+6i =
6\/567371:1/4_

1T/ — p(m/3+2m)i _ ,7i/3 _ g % +isin§ —

1

2
\/ie’m/“:\/i(cos( )—l—zsm(4)):\/§<%—%i>:1—i
2/3e2mi/6 — 2\/7(003( )+151n(7”)):2\/§<%—§i>:\/§—3i

(1+ \/gl) 4= (Zem/3)—4 _ p—4—4mi/3
= L [cos(—4m/3) +isin(—47/3)]

— 116 (_%4—?1’)
= 32"‘\3@
(1-i)0 = [\ﬁ —m’/4] — (v/2)10e57i/2 — (/2)10(-7/2-2)i
= (v2)"% /2 = 23 [cos (F) +isin (FF)]
= 32(0—i)=—32i
(V3-i)?(2-2i)° = { e mi/6)9 [2fe—m/4H
= 2903i/2(2,/2)5¢ 57/
= 2(2P(V2V2 (- L5+ Li)

= 219(—1+i)
= 215(144)

S

Write z = re'®. Then z* = 2(1/3i — 1) becomes r*e*® = 4¢27/3_ Hence r* =4, so r = /2, and
40 = 2E 4 27k; that is
O=Z1Tk  k=0,1,273

The roots are
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/6

d. Write z = re®. Then 76 = —64 becomes r%¢%% = 64¢™. Hence r® = 64, so r =2, and 60 =
7 +27k; thatis 8 = Z + Zk where k=0, 1, 2, 3, 4, 5. The roots are thus z = 2¢™/6+7/3 for
these values of k. In cartesian form they are

kK[ 0 1 2 3 4 5
21V34i 2 —\B4+i —3—i —2i V3-i

b. Each point on the unit circle has polar form ¢ for some angle 6. As the n points are equally
spaced, the angle between consecutive points is 27” Suppose the first point into the first quad-
rant is zo = e*. Write w = 2T/ 1f the points are labeled z1, 22, 23, ..., 2, around the unit
circle, they have polar form

—

7 = e(tx+2ﬂ:/n)i _ eaiezm/n =W
3= e[a+2(27t/n)]i _ eaie477:i/n _ Z1W2
u= e[a+3(27t/n)]i _ eaie677:i/n _ Z1W3

a+(n—1)2x/n)]i _ eaieZ(nfl)ﬂ:i/n 1

n = 6[ = lenf

24 23

22

o 2
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Hence the sum of the roots is
gtntotm=al+wt+w'h) (%)
Now w" = (ezm/")n =e?™ =150
O=1-w"=(1-w)(l+w+w?+--+w" )
As w # 1, this gives 1 +w+--- +w"! = 0. Hence (*) gives

2ttt =2-0=0






B. Proofs

1.

b. (1). We are to prove that if the statement “m is even and n is odd” is true then the statement

“m+n is odd” is also true.
If m is even and n is odd, they have the form m = 2p and n = 2¢ + 1, where p and ¢ are
integers. But then m+n=2(p+¢) + 1 is odd, as required.

(2). The converse is false. It states that if m + n is odd then m is even and #» is odd; and a
counterexample ism =1, n = 2.

. (1). We are to prove that if the statement “x2 —5x+6 = 0" is true then the statement “x = 2 or

x =37 is also true.

Observe first that x> — 5x+6 = (x —2)(x—3). So if x is a number satisfying x> —5x+6 =0

then (x —2)(x—3) — 0 so either x = 2 or x = 3. [Note that we are using an important fact

about real numbers: If the product of two real numbers is zero then one of them is zero.]
(2). The converse is true. It states that if x = 2 or x = 3 then x satisfies the equation 2 —5x+6=

0. This is indeed the case as both x = 2 or x = 3 satisfy this equation.

. The implication here is p = g where p is the statement “n is any odd integer”, and q is the

statement “n“ = 8k + 1 for some integer k”. We are asked to either prove this implication or
give a counterexample.

This implication is true. If p is true then n is odd, say n = 2¢ + 1 for some integer . Then
n? = (2t)2+2(2t) + 1 =4¢(t+ 1) + 1. But £(t+ 1) is even (because ¢ is either even or odd),
say ¢(t+ 1) = 2k where k is an integer. Hence n? = 4¢(¢t 4 1) + 1 = 4(2k) + 1, as required.

. The implication here is p = g where p is the statement “n 4+ m = 25, where n and m are

integers”, and ¢ is the statement “one of m and n is greater than 12" is also true. We are asked
to either prove this implication by the method of contradiction, or give a counterexample.

The implication is true. To prove it by contradiction, we assume that the conclusion ¢ is false,
and look for a contradiction. In this case assuming that g is false means both n < 12 and
m < 12. But then n+ m < 24, contradicting the hypothesis that n 4+ m = 25. So the statement
is true by the method of proof by contradiction.

The converse is false. It states that ¢ = p, that is if one of m and n is greater than 12 then
n+m =25. Butn = 13 and m = 13 is a counterexample.

. The implication here is p = g where p is the statement “mn is even, where n and m are

integers”, and ¢ is the statement “m is even or n is even”. We are asked to either prove this
implication by the method of contradiction, or give a counterexample.

This implication is true. To prove it by contradiction, we assume that the conclusion g is false,
and look for a contradiction. In this case assuming that g is false means that m and » are both
odd. But then mn is odd (if either were even the product would be even). This contradicts the
hypothesis, so the statement is true by the method of proof by contradiction.

The converse is true. It states that if m or n is even then mn is even, and this is true (if m or n
is a multiple of 2, then mn is a multiple of 2).
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4. b. The implication here is: “x is irrational and y is rational” = “x+y is irrational”.

To argue by contradiction, assume that x + y is rational. Then x = (x+y) —y is the difference
of two rational numbers, and so is rational, contrary to the hypothesis that x is irrational.

5. b. Atfirst glance the statement does not appear to be an implication. But another way to say it is
that if the statement “n > 2” is true then the statement “n3 > 2" is also true.
This is not true. In fact, n = 10 is a counterexample because 10° = 1000 while 2!° = 1024. Tt
is worth noting that the statement n3 > 2" does hold for2 < n < 9.



C. Mathematical Induction

6. Write S, for the statement
T2t a3ty = (Sn)

Then S is true: It reads % S + 7> which is true. Now assume S, is true for some n > 1. We must
use S, to show that S, | is also true. The statement S, | reads as follows:

_ ntl
T taste +(n+1)(n+z)—Z?

1

The second last term on the left side is ——~
n(n+1)

SO we can use S;,:

1
tstast ot amey = |iatato (n+l)] T e
_ 1
= T T e
_ n(n+2)+1
= i) (nr2)
(n+1)2
D612

_ n+l
T nt2

Thus S+ is true and the induction is complete.

\/_ \/_ \/_I’l < \/7 ( ’l)

Then S is true as it asserts that < 2v/1— 1, which is true. Now assume that S, is true for some
n > 1. We must use S,, to show that Sp+1 1s also true. The statement S, reads as follows:

1 _ 1 1 1 1
R R Rl b R R R
g[zx/ﬁ—lhﬁ
_ 2Vnitntl g
Vit

2(nt1)
< vn+1 1

=2vn+1-1

where, at the second last step, we used the fact that v/n? +n < (n+ 1)—this follows by showing that
n?+n < (n+1)2, and taking positive square roots. Thus S, is true and the induction is complete.

18. Let S,, stand for the statement

n® — n is a multiple of 3.
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20.

22.

Mathematical Induction

Clearly S is true. If S,, is true, then n® — n = 3k for some integer k. Compute:

(n+17°—(n+1)= (n*+3n*+3n+1)— (n+1)
=3k+3n*+3n

which is clearly a multiple of 3. Hence S, | is true, and so S, is true for every n by induction.

Look at the first few values: By =1, By =5, B3 =23, B4 =119, .... If these are compared to the
factorials: 1! =1, 2! =4, 31 =6, 4! =24, 5! =120, ..., itis clear that B, = (n+ 1)! — 1 holds for
n=1, 2,3, 4and 5. So it seems a reasonable conjecture that

B,=(n+1)!—1forn>1. (S,)
This certainly holds for n = 1: B; =1 =2!— 1. If this is true for some n > 1, then

-1 42214+ +n-nl]4+(n+1)(n+1)!
(n+1)!'=1]+m+1)(n+1)!

Bn+1:[
[
(nt D)L+ (n+1)]—1
(
(

n+1)!n+2]—1
n+2)—1

Hence S,,+1 is true and so the induction goes through.

Note that many times mathematical theorems are discovered by “experiment”’, somewhat as in this
example. Several examples are worked out, a pattern is observed and formulated, and the result is
proved (often by induction).

b. If we know that S,, = S,,+3 then it is enough to verify that Sy, S, S3, S4, S5, S¢, 57, and Sg are
all true. Then

ST = S = S17 = S5 =
S = S0 = Sigs = S =
S3 = S = S99 = Sy =
S4 = Sp = S = Sy =
Ss = S3 = S = Sy =
S¢ = Su = S»n = S =
S7 = S5 = S»an = §31 =
S = Sig = S = S =

Clearly each §,, will appear in this array, and so will be true.
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