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Preface

Elementary Differential Equations with Boundary Value Problems is written for students in science, en-
gineering, and mathematics who have completed calculus through partial differentiation. If your syllabus
includes Chapter 10 (Linear Systems of Differential Equations), your students should have some prepa-
ration in linear algebra.

In writing this book I have been guided by the these principles:

* An elementary text should be written so the student can read it with comprehension without too
much pain. I have tried to put myself in the student’s place, and have chosen to err on the side of
too much detail rather than not enough.

* An elementary text can’t be better than its exercises. This text includes 2041 numbered exercises,
many with several parts. They range in difficulty from routine to very challenging.

* An elementary text should be written in an informal but mathematically accurate way, illustrated
by appropriate graphics. I have tried to formulate mathematical concepts succinctly in language
that students can understand. I have minimized the number of explicitly stated theorems and def-
initions, preferring to deal with concepts in a more conversational way, copiously illustrated by
299 completely worked out examples. Where appropriate, concepts and results are depicted in 188
figures.

Although I believe that the computer is an immensely valuable tool for learning, doing, and writing
mathematics, the selection and treatment of topics in this text reflects my pedagogical orientation along
traditional lines. However, I have incorporated what I believe to be the best use of modern technology,
so you can select the level of technology that you want to include in your course. The text includes 414
exercises — identified by the symbols and — that call for graphics or computation and graphics.

There are also 79 laboratory exercises — identified by — that require extensive use of technology. In
addition, several sections include informal advice on the use of technology. If you prefer not to emphasize
technology, simply ignore these exercises and the advice.

There are two schools of thought on whether techniques and applications should be treated together or
separately. I have chosen to separate them; thus, Chapter 2 deals with techniques for solving first order
equations, and Chapter 4 deals with applications. Similarly, Chapter 5 deals with techniques for solving
second order equations, and Chapter 6 deals with applications. However, the exercise sets of the sections
dealing with techniques include some applied problems.

Traditionally oriented elementary differential equations texts are occasionally criticized as being col-
lections of unrelated methods for solving miscellaneous problems. To some extent this is true; after all,
no single method applies to all situations. Nevertheless, I believe that one idea can go a long way toward
unifying some of the techniques for solving diverse problems: variation of parameters. I use variation of
parameters at the earliest opportunity in Section 2.1, to solve the nonhomogeneous linear equation, given
a nontrivial solution of the complementary equation. You may find this annoying, since most of us learned
that one should use integrating factors for this task, while perhaps mentioning the variation of parameters
option in an exercise. However, there’s little difference between the two approaches, since an integrating
factor is nothing more than the reciprocal of a nontrivial solution of the complementary equation. The
advantage of using variation of parameters here is that it introduces the concept in its simplest form and

vii
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focuses the student’s attention on the idea of seeking a solution y of a differential equation by writing it
as y = uy, where y; is a known solution of related equation and u is a function to be determined. I use
this idea in nonstandard ways, as follows:

* In Section 2.4 to solve nonlinear first order equations, such as Bernoulli equations and nonlinear
homogeneous equations.

* In Chapter 3 for numerical solution of semilinear first order equations.

* In Section 5.2 to avoid the necessity of introducing complex exponentials in solving a second or-
der constant coefficient homogeneous equation with characteristic polynomials that have complex
ZEeros.

e In Sections 5.4, 5.5, and 9.3 for the method of undetermined coefficients. (If the method of an-
nihilators is your preferred approach to this problem, compare the labor involved in solving, for
example, ¥’ + 3/ + y = 2*¢® by the method of annihilators and the method used in Section 5.4.)

Introducing variation of parameters as early as possible (Section 2.1) prepares the student for the con-
cept when it appears again in more complex forms in Section 5.6, where reduction of order is used not
merely to find a second solution of the complementary equation, but also to find the general solution of the
nonhomogeneous equation, and in Sections 5.7, 9.4, and 10.7, that treat the usual variation of parameters
problem for second and higher order linear equations and for linear systems.

Chapter 11 develops the theory of Fourier series. Section 11.1 discusses the five main eigenvalue prob-
lems that arise in connection with the method of separation of variables for the heat and wave equations
and for Laplace’s equation over a rectangular domain:

Problem 1: ¥y +xy=0, y(0)=0, y(L)=0

Problem 2: ¥y +xy=0, ¢(0)=0, ¥ (L)=0

Problem 3: y' +xy=0, y(0)=0, ¢y'(L)=0

Problem 4: ¥V +2y=0, ¢y(0)=0, y(L)=0

Problem 5: y' +xy=0, y(-L)=y(L), y(-L)=y' (L)

These problems are handled in a unified way for example, a single theorem shows that the eigenvalues
of all five problems are nonnegative.

Section 11.2 presents the Fourier series expansion of functions defined on on [—L, L], interpreting it
as an expansion in terms of the eigenfunctions of Problem 5.

Section 11.3 presents the Fourier sine and cosine expansions of functions defined on [0, L], interpreting
them as expansions in terms of the eigenfunctions of Problems 1 and 2, respectively. In addition, Sec-
tion 11.2 includes what I call the mixed Fourier sine and cosine expansions, in terms of the eigenfunctions
of Problems 4 and 5, respectively. In all cases, the convergence properties of these series are deduced
from the convergence properties of the Fourier series discussed in Section 11.1.

Chapter 12 consists of four sections devoted to the heat equation, the wave equation, and Laplace’s
equation in rectangular and polar coordinates. For all three, I consider homogeneous boundary conditions
of the four types occurring in Problems 1-4. I present the method of separation of variables as a way of
choosing the appropriate form for the series expansion of the solution of the given problem, stating—
without belaboring the point—that the expansion may fall short of being an actual solution, and giving
an indication of conditions under which the formal solution is an actual solution. In particular, I found it
necessary to devote some detail to this question in connection with the wave equation in Section 12.2.

In Sections 12.1 (The Heat Equation) and 12.2 (The Wave Equation) I devote considerable effort to
devising examples and numerous exercises where the functions defining the initial conditions satisfy
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the homogeneous boundary conditions. Similarly, in most of the examples and exercises Section 12.3
(Laplace’s Equation), the functions defining the boundary conditions on a given side of the rectangular
domain satisfy homogeneous boundary conditions at the endpoints of the same type (Dirichlet or Neu-
mann) as the boundary conditions imposed on adjacent sides of the region. Therefore the formal solutions
obtained in many of the examples and exercises are actual solutions.

Section 13.1 deals with two-point value problems for a second order ordinary differential equation.
Conditions for existence and uniqueness of solutions are given, and the construction of Green’s functions
is included.

Section 13.2 presents the elementary aspects of Sturm-Liouville theory.

You may also find the following to be of interest:

Section 2.6 deals with integrating factors of the form ;1 = p(z)q(y), in addition to those of the
form p = p(x) and p = ¢(y) discussed in most texts.

Section 4.4 makes phase plane analysis of nonlinear second order autonomous equations accessi-
ble to students who have not taken linear algebra, since eigenvalues and eigenvectors do not enter
into the treatment. Phase plane analysis of constant coefficient linear systems is included in Sec-
tions 10.4-6.

Section 4.5 presents an extensive discussion of applications of differential equations to curves.

Section 6.4 studies motion under a central force, which may be useful to students interested in the
mathematics of satellite orbits.

Sections 7.5-7 present the method of Frobenius in more detail than in most texts. The approach
is to systematize the computations in a way that avoids the necessity of substituting the unknown
Frobenius series into each equation. This leads to efficiency in the computation of the coefficients
of the Frobenius solution. It also clarifies the case where the roots of the indicial equation differ by
an integer (Section 7.7).

The free Student Solutions Manual contains solutions of most of the even-numbered exercises.

The free Instructor’s Solutions Manual is available by email to wtrench@trinity.edu, subject to
verification of the requestor’s faculty status.

The following observations may be helpful as you choose your syllabus:

Section 2.3 is the only specific prerequisite for Chapter 3. To accomodate institutions that offer a
separate course in numerical analysis, Chapter 3 is not a prerequisite for any other section in the
text.

The sections in Chapter 4 are independent of each other, and are not prerequisites for any of the
later chapters. This is also true of the sections in Chapter 6, except that Section 6.1 is a prerequisite
for Section 6.2.

Chapters 7, 8, and 9 can be covered in any order after the topics selected from Chapter 5. For
example, you can proceed directly from Chapter 5 to Chapter 9.

The second order Euler equation is discussed in Section 7.4, where it sets the stage for the method
of Frobenius. As noted at the beginning of Section 7.4, if you want to include Euler equations in
your syllabus while omitting the method of Frobenius, you can skip the introductory paragraphs
in Section 7.4 and begin with Definition 7.4.2. You can then cover Section 7.4 immediately after
Section 5.2.

Chapters 11, 12, and 13 can be covered at any time after the completion of Chapter 5.

William F. Trench


mailto:wtrench@trinity.edu

CHAPTER 1
Introduction

IN THIS CHAPTER we begin our study of differential equations.
SECTION 1.1 presents examples of applications that lead to differential equations.
SECTION 1.2 introduces basic concepts and definitions concerning differential equations.

SECTION 1.3 presents a geometric method for dealing with differential equations that has been known
for a very long time, but has become particularly useful and important with the proliferation of readily
available differential equations software.



2 Chapter 1 Introduction
1.1 APPLICATIONS LEADING TO DIFFERENTIAL EQUATIONS

In order to apply mathematical methods to a physical or “real life” problem, we must formulate the prob-
lem in mathematical terms; that is, we must construct a mathematical model for the problem. Many
physical problems concern relationships between changing quantities. Since rates of change are repre-
sented mathematically by derivatives, mathematical models often involve equations relating an unknown
function and one or more of its derivatives. Such equations are differential equations. They are the subject
of this book.

Much of calculus is devoted to learning mathematical techniques that are applied in later courses in
mathematics and the sciences; you wouldn’t have time to learn much calculus if you insisted on seeing
a specific application of every topic covered in the course. Similarly, much of this book is devoted to
methods that can be applied in later courses. Only a relatively small part of the book is devoted to
the derivation of specific differential equations from mathematical models, or relating the differential
equations that we study to specific applications. In this section we mention a few such applications.

The mathematical model for an applied problem is almost always simpler than the actual situation
being studied, since simplifying assumptions are usually required to obtain a mathematical problem that
can be solved. For example, in modeling the motion of a falling object, we might neglect air resistance
and the gravitational pull of celestial bodies other than Earth, or in modeling population growth we might
assume that the population grows continuously rather than in discrete steps.

A good mathematical model has two important properties:

* It’s sufficiently simple so that the mathematical problem can be solved.

* It represents the actual situation sufficiently well so that the solution to the mathematical problem
predicts the outcome of the real problem to within a useful degree of accuracy. If results predicted
by the model don’t agree with physical observations, the underlying assumptions of the model must
be revised until satisfactory agreement is obtained.

We’ll now give examples of mathematical models involving differential equations. We’ll return to these
problems at the appropriate times, as we learn how to solve the various types of differential equations that
occur in the models.

All the examples in this section deal with functions of time, which we denote by ¢. If y is a function of
t, 3y denotes the derivative of y with respect to ¢; thus,

y =
dt’

Population Growth and Decay

Although the number of members of a population (people in a given country, bacteria in a laboratory cul-
ture, wildflowers in a forest, etc.) at any given time ¢ is necessarily an integer, models that use differential
equations to describe the growth and decay of populations usually rest on the simplifying assumption that
the number of members of the population can be regarded as a differentiable function P = P(t). In most
models it is assumed that the differential equation takes the form

P’ = a(P)P, (1.1.1)

where a is a continuous function of P that represents the rate of change of population per unit time per
individual. In the Malthusian model, it is assumed that a(P) is a constant, so (1.1.1) becomes

P’ =aP. (1.1.2)


http://en.wikipedia.org/wiki/Thomas_Robert_Malthus
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(When you see a name in blue italics, just click on it for information about the person.) This model
assumes that the numbers of births and deaths per unit time are both proportional to the population. The
constants of proportionality are the birth rate (births per unit time per individual) and the death rate
(deaths per unit time per individual); a is the birth rate minus the death rate. You learned in calculus that
if ¢ is any constant then

P = ce™ (1.1.3)

satisfies (1.1.2), so (1.1.2) has infinitely many solutions. To select the solution of the specific problem
that we’re considering, we must know the population Py at an initial time, say ¢t = 0. Setting ¢ = 0 in
(1.1.3) yields ¢ = P(0) = P, so the applicable solution is

P(t) = Poeat.

This implies that
. oo ifa >0,
Jim P(t) = { 0 ifa<0;
that is, the population approaches infinity if the birth rate exceeds the death rate, or zero if the death rate
exceeds the birth rate.

To see the limitations of the Malthusian model, suppose we’re modeling the population of a country,
starting from a time ¢ = O when the birth rate exceeds the death rate (so a > 0), and the country’s
resources in terms of space, food supply, and other necessities of life can support the existing popula-
tion. Then the prediction P = Pye* may be reasonably accurate as long as it remains within limits
that the country’s resources can support. However, the model must inevitably lose validity when the pre-
diction exceeds these limits. (If nothing else, eventually there won’t be enough space for the predicted
population!)

This flaw in the Malthusian model suggests the need for a model that accounts for limitations of space
and resources that tend to oppose the rate of population growth as the population increases. Perhaps the
most famous model of this kind is the Verhulst model, where (1.1.2) is replaced by

P’ =aP(1 - aP), (1.1.4)

where « is a positive constant. As long as P is small compared to 1/, the ratio P’/ P is approximately
equal to a. Therefore the growth is approximately exponential; however, as P increases, the ratio P’/ P
decreases as opposing factors become significant.

Equation (1.1.4) is the logistic equation. You will learn how to solve it in Section 1.2. (See Exer-
cise 2.2.28.) The solution is

P
pP= 2 :
aPy+ (1 — aPy)eat

where Py = P(0) > 0. Therefore lim;_,o, P(t) = 1/«, independent of P,.

Figure 1.1.1 shows typical graphs of P versus ¢ for various values of Fj.

Newton’s Law of Cooling

According to Newton’s law of cooling, the temperature of a body changes at a rate proportional to the
difference between the temperature of the body and the temperature of the surrounding medium. Thus, if
T, is the temperature of the medium and 7' = T'(t) is the temperature of the body at time ¢, then

T = —k(T — Tp,), (1.1.5)

where k is a positive constant and the minus sign indicates; that the temperature of the body increases with
time if it’s less than the temperature of the medium, or decreases if it’s greater. We’ll see in Section 4.2
that if 7}, is constant then the solution of (1.1.5) is

T =T, + (To — Tpn)e ™, (1.1.6)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Verhulst.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
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1/00

Figure 1.1.1 Solutions of the logistic equation

where Ty is the temperature of the body when ¢ = 0. Therefore lim;_, o, T'(t) = Ty, independent of Tj.
(Common sense suggests this. Why?)

Figure 1.1.2 shows typical graphs of 1" versus ¢ for various values of Tj.

Assuming that the medium remains at constant temperature seems reasonable if we’re considering a
cup of coffee cooling in a room, but not if we’re cooling a huge cauldron of molten metal in the same
room. The difference between the two situations is that the heat lost by the coffee isn’t likely to raise the
temperature of the room appreciably, but the heat lost by the cooling metal is. In this second situation we
must use a model that accounts for the heat exchanged between the object and the medium. Let T = T'(¢)
and T,,, = T,,(t) be the temperatures of the object and the medium respectively, and let Ty and T},
be their initial values. Again, we assume that 7" and 7T,,, are related by (1.1.5). We also assume that the
change in heat of the object as its temperature changes from Tj to T is a(T' — Tp) and the change in heat
of the medium as its temperature changes from 7T},,0 to T, i @y (T — Tino ), where a and a,,, are positive
constants depending upon the masses and thermal properties of the object and medium respectively. If
we assume that the total heat of the in the object and the medium remains constant (that is, energy is
conserved), then

a(T = To) + am(T — Tino) = 0.

Solving this for T},, and substituting the result into (1.1.6) yields the differential equation
T = —k (1+ i) T+k (Tmo + iTo>
am m

for the temperature of the object. After learning to solve linear first order equations, you’ll be able to
show (Exercise 4.2.17) that

CLTO + CLmeO CLm(TO — TmO) efk(1+a/am)t
a4+ anm, a+ an, '
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Figure 1.1.2 Temperature according to Newton’s Law of Cooling

Glucose Absorption by the Body

Glucose is absorbed by the body at a rate proportional to the amount of glucose present in the bloodstream.
Let A denote the (positive) constant of proportionality. Suppose there are (G units of glucose in the
bloodstream when ¢t = 0, and let G = G(t) be the number of units in the bloodstream at time ¢ > 0.
Then, since the glucose being absorbed by the body is leaving the bloodstream, G satisfies the equation

G = -)\G. 1.1.7)
From calculus you know that if ¢ is any constant then
G =ce M (1.1.8)

satisfies (1.1.7), so (1.1.7) has infinitely many solutions. Setting ¢ = 0 in (1.1.8) and requiring that
G(0) = Gy yields ¢ = Gy, so
G(t) = Goei)\t.

Now let’s complicate matters by injecting glucose intravenously at a constant rate of r units of glucose
per unit of time. Then the rate of change of the amount of glucose in the bloodstream per unit time is

G = -A\G +r, (1.1.9)

where the first term on the right is due to the absorption of the glucose by the body and the second term
is due to the injection. After you’ve studied Section 2.1, you’ll be able to show (Exercise 2.1.43) that the
solution of (1.1.9) that satisfies G(0) = Gy is

G= §+ (Go- g) e,
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Graphs of this function are similar to those in Figure 1.1.2. (Why?)
Spread of Epidemics

One model for the spread of epidemics assumes that the number of people infected changes at a rate
proportional to the product of the number of people already infected and the number of people who are
susceptible, but not yet infected. Therefore, if .S denotes the total population of susceptible people and
I = I(t) denotes the number of infected people at time ¢, then S — [ is the number of people who are
susceptible, but not yet infected. Thus,

I'=rI(S-1),
where r is a positive constant. Assuming that I(0) = Iy, the solution of this equation is
STy

1

T Io+ (S —Ip)e 7St

(Exercise 2.229). Graphs of this function are similar to those in Figure 1.1.1. (Why?) Since lim;_,, I(t) =
S, this model predicts that all the susceptible people eventually become infected.

Newton’s Second Law of Motion

According to Newton’s second law of motion, the instantaneous acceleration a of an object with con-
stant mass m is related to the force F' acting on the object by the equation F' = ma. For simplicity, let’s
assume that m = 1 and the motion of the object is along a vertical line. Let y be the displacement of the
object from some reference point on Earth’s surface, measured positive upward. In many applications,
there are three kinds of forces that may act on the object:

(a) A force such as gravity that depends only on the position y, which we write as —p(y), where
p(y) > 0ify > 0.

(b) A force such as atmospheric resistance that depends on the position and velocity of the object, which
we write as —q(y, y')y’, where ¢ is a nonnegative function and we’ve put ¢y’ “outside” to indicate
that the resistive force is always in the direction opposite to the velocity.

(c) Aforce f = f(t), exerted from an external source (such as a towline from a helicopter) that depends
only on .
In this case, Newton’s second law implies that

/!

y' =—aly,y )y —ply) + (1),
which is usually rewritten as
v +aly,y )y +ply) = (0.

Since the second (and no higher) order derivative of y occurs in this equation, we say that it is a second
order differential equation.

Interacting Species: Competition

Let P = P(t) and Q = Q(t) be the populations of two species at time ¢, and assume that each population
would grow exponentially if the other didn’t exist; that is, in the absence of competition we would have

P'=aP and Q' =0bQ, (1.1.10)

where a and b are positive constants. One way to model the effect of competition is to assume that
the growth rate per individual of each population is reduced by an amount proportional to the other
population, so (1.1.10) is replaced by

P = aP —a@

Q = -pP+0Q,


http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
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where o« and (3 are positive constants. (Since negative population doesn’t make sense, this system works
only while P and @ are both positive.) Now suppose P(0) = P, > 0 and Q(0) = Qo > 0. It can
be shown (Exercise 10.4.42) that there’s a positive constant p such that if (P, Qo) is above the line L
through the origin with slope p, then the species with population P becomes extinct in finite time, but if
(Po, Qo) is below L, the species with population () becomes extinct in finite time. Figure 1.1.3 illustrates
this. The curves shown there are given parametrically by P = P(t),Q = Q(t), ¢ > 0. The arrows
indicate direction along the curves with increasing ¢.
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Figure 1.1.3 Populations of competing species

1.2 BASIC CONCEPTS

A differential equation is an equation that contains one or more derivatives of an unknown function.
The order of a differential equation is the order of the highest derivative that it contains. A differential
equation is an ordinary differential equation if it involves an unknown function of only one variable, or a
partial differential equation if it involves partial derivatives of a function of more than one variable. For
now we’ll consider only ordinary differential equations, and we’ll just call them differential equations.

Throughout this text, all variables and constants are real unless it’s stated otherwise. We’ll usually use
z for the independent variable unless the independent variable is time; then we’ll use £.

The simplest differential equations are first order equations of the form

dy B

de
where f is a known function of z. We already know from calculus how to find functions that satisfy this
kind of equation. For example, if

(z) or, equivalently, o' = f(x),

Yy =x,



8 Chapter | Introduction

then .
y:/x?’d:c:%—l—c,

where c is an arbitrary constant. If n > 1 we can find functions y that satisfy equations of the form

y" = f(z) (1.2.1)

by repeated integration. Again, this is a calculus problem.
Except for illustrative purposes in this section, there’s no need to consider differential equations like
(1.2.1).We’ll usually consider differential equations that can be written as

v = fayy .y Y), (1.2.2)
where at least one of the functions y, ¢/, ..., y(»~1) actually appears on the right. Here are some exam-
ples:

d

Y _ g2 = 0 (first order),

dx

d

il + 2xy2 = =2 (first order),

dx
d? d
£y + 2—y +y = 2z (second order),

2 dx
2y +y?> = sinx (third order),

Yy +ay +3y = (n-th order).

Although none of these equations is written as in (1.2.2), all of them can be written in this form:

2

y = 7

Yy = —2-2xy,

y' o= 202y —y,

S = sinz — 32
x

y™ = x—axy —3y.

Solutions of Differential Equations

A solution of a differential equation is a function that satisfies the differential equation on some open
interval; thus, y is a solution of (1.2.2) if y is n times differentiable and

y(n) (.CC) = f(ZC, y('r)a y/(x)a R y(nil)('r))

for all = in some open interval (a,b). In this case, we also say that y is a solution of (1.2.2) on (a,b).
Functions that satisfy a differential equation at isolated points are not interesting. For example, y = z2
satisfies

zy +a2? =3z

if and only if x = O or x = 1, but it’s not a solution of this differential equation because it does not satisfy
the equation on an open interval.

The graph of a solution of a differential equation is a solution curve. More generally, a curve C'is said
to be an integral curve of a differential equation if every function y = y(x) whose graph is a segment
of C'is a solution of the differential equation. Thus, any solution curve of a differential equation is an
integral curve, but an integral curve need not be a solution curve.
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Example 1.2.1 If a is any positive constant, the circle

x2+y2:a2

is an integral curve of

y=—.
y

To see this, note that the only functions whose graphs are segments of (1.2.3) are

1 =VvVa?—22 and 1y = —Va?— 22

(1.2.3)

(1.2.4)

We leave it to you to verify that these functions both satisfy (1.2.4) on the open interval (—a, a). However,

(1.2.3) is not a solution curve of (1.2.4), since it’s not the graph of a function.

Example 1.2.2 Verify that

- x? n 1

v= 3 T
is a solution of

oy +y=a’
on (0, 00) and on (—oc, 0).
Solution Substituting (1.2.5) and

;2T 1
v= 3 x2

into (1.2.6) yields
2z 1 2 1
xy’(x) —i—y(:c) =x (3 — §> + (? + E) =z

(1.2.5)

(1.2.6)

for all « # 0. Therefore y is a solution of (1.2.6) on (—oc0, 0) and (0, co). However, y isn’t a solution of

the differential equation on any open interval that contains z = 0, since y is not defined at x = 0.

Figure 1.2.1 shows the graph of (1.2.5). The part of the graph of (1.2.5) on (0, c0) is a solution curve

of (1.2.6), as is the part of the graph on (—oo, 0).
Example 1.2.3 Show that if ¢; and c5 are constants then
y=(c1+cox)e *+2x—4

18 a solution of
y//+2y/+y:2x

on (—00, 00).

Solution Differentiating (1.2.7) twice yields

/

Yy =—(c1+cex)e T +coe T+ 2

and

Yy = (c1 + caz)e™ ™ — 2c0e” ",

(1.2.7)

(1.2.8)
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I2

Figure 1.2.1 y = 3 +

8=

SO

x

y// +2y/ +y

(c1 + com)e™™ — 2coe™

+2 [—(cl + cox)e” T 4 coe”

+(c1 + cox)e P+ 20 —4

= (1-24+1)(c1 4+ cox)e ™ + (=2 + 2)coe™ ™

+4 4+ 2x —4 =2x

for all values of . Therefore y is a solution of (1.2.8) on (—oc0, 00).

Example 1.2.4 Find all solutions of

y(n) — 27
Solution Integrating (1.2.9) yields
2z
m-1)_ ¢
Y 9 + K1,

where k; is a constant. If n > 2, integrating again yields

e2x
y(n72) = T —+ klx —+ k2.
If n > 3, repeatedly integrating yields
e2x xnfl xn72
Y=oy th

2n (n—1)! (n—2)

+ ks ERE

+ kn,

(1.2.9)

(1.2.10)
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where kq, ko, ..., k, are constants. This shows that every solution of (1.2.9) has the form (1.2.10) for
some choice of the constants k1, ko, ..., k,. On the other hand, differentiating (1.2.10) n times shows
that if k1, ko, ..., k, are arbitrary constants, then the function y in (1.2.10) satisfies (1.2.9).

Since the constants k1, ko, ..., k, in (1.2.10) are arbitrary, so are the constants

k1 ko

(n—1) (n_z)!""’k"'

Therefore Example 1.2.4 actually shows that all solutions of (1.2.9) can be written as

62x
Y= 2—n+01+02$+"'+0n5€"71,
where we renamed the arbitrary constants in (1.2.10) to obtain a simpler formula. As a general rule,
arbitrary constants appearing in solutions of differential equations should be simplified if possible. You’ll

see examples of this throughout the text.
Initial Value Problems

In Example 1.2.4 we saw that the differential equation (") = 2% has an infinite family of solutions that
depend upon the n arbitrary constants ¢y, ca, ..., ¢,. In the absence of additional conditions, there’s no
reason to prefer one solution of a differential equation over another. However, we’ll often be interested
in finding a solution of a differential equation that satisfies one or more specific conditions. The next
example illustrates this.

Example 1.2.5 Find a solution of

such that y(1) = 2.

Solution At the beginning of this section we saw that the solutions of 3/ = 23 are
x? n
=—+c
Y=

To determine a value of ¢ such that y(1) = 2, we set x = 1 and y = 2 here to obtain

Therefore the required solution is
47
4
Figure 1.2.2 shows the graph of this solution. Note that imposing the condition y(1) = 2 is equivalent
to requiring the graph of y to pass through the point (1, 2).
We can rewrite the problem considered in Example 1.2.5 more briefly as

y =2°, y(1) =2

We call this an initial value problem. The requirement y(1) = 2 is an initial condition. Initial value
problems can also be posed for higher order differential equations. For example,

Y =2 +3y=¢€", y0)=1, 3 (0)=2 (12.11)
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is an initial value problem for a second order differential equation where y and 3’ are required to have
specified values at x = 0. In general, an initial value problem for an n-th order differential equation
requires y and its first n — 1 derivatives to have specified values at some point zy. These requirements are
the initial conditions.

-2 -1 0 1 2

i
4

Figure 1.2.2 y =

We’ll denote an initial value problem for a differential equation by writing the initial conditions after
the equation, as in (1.2.11). For example, we would write an initial value problem for (1.2.2) as

y" = f@,y .y "Y), yl@o) = ko, ¥ (o) = k1, o, YT = Ky (1.2.12)

Consistent with our earlier definition of a solution of the differential equation in (1.2.12), we say that y is
a solution of the initial value problem (1.2.12) if y is n times differentiable and

y(n) (.CC) = f(ZC, y('r)a y/(x)a R y(nil)('r))

for all z in some open interval (a, b) that contains xg, and y satisfies the initial conditions in (1.2.12). The
largest open interval that contains xo on which y is defined and satisfies the differential equation is the
interval of validity of y.

Example 1.2.6 In Example 1.2.5 we saw that

4
y::C+7 (1.2.13)

is a solution of the initial value problem
y =2 y(1)=2.

Since the function in (1.2.13) is defined for all z, the interval of validity of this solution is (—o00, 00).
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Example 1.2.7 In Example 1.2.2 we verified that

2
1
y=2 4= (12.14)
3 T
is a solution of
xy +y=a?

on (0, 00) and on (—o0, 0). By evaluating (1.2.14) at z = £1, you can see that (1.2.14) is a solution of
the initial value problems

vy +y=2a> yQ)=- (12.15)

and 5
zy +y=a?, y(—1):—§. (1.2.16)

The interval of validity of (1.2.14) as a solution of (1.2.15) is (0, 00), since this is the largest interval that
contains ¢ = 1 on which (1.2.14) is defined. Similarly, the interval of validity of (1.2.14) as a solution of
(1.2.16) is (—o00, 0), since this is the largest interval that contains 2o = —1 on which (1.2.14) is defined.

Free Fall Under Constant Gravity

The term initial value problem originated in problems of motion where the independent variable is ¢
(representing elapsed time), and the initial conditions are the position and velocity of an object at the
initial (starting) time of an experiment.

Example 1.2.8 An object falls under the influence of gravity near Earth’s surface, where it can be as-

sumed that the magnitude of the acceleration due to gravity is a constant g.

(a) Construct a mathematical model for the motion of the object in the form of an initial value problem
for a second order differential equation, assuming that the altitude and velocity of the object at time
t = 0 are known. Assume that gravity is the only force acting on the object.

(b) Solve the initial value problem derived in (a) to obtain the altitude as a function of time.

SOLUTION(a) Let y(t) be the altitude of the object at time ¢. Since the acceleration of the object has
constant magnitude g and is in the downward (negative) direction, y satisfies the second order equation

y'=-g,
where the prime now indicates differentiation with respect to ¢. If yo and vy denote the altitude and
velocity when ¢ = 0, then ¥ is a solution of the initial value problem

/!

y'=-g, y0)=wo, ¥ (0)=nwo. (1.2.17)

SOLUTION(b) Integrating (1.2.17) twice yields

/

y = —gt+c,
gt?
y = —7+01t+02.

Imposing the initial conditions y(0) = yo and 3’ (0) = v in these two equations shows that ¢; = vy and
ca = yo. Therefore the solution of the initial value problem (1.2.17) is

gt?
Yy = 5 + vot + yo-
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1.2 Exercises

1. Find the order of the equation.

d2 dy d®
(a)d_:cngzﬁd—sz”:O (b)y" — 3y +2y = 2T
©y —y =0 @y'y— () =2

2. Verify that the function is a solution of the differential equation on some interval, for any choice
of the arbitrary constants appearing in the function.
@ y=ce®; y =2
2

X C
b y="+-; ay +y=2a°
3 T

1
(© y= 5—1—0@’9”2; y +2xy ==z

@ y=(1+ ce*x2/2)§ (1- C€7x2/2)71 2 + 2@y’ - 1)=0
23

(e) y—tan(?+0>; y =2*(1+y°)
() y=(c1+cox)e” +sinz+a? y' -2y +y=—2cosx+a*—4x+2

2
® y=cae’+ort = (1-ap +ay —y=401-z-2%)27"

T
(h) y:x*1/2(01 sinx 4 cocos ) + 4x + 8;

1
x2y”+xy’+($2_Z>y—4x3+8x2+3x—2

3. Find all solutions of the equation.

@ y =-x () ¢y =—zsinz

© v =xzlnzx d ¢y’ =xzcosx

(&) vy’ =2xe” ® ¢’ =2x+sinz+e”
(g) y/// — —coszx (h) y/// — —$2 + ex

(i) y/// — 764&0

4. Solve the initial value problem.
(@ y' =-—ze®, y(0)=1
(b) y = xsinz?, y( E) =1
(© y =tanz, y(r/4)=3
@ y' =2 y2)=-1, y(@2)=-
€ y'=aze*, y(0)=7 y(0)=1
) v’ =—wsinz, y(0)=1, y(0)=-3
(8 y"=a%" y0)=1 y(0)=-2 y'(0)=3
() y" =2+sin2z, y(0)=1, y'(0)=-6, y'(0)=3
(i) y"=22+1, y2)=1 y(2)=-4 y'@2)=7

5. Verify that the function is a solution of the initial value problem.

(@ y==xcosx; y =cosx—ytanx, y(w/4):L

42
;Y1) = g

1

1+2nx 1 x2 — 222y 4+ 2
(b) y:T+§; y/ziy

3
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2

(¢) y=tan (%) Y =a(1+y%), y(0)=0
2 —yly+1
@ y=—=; y’:M, y(1) = -2
r—2 T
Verify that the function is a solution of the initial value problem.

3zy —4
(@ y=2%(1+1Inx); y”:%, y(e) = 2¢%, y(e) = 5e
x? 2 —xy +y+1 1 5
0 y=S o1y =TIV gLy =
Py —a@i+1)y
—(1 2 —-1/2. 1 _ (z -1
(© y=Q0+2°)"% y T 1) , y(0) =1,
y'(0)=0
x2 1" 2(x + y) (xy/ — y) /
@ y=1—73 y'= 3 coy(1/2)=1/2, y(1/2)=3

Suppose an object is launched from a point 320 feet above the earth with an initial velocity of 128
ft/sec upward, and the only force acting on it thereafter is gravity. Take g = 32 ft/sec?.

(a) Find the highest altitude attained by the object.
(b) Determine how long it takes for the object to fall to the ground.

Let a be a nonzero real number.

(a) Verify that if c is an arbitrary constant then
y=(z—0) (A)

18 a solution of

on (¢, 00).
(b) Suppose a < 0 or a > 1. Can you think of a solution of (B) that isn’t of the form (A)?

e* -1, x>0,
y:
1—e™, =<0,

Verify that

18 a solution of
y =yl +1

on (—o0, 00). HINT: Use the definition of derivative at x = 0.

(a) Verify that if c is any real number then

y=c*+cx+2c+1 (A)
satisfies
—(z 4+ 2) + /2% + 4z + 4y
y =AY (®)

on some open interval. Identify the open interval.
(b) Verify that
 —x(x+4)
Y1 = 1
also satisfies (B) on some open interval, and identify the open interval. (Note that y; can’t be
obtained by selecting a value of cin (A).)
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1.3 DIRECTION FIELDS FOR FIRST ORDER EQUATIONS

It’s impossible to find explicit formulas for solutions of some differential equations. Even if there are
such formulas, they may be so complicated that they’re useless. In this case we may resort to graphical
or numerical methods to get some idea of how the solutions of the given equation behave.

In Section 2.3 we’ll take up the question of existence of solutions of a first order equation

Y = flz,y). (1.3.1)

In this section we’ll simply assume that (1.3.1) has solutions and discuss a graphical method for ap-
proximating them. In Chapter 3 we discuss numerical methods for obtaining approximate solutions of
(1.3.1).

Recall that a solution of (1.3.1) is a function y = y(z) such that

y'(x) = f(z,y(z))

for all values of x in some interval, and an integral curve is either the graph of a solution or is made up
of segments that are graphs of solutions. Therefore, not being able to solve (1.3.1) is equivalent to not
knowing the equations of integral curves of (1.3.1). However, it’s easy to calculate the slopes of these
curves. To be specific, the slope of an integral curve of (1.3.1) through a given point (xq, yo) is given by
the number f (g, yo). This is the basis of the method of direction fields.

If f is defined on a set R, we can construct a direction field for (1.3.1) in R by drawing a short line
segment through each point (z,y) in R with slope f(z,y). Of course, as a practical matter, we can’t
actually draw line segments through every point in R?; rather, we must select a finite set of points in 2.
For example, suppose f is defined on the closed rectangular region

R:{a<z<bc<y<d}

Let
a=xg<x1<- - <Tyy=>

be equally spaced points in [a, b] and
c=yo <y <--<yp,=d
be equally spaced points in [c, d]. We say that the points

form a rectangular grid (Figure 1.3.1). Through each point in the grid we draw a short line segment with
slope f(z;,y;). The result is an approximation to a direction field for (1.3.1) in R. If the grid points are
sufficiently numerous and close together, we can draw approximate integral curves of (1.3.1) by drawing
curves through points in the grid tangent to the line segments associated with the points in the grid.
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Figure 1.3.1 A rectangular grid

Unfortunately, approximating a direction field and graphing integral curves in this way is too tedious
to be done effectively by hand. However, there is software for doing this. As you’ll see, the combina-
tion of direction fields and integral curves gives useful insights into the behavior of the solutions of the
differential equation even if we can’t obtain exact solutions.

We’ll study numerical methods for solving a single first order equation (1.3.1) in Chapter 3. These
methods can be used to plot solution curves of (1.3.1) in a rectangular region R if f is continuous on R.
Figures 1.3.2, 1.3.3, and 1.3.4 show direction fields and solution curves for the differential equations
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Figure 1.3.4 A direction and integral curves for y/ = y2
1+
The methods of Chapter 3 won’t work for the equation
/

Yy =—x/y (1.3.2)
if R contains part of the x-axis, since f(x,y) = —x/y is undefined when y = 0. Similarly, they won’t
work for the equation

2
e (133)
V=12 y?

if R contains any part of the unit circle 2 + y?> = 1, because the right side of (1.3.3) is undefined if
2% 4 y? = 1. However, (1.3.2) and (1.3.3) can written as

~ B(z,y)

where A and B are continuous on any rectangle R. Because of this, some differential equation software
is based on numerically solving pairs of equations of the form

r_ Alz,y) (1.3.4)

dx B dy B
i B(z,y), = Az, y) (1.3.5)

where x and y are regarded as functions of a parameter ¢. If x = z(¢) and y = y(¢) satisfy these equations,

then
, dy dy [Jdx  A(x,y)

dx  dt/ dt  B(wzy)’
so y = y(x) satisfies (1.3.4).
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Eqns. (1.3.2) and (1.3.3) can be reformulated as in (1.3.4) with

de oy _
a Y aw
and p p
z Y
O 122 W_ 2
dt oY T

respectively. Even if f is continuous and otherwise “nice” throughout R, your software may require you
to reformulate the equation ¢y = f(x,y) as
de | dy _
a7 dt
which is of the form (1.3.5) with A(z,y) = f(x,y) and B(z,y) = 1.
Figure 1.3.5 shows a direction field and some integral curves for (1.3.2). As we saw in Example 1.2.1
and will verify again in Section 2.2, the integral curves of (1.3.2) are circles centered at the origin.

f(z,y),
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Figure 1.3.5 A direction field and integral curves for y’ = ——
Y

Figure 1.3.6 shows a direction field and some integral curves for (1.3.3). The integral curves near the
top and bottom are solution curves. However, the integral curves near the middle are more complicated.
For example, Figure 1.3.7 shows the integral curve through the origin. The vertices of the dashed rectangle
are on the circle 22 + y? = 1 (a =~ .846, b ~ .533), where all integral curves of (1.3.3) have infinite
slope. There are three solution curves of (1.3.3) on the integral curve in the figure: the segment above the
level y = b is the graph of a solution on (—00, a), the segment below the level y = —b is the graph of a
solution on (—a, 00), and the segment between these two levels is the graph of a solution on (—a, a).

USING TECHNOLOGY |




20 Chapter 1 Introduction

As you study from this book, you’ll often be asked to use computer software and graphics. Exercises

with this intent are marked as (computer or calculator required), (computer and/or graphics

required), or (laboratory work requiring software and/or graphics). Often you may not completely
understand how the software does what it does. This is similar to the situation most people are in when
they drive automobiles or watch television, and it doesn’t decrease the value of using modern technology

as an aid to learning. Just be careful that you use the technology as a supplement to thought rather than a
substitute for it.

BN | A
NN 7 |
= —aa

NN ) |
N N\ = \\
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R a
\ L

2+

Figure 1.3.6 A direction field and integral curves for
x
/

y = m Figure 1.3.7

1.3 Exercises

In Exercises 1-11 a direction field is drawn for the given equation. Sketch some integral curves.

Y
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In Exercises 12-22 construct a direction field and plot some integral curves in the indicated rectangular
region.

12. [CGly =yly—1); {-1<e<2, -2<y<2}

13. y’:2—3:cy; {-1<x<4, —4<y<4}
4. [CGly =ayly—1); {2<w<2 —4<y<4}
15. [CG]y =3z +y; {-2<2<2,0<y<4}

16. [CGly =y—a% {-2<2<2 -2<y<2}
17. |[CG|ly =1—22—y? {-2<2<2 —2<y<2}
18. [C/Gly =a(?—1); {-3<2<3, -3<y<2}
19. y’:ﬁ; (—2<2<2 —2<y<2}

2
20. y’:il; {2<z<2 -1<y<4}
-
2
~1
2 [06]y =" (Lica<t —2<y<y)

22. y’:—lx%; {-2<2<2 -2<y<2}
— 2y

23. By suitably renaming the constants and dependent variables in the equations
T = —k(T —Ty,) (A)
and
G =-\G+r (B)

discussed in Section 1.2 in connection with Newton’s law of cooling and absorption of glucose in
the body, we can write both as
Y =—ay+b, (©)

where «a is a positive constant and b is an arbitrary constant. Thus, (A) is of the form (C) with
y=T,a =k,and b = kT,,, and (B) is of the form (C) withy = G, a = A\, and b = r. We’ll
encounter equations of the form (C) in many other applications in Chapter 2.

Choose a positive a and an arbitrary b. Construct a direction field and plot some integral curves
for (C) in a rectangular region of the form

{0<t<T, e<y<d}

of the ty-plane. Vary T, ¢, and d until you discover a common property of all the solutions of (C).
Repeat this experiment with various choices of a and b until you can state this property precisely
in terms of @ and b.

24, By suitably renaming the constants and dependent variables in the equations
P’ =aP(1-aP) (A)

and
I'=rI(S-1) (B)
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discussed in Section 1.1 in connection with Verhulst’s population model and the spread of an
epidemic, we can write both in the form

Y = ay — by, (©)

where a and b are positive constants. Thus, (A) is of the form (C) withy = P,a = a, and b = aq,
and (B) is of the form (C) withy = I, a = S, and b = r. In Chapter 2 we’ll encounter equations
of the form (C) in other applications..

(a) Choose positive numbers a and b. Construct a direction field and plot some integral curves
for (C) in a rectangular region of the form

{0<t<T,0<y<d}

of the ty-plane. Vary T and d until you discover a common property of all solutions of (C)
with y(0) > 0. Repeat this experiment with various choices of a and b until you can state
this property precisely in terms of a and b.

(b) Choose positive numbers a and b. Construct a direction field and plot some integral curves
for (C) in a rectangular region of the form

{0<t<T, c<y<0}

of the ty-plane. Vary a, b, T" and c until you discover a common property of all solutions of
(C) with y(0) < 0.
You can verify your results later by doing Exercise 2.2.27.



CHAPTER 2
First Order Equations

IN THIS CHAPTER we study first order equations for which there are general methods of solution.

SECTION 2.1 deals with linear equations, the simplest kind of first order equations. In this section we
introduce the method of variation of parameters. The idea underlying this method will be a unifying
theme for our approach to solving many different kinds of differential equations throughout the book.

SECTION 2.2 deals with separable equations, the simplest nonlinear equations. In this section we intro-
duce the idea of implicit and constant solutions of differential equations, and we point out some differ-
ences between the properties of linear and nonlinear equations.

SECTION 2.3 discusses existence and uniqueness of solutions of nonlinear equations. Although it may
seem logical to place this section before Section 2.2, we presented Section 2.2 first so we could have
illustrative examples in Section 2.3.

SECTION 2.4 deals with nonlinear equations that are not separable, but can be transformed into separable
equations by a procedure similar to variation of parameters.

SECTION 2.5 covers exact differential equations, which are given this name because the method for
solving them uses the idea of an exact differential from calculus.

SECTION 2.6 deals with equations that are not exact, but can made exact by multiplying them by a
function known called integrating factor.
29
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2.1 LINEAR FIRST ORDER EQUATIONS

A first order differential equation is said to be /inear if it can be written as

Y +p(a)y = f(2). 2.1.1)

A first order differential equation that can’t be written like this is nonlinear. We say that (2.1.1) is
homogeneous if f = 0; otherwise it’s nonhomogeneous. Since y = 0 is obviously a solution of the
homgeneous equation

Y +plz)y =0,

we call it the trivial solution. Any other solution is nontrivial.

Example 2.1.1 The first order equations

x2y/+3y — $2,
ry —8z%y = sinuz,
zy' +(lnz)y = 0,
y = 2%y-2

are not in the form (2.1.1), but they are linear, since they can be rewritten as

3
y+=y o= L
J —Szy = Sinx,
x
Inx
y+—y = 0,
x
y —xly = -2

Example 2.1.2 Here are some nonlinear first order equations:

Yy +3y2 = 2 (because y is squared),
yy = 3 (because of the product yy'),
y +xe¥y = 12 (because of €¥).

General Solution of a Linear First Order Equation

To motivate a definition that we’ll need, consider the simple linear first order equation

1

y = —5- (2.1.2)
x
From calculus we know that y satisfies this equation if and only if
1
y=—=+c, (2.1.3)
x

where c is an arbitrary constant. We call ¢ a parameter and say that (2.1.3) defines a one—parameter
family of functions. For each real number ¢, the function defined by (2.1.3) is a solution of (2.1.2) on
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(—00,0) and (0, 00); moreover, every solution of (2.1.2) on either of these intervals is of the form (2.1.3)
for some choice of c. We say that (2.1.3) is the general solution of (2.1.2).
We'll see that a similar situation occurs in connection with any first order linear equation

Y +px)y = fz); (2.1.4)

that is, if p and f are continuous on some open interval (a, b) then there’s a unique formula y = y(z, ¢)
analogous to (2.1.3) that involves x and a parameter ¢ and has the these properties:

* For each fixed value of ¢, the resulting function of z is a solution of (2.1.4) on (a, b).

* If y is a solution of (2.1.4) on (a,b), then y can be obtained from the formula by choosing ¢
appropriately.

We'll call y = y(x, ¢) the general solution of (2.1.4).
When this has been established, it will follow that an equation of the form

Py(z)y' + Pi(z)y = F(x) (2.1.5)

has a general solution on any open interval (a, b) on which Py, P;, and F are all continuous and Py has
no zeros, since in this case we can rewrite (2.1.5) in the form (2.1.4) withp = P, /Py and f = F/P,,
which are both continuous on (a, b).

To avoid awkward wording in examples and exercises, we won’t specify the interval (a, b) when we
ask for the general solution of a specific linear first order equation. Let’s agree that this always means
that we want the general solution on every open interval on which p and f are continuous if the equation
is of the form (2.1.4), or on which Py, P;, and F' are continuous and Py has no zeros, if the equation is of
the form (2.1.5). We leave it to you to identify these intervals in specific examples and exercises.

For completeness, we point out that if Py, P, and F' are all continuous on an open interval (a, b), but
Py does have a zero in (a, b), then (2.1.5) may fail to have a general solution on (a, b) in the sense just
defined. Since this isn’t a major point that needs to be developed in depth, we won’t discuss it further;
however, see Exercise 44 for an example.

Homogeneous Linear First Order Equations

We begin with the problem of finding the general solution of a homogeneous linear first order equation.
The next example recalls a familiar result from calculus.

Example 2.1.3 Let a be a constant.
(a) Find the general solution of
Yy —ay = 0. (2.1.6)

(b) Solve the initial value problem

Yy —ay=0, ylxo)=yo.

SOLUTION(a) You already know from calculus that if c is any constant, then y = ce®” satisfies (2.1.6).
However, let’s pretend you’ve forgotten this, and use this problem to illustrate a general method for
solving a homogeneous linear first order equation.

We know that (2.1.6) has the trivial solution y = 0. Now suppose y is a nontrivial solution of (2.1.6).
Then, since a differentiable function must be continuous, there must be some open interval I on which y
has no zeros. We rewrite (2.1.6) as

y
~—=a
Y
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Figure 2.1.1 Solutions of y — ay = 0, y(0) =1

for x in I. Integrating this shows that
Injy| =azx+k, so |yl =eFe™,

where £ is an arbitrary constant. Since e** can never equal zero, y has no zeros, so y is either always
positive or always negative. Therefore we can rewrite y as

y = ce” 2.1.7)
where
o { ek ify >0,

—ek ify < 0.

This shows that every nontrivial solution of (2.1.6) is of the form y = ce®* for some nonzero constant c.
Since setting ¢ = 0 yields the trivial solution, all solutions of (2.1.6) are of the form (2.1.7). Conversely,
(2.1.7) is a solution of (2.1.6) for every choice of ¢, since differentiating (2.1.7) yields 3/ = ace®® = ay.

SoLuTiOoN(b) Imposing the initial condition y(z) = yo yields yo = ce**°, so ¢ = yoe~ **° and
Y = yoe 9T — @),
Figure 2.1.1 show the graphs of this function with zg = 0, yg = 1, and various values of a.
Example 2.1.4 (a) Find the general solution of
zy +y=0. (2.1.8)

(b) Solve the initial value problem
xy +y=0, y(1)=3. 2.1.9)
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SOLUTION(a) We rewrite (2.1.8) as
1
y +—y=0, (2.1.10)
T

where z is restricted to either (—o0, 0) or (0, 00). If y is a nontrivial solution of (2.1.10), there must be
some open interval I on which y has no zeros. We can rewrite (2.1.10) as

y _ 1
y @
for x in I. Integrating shows that
ok
Iyl = ~Infel +k, o |yl =

Since a function that satisfies the last equation can’t change sign on either (—oc, 0) or (0, 00), we can
rewrite this result more simply as

y=1< 2.1.11)

T
where

k

o ek ify >0,
] —€ef ify<o.

We’ve now shown that every solution of (2.1.10) is given by (2.1.11) for some choice of c¢. (Even though
we assumed that y was nontrivial to derive (2.1.11), we can get the trivial solution by setting ¢ = 0 in
(2.1.11).) Conversely, any function of the form (2.1.11) is a solution of (2.1.10), since differentiating
(2.1.11) yields

and substituting this and (2.1.11) into (2.1.10) yields

, 1
Votoy = o
X

Figure 2.1.2 shows the graphs of some solutions corresponding to various values of ¢

SoLuTION(b) Imposing the initial condition y(1) = 3 in (2.1.11) yields ¢ = 3. Therefore the solution
of (2.1.9) is
3
y=—
x
The interval of validity of this solution is (0, 00).
The results in Examples 2.1.3(a) and 2.1.4(b) are special cases of the next theorem.

Theorem 2.1.1 If p is continuous on (a, b), then the general solution of the homogeneous equation

Y +plx)y=0 (2.1.12)
on (a,b) is
y=ce P
where
P(x) = /p(x) dz (2.1.13)

is any antiderivative of p on (a,b); that is,

P'(z)=p(z), a<z<b. (2.1.14)
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c<0 c>0

c>0 c<0

Figure 2.1.2 Solutions of zy/ + y = 0 on (0, 00) and (—o0, 0)

Proof Ify = ce—F(®) differentiating y and using (2.1.14) shows that
y =—P'(z)ce” ") = —p(x)ce ™) = —p(x)y,

so ' + p(x)y = 0; that is, y is a solution of (2.1.12), for any choice of c.

Now we’ll show that any solution of (2.1.12) can be written as y = ce~"(*) for some constant ¢. The
trivial solution can be written this way, with ¢ = 0. Now suppose y is a nontrivial solution. Then there’s
an open subinterval I of (a, b) on which y has no zeros. We can rewrite (2.1.12) as

v _ —p(x) (2.1.15)
y

for x in I. Integrating (2.1.15) and recalling (2.1.13) yields
Injy| = —P(z) + k,

where k is a constant. This implies that

o] = ebeF®.
Since P is defined for all z in (a, b) and an exponential can never equal zero, we can take I = (a, b), so
y has zeros on (a, b) (a,b), so we can rewrite the last equation as y = ce~(*), where

. e* ify > 0on(a,b),
T —€F ify<Oon(a,b).

REMARK: Rewriting a first order differential equation so that one side depends only on y and 3 and the

other depends only on z is called separation of variables. We did this in Examples 2.1.3 and 2.1.4, and

in rewriting (2.1.12) as (2.1.15).We’llapply this method to nonlinear equations in Section 2.2.
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Linear Nonhomogeneous First Order Equations

We’ll now solve the nonhomogeneous equation

Y +p(x)y = f(x). (2.1.16)

When considering this equation we call
Y +px)y=0

the complementary equation.

We'll find solutions of (2.1.16) in the form y = wuy;, where y; is a nontrivial solution of the com-
plementary equation and u is to be determined. This method of using a solution of the complementary
equation to obtain solutions of a nonhomogeneous equation is a special case of a method called variation
of parameters, which you’ll encounter several times in this book. (Obviously, u can’t be constant, since
if it were, the left side of (2.1.16) would be zero. Recognizing this, the early users of this method viewed
u as a “parameter” that varies; hence, the name “variation of parameters.”)

If

y=uy;, then y =u'y +uy].

Substituting these expressions for y and ' into (2.1.16) yields

u'yr +u(yy + p(@)yn) = f(2),
which reduces to
u'y = f(z), 2.1.17)
since y; is a solution of the complementary equation; that is,
v+ p(@)y = 0.

In the proof of Theorem 2.2.1 we saw that y; has no zeros on an interval where p is continuous. Therefore
we can divide (2.1.17) through by y; to obtain

u' = f(x)/yi ().

We can integrate this (introducing a constant of integration), and multiply the result by y; to get the gen-
eral solution of (2.1.16). Before turning to the formal proof of this claim, let’s consider some examples.

Example 2.1.5 Find the general solution of

y + 2y = ade 2", (2.1.18)
By applying (a) of Example 2.1.3 with a = —2, we see that y; = ¢~2% is a solution of the com-
plementary equation 3’ + 2y = 0. Therefore we seek solutions of (2.1.18) in the form y = ue=2%, so
that
y =u'e™® —2ue ™ and 3y +2y=ue* — 2ue %" + 2ue = u'e ", (2.1.19)
Therefore y is a solution of (2.1.18) if and only if
we ™ = g3  or, equivalently, u' = z°.
Therefore .
u = T +c,
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Figure 2.1.3 A direction field and integral curves for 3/ + 2y = z2e~2¢
and
o
y:u€72m:€72m Z 4
4
is the general solution of (2.1.18).
Figure 2.1.3 shows a direction field and some integral curves for (2.1.18).
Example 2.1.6
(a) Find the general solution
Y + (cot x)y = x csc . (2.1.20)
(b) Solve the initial value problem
Yy + (cotz)y =zcscx, y(r/2)=1. (2.1.21)

SOLUTION(a) Here p(z) = cotx and f(x) = x cscx are both continuous except at the points = r,
where r is an integer. Therefore we seek solutions of (2.1.20) on the intervals (r7, (r + 1)7). We need a
nontrival solution y; of the complementary equation; thus, y; must satisfy ¢} + (cot 2)y; = 0, which we

rewrite as ,

I ot = 228 (2.1.22)
Y1 sinx
Integrating this yields
In|y;| = —In|sinz|,

where we take the constant of integration to be zero since we need only one function that satisfies (2.1.22).
Clearly y; = 1/ sin « is a suitable choice. Therefore we seek solutions of (2.1.20) in the form

u

y= sinz’
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so that ,
u UCOST
Yy = — - — (2.1.23)
sinx  sin“zx
and
, ' ucosx ucotx
Y +(cotr)y = — —— .
sinx  sin“zx sinx
!
u UCOST  UCOST
= — — — + . (2.1.24)
sinz  sin“zx sin® x
u/
sinx’

Therefore y is a solution of (2.1.20) if and only if

uw'/sing = xcscw = x/sinx o, equivalently, ' = z.

Integrating this yields

2 u $2 C

u=""f¢ ad y=-———=_2 L (2.1.25)
2 sinx 2sinx  sinz

is the general solution of (2.1.20) on every interval (rm, (r + 1)7) (r =integer).

SoLuUTION(b) Imposing the initial condition y(7/2) = 1 in (2.1.25) yields

2 2
1:%—1—0 or c:l—%.

Thus,
2 1— 28
2 (1-/8)

2sinx sinx

y:

is a solution of (2.1.21). The interval of validity of this solution is (0, 7); Figure 2.1.4 shows its graph.

Figure 2.1.4 Solution of ¢ + (cot )y = x cscx, y(n/2) = 1
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REMARK: It wasn’t necessary to do the computations (2.1.23) and (2.1.24) in Example 2.1.6, since we
showed in the discussion preceding Example 2.1.5 that if y = uy; where y] + p(z)y1 = 0, then v/ +
p(x)y = w'y1. We did these computations so you would see this happen in this specific example. We
recommend that you include these “unnecesary” computations in doing exercises, until you’re confident
that you really understand the method. After that, omit them.

We summarize the method of variation of parameters for solving

¥ +p(@)y = f(z) (2.1.26)
as follows:
(a) Find a function y; such that
vi
L (x
" p(x)
For convenience, take the constant of integration to be zero.
(b) Write
Yy =uy1 (2.1.27)

to remind yourself of what you’re doing.
(¢) Write v'y; = f and solve for «'; thus, v’ = f/y;.
(d) Integrate v’ to obtain u, with an arbitrary constant of integration.

(e) Substitute u into (2.1.27) to obtain y.

To solve an equation written as
Po()y + Pi(x)y = F(x),

we recommend that you divide through by Py(z) to obtain an equation of the form (2.1.26) and then
follow this procedure.

Solutions in Integral Form

Sometimes the integrals that arise in solving a linear first order equation can’t be evaluated in terms of
elementary functions. In this case the solution must be left in terms of an integral.

Example 2.1.7
(a) Find the general solution of
y —2zy = 1.
(b) Solve the initial value problem
y —2xy=1, 5(0)=yo. (2.1.28)

SOLUTION(a) To apply variation of parameters, we need a nontrivial solution y; of the complementary
equation; thus, ¥ — 2zy; = 0, which we rewrite as

/
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Integrating this and taking the constant of integration to be zero yields
2 2
Injyi| =2% so |yf=e".

We choose y; = ¢*” and seek solutions of (2.1.28) in the form y = ue®’ , where

Therefore

u=c+ /efmzd:c,

but we can’t simplify the integral on the right because there’s no elementary function with derivative
equal to e==". Therefore the best available form for the general solution of (2.1.28) is

2 2 2
y=ue’ =e" (c—|— /efm d:c) . (2.1.29)

SOLUTION(b) Since the initial condition in (2.1.28) is imposed at ¢ = 0, it is convenient to rewrite

(2.1.29) as
T 0
= (c—|—/ etzdt> , since / e dt = 0.
0 0

Setting z = 0 and y = yo here shows that ¢ = yy. Therefore the solution of the initial value problem is

o I2 z 7t2
y=e Yo + e " dt]. (2.1.30)
0

For a given value of yq and each fixed z, the integral on the right can be evaluated by numerical methods.
An alternate procedure is to apply the numerical integration procedures discussed in Chapter 3 directly to
the initial value problem (2.1.28). Figure 2.1.5 shows graphs of of (2.1.30) for several values of yg.

<

Figure 2.1.5 Solutions of ¢/ — 2zy = 1, y(0) = yo
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An Existence and Uniqueness Theorem

The method of variation of parameters leads to this theorem.

Theorem 2.1.2 Suppose p and f are continuous on an open interval (a,b), and let iy, be any nontrivial
solution of the complementary equation

Y +plx)y=0

on (a,b). Then:
(a) The general solution of the nonhomogeneous equation

¥ + )y = f(z) (2.1.31)
on (a,b) is
y =y (x) (c + / f(@)/y1(x) d:c) . (2.1.32)
(b) Ifxo is an arbitrary point in (a, b) and yo is an arbitrary real number, then the initial value problem
v +p@)y = fx), ylwo) =10

y—yl(x)( o 710 dt)

yi(zo) Sy ()

has the unique solution

on (a,b).

Proof (a) To show that (2.1.32) is the general solution of (2.1.31) on (a, b), we must prove that:
(i) If ¢ is any constant, the function y in (2.1.32) is a solution of (2.1.31) on (a, b).

(i) If y is a solution of (2.1.31) on (a, b) then y is of the form (2.1.32) for some constant c.
To prove (i), we first observe that any function of the form (2.1.32) is defined on (a, b), since p and f
are continuous on (a, b). Differentiating (2.1.32) yields

Y = 4(2) ( + [ 1@/ @) dx) T @),

Since yi = —p(x)y1, this and (2.1.32) imply that

J = —pe)n) (c+ [ @)/ dx) T )
= p(e)y(@) + £(@),

which implies that y is a solution of (2.1.31).
To prove (ii), suppose ¥ is a solution of (2.1.31) on (a, b). From the proof of Theorem 2.1.1, we know
that y; has no zeros on (a, b), so the function u = y/y; is defined on (a, b). Moreover, since

/

Y =-py+f and y; =—py1,

P Yy
T

yi(-py+f)—(=py)y _ [

y% Y1 '
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u—(o+/f@vM@wm)

which implies (2.1.32), since y = uy; .
(b) We’ve proved (a), where [ f(2)/y1(x) dx in (2.1.32) is an arbitrary antiderivative of f/y;. Now
it’s convenient to choose the antiderivative that equals zero when x = x(, and write the general solution

of (2.1.31) as
(s [T IO
v = )( "L ) dt>'

Integrating v’ = f/y; yields

Since
o f@)
To yl(t)

we see that y(xg) = yo if and only if ¢ = yo /y1(z0)-

vleo) = (ao) (+ it) = o).

2.1 Exercises

In Exercises 1-5 find the general solution.

1. ' + ay = 0 (a=constant) 2. Yy +32%y =0
3. 2y + (Inx)y=0 4. 2y +3y=0
5. 2% +y=0

In Exercises 6—11 solve the initial value problem.

1
6. y’+(¥>y—0, y(1) =1

1
7. xy/—i-(l—i-m)y—(), yle) =1

8 a2y + (1+xcotx)y=0, y(g):2
2x
9. ¥y —(—=)y=0 0)=2
Y (1+x2>y , y(0)

k
10. o' +—-y=0, y(1)=3 (k=constant)
x
11. ' + (tankz)y =0, y(0)=2 (k= constant)

In Exercises 12 —15 find the general solution. Also, plot a direction field and some integral curves on the
rectangular region {—2 < x <2, =2 <y < 2).

12. [CG]y +3y=1 13. y,+<i_1>y__%

14. y’+2xy:xe*x2 p 20 "
<l 15 [CG)Y +7ay =
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In Exercises 16 =24 find the general solution.

1 7 ’ 4 1 sinx
'+ oy =— 17. —
16. y+xy—x2+3 y+ v (‘%_1)5+(I_1)4
2
! = —
18. a2y + (1+22%)y = 23— 19. xzy/ +2y= pe +1
20. Yy + (tanx)y = cosx 21. (1+x)y/+2y: flj_x
T

22. (z—-2)(z— 1)y — 4z - 3)y = (z — 2)3
23. ¢ + (2sinzcosz)y =€~ sine 24, 2%y 4 3zy=€®

In Exercises 25-29 solve the initial value problem and sketch the graph of the solution.
25. y +Ty=e3*  y(0)=0

2
26. 1+ 22y +day= ——, y(0)=1

14 22’

2
27. |C/IG ! = —1) =
[C/G] oy +3y 012D y(=1) =0
28. y + (cot )y = cosz, y (g) =1
1 2
29. y’+;y:§+1, y(=1) =0

In Exercises 30-37 solve the initial value problem.

1 sinz
— ! = =
30. (z—1)y +3y @1 + @12 y(0) =1
31. Yy +2y=28z2%, y(1)=3
32. xy —2y=-22 y(l)=1
3. ¢y +2zy==x, y(0)=3
1 —1 2
3. (z—-1)y +3y= + (@~ 1)sec :c, y(0) = —1
(z—1)°
14 222
! = — =
35. (x+42)y +4y = @1 y(—=1) =2

36. (22—1)y —2zy=a(2?>-1), y0)=4
37. (22 =5)y —2zy= —2x(2?>-5), y(2)=7

In Exercises 38—42 solve the initial value problem and leave the answer in a form involving a definite
integral. (You can solve these problems numerically by methods discussed in Chapter 3.)

38. ¢ +2xy=2% y(0)=3

1 sinx
9. ! - = — 1 :2
3. Yt —y=—, y)
40 y,+y:e tanx, (1):0
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2z e’
T2V " T y(0)
2. zy+(x+1y= e y(l) =2
43. Experiments indicate that glucose is absorbed by the body at a rate proportional to the amount of
glucose present in the bloodstream. Let A\ denote the (positive) constant of proportionality. Now

suppose glucose is injected into a patient’s bloodstream at a constant rate of r units per unit of
time. Let G = G(t) be the number of units in the patient’s bloodstream at time ¢ > 0. Then

41. o +

G = -G+,

where the first term on the right is due to the absorption of the glucose by the patient’s body and
the second term is due to the injection. Determine G for ¢ > 0, given that G(0) = Gy. Also, find

44. (a) Plot a direction field and some integral curves for
zy —2y=—1 (A)

on the rectangular region {—1 < z < 1,—.5 < y < 1.5}. What do all the integral curves
have in common?

(b) Show that the general solution of (A) on (—o0, 0) and (0, 00) is

1 2
y—§+cx.

(c) Show that y is a solution of (A) on (—oco, c0) if and only if

1

—+01x2, x>0
_ 2
Y711

54‘02:62, z <0,

3

where c¢; and cy are arbitrary constants.

(d) Conclude from (c) that all solutions of (A) on (—oo, c0) are solutions of the initial value
problem

xy —2y=-1, y(0)=.

(e) Use (b) to show that if 2y # 0 and yy is arbitrary, then the initial value problem

zy —2y=-1, y(xo)=1o

has infinitely many solutions on (—o0, o). Explain why this does’nt contradict Theorem 2.1.1(b).
45. Suppose f is continuous on an open interval (a, b) and « is a constant.

(a) Derive a formula for the solution of the initial value problem

Y +ay = f(z), y(xo) = o, (A)

where z is in (a, b) and yo is an arbitrary real number.
(b) Suppose (a,b) = (a,00), @ > 0and lim f(z) = L. Show that if y is the solution of (A),
then lim y(z) = L/a.
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46.

47.

48.

49.

Assume that all functions in this exercise are defined on a common interval (a, b).

(a) Prove: If y; and y, are solutions of

Y +p(@)y = fi(x)
and
Y +p()y = fo(x)
respectively, and c; and ¢y are constants, then y = c1y1 + c2y2 is a solution of

Y +p(x)y = c1fi(x) + cafo(w).

(This is theprinciple of superposition.)
(b) Use (a) to show that if y; and y» are solutions of the nonhomogeneous equation

y +p@)y = f(a), (A)
then y; — yo is a solution of the homogeneous equation
y +p(@)y =0. (B)

(¢) Use (a) to show that if y; is a solution of (A) and y- is a solution of (B), then y; + y5 is a
solution of (A).

Some nonlinear equations can be transformed into linear equations by changing the dependent
variable. Show that if

9 Wy +p()gly) = f(z)
where y is a function of x and ¢ is a function of y, then the new dependent variable z = ¢(y)
satisfies the linear equation

2 +ple)z = f(a).

Solve by the method discussed in Exercise 47.

x

2 1
(a) (sec’y)y’ — 3tany = —1 (b) " (2yy’ + E) =2

y 1 3

(1+y)? z(+y) 22
We’ve shown that if p and f are continuous on (a, b) then every solution of

Y +plx)y = f(x) (A)

on (a, b) can be written as y = uy;, where y; is a nontrivial solution of the complementary equa-
tion for (A) and u' = f/y1. Now suppose f, f', ..., f™ and p, p/, ..., p™~1) are continuous
on (a, b), where m is a positive integer, and define

fO = fa
i

/
© 2L 4 2lny = 422 @)
Yy

|
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\
+
=
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\
—
A
<
IN
3

Show that
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2.2 SEPARABLE EQUATIONS

A first order differential equation is separable if it can be written as

h(y)y = g(x), 2.2.1)

where the left side is a product of 3 and a function of y and the right side is a function of z. Rewriting
a separable differential equation in this form is called separation of variables. In Section 2.1 we used
separation of variables to solve homogeneous linear equations. In this section we’ll apply this method to
nonlinear equations.
To see how to solve (2.2.1), let’s first assume that y is a solution. Let G(z) and H (y) be antiderivatives
of g(x) and h(y); that is,
H'(y) =h(y) and G'(z)=g(x). (22.2)

Then, from the chain rule,

%H(y(x)) = H'(y(x))y' (z) = h(y)y' (x).

Therefore (2.2.1) is equivalent to
d d
T H(y(x)) = 5-G(a).

Integrating both sides of this equation and combining the constants of integration yields
H(y(x)) = G(x) + c. (2.2.3)

Although we derived this equation on the assumption that y is a solution of (2.2.1), we can now view it
differently: Any differentiable function y that satisfies (2.2.3) for some constant c is a solution of (2.2.1).
To see this, we differentiate both sides of (2.2.3), using the chain rule on the left, to obtain

H'(y(x))y' (x) = G'(x),
which is equivalent to
h(y(x))y' (z) = g(x)

because of (2.2.2).
In conclusion, to solve (2.2.1) it suffices to find functions G = G(z) and H = H(y) that satisfy
(2.2.2). Then any differentiable function y = y(x) that satisfies (2.2.3) is a solution of (2.2.1).

Example 2.2.1 Solve the equation

Y =a(l+y7).
Solution Separating variables yields
vy .

1+ 92 '

Integrating yields
22
tan ™ Yy = > +c

Therefore
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Example 2.2.2
(a) Solve the equation
y = -2 (2.2.4)
Y
(b) Solve the initial value problem
Y =-2 y(1) =1 2.2.5)
Y
(¢) Solve the initial value problem
Y = _E, y(1) = 2. (2.2.6)
Y
SOLUTION(a) Separating variables in (2.2.4) yields
yy = —x.
Integrating yields
2 2
=2 ivalently, a2 + 32 =2
D) + ¢, or equvalently, "+ 1y~ =2c.

The last equation shows that ¢ must be positive if y is to be a solution of (2.2.4) on an open interval.
Therefore we let 2c = a? (with a > 0) and rewrite the last equation as

z? + 9y =a’ 2.2.7)

This equation has two differentiable solutions for y in terms of x:

y= +Va?2—12%2 —a<uz<a, (2.2.8)

and

y=—Va? -2, —a<zx<a. (2.2.9)

The solution curves defined by (2.2.8) are semicircles above the z-axis and those defined by (2.2.9) are
semicircles below the z-axis (Figure 2.2.1).

SOLUTION(b) The solutionof (2.2.5) is positive when x = 1; hence, it is of the form (2.2.8). Substituting
z = 1and y = 1 into (2.2.7) to satisfy the initial condition yields a® = 2; hence, the solution of (2.2.5) is

y=v2-12, —V2<z<V2

SOLUTION(c) The solution of (2.2.6) is negative when x = 1 and is therefore of the form (2.2.9).
Substituting x = 1 and y = —2 into (2.2.7) to satisfy the initial condition yields a®> = 5. Hence, the

solution of (2.2.6) is
y=—-V5—22 —Vb<xz<5.
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Figure22.1 @)y =v2 —22, —vV2 <2 <v2; by=—V56—-22, —\/5<az<5

Implicit Solutions of Separable Equations

In Examples 2.2.1 and 2.2.2 we were able to solve the equation H(y) = G(x) + c¢ to obtain explicit
formulas for solutions of the given separable differential equations. As we’ll see in the next example,
this isn’t always possible. In this situation we must broaden our definition of a solution of a separable
equation. The next theorem provides the basis for this modification. We omit the proof, which requires a
result from advanced calculus called as the implicit function theorem.

Theorem 2.2.1 Suppose g = g(x) is continous on (a,b) and h = h(y) are continuous on (c,d). Let G
be an antiderivative of g on (a,b) and let H be an antiderivative of h on (c,d). Let xo be an arbitrary
point in (a,b), let yo be a point in (¢, d) such that h(yo) # 0, and define

¢ = H(yp) — G(xp). (2.2.10)

Then there’s a functiony = y(x) defined on some open interval (ay,b1), where a < a1 < zg < by < b,
such that y(x¢) = yo and
H(y) = G(z) + ¢ 22.11)

foray < x < by. Therefore y is a solution of the initial value problem
h(y)y = g(x), y(zo) = 0. (2.2.12)

It’s convenient to say that (2.2.11) with ¢ arbitrary is an implicit solution of h(y)y' = g(x). Curves
defined by (2.2.11) are integral curves of h(y)y' = g(z). If ¢ satisfies (2.2.10), we’ll say that (2.2.11) is
an implicit solution of the initial value problem (2.2.12). However, keep these points in mind:

» For some choices of c there may not be any differentiable functions y that satisfy (2.2.11).
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* The function y in (2.2.11) (not (2.2.11) itself) is a solution of h(y)y’ = g(x).

Example 2.2.3
(a) Find implicit solutions of
y = 52;17—:_11. (2.2.13)
(b) Find an implicit solution of
y = 52;%11, y(2) = 1. (2.2.14)

SOLUTION(a) Separating variables yields

(G5y* + 1)y =2z + 1.
Integrating yields the implicit solution

v+y=a’+z+ec (2.2.15)
of (2.2.13).

SoLUTION(b) Imposing the initial condition y(2) = 1in (2.2.15) yields 1+ 1 =4+ 24 ¢,s0c = —4.
Therefore
v 4+y=a’+z—-4
is an implicit solution of the initial value problem (2.2.14). Although more than one differentiable func-
tion y = y(x) satisfies 2.2.13) near x = 1, it can be shown that there’s only one such function that
satisfies the initial condition y(1) = 2.
Figure 2.2.2 shows a direction field and some integral curves for (2.2.13).

Constant Solutions of Separable Equations

An equation of the form

is separable, since it can be rewritten as

1 /
——y = g(x).
p(y)
However, the division by p(y) is not legitimate if p(y) = 0 for some values of y. The next two examples
show how to deal with this problem.

Example 2.2.4 Find all solutions of
Yy = 2xy”. (2.2.16)

Solution Here we must divide by p(y) = y? to separate variables. This isn’t legitimate if y is a solution
of (2.2.16) that equals zero for some value of z. One such solution can be found by inspection: y = 0.
Now suppose ¥ is a solution of (2.2.16) that isn’t identically zero. Since y is continuous there must be an
interval on which y is never zero. Since division by 3 is legitimate for x in this interval, we can separate
variables in (2.2.16) to obtain )

y—2 = 2z.

Y
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Figure 2.2.2 A direction field and integral curves for y’ = —
Syt +1
Integrating this yields
1 2
—— =z"+c,
Y
which is equivalent to
1
=——. 2.2.17
4 x2+c ( )

We’ve now shown that if y is a solution of (2.2.16) that is not identically zero, then y must be of the
form (2.2.17). By substituting (2.2.17) into (2.2.16), you can verify that (2.2.17) is a solution of (2.2.16).
Thus, solutions of (2.2.16) are y = 0 and the functions of the form (2.2.17). Note that the solutiony = 0
isn’t of the form (2.2.17) for any value of c.

Figure 2.2.3 shows a direction field and some integral curves for (2.2.16)

Example 2.2.5 Find all solutions of
1
Y =521 — 1) (22.18)

Solution Here we must divide by p(y) = 1 — y? to separate variables. This isn’t legitimate if ¥ is a
solution of (2.2.18) that equals =1 for some value of x. Two such solutions can be found by inspection:
y = 1and y = —1. Now suppose ¥ is a solution of (2.2.18) such that 1 — 2 isn’t identically zero. Since
1 — 92 is continuous there must be an interval on which 1 — 2 is never zero. Since division by 1 — y? is
legitimate for « in this interval, we can separate variables in (2.2.18) to obtain
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Figure 2.2.3 A direction field and integral curves for ¢/ = 2z?

A partial fraction expansion on the left yields

1 1 J
- - =z,
y—1 y+1

and integrating yields

y—1 T
1 —— + k;
n y+1’ 2 + &5
hence,
k —22/2
e .
’y—i—l

Since y(x) # +1 for z on the interval under discussion, the quantity (y — 1)/(y + 1) can’t change sign
in this interval. Therefore we can rewrite the last equation as

—1
Y :C€7x2/2,
y+1

where ¢ = +e*, depending upon the sign of (y — 1)/(y + 1) on the interval. Solving for y yields

2
14ce /2

We’ve now shown that if y is a solution of (2.2.18) that is not identically equal to 1, then y must be
as in (2.2.19). By substituting (2.2.19) into (2.2.18) you can verify that (2.2.19) is a solution of (2.2.18).
Thus, the solutions of (2.2.18) are y = 1, y = —1 and the functions of the form (2.2.19). Note that the
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constant solution y = 1 can be obtained from this formula by taking ¢ = 0; however, the other constant
solution, y = —1, can’t be obtained in this way.

Figure 2.2.4 shows a direction field and some integrals for (2.2.18).

MR R
MR R R R
y(rveree

T T T e .

N -

Differences Between Linear and Nonlinear Equations

Theorem 2.1.2 states that if p and f are continuous on (a, b) then every solution of

Y +plx)y = f(x)

on (a,b) can be obtained by choosing a value for the constant ¢ in the general solution, and if x¢ is any
point in (a, b) and y is arbitrary, then the initial value problem

v +p(x)y = f(z), y(xo) =10

has a solution on (a, b).

The not true for nonlinear equations. First, we saw in Examples 2.2.4 and 2.2.5 that a nonlinear
equation may have solutions that can’t be obtained by choosing a specific value of a constant appearing
in a one-parameter family of solutions. Second, it is in general impossible to determine the interval
of validity of a solution to an initial value problem for a nonlinear equation by simply examining the

equation, since the interval of validity may depend on the initial condition. For instance, in Example 2.2.2
we saw that the solution of
dy T
L2 yeo) =
z Y

is valid on (—a, a), where a = /23 + y2.
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Example 2.2.6 Solve the initial value problem

v =2zy?,  y(0) =yo

and determine the interval of validity of the solution.

Solution First suppose yo # 0. From Example 2.2.4, we know that y must be of the form

1
- 2.2.20
Yy Z e ( )
Imposing the initial condition shows that ¢ = —1/y. Substituting this into (2.2.20) and rearranging
terms yields the solution
_ Yo
LA yox2’

This is also the solution if yg = 0. If yg < 0, the denominator isn’t zero for any value of z, so the the
solution is valid on (—o0, 00). If 419 > 0, the solution is valid only on (—1/,/%0,1//%0)-

2.2 Exercises

In Exercises 1-6 find all solutions.

3z + 2z +1
g dr TAarT 2. (sinz)(siny) + (cosy)y =0

y—2
3. 2/ +y2+y=0 4. y'Inlyl+2%y=0
2z + 1)y
5. (3y°+3 1)y’ (7:0
(3y” + 3ycosy + 1)y + T2

6. 2Py = (4 —1)*?

In Exercises T-10 find all solutions. Also, plot a direction field and some integral curves on the indicated
rectangular region.

7. Yy =22(1+9%); {-1<z<1,-1<y<1}

8. Y(1+a?) +ay=0; {-2<2<2 -1<y<1}

9. Y =@-Dy-y-2); {-2<r<2 -3<y<3}
10. (y—1)2%¢y =22+3; {-2<x<2 -2<y<5}
In Exercises 11 and 12 solve the initial value problem.

22 4+3x+2
y—2
12. ¢ +z(y®+y) =0, y2)=1

11. ¢ =

In Exercises 13-16 solve the initial value problem and graph the solution.

13. (3y? +4y)y +2x +cosz =0, y(0)=1



14.

15.
16.
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[C/G] o + w+Dy-Du=2) _, )

r+1

[CIG]y +22(y+1) =0, 3(0) =2
(C/Gy = 22y(1 +42), y(0) =1

In Exercises 17-23 solve the initial value problem and find the interval of validity of the solution.

17.
18.

19.

21.
22,
23.

24.

25.

26.

27.

28.

29.

30.

y(@? +2)+4dz(y* +2y+1) =0, y(l)=-1
y'=-22(y* - 3y+2), y(0)=3
2x
= 1Troy y(2) =0 20, y=2y-y? y(0)=1
z4+yy =0, y3)=-4
y+aiy+1)(y—2)7°=0, y@)=2
4+ 1)(z-2)yY +y=0, y(l)=-3
(14 32 tan A + tan B

) , o
m exphcltly. HINT. USE the zdentzty tan(A —+ B) = m

Solve 4/ /1 — 22 + /1 — 42 = 0 explicitly. HINT: Use the identity sin(A — B) = sin A cos B —

cos Asin B.

Solve y’ = Z?Zx, y(m) = g explicitly. HINT: Use the identity cos(x + 7/2) = — sin x and the

/

Y

Solve iy =

periodicity of the cosine.

Solve the initial value problem
y =ay—by*, y(0) = yo.

Discuss the behavior of the solution if (a) yg > 0; (b) yo < 0.
The population P = P(t) of a species satisfies the logistic equation

P’ =aP(1-aP)
and P(0) = Py > 0. Find P fort > 0, and find lim;_, o, P(t).

An epidemic spreads through a population at a rate proportional to the product of the number of
people already infected and the number of people susceptible, but not yet infected. Therefore, if
S denotes the total population of susceptible people and I = I(t) denotes the number of infected
people at time ¢, then

I'=rI(S-1),
where 7 is a positive constant. Assuming that 1(0) = Iy, find I(¢) for ¢ > 0, and show that

The result of Exercise 29 is discouraging: if any susceptible member of the group is initially
infected, then in the long run all susceptible members are infected! On a more hopeful note,
suppose the disease spreads according to the model of Exercise 29, but there’s a medication that
cures the infected population at a rate proportional to the number of infected individuals. Now the
equation for the number of infected individuals becomes

I'=rI(S—1)—ql (A)

where ¢ is a positive constant.
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31.

32.

33.

Chapter 2 First Order Equations

(a) Choose r and S positive. By plotting direction fields and solutions of (A) on suitable rectan-

gular grids
R={0<t<T,0<I<d}

in the (¢, I)-plane, verify that if I is any solution of (A) such that I(0) > 0, then lim; o, I(t) =
S —q/rifq<rSandlim;_, I(t) =0ifg > rS.

(b) To verify the experimental results of (a), use separation of variables to solve (A) with initial
condition I(0) = Iy > 0, and find limy_, o, I(t). HINT: There are three cases to consider:
(i) g <rS; (i) g>rS; (i) ¢ =rS.

Consider the differential equation

Y =ay—by* —q, (A)

where a, b are positive constants, and ¢ is an arbitrary constant. Suppose y denotes a solution of
this equation that satisfies the initial condition y(0) = yo.

(a) Choose a and b positive and ¢ < a?/4b. By plotting direction fields and solutions of (A) on
suitable rectangular grids
R={0<t<T c<y<d} (B)

in the (¢, y)-plane, discover that there are numbers y; and yo with y; < yo such that if
Yo > y1 then limy .o y(t) = yo, and if yo < y; then y(t) = —oo for some finite value of ¢.
(What happens if yo = y17)

(b) Choose a and b positive and ¢ = a?/4b. By plotting direction fields and solutions of (A)
on suitable rectangular grids of the form (B), discover that there’s a number y; such that if
Yo > 1 then limy o y(t) = y1, while if yo < y1 then y(t) = —oo for some finite value of

t.
(¢) Choose positive a, b and ¢ > a?/4b. By plotting direction fields and solutions of (A) on
suitable rectangular grids of the form (B), discover that no matter what yy is, y(t) = —oo for

some finite value of ¢.
(d) Verify your results experiments analytically. Start by separating variables in (A) to obtain

/

Yy

ay —by* —q
To decide what to do next you’ll have to use the quadratic formula. This should lead you to
see why there are three cases. Take it from there!

Because of its role in the transition between these three cases, qo = a?/4b is called a bifur-
cation value of q. In general, if ¢ is a parameter in any differential equation, ¢ is said to be a
bifurcation value of ¢ if the nature of the solutions of the equation with ¢ < qq is qualitatively
different from the nature of the solutions with ¢ > ¢q.

By plotting direction fields and solutions of

v =ay -y’
convince yourself that gg = 0 is a bifurcation value of ¢ for this equation. Explain what makes
you draw this conclusion.

Suppose a disease spreads according to the model of Exercise 29, but there’s a medication that
cures the infected population at a constant rate of ¢ individuals per unit time, where ¢ > 0. Then
the equation for the number of infected individuals becomes

I'=ri(S—-1)—q.

Assuming that 1(0) = Iy > 0, use the results of Exercise 31 to describe what happens as ¢t — oo.
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34. Assuming that p # 0, state conditions under which the linear equation

Y +plx)y = f(x)

is separable. If the equation satisfies these conditions, solve it by separation of variables and by
the method developed in Section 2.1.

Solve the equations in Exercises 35-38 using variation of parameters followed by separation of variables.

6

2re " ’ T
/ _ 36. — 2y =
35. y+y_1+yex Y Yy S
4 1)€4x xe2x
37, o —y= 2t 38, o —oy— 2
Yy -y (g + ¢7)2 Y Y =

39. Use variation of parameters to show that the solutions of the following equations are of the form
y = uyi, where u satisfies a separable equation v’ = g(z)p(u). Find y; and g for each equation.

@y +y = h(@)p(ey) (b) oy —y = hia)p ()
(© Y +y = h(z)p(e®y) (d) ' + ry = h(z)p(z"y)
©y + %y = h(z)p (w(a)y)

2.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR EQUATIONS

Although there are methods for solving some nonlinear equations, it’s impossible to find useful formulas
for the solutions of most. Whether we’re looking for exact solutions or numerical approximations, it’s
useful to know conditions that imply the existence and uniqueness of solutions of initial value problems
for nonlinear eauations. In this section we state such a condition and illustrate it with examples.

Figure 2.3.1 An open rectangle
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Some terminology: an open rectangle R is a set of points (x, y) such that
a<zx<b and c<y<d

(Figure 2.3.1). We’ll denote thisset by R : {a < < b,¢ < y < d}. “Open” means that the boundary
rectangle (indicated by the dashed lines in Figure 2.3.1) isn’t included in R .

The next theorem gives sufficient conditions for existence and uniqueness of solutions of initial value
problems for first order nonlinear differential equations. We omit the proof, which is beyond the scope of
this book.

Theorem 2.3.1
(a) If f is continuous on an open rectangle
R:{a<zxz<bec<y<d}

that contains (xo, yo) then the initial value problem

Y = f(z,y), ylxo) =wo (2.3.1)

has at least one solution on some open subinterval of (a, b) that contains x.

(b) Ifboth f and f, are continuous on R then (2.3.1) has a unique solution on some open subinterval
of (a, b) that contains x.

It’s important to understand exactly what Theorem 2.3.1 says.

* (a) is an existence theorem. It guarantees that a solution exists on some open interval that contains
Zg, but provides no information on how to find the solution, or to determine the open interval on
which it exists. Moreover, (a) provides no information on the number of solutions that (2.3.1) may
have. It leaves open the possibility that (2.3.1) may have two or more solutions that differ for values
of z arbitrarily close to . We will see in Example 2.3.6 that this can happen.

* (b) is a uniqueness theorem. It guarantees that (2.3.1) has a unique solution on some open interval
(a,b) that contains xy. However, if (a,b) # (—o0, 00), (2.3.1) may have more than one solution on
a larger interval that contains (a, b). For example, it may happen that b < oo and all solutions have
the same values on (a, b), but two solutions y; and y, are defined on some interval (a, by) with
b1 > b, and have different values for b < = < by; thus, the graphs of the y; and y, “branch off” in
different directions at z = b. (See Example 2.3.7 and Figure 2.3.3). In this case, continuity implies
that y1 (b) = y2(b) (call their common value 7), and y; and y- are both solutions of the initial value
problem

v =flxy), yb) =7 (2.32)
that differ on every open interval that contains b. Therefore f or f, must have a discontinuity at
some point in each open rectangle that contains (b, ), since if this were not so, (2.3.2) would have
a unique solution on some open interval that contains b. We leave it to you to give a similar analysis
of the case where a > —oo.

Example 2.3.1 Consider the initial value problem

/ 2?2 — 2
= < =yp. 233
U L y(wo) = Yo (2.3.3)
Since 5 o ( 2)
Tt —y 2y(1 + 2z
R E—— d S S —
few)=raye ™ ey =—grar e
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are continuous for all (z, y), Theorem 2.3.1 implies that if (x¢, yo) is arbitrary, then (2.3.3) has a unique
solution on some open interval that contains x.

Example 2.3.2 Consider the initial value problem

2 2
’ rm -y
= 7 = 1. 234
V= mT y(zo) = Yo (2.3.4)
Here ) 5 9
T -y da=y
. d = =
f('ray) x2+y2 an fy('ray) (x2+y2)2

are continuous everywhere except at (0, 0). If (20, yo) # (0, 0), there’s an open rectangle R that contains
(20, yo) that does not contain (0, 0). Since f and f, are continuous on R, Theorem 2.3.1 implies that if
(20, y0) # (0,0) then (2.3.4) has a unique solution on some open interval that contains z.

Example 2.3.3 Consider the initial value problem

x +
v =21 y(z0) = yo. 23.5)

Here n 5
T4y T

flz,y)=—— and fy(2,y)= —=5

T—y (z—v)

are continuous everywhere except on the line y = x. If yg # xo, there’s an open rectangle R that contains
(x0, yo) that does not intersect the line y = z. Since f and f, are continuous on R, Theorem 2.3.1 implies
that if yo # x, (2.3.5) has a unique solution on some open interval that contains z.

Example 2.3.4 In Example 2.2.4 we saw that the solutions of
Yy = 2zy’ (2.3.6)

are )
24+ c’

where cis an arbitrary constant. In particular, this implies that no solution of (2.3.6) other than y = 0 can
equal zero for any value of z. Show that Theorem 2.3.1(b) implies this.

y=0 and y=-—

Solution We’ll obtain a contradiction by assuming that (2.3.6) has a solution y; that equals zero for some
value of x, but isn’t identically zero. If y; has this property, there’s a point xo such that y; (z¢) = 0, but
y1(z) # 0 for some value of x in every open interval that contains xo. This means that the initial value
problem

Y =2zy%, y(xe) =0 2.3.7)

has two solutions y = 0 and y = y; that differ for some value of = on every open interval that contains
xg. This contradicts Theorem 2.3.1(b), since in (2.3.6) the functions

flx,y) =2xy> and  fy(z,y) = day.

are both continuous for all (x, y), which implies that (2.3.7) has a unique solution on some open interval
that contains x.
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Example 2.3.5 Consider the initial value problem

10
y = 3%2/5, y(z0) = yo. (2.3.8)

(a) For what points (xg, yo) does Theorem 2.3.1(a) imply that (2.3.8) has a solution?

(b) For what points (2, yo) does Theorem 2.3.1(b) imply that (2.3.8) has a unique solution on some
open interval that contains x¢?

SOLUTION(a) Since
10 /5

flz,y) = gwa

is continuous for all (z, y), Theorem 2.3.1 implies that (2.3.8) has a solution for every (xo, yo)-

SOLUTION(b) Here
4
Fy(w,y) = qay™°

is continuous for all (z,y) with y # 0. Therefore, if yo # 0 there’s an open rectangle on which both f
and f, are continuous, and Theorem 2.3.1 implies that (2.3.8) has a unique solution on some open interval
that contains xzg.

If y = 0 then f, (x, y) is undefined, and therefore discontinuous; hence, Theorem 2.3.1 does not apply
to (2.3.8)if yog = 0.

Example 2.3.6 Example 2.3.5 leaves open the possibility that the initial value problem
10
y = E:cyQ/S, y(0) =0 (2.3.9)

has more than one solution on every open interval that contains zo = 0. Show that this is true.

Solution By inspection, y = 0 is a solution of the differential equation

10
y =Syl (23.10)
Since y = 0 satisfies the initial condition y(0) = 0, it’s a solution of (2.3.9).
Now suppose y is a solution of (2.3.10) that isn’t identically zero. Separating variables in (2.3.10)
yields
10
-2/5, 7 _ =¥
Y Y 37
on any open interval where y has no zeros. Integrating this and rewriting the arbitrary constant as 5¢/3
yields
) )
§y3/5 = g(:cQ + ).
Therefore
y = (2 +¢)°/3. (2.3.11)

Since we divided by y to separate variables in (2.3.10), our derivation of (2.3.11) is legitimate only on
open intervals where y has no zeros. However, (2.3.11) actually defines y for all z, and differentiating
(2.3.11) shows that

10 10
y = ?:c(:cQ +¢)?? = ?xy2/5, —00 < T < 00.
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Y
<

Figure 2.3.2 Two solutions (y = 0 and y = x'/?) of (2.3.9) that differ on every interval containing
o = 0

Therefore (2.3.11) satisfies (2.3.10) on (—o0, 00) even if ¢ < 0, so that y(1/]c]) = y(—+/]¢]) = 0. In
particular, taking ¢ = 0 in (2.3.11) yields

y = £10/3

as a second solution of (2.3.9). Both solutions are defined on (—o0, 00), and they differ on every open
interval that contains o = 0 (see Figure 2.3.2.) In fact, there are four distinct solutions of (2.3.9) defined
on (—o0, 00) that differ from each other on every open interval that contains 2z = 0. Can you identify
the other two?

Example 2.3.7 From Example 2.3.5, the initial value problem

10
y = gxy2/5, y(0) = —1 (2.3.12)
has a unique solution on some open interval that contains zop = 0. Find a solution and determine the
largest open interval (a, b) on which it’s unique.

Solution Let y be any solution of (2.3.12). Because of the initial condition y(0) = —1 and the continuity
of y, there’s an open interval I that contains zo = 0 on which y has no zeros, and is consequently of the
form (2.3.11). Settingx =0 and y = —1in (2.3.11) yields ¢ = —1, so

y= (22 —-1)°3 (23.13)

for z in I. Therefore every solution of (2.3.12) differs from zero and is given by (2.3.13) on (—1, 1);
that is, (2.3.13) is the unique solution of (2.3.12) on (—1, 1). This is the largest open interval on which
(2.3.12) has a unique solution. To see this, note that (2.3.13) is a solution of (2.3.12) on (—00, 00). From
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Exercise 2.2.15, there are infinitely many other solutions of (2.3.12) that differ from (2.3.13) on every
open interval larger than (—1, 1). One such solution is

(2 —1)5/3, —1<z<1,
y:
0, |z| > 1.

(Figure 2.3.3).

Figure 2.3.3 Two solutions of (2.3.12) on (—o0, 00)
that coincide on (—1, 1), but on no larger open
interval Figure 2.3.4 The unique solution of (2.3.14)

Example 2.3.8 From Example 2.3.5, the initial value problem

1
Y = goxy2/5, y(0) =1 (2.3.14)

has a unique solution on some open interval that contains x¢g = 0. Find the solution and determine the
largest open interval on which it’s unique.

Solution Let y be any solution of (2.3.14). Because of the initial condition y(0) = 1 and the continuity
of y, there’s an open interval I that contains zo = 0 on which y has no zeros, and is consequently of the
form (2.3.11). Settingx = 0 and y = 1in (2.3.11) yields ¢ = 1, so

y= (a2 +1)°? (2.3.15)

for z in I. Therefore every solution of (2.3.14) differs from zero and is given by (2.3.15) on (—o0, 00);
that is, (2.3.15) is the unique solution of (2.3.14) on (—oc0, c0). Figure 2.3.4 shows the graph of this
solution.

2.3 Exercises

In Exercises 1-13 find all (zo, yo) for which Theorem 2.3.1 implies that the initial value problem 3’ =
f(z,y), y(zo) = yo has (a) a solution (b) a unique solution on some open interval that contains x.



11.

13.
14.

15.
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, o xt ’ ,_ &ty
- sing z?+y?
y = tanzxy 4 ,7x2+y2
) Inzy
y =@ +y")y'? 6. y =2y
Y =In(l + 22 + ) 8. y' = ixjf;
Y = (2 + y?)V/? 10. o = a(y? —1)23
Y= (2" +9%)? 2.y =(z+y)'/?
t

Apply Theorem 2.3.1 to the initial value problem

Y +p(x)y =q(x), y(xo) =10

61

for a linear equation, and compare the conclusions that can be drawn from it to those that follow

from Theorem 2.1.2.
(a) Verify that the function
(22 -1)%3, —1<z<]1,
y =
O’ |CC| Z 15

is a solution of the initial value problem
10
y =Syt y(0) = -1
on (—o0, 00). HINT: You'll need the definition
r—xT r—x

to verify that y satisfies the differential equation at T = %1.
(b) Verify thatife; =0or1 fori =1, 2 and a, b > 1, then the function

e1(x? —a?)®3, —c0 <z < —a,
0, —a<zx< -1,
Y= (x?2 —1)°/3, —l<z<1,
0, 1<z <,
ea(x? —b2)°/3 b <z < oo,

is a solution of the initial value problem of (a) on (—o0, 00).
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16.

17.

18.

19.

20.

21.

Use the ideas developed in Exercise 15 to find infinitely many solutions of the initial value problem

on (—00, 00).

Consider the initial value problem
y =3e(y— 1" ylwo) = yo. (A)

(a) For what points (xg, yo) does Theorem 2.3.1 imply that (A) has a solution?

(b) For what points (xg, yo) does Theorem 2.3.1 imply that (A) has a unique solution on some
open interval that contains x¢?

Find nine solutions of the initial value problem
Y =3a(y - 1) y(0)=1
that are all defined on (—o0, o) and differ from each other for values of x in every open interval

that contains ¢ = 0.

From Theorem 2.3.1, the initial value problem
y =3z(y -1 y(0)=9
has a unique solution on an open interval that contains ¢y = 0. Find the solution and determine

the largest open interval on which it’s unique.

(a) From Theorem 2.3.1, the initial value problem
y =3z(y—-1Y?, yB3)=-7 (A)

has a unique solution on some open interval that contains zg = 3. Determine the largest such
open interval, and find the solution on this interval.

(b) Find infinitely many solutions of (A), all defined on (—o0, 00).

Prove:

(a) If
f(xayo)zoa CL<.’,E<b, (A)

and xg is in (a, b), then y = yo is a solution of
v =f.y), ylzo)=wo

on (a,b).
(b) If f and f, are continuous on an open rectangle that contains (o, yo) and (A) holds, no
solution of ¢y’ = f(x, y) other than y = y, can equal yo at any point in (a, b).

2.4 TRANSFORMATION OF NONLINEAR EQUATIONS INTO SEPARABLE EQUATIONS

In Section 2.1 we found that the solutions of a linear nonhomogeneous equation

Y +plx)y = f(x)
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are of the form y = wuy;, where y; is a nontrivial solution of the complementary equation

Y +px)y=0 (2.4.1)

and u is a solution of
u'yi () = f(z).

Note that this last equation is separable, since it can be rewritten as

@
yi(z)

In this section we’ll consider nonlinear differential equations that are not separable to begin with, but can
be solved in a similar fashion by writing their solutions in the form y = uy;, where y; is a suitably chosen
known function and u satisfies a separable equation. We’llsay in this case that we transformed the given
equation into a separable equation.

Bernoulli Equations

A Bernoulli equation is an equation of the form

v +p(x)y = f(z)y", (2.4.2)

where 7 can be any real number other than 0 or 1. (Note that (2.4.2) is linear if and only if » = 0 or
r = 1.) We can transform (2.4.2) into a separable equation by variation of parameters: if y; is a nontrivial
solution of (2.4.1), substituting y = wuy; into (2.4.2) yields

u'yr + u(yy +p(@)yr) = f(x)(uyr)”,

which is equivalent to the separable equation

uyi(@) = f@) (i (@) " or  — = f(z) (n(2)"",
since y; + p(x)y1 = 0.
Example 2.4.1 Solve the Bernoulli equation

Y —y =y’ (2.4.3)

Solution Since y; = ¢* is a solution of ' — y = 0, we look for solutions of (2.4.3) in the form y = ue®,

where

! x 2 2x

u'e® = zu?e®®  or, equivalently, u' = zu?

er.

Separating variables yields

and integrating yields
1
——=(x—-1e"+ec.

Hence,

7_(x—1)ex+c


http://www-history.mcs.st-and.ac.uk/Mathematicians/Bernoulli_Jacob.html
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Figure 2.4.1 A direction field and integral curves for v/ — y = zy?

and
1

z—1+ce e’

Figure 2.4.1 shows direction field and some integral curves of (2.4.3).

Yy=-

Other Nonlinear Equations That Can be Transformed Into Separable Equations

We’ve seen that the nonlinear Bernoulli equation can be transformed into a separable equation by the
substitution y = uy; if y; is suitably chosen. Now let’s discover a sufficient condition for a nonlinear
first order differential equation

Y = f(z,y) (2.4.4)

to be transformable into a separable equation in the same way. Substituting y = uy; into (2.4.4) yields

u'yr (z) + uyh () = fl2, uy (2)),

which is equivalent to
wyi(z) = flz,uyr(z)) — uyy(x). (2.4.5)
If
f@, uyr () = q(u)y; (z)

for some function ¢, then (2.4.5) becomes
u'yr(z) = (q(u) — wyi(z), (2.4.6)

which is separable. After checking for constant solutions u = ug such that g(ug) = ug, we can separate
variables to obtain
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Homogeneous Nonlinear Equations

In the text we’ll consider only the most widely studied class of equations for which the method of the
preceding paragraph works. Other types of equations appear in Exercises 44-51.

The differential equation (2.4.4) is said to be homogeneous if x and y occur in f in such a way that
f(z,y) depends only on the ratio y/x; that is, (2.4.4) can be written as

Y =q(y/x), (2.4.7)

where ¢ = g(u) is a function of a single variable. For example,

,_ytze VT oy

Yy f__i_e*y/x
X X

and 5 )
+zy—x 2
y/ _ % _ (y) i Y
T
are of the form (2.4.7), with

qu)=u+e™ and qu) =u*+u-—1,

respectively. The general method discussed above can be applied to (2.4.7) with y; = x (and therefore
yy = 1). Thus, substituting y = ux in (2.4.7) yields

W+ u = q(u),
and separation of variables (after checking for constant solutions u = wg such that q(ug) = uo) yields
AN
glu) —u
Before turning to examples, we point out something that you may’ve have already noticed: the defini-

tion of homogeneous equation given here isn’t the same as the definition given in Section 2.1, where we
said that a linear equation of the form
y +p@)y=0

is homogeneous. We make no apology for this inconsistency, since we didn’t create it historically, homo-
geneous has been used in these two inconsistent ways. The one having to do with linear equations is the
most important. This is the only section of the book where the meaning defined here will apply.

Since y/x is in general undefined if x = 0, we’ll consider solutions of nonhomogeneous equations
only on open intervals that do not contain the point x = 0.

Example 2.4.2 Solve
Yyt we v/
= — )

(2.4.8)

Solution Substituting y = ua into (2.4.8) yields

, ux + re~ v/ u
Uvr+u=—=u+t+e "
x

Simplifying and separating variables yields
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Integrating yields e“ = In |z| + ¢. Therefore v = In(ln |z| 4 ¢) and y = ux = z 1n(In |z| + ¢).

Figure 2.4.2 shows a direction field and integral curves for (2.4.8).
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RO RRR R AR DR AR AR R RR AR R AR

3.5

y + ze /"

Figure 2.4.2 A direction field and some integral curves for 3/ =

x

Example 2.4.3

(a) Solve

(2.4.9)

2—|—3:y—3:.

$2y/ =y

(b) Solve the initial value problem

(2.4.10)

1) =2.

(

Y

3

3:2y :y2—|—3:y—33

t contain x+ = 0. We can

b}

SOLUTION(a) We first find solutions of (2.4.9) on open intervals that don

rewrite (2.4.9) as

—|—3:y—3:2

y2

/

for x in any such interval. Substituting y = ux yields

2
Pt gt

(ux

uwr+u

SO

(2.4.11)

wr=u?—1.
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By inspection this equation has the constant solutions © = 1 and v = —1. Therefore y = rand y = —=x
are solutions of (2.4.9). If w is a solution of (2.4.11) that doesn’t assume the values 1 on some interval,
separating variables yields

u2—1 =z
or, after a partial fraction expansion,

11 1], 1
2 |lu—1 u—|—1u_3:'

Multiplying by 2 and integrating yields

U —
In =2Inlz| + &,
u+1
or
u—1
— ka2,
u+1
which holds if 1
U —
= cz? (2.4.12)
u+1
where c is an arbitrary constant. Solving for u yields
1+ cz?
U =——-7.
1—cx?
y
y
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Figure 2.4.3 A direction field and integral curves for Figure 2.4.4 Solutions of z%y = 3? + zy — 22,
2,/ 2 2
=y =y tay—x y(1) =2
Therefore )
z(1 4 cx?)
y=ur=——5— 24.13)
1—czx

is a solution of (2.4.10) for any choice of the constant c. Setting ¢ = 0 in (2.4.13) yields the solution
y = x. However, the solution y = —x can’t be obtained from (2.4.13). Thus, the solutions of (2.4.9) on
intervals that don’t contain « = 0 are y = —x and functions of the form (2.4.13).
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The situation is more complicated if x = 0 is the open interval. First, note that y = —x satisfies (2.4.9)
on (—o00, 00). If ¢1 and ¢y are arbitrary constants, the function

1 2
eltar) oo,
Y= x(ll_—i- 00133;2) (2.4.14)
Do) g<a<b,
1 —cp2?
is a solution of (2.4.9) on (a, b), where
L ifc; >0 L ifco >0
———  ifec —  ifec
a= N2 ! ’ and b= /Ca 2 ’
—00 if c; <0, 00 ifco <0.

We leave it to you to verify this. To do so, note that if y is any function of the form (2.4.13) then y(0) = 0
and y/(0) = 1.
Figure 2.4.3 shows a direction field and some integral curves for (2.4.9).

SoLuTION(b) We could obtain ¢ by imposing the initial condition y(1) = 2 in (2.4.13), and then solving
for c. However, it’s easier to use (2.4.12). Since v = y/z, the initial condition y(1) = 2 implies that
u(1) = 2. Substituting this into (2.4.12) yields ¢ = 1/3. Hence, the solution of (2.4.10) is

~z(1+a?/3)
- 1-22/3

The interval of validity of this solution is (—\/ 5, \/5) However, the largest interval on which (2.4.10)
has a unique solution is (0, v/3). To see this, note from (2.4.14) that any function of the form

2
ﬂ%ig;, 0<z<0,
— CT
y= 2 (2.4.15)
x(1+2%/3)
_ <
1 a2/3 0<z< \/g,

is a solution of (2.4.10) on (a, v/3), where a = —1/+/cif ¢ > 0 or a = —o00 if ¢ < 0. (Why doesn’t this
contradict Theorem 2.3.17)

Figure 2.4.4 shows several solutions of the initial value problem (2.4.10). Note that these solutions
coincide on (0, /3).

In the last two examples we were able to solve the given equations explicitly. However, this isn’t always
possible, as you’ll see in the exercises.

2.4 Exercises

In Exercises 1-4 solve the given Bernoulli equation.

2

x
Loy +y=1> 2 Twy —y=—15
1
. 2,/ — 9pl/x,1/2 4. 1 2V + 2y =
3. 2%y +2y =20y (1+2%)y + 2xy AT

In Exercises 5 and 6 find all solutions. Also, plot a direction field and some integral curves on the
indicated rectangular region.
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5. Y —ay =2 {-3<2<3,2<y>2)
1
o [G6]y - =yt (2srz222y<y
T
In Exercises T-11 solve the initial value problem.

7. ¥ —2y=uay’, y(0
Y —ay=ayP? oy

9. ay +y=a"y', y(1)=1/2

10. o — 2y = 2y'/2, y(0) =1

1.y —dy=—, y(0)=
In Exercises 12 and 13 solve the initial value problem and graph the solution.

12. 22y + 2y =93, y(1) =1/V2

13. y —y=ay'/? y(0)=4
14. You may have noticed that the logistic equation

P’ =aP(1 - aP)
from Verhulst’s model for population growth can be written in Bernoulli form as
P' —aP = —aa P2

This isn’t particularly interesting, since the logistic equation is separable, and therefore solvable
by the method studied in Section 2.2. So let’s consider a more complicated model, where a is
a positive constant and « is a positive continuous function of ¢ on [0, c0). The equation for this
model is

P’ —aP = —aa(t)P?,
a non-separable Bernoulli equation.

(a) Assuming that P(0) = Py > 0, find P for ¢t > 0. HINT: Express your result in terms of the
integral fot a(T)e" dr.

(b) Verify that your result reduces to the known results for the Malthusian model where o = 0,
and the Verhulst model where « is a nonzero constant.

(¢) Assuming that

t
lim efat/ a(r)e*"dr =1L
0

t—o0o

exists (finite or infinite), find lim;_, o P(t).

In Exercises 15—18 solve the equation explicitly.

2
y° + 22y
15. y,_y—l—x 16 = 22
X
17. zyby =y' +a? 18. =2 ysec?
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In Exercises 19-21 solve the equation explicitly. Also, plot a direction field and some integral curves on
the indicated rectangular region.

19.
20.

21.

(CIG| 2%y =ay+a2+42; {-8<z<8 -8<y<8}
CIGlayy' =22+ 2% {-4<a<4,-4<y<4}

22 + p2e—W/2)?
y’:%; {-8<x<8,-8<y<8}

In Exercises 22-27 solve the initial value problem.

22,

23.

24.

25.

26.
27.

ry +y°
V== y=1)=2
x?’—l-y?’
Y = 5 y(1) =3
zy
ayy' + 2% +y° =0, y(1) =2
2 2
y° — 3ry — S
Y=z yl)=-1

22y =222 + 9% +4ay, y(1)=1
zyy =32 + 47, y(1) =3

In Exercises 28-34 solve the given homogeneous equation implicitly.

28.

30.

32.

34.

3s.

y =21 29. (yo—y)(Inly| —Ine)) =z
z—y
) _ Y+ 2ay” + a2ty +a? 3. g T2
y = : C Y =35
z(y + ) rry
y =—2 3By - W
y— 2z Y T By
, 3 4 2%y + 393
y =

x3 4 3zy?

(a) Find a solution of the initial value problem
Y =y +ay —42?, y(-1)=0 (A)

on the interval (—oo, 0). Verify that this solution is actually valid on (—o0, 00).
(b) Use Theorem 2.3.1 to show that (A) has a unique solution on (—o0, 0).
(c) Plot a direction field for the differential equation in (A) on a square

{-r<z<r,—r<y<r}

where 7 is any positive number. Graph the solution you obtained in (a) on this field.
(d) Graph other solutions of (A) that are defined on (—oco, c0).



37.

38.

39.

(e)
(a)

(b)

(c)

(d)

(a)

(b)
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Graph other solutions of (A) that are defined only on intervals of the form (—oc0, a), where
is a finite positive number.

Solve the equation

ayy' =1 —zy+y? (A)
implicitly.
Plot a direction field for (A) on a square

{0<z<r0<y<r}

where 7 is any positive number.

Let K be a positive integer. (You may have to try several choices for K.) Graph solutions of
the initial value problems

kr
vy =2 —wy+y7, y(r/2) = 3
fork=1,2,..., K. Based on your observations, find conditions on the positive numbers x
and yo such that the initial value problem
wyy =a® —zy+y°,  y(xo) = yo, (B)

has a unique solution (i) on (0, o) or (ii) only on an interval (a, c0), where a > 0?
What can you say about the graph of the solution of (B) as * — o0? (Again, assume that
zo > 0and yg > 0.)

Solve the equation

; 2% — xy + 222
v= Ty + 222
implicitly.

Plot a direction field for (A) on a square
{-r<az<r,—r<y<r}

where r is any positive number. By graphing solutions of (A), determine necessary and
sufficient conditions on (zg, yo) such that (A) has a solution on (i) (—oo, 0) or (ii) (0, c0)
such that y(xo) = yo.

Follow the instructions of Exercise 37 for the equation

, ay+at+y?
=T

Pick any nonlinear homogeneous equation ¢’ = ¢(y/x) you like, and plot direction fields on
the square {—r <z <r, —r <y < r}, where r > 0. What happens to the direction field as you

vary r? Why?
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40.

Prove: If ad — be # 0, the equation

, ar+by+a
Ccx+dy+p

can be transformed into the homogeneous nonlinear equation

dY  aX +bY
dX X +dY

by the substitutionx = X — Xy, y =Y — Y, where X and Yj are suitably chosen constants.

In Exercises 41-43 use a method suggested by Exercise 40 to solve the given equation implicitly.

41.

43.

,_ —brt+y—3 . 2rty+1
y = ——— 2. §y=——"—
20 —y —1 r+2y—4
,  —x+3y—14
oz 4y—2

In Exercises 44-51 find a function y, such that the substitution y = wy; transforms the given equation
into a separable equation of the form (2.4.6). Then solve the given equation explicitly.

44.

46.

48.

50.

52.

53.

54.

55.

Sw2y =1 + 45. ayy =32+ 6y°
w3y =20y + 2%y — x*) 47. y =yPe " + 4y + 2e”
, Y2 +ytanz + tan’z 49. z(Inz)%y = —4(Inx)?> +ylnz + 32
- —
sin®

2¢(y +2v@)y = (y + Vx)? 51 (y+e)y =22(y? + ye® + e22°)
Solve the initial value problem

2 3z%y? + 6y + 2

"+ Sy = 2)=2.
vt z? z2(2zy +3) y(2)
Solve the initial value problem
3 3zty? + 102%y + 6
fL Sy = 1) =1.
vty z3(22%y +5) y()

Prove: If y is a solution of a homogeneous nonlinear equation 3 = ¢(y/x), so is y1 = y(az)/a,
where a is any nonzero constant.

A generalized Riccati equation is of the form

y = P(z) + Q(z)y + R(x)y’. (A)

(If R = —1, (A) is a Riccati equation.) Let y; be a known solution and y an arbitrary solution of
(A). Let z = y — y;. Show that z is a solution of a Bernoulli equation with n = 2.


http://http://www-history.mcs.st-and.ac.uk/Indexes/Riccati.html
http://http://www-history.mcs.st-and.ac.uk/Indexes/Riccati.html
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In Exercises 56-59, given that y is a solution of the given equation, use the method suggested by Exercise

55 to find other solutions.

56. v =1+z—(1+22)y+ay* y=1
57. y =+ (1 -2y +y?% y1 =€
58. zy=2—-2+Q2r-2y—ay* yp=1
59. ay =2t + (1 -2y +axy? yi==x

2.5 EXACT EQUATIONS
In this section it’s convenient to write first order differential equations in the form
M(z,y) dz + N(z,y)dy = 0.

This equation can be interpreted as

M(z.) + N(z.y) &

ay _
d:c_o’

where z is the independent variable and y is the dependent variable, or as

dx
Y

2.5.1)

(2.5.2)

(2.5.3)

where y is the independent variable and z is the dependent variable. Since the solutions of (2.5.2) and
(2.5.3) will often have to be left in implicit, form we’ll say that F'(z,y) = c is an implicit solution of
(2.5.1) if every differentiable function y = y(x) that satisfies F'(x,y) = c is a solution of (2.5.2) and

every differentiable function = x(y) that satisfies F'(x,y) = c is a solution of (2.5.3).

Here are some examples:

(2? +y*)de + 2zxydy =0 (x2+y2)+2xya =0 (% 4+ y)

Equation (2.5.1) Equation (2.5.2) Equation (2.5.3)
d d
3222 dz + 223y dy = 0 3222 + 203y 2L = 0 322y% = 4 228y = 0
dx dy
dy

d
+2zy =0
Y

dy

d
3ysinz dr — 2xycoszdy =0 | 3ysinx — 2:cycos:cd— =0 3ysin:cd—x —2xycosx =0
z Y

Note that a separable equation can be written as (2.5.1) as

M (z)dx + N(y)dy = 0.

We’ll develop a method for solving (2.5.1) under appropriate assumptions on M and N. This method
is an extension of the method of separation of variables (Exercise 41). Before stating it we consider an

example.
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Example 2.5.1 Show that

ot 2%y’ + 2y =c (2.5.4)
is an implicit solution of

(4z3y® + 2xy® + 2y) dx + (3zty? + b’y + 22) dy = 0. (2.5.5)

Solution Regarding y as a function of = and differentiating (2.5.4) implicitly with respect to x yields

d
(4a3y® + 2y + 2y) + (3x4y2 + 522yt + 2x) ﬁ =0.

Similarly, regarding x as a function of y and differentiating (2.5.4) implicitly with respect to y yields
d
(43y® + 22° + 2y)d—x + (3z%y? + 5%yt 4 22) = 0.
Y

Therefore (2.5.4) is an implicit solution of (2.5.5) in either of its two possible interpretations. |

You may think this example is pointless, since concocting a differential equation that has a given
implicit solution isn’t particularly interesting. However, it illustrates the next important theorem, which
we’ll prove by using implicit differentiation, as in Example 2.5.1.

Theorem 2.5.1 If F' = F(x,y) has continuous partial derivatives F,. and F,,, then

F(z,y)=c (c=constant), (2.5.6)
is an implicit solution of the differential equation

Fy(z,y)dx + Fy(z,y)dy = 0. (2.5.7)
Proof Regarding y as a function of « and differentiating (2.5.6) implicitly with respect to z yields

dy
On the other hand, regarding = as a function of y and differentiating (2.5.6) implicitly with respect to y

yields

dx
Y
Thus, (2.5.6) is an implicit solution of (2.5.7) in either of its two possible interpretations. |
We'll say that the equation
M(z,y)dz + N(z,y)dy =0 (2.5.8)

is exact on an an open rectangle R if there’s a function F' = F'(z, y) such F, and F), are continuous, and
Fo(z,y) =M(z,y) and F,(z,y)=DN(z,y) (2.5.9)
for all (x,y) in R. This usage of “exact” is related to its usage in calculus, where the expression
Fo(z,y) do + Fy(z, y) dy

(obtained by substituting (2.5.9) into the left side of (2.5.8)) is the exact differential of F'.
Example 2.5.1 shows that it’s easy to solve (2.5.8) if it’s exact and we know a function F' that satisfies
(2.5.9). The important questions are:
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QUESTION 1. Given an equation (2.5.8), how can we determine whether it’s exact?

QUESTION 2. If (2.5.8) is exact, how do we find a function F' satisfying (2.5.9)?

To discover the answer to Question 1, assume that there’s a function [ that satisfies (2.5.9) on some
open rectangle R, and in addition that F' has continuous mixed partial derivatives F;, and I},. Then a
theorem from calculus implies that

Fry = Fyz. (2.5.10)

If F; = M and F,, = N, differentiating the first of these equations with respect to y and the second with
respect to x yields
Fpy=M, and F,,=N,. (2.5.11)

From (2.5.10) and (2.5.11), we conclude that a necessary condition for exactness is that M, = N,. This
motivates the next theorem, which we state without proof.

Theorem 2.5.2 [The Exactness Condition] Suppose M and N are continuous and have continuous par-
tial derivatives M, and N, on an open rectangle R. Then

M(z,y) dz + N(z,y)dy =0

is exact on R if and only if
My(z,y) = Nz(z,y) (2.5.12)

forall (z,y) in R..

To help you remember the exactness condition, observe that the coefficients of dz and dy are differ-
entiated in (2.5.12) with respect to the “opposite” variables; that is, the coefficient of dx is differentiated
with respect to y, while the coefficient of dy is differentiated with respect to x.

Example 2.5.2 Show that the equation
322y dx + 42® dy = 0

is not exact on any open rectangle.

Solution Here
M(z,y) =32%y and N(x,y) = 42>

$O
My(z,y) =3z* and N,(z,y) = 122%

Therefore M, = N, on the line z = 0, but not on any open rectangle, so there’s no function /' such that
Fy(z,y) = M(z,y) and F,(z,y) = N(z,y) for all (z,y) on any open rectangle. [ |

The next example illustrates two possible methods for finding a function F' that satisfies the condition
Fp=Mand Fy = N if M dz + N dy = 0 is exact.

Example 2.5.3 Solve
(42y3 + 322) dz + (3292 + 6y%) dy = 0. (2.5.13)
Solution (Method 1) Here

M(z,y) = 42°y® + 32>, N(z,y) = 32"y* + 6y,
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and
M, (z,y) = Na(z,y) = 1227
for all (x, y). Therefore Theorem 2.5.2 implies that there’s a function F' such that
Fu(z,y) = M(z,y) = 423y + 32° (2.5.14)

and
F,(z,y) = N(z,y) = 3z*y* + 6y° (2.5.15)

for all (x, y). To find F', we integrate (2.5.14) with respect to z to obtain
F(z,y) = 2"y’ + 2° + 6(y), (25.16)

where ¢(y) is the “constant” of integration. (Here ¢ is “constant” in that it’s independent of x, the variable
of integration.) If ¢ is any differentiable function of y then F’ satisfies (2.5.14). To determine ¢ so that F’
also satisfies (2.5.15), assume that ¢ is differentiable and differentiate F* with respect to y. This yields

Fy(z,y) = 32"y + ¢/ (y).

Comparing this with (2.5.15) shows that

¢'(y) = 6y,
We integrate this with respect to i and take the constant of integration to be zero because we’re interested
only in finding some F’ that satisfies (2.5.14) and (2.5.15). This yields

$(y) = 2y°.
Substituting this into (2.5.16) yields
F(x,y) = z%y® + 2% + 2¢°. (2.5.17)

Now Theorem 2.5.1 implies that
x4y3 +22+ 208 =c

is an implicit solution of (2.5.13). Solving this for y yields the explicit solution
c— xg 1/3
. (2 + x4> '

Solution (Method 2) Instead of first integrating (2.5.14) with respect to =, we could begin by integrating
(2.5.15) with respect to y to obtain

F(z,y) = z*y® 4+ 2y° + (2), (2.5.18)

where 1) is an arbitrary function of . To determine 1), we assume that v is differentiable and differentiate
F" with respect to =, which yields
Fy(z,y) = 42°y* + ' (2).
Comparing this with (2.5.14) shows that
Y () = 322

Integrating this and again taking the constant of integration to be zero yields

bla) =2,
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Figure 2.5.1 A direction field and integral curves for (42%y® + 32%) dx + (32*y? + 6y?)dy =0

Substituting this into (2.5.18) yields (2.5.17).

Figure 2.5.1 shows a direction field and some integral curves of (2.5.13),

Here’s a summary of the procedure used in Method 1 of this example. You should summarize procedure
used in Method 2.

Procedure For Solving An Exact Equation

Step 1. Check that the equation
M(z,y)dx + N(z,y)dy = 0 (2.5.19)

satisfies the exactness condition M, = N,. If not, don’t go further with this procedure.

Step 2. Integrate

OF (z,
M) _ ri o,
x
with respect to x to obtain
F(z,y) = Gz, y) + o(y), (2.5.20)

where G is an antiderivative of M with respect to , and ¢ is an unknown function of y.
Step 3. Differentiate (2.5.20) with respect to y to obtain

OF(z,y) 0G(z,y)
%~ oy +¢'(y).

Step 4. Equate the right side of this equation to N and solve for ¢'; thus,

0G (x,y) 0G (x,y)

Ty+¢’(y):N(x,y), 50 ¢’(y):N(x,y)—T-
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Step 5. Integrate ¢’ with respect to y, taking the constant of integration to be zero, and substitute the
result in (2.5.20) to obtain F'(x, y).

Step 6. Set F'(x,y) = c to obtain an implicit solution of (2.5.19). If possible, solve for y explicitly as a
function of x.

It’s a common mistake to omit Step 6. However, it’s important to include this step, since F' isn’t itself
a solution of (2.5.19).

Many equations can be conveniently solved by either of the two methods used in Example 2.5.3. How-
ever, sometimes the integration required in one approach is more difficult than in the other. In such cases
we choose the approach that requires the easier integration.

Example 2.5.4 Solve the equation

(ye®™ tan x + Y sec? ) dx + 2e”Y tan x dy = 0. (2.5.21)

Solution We leave it to you to check that M, = N, on any open rectangle where tan = and sec x are
defined. Here we must find a function ' such that

Fo(z,y) = ye®™ tanz + ™Y sec’ x (2.5.22)

and
Fy(z,y) = ze* tanz. (2.5.23)

It’s difficult to integrate (2.5.22) with respect to x, but easy to integrate (2.5.23) with respect to y. This
yields
F(z,y) = €™ tanx + ¢(x). (2.5.24)

Differentiating this with respect to = yields
F.(z,y) = ye™ tanz + " sec’ 2 + ¢/ ().

Comparing this with (2.5.22) shows that ¢/’ (z) = 0. Hence, 1) is a constant, which we can take to be zero
in (2.5.24), and
eYtanx = c

is an implicit solution of (2.5.21). |
Attempting to apply our procedure to an equation that isn’t exact will lead to failure in Step 4, since
the function

won’t be independent of x if M, # N, (Exercise 31), and therefore can’t be the derivative of a function
of y alone. Here’s an example that illustrates this.

Example 2.5.5 Verify that the equation
32%y% da + 623y dy = 0 (2.5.25)

is not exact, and show that the procedure for solving exact equations fails when applied to (2.5.25).
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Solution Here
My(z,y) = 62%y and N,(z,y) = 18z%y,
s0 (2.5.25) isn’t exact. Nevertheless, let’s try to find a function F' such that
Fy(x,y) = 322> (2.5.26)

and
F,(x,y) = 62°y. (2.5.27)

Integrating (2.5.26) with respect to x yields
F(z,y) = 2%y + ¢(y),
and differentiating this with respect to y yields
Fy(z,y) = 22%y + ¢/ (y).
For this equation to be consistent with (2.5.27),
62y = 2%y + ¢/ (y),

or
¢ (y) = 42°y.

This is a contradiction, since ¢’ must be independent of . Therefore the procedure fails.

2.5 Exercises

In Exercises 1-17 determine which equations are exact and solve them.

1. 62%y*de + 423y dy =0
2. (3ycosz +4we® + 222%e*) dz + (3sinz +3)dy =0
3. ldz*yPdr+ 21222 dy =0
4. (2z—2y*)dz+ (12¢y° —4zy)dy =0
5. (z+y)?dz+ (x+y)dy=0 6. (dz+T7y)dr+ (Bx+4y)dy=0
7. (=2y*sinz + 3y — 2z)dx + (4ycosx + 9zy?) dy = 0
8. (2z+y)dr+ (2y+2x)dy=0
9. (3224 2zy+4y?)dx + (22 + 8zy + 18y) dy = 0
10. (222 + 8xy + y?) dw + (222 + 2y3/3)dy = 0

1 1
11. (——|—23:> d:c—|—(——|—2y> dy=20
€T Y

12. (ysinzy + xy? cosxy) dx + (zsinxy + xy? cos xy) dy = 0
xdx ydy B
13. (332 —|—y2)3/2 + (332 —|—y2)3/2 =0

14.  (e%(2%y? + 22y°) + 62) dx + (22%ye® +2)dy =0

15. (3:26m2+y(2332 +3)+ 43:) dz + (z3e Y — 12y2) dy = 0
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16.
17.

(e™(xy + 423) + 3y) dx + (z°e™ + 3z) dy = 0
(322 cos vy — w3y sinxy + 4a) dx + (8y — x4 sinzy)dy =0

In Exercises 18-22 solve the initial value problem.

18.
19.
20.
21.
22,

23.

24.

25.

26.

27.

(42y? — 622y — 2z — 3) dx + (22ty — 223)dy =0, y(1) =3

(— 4ycos:c+4s1n:ccosx+sec x)dr + (dy — 4sinz)dy =0, y(n/4) =0
(v — 1)e*dz + 3y*(e* + 1)dy =0, y(0)=0

( 1
2r—1(y—1)dx+ (z+2)(x—3)dy=0, y(1)=-1

m Solve the exact equation

sinx —ysinz —2cosx)dz +coszdy =0, y(0)

(Tx 4+ 4y) dz + (4= + 3y) dy = 0.
Plot a direction field and some integral curves for this equation on the rectangle

{(-l<ez<l,-1<y<1)

Solve the exact equation
e (z*y? + 423y + 1) da 4 (22tye® + 2y) dy = 0.
Plot a direction field and some integral curves for this equation on the rectangle

{(2<z<2,-1<y<1).

Plot a direction field and some integral curves for the exact equation
(@®y* +2) do + (a'y® +y)dy = 0

on the rectangle {—1 < x < 1,—1 <y < 1}. (See Exercise 37(a)).

Plot a direction field and some integral curves for the exact equation
(322 + 2y) dx + (2y + 27) dy = 0

on the rectangle {—2 < x < 2, —2 <y < 2}. (See Exercise 37(b)).

L]

(a) Solve the exact equation
(@®y* + 22) dz + (¢'y® + 3y) dy = 0 (A)

implicitly.
(b) For what choices of (xg, yo) does Theorem 2.3.1 imply that the initial value problem

(2y* + 22) dx + (2"y® + 3y) dy =0, y(x0) = yo, (B)

has a unique solution on an open interval (a, b) that contains x(?



28.

29.

30.

31.

32.

33.

34.

(c)

(a)

(b)

(c)
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Plot a direction field and some integral curves for (A) on a rectangular region centered at the
origin. What is the interval of validity of the solution of (B)?

Solve the exact equation

(22 +y*) dr + 2zydy =0 (A)
implicitly.
For what choices of (xq, yo) does Theorem 2.3.1 imply that the initial value problem

(2° + y*) dz + 2zydy =0,  y(z0) = Yo, (B)

has a unique solution y = y(x) on some open interval (a, b) that contains x(?

Plot a direction field and some integral curves for (A). From the plot determine, the interval
(a,b) of (b), the monotonicity properties (if any) of the solution of (B), and lim, 4+ y(x)
and lim, ., y(x). HINT: Your answers will depend upon which quadrant contains (xg, yo ).

Find all functions M such that the equation is exact.

(a)
(b)
(c)

M(z,y)dx + (22 —y?)dy =0
M(z,y)dz + 2zysinz cosy dy = 0
M(z,y)dz + (e* — e¥sinz)dy = 0

Find all functions /N such that the equation is exact.

(@) (z3y® + 22y +3y?)dr+ N(z,y)dy =0

() (Inzy+2ysinz)dr + N(z,y)dy =0

(¢) (zsinx +ysiny)de+ N(z,y)dy=0

Suppose M, N, and their partial derivatives are continuous on an open rectangle R, and G is an
antiderivative of M with respect to x; that is,

oG
— =M.
Ox
Show that if M,, # N, in R then the function
N
Ay

is not independent of x.

Prove: If the equations M; dx+ N; dy = 0 and Ms dx+ N2 dy = 0 are exact on an open rectangle
R, so is the equation

Find conditions on the constants A, B, C, and D such that the equation

(Az + By)dx + (Cxz + Dy)dy =0

18 exact.

Find conditions on the constants A, B, C, D, E, and F' such that the equation

(Az? + By + Cy?)dx + (D2* + Exy + Fy*) dy = 0

18 exact.



82 Chapter 2 First Order Equations

35.

36.

37.

38.

39.

40.

41.

42,

43.

Suppose M and N are continuous and have continuous partial derivatives M, and IV, that satisfy
the exactness condition M, = NN, on an open rectangle R. Show that if (x, y) is in R and

x y
F(z,y) = / M(s,y0)ds+ [ N(x,t)dt,
o

Yo

then F; = M and F, = N.

Under the assumptions of Exercise 35, show that

F(z,y) —/ny(xo,s) ds—i—/g:M(t,y) dt.

0

Use the method suggested by Exercise 35, with (zg, y9) = (0, 0), to solve the these exact equa-
tions:

@ (2%y!+z)dz+ ('Y’ +y)dy =0

(b) (2% +y?)dx + 2xydy =0

(© (3z%+2y)dx+ (2y+2x)dy =0

Solve the initial value problem

Solve the initial value problem

;3 224 (423 — 3y)
4 :cy_3:c5+3:c3+2y’

Solve the initial value problem

2
_z2 [ 3z + 2ye”

Rewrite the separable equation
h(y)y' = g(x) (A)
as an exact equation
M(z,y)dz + N(z,y) dy = 0. (B)

Show that applying the method of this section to (B) yields the same solutions that would be
obtained by applying the method of separation of variables to (A)

Suppose all second partial derivatives of M = M (x,y) and N = N(z,y) are continuous and
Mdr 4+ Ndy = 0 and —Ndx + Mdy = 0 are exact on an open rectangle k. Show that
My + My, = Nuy + Ny, = 0 on R.

Suppose all second partial derivatives of F' = F'(x,y) are continuous and F,, + F,, = 0 on an
open rectangle R. (A function with these properties is said to be harmonic; see also Exercise 42.)
Show that —F, dx + F,dy = 0 is exact on R, and therefore there’s a function G such that
G, = —Fy, and Gy = F, in R. (A function G with this property is said to be a harmonic
conjugate of F'.)
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44. Verify that the following functions are harmonic, and find all their harmonic conjugates. (See
Exercise 43.)

(a) z? — 32 (b) e* cosy (¢) 23 — 3ay?
(d) cosz cosh y (e) sinz coshy

2.6 INTEGRATING FACTORS

In Section 2.5 we saw that if M, N, M, and N, are continuous and M, = N, on an open rectangle R
then
M(z,y)dx + N(z,y)dy =0 (2.6.1)

is exact on R. Sometimes an equation that isn’t exact can be made exact by multiplying it by an appro-
priate function. For example,
(3z + 2y*) dx + 2xydy = 0 (2.6.2)

is not exact, since M, (z,y) = 4y # Ny(z,y) = 2y in (2.6.2). However, multiplying (2.6.2) by z yields
(3% + 2xy?) dx + 22%y dy = 0, (2.6.3)

which is exact, since My(z,y) = Ny(x,y) = 4zy in (2.6.3). Solving (2.6.3) by the procedure given in
Section 2.5 yields the implicit solution
3+ x2y2 =c.

A function p = p(x, y) is an integrating factor for (2.6.1) if
p(z, y)M(, y) dx + p(z, y)N(z,y) dy = 0 (2.64)

is exact. If we know an integrating factor p for (2.6.1), we can solve the exact equation (2.6.4) by the
method of Section 2.5. It would be nice if we could say that (2.6.1) and (2.6.4) always have the same
solutions, but this isn’t so. For example, a solution y = y(z) of (2.6.4) such that u(x,y(xz)) = 0 on
some interval a < x < b could fail to be a solution of (2.6.1) (Exercise 1), while (2.6.1) may have a
solution y = y(z) such that p(z, y(x)) isn’t even defined (Exercise 2). Similar comments apply if y is
the independent variable and x is the dependent variable in (2.6.1) and (2.6.4). However, if p(z,y) is
defined and nonzero for all (z, y), (2.6.1) and (2.6.4) are equivalent; that is, they have the same solutions.

Finding Integrating Factors

By applying Theorem 2.5.2 (with M and N replaced by puM and puN), we see that (2.6.4) is exact on an
open rectangle R if pM, uN, (uM),, and (uN), are continuous and

0 0
8—y(,uM) = G_x('uN) or, equivalently, 1, M + uMy = pz N + pN,

on RR. It’s better to rewrite the last equation as
w(My — Ng) = pa N — py M, (2.6.5)

which reduces to the known result for exact equations; that is, if M, = N, then (2.6.5) holds with y = 1,
so (2.6.1) is exact.

You may think (2.6.5) is of little value, since it involves partial derivatives of the unknown integrating
factor u, and we haven’t studied methods for solving such equations. However, we’ll now show that
(2.6.5) is useful if we restrict our search to integrating factors that are products of a function of x and a
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function of y; that is, u(z,y) = P(z)Q(y). We’re not saying that every equation M dx + Ndy = 0
has an integrating factor of this form; rather, we’re saying that some equations have such integrating
factors.We’llnow develop a way to determine whether a given equation has such an integrating factor,
and a method for finding the integrating factor in this case.

If u(z,y) = P(x)Q(y), then pg(z,y) = P'(z)Q(y) and py(z, y) = P(x)Q’(y), so (2.6.5) becomes
P(x)Q(y)(My — N) = P'(2)Q(y)N — P(2)Q'(y) M, (2.6.6)

or, after dividing through by P(z)Q(y),

M. 2.6.7)

Now let

so (2.6.7) becomes
M, — N, =p(z)N — q(y) M. (2.6.8)

We obtained (2.6.8) by assuming that M dx+ N dy = 0 has an integrating factor u(z,y) = P(z)Q(y).
However, we can now view (2.6.7) differently: If there are functions p = p(x) and g = ¢(y) that satisfy
(2.6.8) and we define

P(z) = :I:ef p@)de and Qy) = :I:ef a(y) dy (2.6.9)

then reversing the steps that led from (2.6.6) to (2.6.8) shows that u(x,y) = P(x)Q(y) is an integrating
factor for M dx + N dy = 0. In using this result, we take the constants of integration in (2.6.9) to be zero
and choose the signs conveniently so the integrating factor has the simplest form.

There’s no simple general method for ascertaining whether functions p = p(z) and ¢ = ¢(y) satisfying
(2.6.8) exist. However, the next theorem gives simple sufficient conditions for the given equation to have
an integrating factor that depends on only one of the independent variables x and y, and for finding an
integrating factor in this case.

Theorem 2.6.1 Let M, N, M,, and N, be continuous on an open rectangle R. Then:
(a) If (M, — N,)/N is independent of y on R and we define

M, — N,
p(I) - T
then
p(z) = kel PO @ (2.6.10)
is an integrating factor for
M(z,y)dz+ N(z,y)dy =0 (2.6.11)

on R.
(b) If (N, — M,)/M is independent of x on R and we define

then
u(y) = el 1) (2.6.12)

is an integrating factor for (2.6.11) on R.
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Proof (a) If (M, — N,)/N is independent of y, then (2.6.8) holds with p = (M,, — N,)/N and ¢ = 0.

Therefore
P(z) = ] P@O% and Q(y) = el W Z 100 = 11,

$0 (2.6.10) is an integrating factor for (2.6.11) on R.

(b) If (N, — M,,) /M is independent of x then eqrefeq:2.6.8 holds withp = 0 and ¢ = (N, — M, )/ M,

and a similar argument shows that (2.6.12) is an integrating factor for (2.6.11) on R.
The next two examples show how to apply Theorem 2.6.1.

Example 2.6.1 Find an integrating factor for the equation
(221 — 223> — day® 4 22) dz + (32%y* + 4y)dy = 0

and solve the equation.

Solution In (2.6.13)
M = 2zy?® — 223y% — day® + 22, N = 32%y° + 4y,
and
M, — N, = (6zy* — 62°y* — 8xy) — 6zy* = —62°y* — 8z,
so (2.6.13) isn’t exact. However,

M, —N, 623?48
v S s

N 3%+ 4y

is independent of y, so Theorem 2.6.1(a) applies with p(x) = —2x. Since

/p(x)d:c: —/2xdaj: —z?

*isan integrating factor. Multiplying (2.6.13) by p yields the exact equation

x

p(x) =e”

e (2zy® — 223y® — day® + 22) dx + e (3z%y* + 4y) dy = 0.

To solve this equation, we must find a function F' such that
Fo(z,y) = e (2zy® — 223y® — 4xy? + 22)
and )
Fy(w,y) = e (32°y* + 4y).
Integrating (2.6.16) with respect to y yields
Fa,y) = e (2%° +2%) + 9(x).

Differentiating this with respect to = yields

Fo(z,y) = e 22y — 20%y° — day®) + ¢/ (2).

Comparing this with (2.6.15) shows that ¢’ (z) = 22¢~%"; therefore, we can let Y(x) =

(2.6.17) and conclude that
2
e (PePy+2)—1)=c
is an implicit solution of (2.6.14). It is also an implicit solution of (2.6.13).
Figure 2.6.1 shows a direction field and some integal curves for (2.6.13)

(2.6.13)

(2.6.14)

(2.6.15)

(2.6.16)

(2.6.17)
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Figure 2.6.1 A direction field and integral curves for
(2xy? — 2233 — dxy? + 22) dx + (322y? + 4y)dy = 0

Example 2.6.2 Find an integrating factor for

22> dr + (32%y* +2%y° + 1)dy =0 (2.6.18)

and solve the equation.

Solution In (2.6.18),
M = 23:y3, N = 33:2y2 + 3:2y3 + 1,
and
M, — N, = 6zy* — (6xy* + 221°) = —229°,

so (2.6.18) isn’t exact. Moreover,

My, — N, 213

N 322242 +1

is not independent of y, so Theorem 2.6.1(a) does not apply. However, Theorem 2.6.1(b) does apply,
since

Ny — M, 213 1

M 2xy3

is independent of z, so we can take ¢(y) = 1. Since

/q(y)dy:/dy:y,
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wu(y) = €Y is an integrating factor. Multiplying (2.6.18) by p yields the exact equation

2zy3e¥ dx + (32%y* + 2%y® + 1)e¥ dy = 0. (2.6.19)
To solve this equation, we must find a function F' such that
Fo(z,y) = 2xye? (2.6.20)
and
F,(z,y) = (32%y* + 2°y® + 1)e¥. (2.6.21)
Integrating (2.6.20) with respect to x yields
(2.6.22)

F(z,y) = 2°y’e’ + ¢(y).

Differentiating this with respect to y yields
Fy = (32%y* + 2%y’)e? + ¢ (y),

and comparing this with (2.6.21) shows that ¢’(y) = e¥. Therefore we set ¢(y) = €¥ in (2.6.22) and

conclude that
(z?y® +1)e¥ = ¢

is an implicit solution of (2.6.19). Itis also an implicit solution of (2.6.18). Figure 2.6.2 shows a direction
|

field and some integral curves for (2.6.18).
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Figure 2.6.2 A direction field and integral curves for 2xy3e? dz + (3x%y? + 2%y® + 1)e¥ dy = 0

Theorem 2.6.1 does not apply in the next example, but the more general argument that led to Theo-

rem 2.6.1 provides an integrating factor.
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Example 2.6.3 Find an integrating factor for
(3zy + 6y%) dx + (22° + 9zy) dy =0 (2.6.23)

and solve the equation.

Solution In (2.6.23)
M = 3zy + 6y*, N =222 + 9xy,

and
M, — N, = 3z 4+ 12y) — (4o + 9y) = —z= + 3y.

Therefore
My, — N, —x + 3y N, — M, z — 3y
= and = ,
M 3xy + 6y N 222 + 9xy
so Theorem 2.6.1 does not apply. Following the more general argument that led to Theorem 2.6.1, we
look for functions p = p(x) and ¢ = ¢(y) such that

M, — Ny = p(x)N — q(y)M;

that is,
—z + 3y = p(x)(22* + 9zy) — q(y)Bzy + 6y°).

Since the left side contains only first degree terms in x and y, we rewrite this equation as
zp(x)(2x + 9y) — yq(y)(3x + 6y) = —= + 3y.

This will be an identity if
zp(z)=A and yq(y) = B, (2.6.24)

where A and B are constants such that
—x + 3y = A(2z + 9y) — B(3z + 6y),

or, equivalently,
—x 43y = (2A-3B)x + (9A — 6B)y.

Equating the coefficients of - and y on both sides shows that the last equation holds for all (z, y) if

94-3B = -1
9A—6B = 3,

which has the solution A = 1, B = 1. Therefore (2.6.24) implies that

1
p@) = and gly) =
Since

/mwm:mm mi/aM@:me

we can let P(x) = z and Q(y) = y; hence, p(z,y) = xy is an integrating factor. Multiplying (2.6.23)
by u yields the exact equation

(3z%y* + 6xy®) do + (223y + 92%y?) dy = 0.
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Figure 2.6.3 A direction field and integral curves for (3zy + 6y2) dz + (222 + 92y) dy = 0

We leave it to you to use the method of Section 2.5 to show that this equation has the implicit solution
z39? + 3227 = c. (2.6.25)

This is also an implicit solution of (2.6.23). Since x = 0 and y = 0 satisfy (2.6.25), you should check to
see that z = 0 and y = 0 are also solutions of (2.6.23). (Why is it necesary to check this?)

Figure 2.6.3 shows a direction field and integral curves for (2.6.23).

See Exercise 28 for a general discussion of equations like (2.6.23).

Example 2.6.4 The separable equation

—ydr+ (x+2%dy =0 (2.6.26)
can be converted to the exact equation
d d
-1 % (2.6.27)
r+x Y

by multiplying through by the integrating factor
1

T,Y) = ———.
However, to solve (2.6.27) by the method of Section 2.5 we would have to evaluate the nasty integral

dx
T+ 28

Instead, we solve (2.6.26) explicitly for y by finding an integrating factor of the form p(z,y) = 2%y°.



90 Chapter 2 Integrating Factors

AT T N T TR N S S S S S B T Y A A A 7
AT ) N W e N Y W S S A A
P N W S O ! A/
LR e N T N P S S S N A A &
AR e T N T S O A/ A
PTANT N TR N TR N TR AR I G 0 D A A/ e
SALNAXNNNNNYY Y WA S 2 T -
A N N e N AT O A A il e e
I e N N N ettt
AN N N S N NGO AR b1 e e e
R NN S N N / G e
ol s~ T~ s xRN AN LI e e o o
T— ~ T~ S N\ = L e - . o o o
————— - - = ~—— S - - - e e e e e -
0
o — - . P \ TS = - = = ==
70425/ . — // / \ \ N s RS
e T e P S v\ D e e Sl
_04// Eis A /A, N N N
Py B Ny AN N NN e
R R W A AN VN NN R R,
YR s L/ AN TR SN
A A e A VNN NN
I N S S Ay A A AR
RN
NN S A S G NN
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Figure 2.6.4 A direction field and integral curves for —y dx + (z + 2%) dy = 0

Solution In (2.6.26)

and

M, — N, = —1— (1 +62°) = —2 — 62°.

M=—y, N=x+ a°,

We look for functions p = p(x) and ¢ = ¢(y) such that

that is,

so q(y) = 4/y. Since

/p(az)daz:—/gdx:—61n|3:|:1ni6,
x x

4
/Q@My:/édyzﬂﬂm:hw{

and

M, — Ny = p(x)N — q(y)M;

—2—62° = p(z)(z +2°) + q(y)y-
The right side will contain the term —6x° if p(z) = —6/2. Then (2.6.28) becomes

-2 —62° = -6 — 62° + q(v)y,

(2.6.28)

we can take P(z) = 7% and Q(y) = y*, which yields the integrating factor p(x,y) = 2~ %y*. Multi-
plying (2.6.26) by p yields the exact equation

5 4
—%daﬂ— (% +y4> dy = 0.
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We leave it to you to use the method of the Section 2.5 to show that this equation has the implicit solution

DR

Solving for y yields

y = k1/5$(1 +x5)71/5,

which we rewrite as

y = cx(l+z%)71/°

by renaming the arbitrary constant. This is also a solution of (2.6.26).
Figure 2.6.4 shows a direction field and some integral curves for (2.6.26).

2.6 Exercises

1. (a) Verify that u(z,y) = y is an integrating factor for
1
yd:c+(2x+—> dy=0 (A)
Y
on any open rectangle that does not intersect the x axis or, equivalently, that
y? dx + (2zxy + 1) dy =0 (B)
is exact on any such rectangle.
(b) Verity that y = 0 is a solution of (B), but not of (A).
(¢) Show that
ylay+1)=c (©€)
is an implicit solution of (B), and explain why every differentiable function y = y(x) other
than y = 0 that satisfies (C) is also a solution of (A).
2. (a) Verify that u(z,y) = 1/(x — y)? is an integrating factor for
—y?dr+ 2x*dy =0 (A)
on any open rectangle that does not intersect the line y = x or, equivalently, that
2 2
Y x
— dzr + dy=0 (B)
(z —y)? (z —y)?
is exact on any such rectangle.
(b) Use Theorem 2.2.1 to show that
= (©)
e S
(z —y)
is an implicit solution of (B), and explain why it’s also an implicit solution of (A)
(c) Verify that y = x is a solution of (A), even though it can’t be obtained from (C).
In Exercises 3—16 find an integrating factor; that is a function of only one variable, and solve the given
equation.
3. ydex—xzdy=0 4. 3zxydr+223dy =0

5. 2y3dx+3y*dy=0 6. (bry+2y+5)dr+2xdy=0
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9.

10.

11.
12.
13.
14.
15.
16.

(zy+z+2y+1)dr+ (x+1)dy=0

(27zy? + 8y3) dz + (1822%y + 122y?) dy = 0

(6zy* + 2y) dx + (122%y + 62 + 3) dy = 0

y? dx + (:cy2+3:cy+ i) dy=0

(1223%y + 2422y?) dx + (92* + 3223y + 4y) dy = 0
(2%y + 4oy + 2y) dx + (22 + x)dy = 0

—ydr + (z* —z)dy =0

coszcosydr + (sinzcosy —sinzsiny + y)dy =0
(2zy + y?) dx + 22y + 22 — 22%y? — 2293) dy = 0
ysinydz + z(siny —ycosy)dy =0

In Exercises 17-23 find an integrating factor of the form p(x,y) = P(x)Q(y) and solve the given

equation.
17. y(1+5In|z|)dz +4zln|z|dy =0
18. (ay+yxy)dz + (Br + dxy)dy =0
19. 322y —y? +y)dr + (—2xy +22)dy =0
20. 2ydr+3(z?2+2%y3)dy =0
21. (acoszy —ysinzy)dx + (beoszy — xsinxy)dy =0
22, ziytdr+25y3dy =0
23. y(xcosx+2sinz)dr+ z(y+ 1)sinzdy =0

In Exercises 24-27 find an integrating factor and solve the equation. Plot a direction field and some
integral curves for the equation in the indicated rectangular region.

24,
25.
26.
27.

28.

29.

[CIG] (a*? +y)dz + (2%® — ) dy=0; {-1<az<1,-1<y<1}

[CIG] Bey+ 212 + ) do + (22 + 22y + 2+ 2y)dy = 0; {—2<w<2,-2<y<2}
(12xy+6y dr + (922 + 10zy?)dy = 0; {-2<2x<2,-2<y<2}

[CIG] (3224% + 2y) dz + 20dy = 0; {-4 <z <4 -4<y<4}

Suppose a, b, ¢, and d are constants such that ad — bc # 0, and let m and n be arbitrary real
numbers. Show that

(ax™y + by" ) dx + (ca™ ™ + dry™) dy = 0

has an integrating factor u(z,y) = x%y°.

Suppose M, N, M, and N,, are continuous for all (z, y), and u = p(x, y) is an integrating factor
or

—r

M(z,y)dx + N(x,y)dy = 0. (A)

Assume that p, and p, are continuous for all (x,y), and suppose y = y(x) is a differentiable
function such that p(z, y(z)) = 0 and p, (2, y(x)) # 0 for all z in some interval I. Show that y is
a solution of (A) on 1.
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According to Theorem 2.1.2, the general solution of the linear nonhomogeneous equation

y +p@)y = f(z) (A)

is
v=n@) (et [ 1@/ dz). ®)
where y; is any nontrivial solution of the complementary equation ¢ + p(x)y = 0. In this exercise

we obtain this conclusion in a different way. You may find it instructive to apply the method
suggested here to solve some of the exercises in Section 2.1.

(a) Rewrite (A) as
[p(x)y — f(z)]dx + dy = 0, (©)
and show that p = tef P@ g an integrating factor for (C).

(b) Multiply (A) throughby p = tef P@d 4pg verify that the resulting equation can be rewrit-
ten as

(u(x)y)" = p(x) f(x).

Then integrate both sides of this equation and solve for y to show that the general solution of

(A) is
v=s (et [rom@ar).

Why is this form of the general solution equivalent to (B)?






CHAPTER 3
Numerical Methods

In this chapter we study numerical methods for solving a first order differential equation
y = flz,y).

SECTION 3.1 deals with Euler’s method, which is really too crude to be of much use in practical appli-
cations. However, its simplicity allows for an introduction to the ideas required to understand the better
methods discussed in the other two sections.

SECTION 3.2 discusses improvements on Euler’s method.

SECTION 3.3 deals with the Runge-Kutta method, perhaps the most widely used method for numerical
solution of differential equations.

95
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3.1 EULER’S METHOD

If an initial value problem
v =f.y), ylwo)=wo (.11

can’t be solved analytically, it’s necessary to resort to numerical methods to obtain useful approximations
to a solution of (3.1.1). We’ll consider such methods in this chapter.

We’re interested in computing approximate values of the solution of (3.1.1) at equally spaced points
Zo, L1, ..., Ty = bin an interval [x¢, b]. Thus,

r; =x9+th, 1=0,1,...,n,

where
p=to T
n
We’ll denote the approximate values of the solution at these points by yg, ¥1, ..., Yn; thus, y; is an
approximation to y(z;). We’ll call
ei =y(xi) — yi

the error at the ith step. Because of the initial condition y(xg) = yo, we’ll always have ey = 0. However,
in general e; # 0if i > 0.
We encounter two sources of error in applying a numerical method to solve an initial value problem:

* The formulas defining the method are based on some sort of approximation. Errors due to the
inaccuracy of the approximation are called truncation errors.

* Computers do arithmetic with a fixed number of digits, and therefore make errors in evaluating
the formulas defining the numerical methods. Errors due to the computer’s inability to do exact
arithmetic are called roundoff errors.

Since a careful analysis of roundoff error is beyond the scope of this book, we’ll consider only trunca-
tion errors.

Euler’s Method

The simplest numerical method for solving (3.1.1) is Euler’s method. This method is so crude that it is
seldom used in practice; however, its simplicity makes it useful for illustrative purposes.

Euler’s method is based on the assumption that the tangent line to the integral curve of (3.1.1) at
(z;,y(x;)) approximates the integral curve over the interval [z;, 2;41]. Since the slope of the integral
curve of (3.1.1) at (x4, y(x;)) is ¥/ (x;) = f(z;, y(x;)), the equation of the tangent line to the integral
curve at (x;,y(x;)) is

y =y(@:) + fzi, y(@i)) (@ — @) (3.1.2)

Setting z = x;41 = x; + hin (3.1.2) yields
Yir1 = y(xi) + hf(zi, y(z:)) (3.1.3)
as an approximation to y(z;+1). Since y(xg) = yo is known, we can use (3.1.3) with i = 0 to compute
Y1 = yo + hf(zo, yo).
However, setting 2 = 1 in (3.1.3) yields

y2 = y(z1) + hf(z1, y(21)),


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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which isn’t useful, since we don’t know y(x1). Therefore we replace y(x1) by its approximate value y;
and redefine

Y2 =y1 + hf(z1,91).
Having computed y2, we can compute
ys = y2 + hf(@2, y2).

In general, Euler’s method starts with the known value y(xo) = yo and computes y1, Y2, ..., Yn Succes-
sively by with the formula

Yier =¥Yi +hf(ziyi), 0<i<n—1 (3.1.4)
The next example illustrates the computational procedure indicated in Euler’s method.

Example 3.1.1 Use Euler’s method with 4 = 0.1 to find approximate values for the solution of the initial

value problem
Y +2y=a%" y0)=1 (3.1.5)

atz = 0.1,0.2,0.3.

Solution We rewrite (3.1.5) as
Y = 2y+ae ", y(0) =1,
which is of the form (3.1.1), with

flz,y) = -2y +a’e™*

, Lo = O, andyo =1.
Euler’s method yields

y1 = yo+hf(xo,v0)
= 1+ (1)f(0,1) =1+ (1)(=2) = .8,

Y2 = yi+hf(ziy)
= 8+ (1)f(.1,.8) =8+ (1) (—2(.8) + (.1)%c™?) = .640081873,

ys = yo+hf(x2,y0)
640081873 + (.1) (—2(.640081873) + (.2)% ™) = .512601754. W

We’ve written the details of these computations to ensure that you understand the procedure. However,
in the rest of the examples as well as the exercises in this chapter, we’ll assume that you can use a
programmable calculator or a computer to carry out the necessary computations.

Examples Illustrating The Error in Euler’s Method

Example 3.1.2 Use Euler’s method with step sizes » = 0.1, h = 0.05, and h = 0.025 to find approxi-
mate values of the solution of the initial value problem

y +2y =2 y(0)=1

atx =0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact solution
672x 4
y= T(:c +4), (3.1.6)

which can be obtained by the method of Section 2.1. (Verify.)
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Solution Table 3.1.1 shows the values of the exact solution (3.1.6) at the specified points, and the ap-
proximate values of the solution at these points obtained by Euler’s method with step sizes h = 0.1,
h = 0.05, and A = 0.025. In examining this table, keep in mind that the approximate values in the col-
umn corresponding to i = .05 are actually the results of 20 steps with Euler’s method. We haven’t listed
the estimates of the solution obtained for x = 0.05, 0.15, ..., since there’s nothing to compare them with
in the column corresponding to h = 0.1. Similarly, the approximate values in the column corresponding
to h = 0.025 are actually the results of 40 steps with Euler’s method.

Table 3.1.1. Numerical solution of 3/ + 2y = z3e~2%, y(0) = 1, by Euler’s method.

x

h=0.1

h=0.05

h =0.025

Exact

0.0
0.1
0.2
03
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.800000000
0.640081873
0.512601754
0.411563195
0.332126261
0.270299502
0.222745397
0.186654593
0.159660776
0.139778910

1.000000000
0.810005655
0.656266437
0.532290981
0.432887056
0.353785015
0.291404256
0.242707257
0.205105754
0.176396883
0.154715925

1.000000000
0.814518349
0.663635953
0.541339495
0.442774766
0.363915597
0.301359885
0.252202935
0.213956311
0.184492463
0.162003293

1.000000000
0.818751221
0.670588174
0.549922980
0.452204669
0.373627557
0.310952904
0.261398947
0.222570721
0.192412038
0.169169104

You can see from Table 3.1.1 that decreasing the step size improves the accuracy of Euler’s method.
For example,
.0293 with h = 0.1,
.0144 with h = 0.05,
.0071 with h = 0.025.

Based on this scanty evidence, you might guess that the error in approximating the exact solution at a fixed
value of x by Euler’s method is roughly halved when the step size is halved. You can find more evidence
to support this conjecture by examining Table 3.1.2, which lists the approximate values of Y.« — Yupprox at
r=0.1,0.2,..., 1.0.

ycm (1) - yappmx (1) ~

Table 3.1.2. Errors in approximate solutions of 3/ + 2y = x3e~2%, y(0) = 1, obtained by
Euler’s method.

x | h=01| h=0.05 | h=0.025
0.1 | 0.0187 0.0087 0.0042
02 | 0.0305 0.0143 0.0069
0.3 | 0.0373 0.0176 0.0085
04 | 0.0406 0.0193 0.0094
0.5 | 0.0415 0.0198 0.0097
0.6 | 0.0406 0.0195 0.0095
0.7 | 0.0386 0.0186 0.0091
0.8 | 0.0359 0.0174 0.0086
09 | 0.0327 0.0160 0.0079
1.0 | 0.0293 0.0144 0.0071

Example 3.1.3 Tables 3.1.3 and 3.1.4 show analogous results for the nonlinear initial value problem

Y = —2y% +xy + 22, y(0) =1, (3.1.7)
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except in this case we can’t solve (3.1.7) exactly. The results in the “Exact” column were obtained by
using a more accurate numerical method known as the Runge-Kutta method with a small step size. They
are exact to eight decimal places. [ ]

Since we think it’s important in evaluating the accuracy of the numerical methods that we’ll be studying
in this chapter, we often include a column listing values of the exact solution of the initial value problem,
even if the directions in the example or exercise don’t specifically call for it. If quotation marks are
included in the heading, the values were obtained by applying the Runge-Kutta method in a way that’s
explained in Section 3.3. If quotation marks are not included, the values were obtained from a known
formula for the solution. In either case, the values are exact to eight places to the right of the decimal
point.

Table 3.1.3. Numerical solution of 3/ = —2y? + zy + 22, y(0) = 1, by Euler’s method.

x

h=0.1

h =0.05

h =0.025

“Exact”

0.0
0.1
0.2
03
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.800000000
0.681000000
0.605867800
0.559628676
0.535376972
0.529820120
0.541467455
0.569732776
0.614392311
0.675192037

1.000000000
0.821375000
0.707795377
0.633776590
0.587454526
0.562906169
0.557143535
0.568716935
0.596951988
0.641457729
0.701764495

1.000000000
0.829977007
0.719226253
0.646115227
0.600045701
0.575556391
0.569824171
0.581435423
0.609684903
0.654110862
0.714151626

1.000000000
0.837584494
0.729641890
0.657580377
0.611901791
0.587575491
0.581942225
0.593629526
0.621907458
0.666250842
0.726015790

Table 3.1.4. Errors in approximate solutions of 3y = —2y? + zy + 22, y(0) = 1, obtained
by Euler’s method.

x | h=01| h=0.05 | h=0.025
0.1 | 0.0376 0.0162 0.0076
02 | 0.0486 0.0218 0.0104
03| 0.0517 0.0238 0.0115
04 | 0.0523 0.0244 0.0119
05| 0.0522 0.0247 0.0121
0.6 | 0.0521 0.0248 0.0121
0.7 | 0.0522 0.0249 0.0122
0.8 | 0.0522 0.0250 0.0122
09 | 0.0519 0.0248 0.0121
1.0 | 0.0508 0.0243 0.0119

Truncation Error in Euler’s Method

Consistent with the results indicated in Tables 3.1.1-3.1.4, we’ll now show that under reasonable as-
sumptions on f there’s a constant K such that the error in approximating the solution of the initial value
problem

y' = f(@,9), y(wo) = yo,
at a given point b > xo by Euler’s method with step size h = (b — xo)/n satisfies the inequality

y(b) = yn| < Kh,


http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
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where K is a constant independent of 7.
There are two sources of error (not counting roundoff) in Euler’s method:

1. The error committed in approximating the integral curve by the tangent line (3.1.2) over the interval
[xl-, $i+1] .

2. The error committed in replacing y(x;) by y; in (3.1.2) and using (3.1.4) rather than (3.1.2) to
compute ;1.

Euler’s method assumes that y; 1 defined in (3.1.2) is an approximation to y(x;11). We call the error
in this approximation the local truncation error at the ith step, and denote it by 7;; thus,

Ti = y(xiyr) — y(xi) — hf(zi, y(z;)). (3.1.8)

We’ll now use Taylor’s theorem to estimate T;, assuming for simplicity that f, f,, and f, are continuous
and bounded for all (x, y). Then 3" exists and is bounded on [z, b]. To see this, we differentiate

y'(z) = flz,y(x))
to obtain
y'(x) = folz,y(@)) + fy(z, y(2)y ()
= fo(z,y(@)) + fy(z,y(2)) f (2, y(2)).

Since we assumed that f, f, and f, are bounded, there’s a constant M such that

[fo (@, y(@)) + fy (2, y(2)) f (2, y(x))| < M, w0 <z <D,

which implies that
[y ()| < M, x9<x<b. (3.1.9)

Since x;+1 = x; + h, Taylor’s theorem implies that
2

Yren) = ylai) + hy ) + 5y (32,

where Z; is some number between x; and x;1. Since y'(x;) = f(x;, y(x;)) this can be written as

Y(wiv1) = y(@i) + hf(@i, y(z:)) + 7?//(951'),

or, equivalently,
y(@in) = y(@:) = hf (@i, y(e) = S y" (%),
Comparing this with (3.1.8) shows that
h2
T = 719”(51')-
Recalling (3.1.9), we can establish the bound

Mh?
T3] <

. 1<i<n. (3.1.10)

Although it may be difficult to determine the constant M, what is important is that there’s an M such that
(3.1.10) holds. We say that the local truncation error of Euler’s method is of order h?, which we write as
O(h?).


http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
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Note that the magnitude of the local truncation error in Euler’s method is determined by the second
derivative 3" of the solution of the initial value problem. Therefore the local truncation error will be
larger where |y”| is large, or smaller where |y | is small.

Since the local truncation error for Euler’s method is O(h?), it’s reasonable to expect that halving h
reduces the local truncation error by a factor of 4. This is true, but halving the step size also requires twice
as many steps to approximate the solution at a given point. To analyze the overall effect of truncation
error in Euler’s method, it’s useful to derive an equation relating the errors

eit1 = Y(Tit1) —yiy1 and e = y(z;) — yi.

To this end, recall that

Y(@ip1) = y(@:) + hf (i, y(z:)) + T; (3.1.11)
and
Yirr = yi + hf (@i, v0). (3.1.12)
Subtracting (3.1.12) from (3.1.11) yields
eiv1 =€ +h[f(zi,y(x:)) — flzi,y)] + Ts. (3.1.13)

The last term on the right is the local truncation error at the ith step. The other terms reflect the way errors
made at previous steps affect e; 1. Since |T;| < Mh?/2, we see from (3.1.13) that

Mh?

leiva] < les| + hlf(zi, y(xi)) = flas ya)l + —— (3.1.14)

Since we assumed that f, is continuous and bounded, the mean value theorem implies that
f@isy(@i)) = flwisyi) = fy(@a, v7) (i) — yi) = fy(@ayi) e,
where y; is between y; and y(z;). Therefore
|f(zi,y(@:)) — flzi, y0)| < Rle]

for some constant . From this and (3.1.14),

Mh?
leiva] < (L+ Rh)les + ——, 0<i<n—1. (3.1.15)

For convenience, let C' = 1 + Rh. Since eg = y(xg) — yo = 0, applying (3.1.15) repeatedly yields

o] < Mh?
&
=
Mh? Mh?
le2] < Cler| + <1+0)
Mh? Mh?
les] < Clea| + <(1+C+0C?

Mh? Mh?
< (1+C+~~~+C"*1)T.

len] < Clena| + (3.1.16)

Recalling the formula for the sum of a geometric series, we see that

_ 1-C* (1+Rh)"-1
1 n—1 _ —
+C+---+C —C 7
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(since C' = 1 4+ Rh). From this and (3.1.16),
(1+ Rh)™ — lM_h

b) —yn| = len| < . 117
[9() = gl = len] < = (3.117)
Since Taylor’s theorem implies that
1+ Rh < efth
(verify),
(14 Rh)" < e"Fh = ¢B(=0)  (since nh = b — x0).

This and (3.1.17) imply that

ly(b) — yn| < Kh, (3.1.18)

with
eR(bfxg) 1

2R

Because of (3.1.18) we say that the global truncation error of Euler’s method is of order h, which we
write as O(h).

K=M

Semilinear Equations and Variation of Parameters

An equation that can be written in the form

Y +p(x)y = h(z,y) (3.1.19)

with p # 0 is said to be semilinear. (Of course, (3.1.19) is linear if & is independent of y.) One way to
apply Euler’s method to an initial value problem

Y +p(@)y=h(z,y), y(xo)=1wo (3.1.20)

for (3.1.19) is to think of it as

Y = f(z,9), y(xo) = yo,
where

[z y) = —p(x)y + h(z, y).

However, we can also start by applying variation of parameters to (3.1.20), as in Sections 2.1 and 2.4;
thus, we write the solution of (3.1.20) as y = uy;, where y; is a nontrivial solution of the complementary
equation ' + p(x)y = 0. Then y = uy; is a solution of (3.1.20) if and only if u is a solution of the initial
value problem

u' = h(z,uyi(x))/y1(x), u(wo) = y(xo)/y1(z0). (3.1.21)

We can apply Euler’s method to obtain approximate values ug, %1, ..., U, of this initial value problem,
and then take

Yi = UiY1 (xz)

as approximate values of the solution of (3.1.20). We’ll call this procedure the Euler semilinear method.
The next two examples show that the Euler and Euler semilinear methods may yield drastically different
results.

Example 3.1.4 In Example 2.1.7 we had to leave the solution of the initial value problem

y —2zy=1, y(0)=3 (3.1.22)

2 z 42
y=e 3+ e " dt (3.1.23)
0

in the form


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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because it was impossible to evaluate this integral exactly in terms of elementary functions. Use step
sizes h = 0.2, h = 0.1, and i = 0.05 to find approximate values of the solution of (3.1.22) at z = 0, 0.2,
0.4, 0.6, ..., 2.0 by (a) Euler’s method; (b) the Euler semilinear method.

SOLUTION(a) Rewriting (3.1.22) as

y =1+2zy, y(0)=3 (3.1.24)
and applying Euler’s method with f(x,y) = 1 + 2xy yields the results shown in Table 3.1.5. Because of
the large differences between the estimates obtained for the three values of &, it would be clear that these

results are useless even if the “exact” values were not included in the table.

Table 3.1.5. Numerical solution of ¢ — 2zy = 1, y(0) = 3, with Euler’s method.

T h=0.2 h=0.1 h =10.05 “Exact”
0.0 | 3.000000000 3.000000000 3.000000000 3.000000000
0.2 | 3.200000000 3.262000000 3.294348537 3.327851973
04 | 3.656000000 3.802028800 3.881421103 3.966059348
0.6 | 4.440960000 4.726810214 4.888870783 5.067039535
0.8 | 5.706790400 6.249191282 6.570796235 6.936700945
1.0 | 7.732963328 8.771893026 9.419105620 | 10.184923955
1.2 | 11.026148659 | 13.064051391 14.405772067 | 16.067111677
1.4 | 16518700016 | 20.637273893 | 23.522935872 | 27.289392347
1.6 | 25969172024 | 34.570423758 | 41.033441257 | 50.000377775
1.8 | 42.789442120 | 61.382165543 | 76.491018246 | 98.982969504
2.0 | 73.797840446 | 115.440048291 | 152.363866569 | 211.954462214

It’s easy to see why Euler’s method yields such poor results. Recall that the constant M in (3.1.10) —
which plays an important role in determining the local truncation error in Euler’s method — must be an
upper bound for the values of the second derivative 3y’ of the solution of the initial value problem (3.1.22)
on (0, 2). The problem is that y"/ assumes very large values on this interval. To see this, we differentiate
(3.1.24) to obtain

Y (z) = 2y(x) + 22y (z) = 2y(x) + 22(1 + 2zy(z)) = 2(1 + 22%)y(x) + 2z,
where the second equality follows again from (3.1.24). Since (3.1.23) implies that y(z) > 3¢ if x> 0,
y'(z) > 6(1 + 2x2)em2 +2z, z>0.
For example, letting x = 2 shows that 3"/ (2) > 2952.

SOLUTION(b) Since y; = e®” is a solution of the complementary equation 3y’ — 22y = 0, we can apply
the Euler semilinear method to (3.1.22), with

I2

Yy = ue and u' = efmz, u(0) = 3.
The results listed in Table 3.1.6 are clearly better than those obtained by Euler’s method.

Table 3.1.6. Numerical solution of 3y’ — 2zy = 1, y(0) = 3, by the Euler semilinear method.
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T h =02 h=0.1 h =0.05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.330594477 3.329558853 3.328788889 3.327851973
04 3.980734157 3.974067628 3.970230415 3.966059348
0.6 5.106360231 5.087705244 5.077622723 5.067039535
0.8 7.021003417 6.980190891 6.958779586 6.936700945
1.0 10.350076600 | 10.269170824 | 10.227464299 | 10.184923955
1.2 16381180092 | 16.226146390 | 16.147129067 | 16.067111677
1.4 | 27.890003380 | 27.592026085 | 27.441292235 | 27.289392347
1.6 | 51.183323262 | 50.594503863 | 50.298106659 | 50.000377775
1.8 | 101.424397595 | 100.206659076 | 99.595562766 | 98.982969504
2.0 | 217.301032800 | 214.631041938 | 213.293582978 | 211.954462214

We can’t give a general procedure for determining in advance whether Euler’s method or the semilinear
Euler method will produce better results for a given semilinear initial value problem (3.1.19). As a rule of
thumb, the Euler semilinear method will yield better results than Euler’s method if || is small on [z, b],
while Euler’s method yields better results if || is large on [z, b]. In many cases the results obtained by
the two methods don’t differ appreciably. However, we propose the an intuitive way to decide which is
the better method: Try both methods with multiple step sizes, as we did in Example 3.1.4, and accept the
results obtained by the method for which the approximations change less as the step size decreases.

Example 3.1.5 Applying Euler’s method with step sizes h = 0.1, h = 0.05, and ~ = 0.025 to the initial

value problem
x

on [1, 2] yields the results in Table 3.1.7. Applying the Euler semilinear method with

/

Y — 2y (3.1.25)

y(1) =7

x€72m

1 4 ulets’

y:u€2m

and '

u(l) = 7e7?

yields the results in Table 3.1.8. Since the latter are clearly less dependent on step size than the former,
we conclude that the Euler semilinear method is better than Euler’s method for (3.1.25). This conclusion
is supported by comparing the approximate results obtained by the two methods with the “exact” values
of the solution.

Table 3.1.7. Numerical solution of ¢/ — 2y = z/(1 + y?), y(1) = 7, by Euler’s method.

T h=0.1 h =0.05 h =0.025 “Exact”

1.0 | 7.000000000 | 7.000000000 | 7.000000000 | 7.000000000
1.1 8.402000000 | 8.471970569 | 8.510493955 | 8.551744786
1.2 | 10.083936450 | 10.252570169 | 10.346014101 | 10.446546230
1.3 | 12.101892354 | 12.406719381 | 12.576720827 | 12.760480158
1.4 | 14.523152445 | 15.012952416 | 15.287872104 | 15.586440425
1.5 | 17.428443554 | 18.166277405 | 18.583079406 | 19.037865752
1.6 | 20.914624471 | 21.981638487 | 22.588266217 | 23.253292359
1.7 | 25.097914310 | 26.598105180 | 27.456479695 | 28.401914416
1.8 | 30.117766627 | 32.183941340 | 33.373738944 | 34.690375086
1.9 | 36.141518172 | 38.942738252 | 40.566143158 | 42.371060528
2.0 | 43.369967155 | 47.120835251 | 49.308511126 | 51.752229656




Table 3.1.8. Numerical solution of ¥/ — 2y = z/(1 +v?), y(1) = 7, by the Euler semilinear

method.
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T

h=0.1

h =0.05

h =0.025

“Exact”

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
19
2.0

7.000000000

8.552262113
10.447568674
12.762019799
15.588535141
19.040580614
23.256721636
28.406184597
34.695649222
42.377544138
51.760178446

7.000000000

8.551993978
10.447038547
12.761221313
15.587448600
19.039172241
23.254942517
28.403969107
34.692912768
42.374180090
51.756054133

7.000000000

8.551867007
10.446787646
12.760843543
15.586934680
19.038506211
23.254101253
28.402921581
34.691618979
42.372589624
51.754104262

7.000000000

8.551744786
10.446546230
12.760480158
15.586440425
19.037865752
23.253292359
28.401914416
34.690375086
42.371060528
51.752229656
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Example 3.1.6 Applying Euler’s method with step sizes h = 0.1, h = 0.05, and ~ = 0.025 to the initial

value problem

Y+ 32y =1+,

y(2) =2

on [2, 3] yields the results in Table 3.1.9. Applying the Euler semilinear method with

y= ue™™ and = €m3(1 + u267213), u(2) = 2¢8

(3.1.26)

yields the results in Table 3.1.10. Noting the close agreement among the three columns of Table 3.1.9
(at least for larger values of x) and the lack of any such agreement among the columns of Table 3.1.10,
we conclude that Euler’s method is better than the Euler semilinear method for (3.1.26). Comparing the
results with the exact values supports this conclusion.

Table 3.1.9. Numerical solution of 3/ + 322y = 1 + 32,

y(2) = 2, by Euler’s method.

T

h=0.1

h =0.05

h =0.025

“Exact”

2.0
2.1
22
23
24
2.5
2.6
2.7
2.8
2.9
3.0

2.000000000
0.100000000
0.068700000
0.069419569
0.059732621
0.056871451
0.050560917
0.048279018
0.042925892
0.042148458
0.035985548

2.000000000
0.493231250
0.122879586
0.070670890
0.061338956
0.056002363
0.051465256
0.047484716
0.043967002
0.040839683
0.038044692

2.000000000
0.609611171
0.180113445
0.083934459
0.063337561
0.056249670
0.051517501
0.047514202
0.043989239
0.040857109
0.038058536

2.000000000
0.701162906
0.236986800
0.103815729
0.068390786
0.057281091
0.051711676
0.047564141
0.044014438
0.040875333
0.038072838

Table 3.1.10. Numerical solution of 3/ +3x%y = 1 +2,

method.

y(2) = 2, by the Euler semilinear
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x

h=0.1

h=0.05

h =0.025

“Exact”

€T

h=0.1

h =0.05

h =0.025

h =.0125

2.0
2.1
22
23
24
2.5
2.6
2.7
2.8
2.9
3.0

2.000000000
0.708426286
0.214501852
0.069861436
0.032487396
0.021895559
0.017332058
0.014271492
0.011819555
0.009776792
0.008065020

2.000000000
0.702568171
0.222599468
0.083620494
0.047079261
0.036030018
0.030750181
0.026931911
0.023720670
0.020925522
0.018472302

2.000000000
0.701214274
0.228942240
0.092852806
0.056825805
0.045683801
0.040189920
0.036134674
0.032679767
0.029636506
0.026931099

2.000000000
0.701162906
0.236986800
0.103815729
0.068390786
0.057281091
0.051711676
0.047564141
0.044014438
0.040875333
0.038072838

In the next two sections we’ll study other numerical methods for solving initial value problems, called
the improved Euler method, the midpoint method, Heun’s method and the Runge-Kutta method. If the
initial value problem is semilinear as in (3.1.19), we also have the option of using variation of parameters
and then applying the given numerical method to the initial value problem (3.1.21) for u. By analogy
with the terminology used here, we’ll call the resulting procedure the improved Euler semilinear method,
the midpoint semilinear method, Heun’s semilinear method or the Runge-Kutta semilinear method, as the
case may be.

3.1 Exercises

You may want to save the results of these exercises, sincewe’ll revisit in the next two sections. In Exer-
cises 1-5 use Euler’s method to find approximate values of the solution of the given initial value problem
at the points x; = xy + th, where z is the point wher the initial condition is imposed and i = 1, 2, 3.
The purpose of these exercises is to familiarize you with the computational procedure of Euler’s method.

1. [Cly =202 +3y> 2, y(2)=1; h=005

. y’:y+\/x2+y2, y(0)=1; h=0.1

y’+3y:x2—3xy+y2, y(0)=2; h=0.05
1+

. y’:ﬁ, y(2) =3;

. y’+x2y:sinxy, y(l)=m; h=0.2

w N

N

h=0.1

wn

6. Use Euler’s method with step sizes h = 0.1, b = 0.05, and h = 0.025 to find approximate
values of the solution of the initial value problem
y +3y=7e", y(0) =2
atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact

solution y = e** 4-¢~3% which can be obtained by the method of Section 2.1. Present your results
in a table like Table 3.1.1.

7. Use Euler’s method with step sizes h = 0.1, b = 0.05, and h = 0.025 to find approximate
values of the solution of the initial value problem

2 3
'+ Zy="2 41 =1
y+-_y=—3+1 yd)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Heun.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Heun.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html

10.

11.
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atx = 1.0,1.1,1.2,1.3, ..., 2.0. Compare these approximate values with the values of the exact
solution

1
y= 3?(911150 + 23 4 2),
which can be obtained by the method of Section 2.1. Present your results in a table like Table 3.1.1.

Use Euler’s method with step sizes h = 0.05, h = 0.025, and = 0.0125 to find approximate
values of the solution of the initial value problem

, Yyt ay—a?
Y=

= ;o oy(l)=2
atz = 1.0, 1.05, 1.10, 1.15, ..., 1.5. Compare these approximate values with the values of the
exact solution
_ x(1+2?/3)
o 1-22/3

obtained in Example 2.4.3. Present your results in a table like Table 3.1.1.
In Example 2.2.3 it was shown that

v 4+y=2+z—-4
is an implicit solution of the initial value problem

,  2x41

Y :W, y(2) = 1. (A)

Use Euler’s method with step sizes h = 0.1, h = 0.05, and & = 0.025 to find approximate values
of the solution of (A) at z = 2.0, 2.1, 2.2, 2.3, ..., 3.0. Present your results in tabular form. To
check the error in these approximate values, construct another table of values of the residual

R(z,y) =y’ +y—a’ —x+4
for each value of (z, y) appearing in the first table.
You can see from Example 2.5.1 that
oty + 2% + 20y =14
is an implicit solution of the initial value problem

, A2ty 4 2ay’ + 2y
4 3rdy? + b2yt + 22

y(1) = 1. (A)

Use Euler’s method with step sizes h = 0.1, h = 0.05, and & = 0.025 to find approximate values
of the solution of (A) at z = 1.0, 1.1, 1.2, 1.3, ..., 2.0. Present your results in tabular form. To
check the error in these approximate values, construct another table of values of the residual

R(z,y) = o'y’ + 2°y® + 20y — 4
for each value of (xz, y) appearing in the first table.

Use Euler’s method with step sizes h = 0.1, b = 0.05, and h = 0.025 to find approximate
values of the solution of the initial value problem

(3y* +4y)y +2x +cosz =0, y(0)=1; (Exercise 2.2.13)
atz =0,0.1,0.2,0.3, ..., 1.0.
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12.

13.

Use Euler’s method with step sizes h = 0.1, b = 0.05, and h = 0.025 to find approximate
values of the solution of the initial value problem

g+ W J_r 1)(‘” —2) _,, y(1) = 0 (Exercise 2.2.14)
X

atrz =1.0,1.1,1.2,1.3,..., 2.0.

Use Euler’s method and the Euler semilinear method with step sizes h = 0.1, h = 0.05, and
h = 0.025 to find approximate values of the solution of the initial value problem

Y +3y="7e", y(0)=6

atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solution y = e~3%(7x + 6), which can be obtained by the method of Section 2.1. Do you notice
anything special about the results? Explain.

The linear initial value problems in Exercises 14—19 can’t be solved exactly in terms of known elementary

functions. In each exercise, use Euler’s method and the Euler semilinear methods with the indicated step
sizes to find approximate values of the solution of the given initial value problem at 11 equally spaced
points (including the endpoints) in the interval.

14.

15

16

17

18

19.

1
Y =2 =g ¥(2)=2 h=01,00500250n[23]

Y + 2zy =22, y(0) =3 (Exercise 2.1.38); h =0.2,0.1,0.050n [0, 2]
L

Y+ my =228 (1) =2 (Bxercise 2.139); h=0.2,0.1,0.050n [1, 3]
X

z2 )’

ey
Y +y= ¥ y(1) = 0; (Exercise 2.1.40); h = 0.05,0.025,0.01250n [1, 1.5]

2x e .
oty = T y(0) = 1; (Exercise 2.141); h = 0.2,0.1,0.050n [0, 2]

a4+ (z+ 1y =e", y(1)=2; (Exercise 2.142); h =0.05,0.025,0.01250n [1,1.5]

In Exercises 20-22, use Euler’s method and the Euler semilinear method with the indicated step sizes
to find approximate values of the solution of the given initial value problem at 11 equally spaced points
(including the endpoints) in the interval.

20.
21.

22,
23.

[Cly +3y=2y?(y+1), y(0)=1; h=0.1,0.050.0250n [0, 1]

X
Cly —4y=—"—— 4(0)=1; h=0.1,0.05,0.0250n [0, 1
Ao YO [0,1]
2
X
[C]y +2y= To7 Y@ =1 h=01,00500%50m23

NUMERICAL QUADRATURE. The fundamental theorem of calculus says that if f is continuous
on a closed interval [a, b] then it has an antiderivative F’ such that F’(x) = f(x) on [a, b] and

b
[ fa@)ds =P - Fla) (A)

This solves the problem of evaluating a definite integral if the integrand f has an antiderivative that
can be found and evaluated easily. However, if f doesn’t have this property, (A) doesn’t provide
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a useful way to evaluate the definite integral. In this case we must resort to approximate methods.
There’s a class of such methods called numerical quadrature, where the approximation takes the

form , .
[ f@ydo= Y e, (8)

a i=0
where a = x¢p < z1 < --- < x,, = b are suitably chosen points and ¢y, c1, ..., ¢, are suitably

chosen constants. We call (B) a quadrature formula.

(a) Derive the quadrature formula

n—1

b
/ fl@)dz~h>_ fla+ih) (where h=(b—a)/n) (C)

=0

by applying Euler’s method to the initial value problem

(b) The quadrature formula (C) is sometimes called the left rectangle rule. Draw a figure that
justifies this terminology.

(© For several choices of a, b, and A, apply (C) to f(z) = A withn = 10, 20, 40, 80, 160, 320.
Compare your results with the exact answers and explain what you find.

(d) For several choices of a, b, A, and B, apply (C) to f(x) = A+ Bx withn = 10, 20, 40,
80, 160, 320. Compare your results with the exact answers and explain what you find.

3.2 THE IMPROVED EULER METHOD AND RELATED METHODS

In Section 3.1 we saw that the global truncation error of Euler’s method is O(h), which would seem to
imply that we can achieve arbitrarily accurate results with Euler’s method by simply choosing the step size
sufficiently small. However, this isn’t a good idea, for two reasons. First, after a certain point decreasing
the step size will increase roundoff errors to the point where the accuracy will deteriorate rather than
improve. The second and more important reason is that in most applications of numerical methods to an
initial value problem

y/ = f('ra y)a y(CCo) = Yo, (321)

the expensive part of the computation is the evaluation of f. Therefore we want methods that give good
results for a given number of such evaluations. This is what motivates us to look for numerical methods
better than Euler’s.
To clarify this point, suppose we want to approximate the value of e by applying Euler’s method to the
initial value problem
y =y, y(0)=1, (withsolutiony = e%)

on [0,1], with h = 1/12, 1/24, and 1/48, respectively. Since each step in Euler’s method requires
one evaluation of f, the number of evaluations of f in each of these attempts is n = 12, 24, and 48,
respectively. In each case we accept y,, as an approximation to e. The second column of Table 3.2.1
shows the results. The first column of the table indicates the number of evaluations of f required to
obtain the approximation, and the last column contains the value of e rounded to ten significant figures.
In this section we’ll study the improved Euler method, which requires two evaluations of f at each
step. We’ve used this method with h = 1/6, 1/12, and 1/24. The required number of evaluations of f


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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were 12, 24, and 48, as in the three applications of Euler’s method; however, you can see from the third
column of Table 3.2.1 that the approximation to e obtained by the improved Euler method with only 12
evaluations of f is better than the approximation obtained by Euler’s method with 48 evaluations.

In Section 3.1 we’ll study the Runge-Kutta method, which requires four evaluations of f at each step.
We’ve used this method with h = 1/3, 1/6, and 1/12. The required number of evaluations of f were
again 12, 24, and 48, as in the three applications of Euler’s method and the improved Euler method;
however, you can see from the fourth column of Table 3.2.1 that the approximation to e obtained by
the Runge-Kutta method with only 12 evaluations of f is better than the approximation obtained by the
improved Euler method with 48 evaluations.

Table 3.2.1. Approximations to e obtained by three numerical methods.

n Euler Improved Euler | Runge-Kutta Exact

12 | 2.613035290 | 2.707188994 | 2.718069764 | 2.718281828
24 | 2.663731258 | 2.715327371 2.718266612 | 2.718281828
48 | 2.690496599 | 2.717519565 | 2.718280809 | 2.718281828

The Improved Euler Method

The improved Euler method for solving the initial value problem (3.2.1) is based on approximating the
integral curve of (3.2.1) at (x;, y(x;)) by the line through (z;, y(x;)) with slope

S y(@) + f@i, y(@i))

K2 2 Y
that is, m; is the average of the slopes of the tangents to the integral curve at the endpoints of [x;, ;1]
The equation of the approximating line is therefore

y= (e + LEVED iyl ) (322)
Setting z = x;4+1 = x; + h in (3.2.2) yields
h

Yir1 = y(i) + 5 (f(zi, y(@:)) + f(@iv1, y(zit1))) (32.3)

2

as an approximation to y(z;+1). As in our derivation of Euler’s method, we replace y(x;) (unknown if
1 > 0) by its approximate value y;; then (3.2.3) becomes

h
it =Yt 5 (f(zi,yi) + f(@ivr, y(Tiv1)) -

However, this still won’t work, because we don’t know y(z;1 ), which appears on the right. We overcome
this by replacing y(z;+1) by v; + hf(zi,y:), the value that the Euler method would assign to ;1.
Thus, the improved Euler method starts with the known value y(zo) = yo and computes y1, Y2, - .., Yn
successively with the formula

h
Yitr =4+ 5 (f(ziys) + f(wigr, yi + hf(wi,9:))) - (3.2.4)

The computation indicated here can be conveniently organized as follows: given y;, compute

kli = .f('r’u yl)a
ko = f(xi+h,y + hku),

h
Yi+l = Yi+ §(k11 + ko).


http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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The improved Euler method requires two evaluations of f(x, y) per step, while Euler’s method requires
only one. However, we’ll see at the end of this section that if f satisfies appropriate assumptions, the local
truncation error with the improved Euler method is O(h?), rather than O(h?) as with Euler’s method.
Therefore the global truncation error with the improved Euler method is O(h?); however, we won’t prove
this.

We note that the magnitude of the local truncation error in the improved Euler method and other
methods discussed in this section is determined by the third derivative y'”’ of the solution of the initial
value problem. Therefore the local truncation error will be larger where |y'”| is large, or smaller where
|y""’| is small.

The next example, which deals with the initial value problem considered in Example 3.1.1, illustrates
the computational procedure indicated in the improved Euler method.

Example 3.2.1 Use the improved Euler method with 2 = 0.1 to find approximate values of the solution
of the initial value problem
Y 42y =2, y(0)=1 (3.2.5)

atz =0.1,0.2,0.3.

Solution Asin Example 3.1.1, we rewrite (3.2.5) as
Y = 2y+ae ", y(0) =1,
which is of the form (3.2.1), with

flz,y) = -2y + 2"

The improved Euler method yields

,xon, andyozl.

klO = .f('rOa yo) = f(oa 1) = _25
ko = f(z1,y0 + hkio) = f(1,1+ (1)(=2))
f(1,.8) = —2(.8) + (.1)%e¢™? = —1.599181269,
h
y1 = Yo+ 5(/€10 + k20),
= 1+ (.05)(—2 — 1.599181269) = .820040937,

ki1 = flzy,y1) = f(.1,.820040937) = —2(.820040937) 4 (.1)%¢~2 = —1.639263142,
£(.2,.656114622) = —2(.656114622) + (.2)%e~* = —1.306866684,
h
Y2 = Y1+ 5(k11 + ka1),
= .820040937 + (.05)(—1.639263142 — 1.306866684) = .672734445,

ki = f(za,ys) = f(.2,.672734445) = —2(.672734445) + (.2)%e~* = —1.340106330,
koo = f(zs,y2+ hki2) = f(.3,.672734445+ .1(—1.340106330)),
f(.3,.538723812) = —2(.538723812) + (.3)%e ™% = —1.062629710,
h
Ys = Y2+ 5(’%2 + ka2)
= .672734445 + (.05)(—1.340106330 — 1.062629710) = .552597643.

Example 3.2.2 Table 3.2.2 shows results of using the improved Euler method with step sizes h = 0.1
and h = 0.05 to find approximate values of the solution of the initial value problem

Y 42y =12, y(0)=1
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atx = 0, 0.1, 0.2, 0.3, ..., 1.0. For comparison, it also shows the corresponding approximate values
obtained with Euler’s method in 3.1.2, and the values of the exact solution

672m

4

The results obtained by the improved Euler method with 4 = 0.1 are better than those obtained by Euler’s
method with h = 0.05.

(z* +4).

y:

Table 3.2.2. Numerical solution of 3/ + 2y = x3¢~2%, y(0) = 1, by Euler’s method and the
improved Euler method.

x

h=0.1

h =0.05

h=0.1

h =0.05

Exact

0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.800000000
0.640081873
0.512601754
0.411563195
0.332126261
0.270299502
0.222745397
0.186654593
0.159660776
0.139778910

1.000000000
0.810005655
0.656266437
0.532290981
0.432887056
0.353785015
0.291404256
0.242707257
0.205105754
0.176396883
0.154715925

1.000000000
0.820040937
0.672734445
0.552597643
0.455160637
0.376681251
0.313970920
0.264287611
0.225267702
0.194879501
0.171388070

1.000000000
0.819050572
0.671086455
0.550543878
0.452890616
0.374335747
0.311652239
0.262067624
0.223194281
0.192981757
0.169680673

1.000000000
0.818751221
0.670588174
0.549922980
0.452204669
0.373627557
0.310952904
0.261398947
0.222570721
0.192412038
0.169169104

Euler

Improved Euler

Exact

Example 3.2.3 Table 3.2.3 shows analogous results for the nonlinear initial value problem

y' = =2y + xy + 2%, y(0) = 1.

We applied Euler’s method to this problem in Example 3.1.3.

Table 3.2.3. Numerical solution of 3/ = —2y? + xy + 22, y(0) = 1, by Euler’s method and

the improved Euler method.

x

h=0.1

h=0.05

h=0.1

h=0.05

“Exact”

0.0
0.1
0.2
03
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.800000000
0.681000000
0.605867800
0.559628676
0.535376972
0.529820120
0.541467455
0.569732776
0.614392311
0.675192037

1.000000000
0.821375000
0.707795377
0.633776590
0.587454526
0.562906169
0.557143535
0.568716935
0.596951988
0.641457729
0.701764495

1.000000000
0.840500000
0.733430846
0.661600806
0.615961841
0.591634742
0.586006935
0.597712120
0.626008824
0.670351225
0.730069610

1.000000000
0.838288371
0.730556677
0.658552190
0.612884493
0.588558952
0.582927224
0.594618012
0.622898279
0.667237617
0.726985837

1.000000000
0.837584494
0.729641890
0.657580377
0.611901791
0.587575491
0.581942225
0.593629526
0.621907458
0.666250842
0.726015790

Euler

Improved Euler

“Exact”

Example 3.2.4 Use step sizes h = 0.2, h = 0.1, and h = 0.05 to find approximate values of the solution

of

Y —2zy =1,

y(0) =3
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atz = 0, 0.2, 0.4, 0.6, ..., 2.0 by (a) the improved Euler method; (b) the improved Euler semilinear
method. (We used Euler’s method and the Euler semilinear method on this problem in 3.1.4.)

SOLUTION(a) Rewriting (3.2.6) as
y' =1+2zy, y(0)=3
and applying the improved Euler method with f(z,y) = 1 + 22y yields the results shown in Table 3.2.4.

SOLUTION(b) Since y; = e®” is a solution of the complementary equation y' — 22y = 0, we can apply
the improved Euler semilinear method to (3.2.6), with

Y= ue” and W = 6712, u(0) = 3.
The results listed in Table 3.2.5 are clearly better than those obtained by the improved Euler method.

Table 3.2.4. Numerical solution of ¢’ — 2zy = 1, y(0) = 3, by the improved Euler method.

T h =02 h=0.1 h =10.05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.328000000 3.328182400 3.327973600 3.327851973
04 3.964659200 3.966340117 3.966216690 3.966059348
0.6 5.057712497 5.065700515 5.066848381 5.067039535
0.8 6.900088156 6.928648973 6.934862367 6.936700945
1.0 10.065725534 | 10.154872547 | 10.177430736 | 10.184923955
1.2 15.708954420 | 15.970033261 16.041904862 | 16.067111677
1.4 | 26244894192 | 26.991620960 | 27.210001715 | 27.289392347
1.6 | 46.958915746 | 49.096125524 | 49.754131060 | 50.000377775
1.8 | 89.982312641 | 96.200506218 | 98.210577385 | 98.982969504
2.0 | 184.563776288 | 203.151922739 | 209.464744495 | 211.954462214

Table 3.2.5. Numerical solution of y/ —2zy = 1, y(0) = 3, by the improved Euler semilinear

method.

T h=0.2 h=0.1 h =0.05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.326513400 3.327518315 3.327768620 3.327851973
04 3.963383070 3.965392084 3.965892644 3.966059348
0.6 5.063027290 5.066038774 5.066789487 5.067039535
0.8 6.931355329 6.935366847 6.936367564 6.936700945
1.0 10.178248417 10.183256733 10.184507253 10.184923955
1.2 16.059110511 16.065111599 16.066611672 16.067111677
14 27.280070674 27.287059732 27.288809058 27.289392347
1.6 49989741531 49.997712997 49.999711226 50.000377775
1.8 98.971025420 98.979972988 98.982219722 98.982969504
2.0 | 211.941217796 | 211.951134436 | 211.953629228 | 211.954462214
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A Family of Methods with O(h?) Local Truncation Error

We’ll now derive a class of methods with O(h?) local truncation error for solving (3.2.1). For simplicity,
we assume that f, fa, fy, foz, fyy, and fz, are continuous and bounded for all (z, y). This implies that
if 3 is the solution of (3.2.1 then 3" and 3"’ are bounded (Exercise 31).
We begin by approximating the integral curve of (3.2.1) at (x;, y(x;)) by the line through (x;, y(x;))
with slope
m; = oy’ (x;) + py' (zi + Oh),

where o, p, and 6 are constants that we’ll soon specify; however, we insist at the outset that 0 < 6 < 1,
so that
T, < x; +0h < Tit1-

The equation of the approximating line is

y = ylz)+mi(z — ;)

Setting z = x;4+1 = x; + h in (3.2.7) yields
Yir1 = y(xi) + hloy (zi) + py' (z; + Oh)]

as an approximation to y(z;4+1).
To determine o, p, and # so that the error

Ei = y@ip1) = it ,
= yl@wiy1) —y(z:) — hloy (z;) + py' (x; + 6R)) (3.2.8)

in this approximation is O(h?), we begin by recalling from Taylor’s theorem that

h2 K3
Y(wip1) = y(x:) + hy' (zi) + 7y”(xi) + Fym(fz‘),
where &; is in (2;, z;41). Since y'”" is bounded this implies that
§ 3
/ /!
y(xiv1) = y(@:) = hy (2:) = 5y (2i) = O(h7).
Comparing this with (3.2.8) shows that E; = O(h3) if

h
oy (z;) + py' (x; + 0h) =o' (z;) + iy”(xi) + O(Rh?). (3.2.9)

However, applying Taylor’s theorem to ' shows that

! ! ! (9/?1)2 " (—
Y (w; + 0h) = y'(x;) + Ohy" (z;) + — Y (Ti),

where T; is in (x;, z; + 6h). Since y'”’ is bounded, this implies that
o (21 + 0h) = of (1) + Ohy/" () + O(H2).

Substituting this into (3.2.9) and noting that the sum of two O(h?) terms is again O(h?) shows that
E; = O(h3) if

(04 o/ (20) + pOhy" () = () + 5" (),
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which is true if )
c+p=1 and pb= 3 (3.2.10)

Since y = f(x,y), we can now conclude from (3.2.8) that
Y(@i1) = y(zi) + hlof(wys) + pf(zi +0h,y(es + )] + O G211)

if o, p, and @ satisfy (3.2.10). However, this formula would not be useful even if we knew y(x;) exactly
(as we would for ¢ = 0), since we still wouldn’t know y(x; 4+ 6h) exactly. To overcome this difficulty, we
again use Taylor’s theorem to write

h2
y(xi + 0h) = y(x;) + 0hy' (z;) + 7?/’(5:1-),

where Z; is in (z;, x; + 0h). Since y/'(x;) = f(z;,y(z;)) and y” is bounded, this implies that
[y(xi + 0h) = y(i) = Ohf(xi, y(2:))| < Kh? (32.12)
for some constant K. Since f, is bounded, the mean value theorem implies that
| f (@i + Oh, u) — fzi + Oh,v)| < M|u— v
for some constant M. Letting
u=y(z;+0h) and v =y(x:)+Ohf(z:,y(zi))
and recalling (3.2.12) shows that
F(xi + 0, y(xi + 0h)) = f(xi + 0h, y(x:) + Ohf(xi, y(x:))) + O(h?).
Substituting this into (3.2.11) yields
Y(@ip1) = y(@g) +hiof(i,y(z:))+
pf(i + 0h,y(x:) + Ohf(zi,y(z:)] + O(R?).
This implies that the formula
Yir1 = yi + hlof(zi,yi) + pf(xi + 0h, ys + Ohf (i, y:))]

has O(h?) local truncation error if o, p, and @ satisfy (3.2.10). Substitutingo = 1 — p and 6 = 1/2p here
yields

h h
Yirr =it h [(1 —p)f(@i,yi) + pf (501 Tt 2—f(xi,yi)>] : (3.2.13)
p p

The computation indicated here can be conveniently organized as follows: given y;, compute
kli = .f (x’ia yl)a
h h
kai it oY+ k)
2 f(x+2py+2pl>

Yir1r = ¥i +h[(1—p)kii + pkai].

Consistent with our requirement that 0 < 6 < 1, we require that p > 1/2. Letting p = 1/2in (3.2.13)
yields the improved Euler method (3.2.4). Letting p = 3/4 yields Heun’s method,

1 3 2 2
Yit1 =Yi + h [Zf(xi,yi) + Zf (xz + gh,yz‘ + ghf(xi,yi)ﬂ ,


http://www-history.mcs.st-and.ac.uk/Mathematicians/Heun.html
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which can be organized as

kli = .f('r’u yl)a
2h 2h
koy =  f (%“F?,yri—?ku) ;
h
Yirl = Yi+ Z(kh + 3ka;).

Letting p = 1 yields the midpoint method,

h h
Yirr =Y + hf (501 + 5 Yi =+ §f($iayi)> ;

which can be organized as

kli = f('r’uyl)a
h h
ko; f (xz + §,yi + §/€11> ;

Yit1 = Ui + hko;.

Examples involving the midpoint method and Heun’s method are given in Exercises 23-30.

3.2 Exercises

Most of the following numerical exercises involve initial value problems considered in the exercises in
Section 3.1. You’ll find it instructive to compare the results that you obtain here with the corresponding
results that you obtained in Section 3.1.

In Exercises 1-5 use the improved Euler method to find approximate values of the solution of the given
initial value problem at the points v; = xo + th, where x is the point where the initial condition is
imposed and 1 =1, 2, 3.

S W

Ao o=

[Cly =202 +32 -2, y@2) =1, h=005
y’:y+\/:c2+ 2 y(0)=1; h=01

[Cly +3y=22-3zy+12, y(0)=2 h=005
1

[Cly = —2%, y2)=3 h=01
l—y

y + 2%y =sinzy, y(l)=m h=02
Use the improved Euler method with step sizes h = 0.1, h = 0.05, and A = 0.025 to find
approximate values of the solution of the initial value problem

y +3y=T7e'", y(0) =2

atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solution y = e** 4-¢~3% which can be obtained by the method of Section 2.1. Present your results
in a table like Table 3.2.2.

Use the improved Euler method with step sizes h = 0.1, h = 0.05, and A~ = 0.025 to find
approximate values of the solution of the initial value problem

2 3
'+ Zy="2 41 =1
y+oy=—3+1 yd)



10.

11.
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atx = 1.0,1.1,1.2,1.3, ..., 2.0. Compare these approximate values with the values of the exact
solution

1
y= 3?(91n:c+x3 +2)
which can be obtained by the method of Section 2.1. Present your results in a table like Table 3.2.2.

Use the improved Euler method with step sizes h = 0.05, h = 0.025, and h = 0.0125 to find
approximate values of the solution of the initial value problem

;Y 4ay—a?

Yy = D y(l) = 25
T
atx = 1.0, 1.05, 1.10, 1.15, ..., 1.5. Compare these approximate values with the values of the
exact solution
_x(1+22/3)
- 1-22/3

obtained in Example 2.4.3. Present your results in a table like Table 3.2.2.
In Example 3.2.2 it was shown that

v 4+y=2+z-4
is an implicit solution of the initial value problem

,  2x+41

E Y — 2) =1. A

V=T y(2) (A)

Use the improved Euler method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of (A) at x = 2.0, 2.1, 2.2,2.3, ..., 3.0. Present your results in

tabular form. To check the error in these approximate values, construct another table of values of
the residual
R(z,y) =y +y—a’ —x+4

for each value of (z, y) appearing in the first table.
You can see from Example 2.5.1 that

oty + 2% + 20y =4
is an implicit solution of the initial value problem

, 4x3y3 + 2z9° + 2y

= — 1) =1. A

y 30Ty T hayt 1 ox y(1) (A)

Use the improved Euler method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of (A) at x = 1.0,1.14, 1.2, 1.3, ..., 2.0. Present your results

in tabular form. To check the error in these approximate values, construct another table of values
of the residual

R(z,y) = 2y’ + 2y’ + 20y — 4
for each value of (z, y) appearing in the first table.

Use the improved Euler method with step sizes h = 0.1, h = 0.05, and A~ = 0.025 to find
approximate values of the solution of the initial value problem

(3y* +4y)y +2x +cosz =0, y(0) =1 (Exercise 2.2.13)
atz =0,0.1,0.2,0.3, ..., 1.0.
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12.

13.

Use the improved Euler method with step sizes h = 0.1, h = 0.05, and A~ = 0.025 to find
approximate values of the solution of the initial value problem

(y+D)y -1y —-2)
x+1
atz = 1.0,1.1,1.2,1.3, ..., 2.0.

Use the improved Euler method and the improved Euler semilinear method with step sizes
h = 0.1, h = 0.05, and h = 0.025 to find approximate values of the solution of the initial value
problem

Y+

=0, y(1)=0 (Exercise 2.2.14)

Y +3y=e"(1-2z), y(0)=2,

atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solution y = e~3%(2 + 2 — x?), which can be obtained by the method of Section 2.1. Do you
notice anything special about the results? Explain.

The linear initial value problems in Exercises 14—19 can’t be solved exactly in terms of known elementary

functions. In each exercise use the improved Euler and improved Euler semilinear methods with the
indicated step sizes to find approximate values of the solution of the given initial value problem at 11
equally spaced points (including the endpoints) in the interval.

14.

15

16

17

18

19.

1
Y =2 =q——3 ¥(2)=2% h=0100500250n2,3]

Y +2xy =22, y0)=3; h=020.1,0.050n[0,2] (Exercise 2.138)

L
y+—y="0 y(1)=2, h=0201,0050n[1,3] (Exercise2.139)
T T
Ly
Y +y=""E 1) =0; h=0.050.0250.01250n [1,1.5] (Exercise 2.1.40),
X
y + 2 Y= < y(0) =1; h=10.2,0.1,0.050n [0,2] (Exercise 2.141)
1 + ZC2 (1 + .':CQ)Q 9 9 9 9

azy +(x+1y=e", y(1)=2; h=0.050.0250.01250n[1,1.5] (Exercise 2.142)

In Exercises 20-22 use the improved Euler method and the improved Euler semilinear method with the
indicated step sizes to find approximate values of the solution of the given initial value problem at 11
equally spaced points (including the endpoints) in the interval.

20.

21

22

23.
24.
25.
26.
27.

v +3y=2y*(y+1), y0)=1; h=0.1,0.050.0250n [0, 1]

y — dy = m y(0) =1; h=0.1,0.05,0.0250n [0, 1]

Y+ 2y = % y(2) =1; h=0.1,0.05,0.0250n [2, 3]

Do Exercise 7 with “improved Euler method” replaced by “midpoint method.”
Do Exercise 7 with “improved Euler method” replaced by “Heun’s method.”
Do Exercise 8 with “improved Euler method” replaced by “midpoint method.”
Do Exercise 8 with “improved Euler method” replaced by “Heun’s method.”
Do Exercise 11 with “improved Euler method” replaced by “midpoint method.”
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28. Do Exercise 11 with “improved Euler method” replaced by “Heun’s method.”
29. Do Exercise 12 with “improved Euler method” replaced by “midpoint method.”

30. Do Exercise 12 with “improved Euler method” replaced by “Heun’s method.”

31. Show thatif f, fs, fy, foz, fyy, and fz, are continuous and bounded for all (z,y) and y is the
solution of the initial value problem

y/:f(xay)a y(xo):yo,

" are bounded.

then 3y and y
32. NUMERICAL QUADRATURE (see Exercise 3.1.23).

(a) Derive the quadrature formula

b n—1
/ f(2)dz ~ Sh(f(a) + f() +h S fla+ih) (whereh=(b—a)/n)  (A)

by applying the improved Euler method to the initial value problem
y =f(), yla)=0.
(b) The quadrature formula (A) is called the trapezoid rule. Draw a figure that justifies this

terminology.

(c) For several choices of a, b, A, and B, apply (A) to f(z) = A + Bz, withn =
10, 20, 40, 80, 160, 320. Compare your results with the exact answers and explain what you
find.

(d) For several choices of a, b, A, B, and C, apply (A) to f(z) = A + Bz + Cz?, with
n = 10, 20, 40, 80, 160, 320. Compare your results with the exact answers and explain what
you find.

3.3 THE RUNGE-KUTTA METHOD

In general, if k is any positive integer and f satisfies appropriate assumptions, there are numerical methods
with local truncation error O(h¥*1) for solving an initial value problem

Y = f(z,y), y(xo)=vo. (3.3.1)

Moreover, it can be shown that a method with local truncation error O(h**1) has global truncation error
O(h*). In Sections 3.1 and 3.2 we studied numerical methods where k¥ = 1 and k = 2. We’ll skip
methods for which £ = 3 and proceed to the Runge-Kutta method, the most widely used method, for
which k = 4. The magnitude of the local truncation error is determined by the fifth derivative y(®) of
the solution of the initial value problem. Therefore the local truncation error will be larger where |y(5)|
is large, or smaller where |y(5)| is small. The Runge-Kutta method computes approximate values y1, Y2,
..., Y of the solution of (3.3.1) at zg, g + h, ..., g + nh as follows: Given y;, compute

kli = .f('r’u yl)a

h h
ko = f($i+§,yi+§kli>,

ksi = f (xz =+ g,yi =+ gk21> )
kyi = f(zi + h,yi + hks;),
and
Yirl = Yi + %(ku + 2ko; + 2k3; + kai).

The next example, which deals with the initial value problem considered in Examples 3.1.1 and 3.2.1,
illustrates the computational procedure indicated in the Runge-Kutta method.
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Example 3.3.1 Use the Runge-Kutta method with s = 0.1 to find approximate values for the solution of
the initial value problem
Y 42y =2, y(0)=1, (332

atz =0.1,0.2.

Solution Again we rewrite (3.3.2) as
y=-2y -+, y(0) =1,
which is of the form (3.3.1), with

f(xay) = _2y+x3672x5 To = Oa and Yo = 1.

The Runge-Kutta method yields

ko = f(zo,y0) = f(0,1) = =2,
koo = f(wo+h/2,y0+ hk1o/2) = f(.05,1+ (.05)(-2))
= £(.05,.9) = —2(.9) + (.05)%c™! = —1.799886895,
(zo + h/2,y0 + hkao/2) = f(.05,1 + (.05)(—1.799886895))
(-
(
(.

~

kg =
—  £(.05,.910005655) = —2(.910005655) + (.05)% "1 = —1.819898206,
ki = f(zo+ R, yo+ hkso) = F(1,1+ (.1)(—1.819898206))
—  f(.1,.818010179) = —2(.818010179) + (.1)%¢~2 = —1.635201628,

h
o= Yo+ E(klo + 2k20 + 2k30 + kao),

1
= 1+ E(—2 + 2(—1.799886895) + 2(—1.819898206) — 1.635201628) = .818753803,

(.2, .818753803 + (.1)(—1.487873498))
669966453) + (.2)%¢~* = —1.334570346,

kin = flar,y) = f(.1,.818753803) = —2(.818753803)) + (.1)3%¢ 2 = —1.636688875,
kot = f(x1+h/2,y1 + hki1/2) = f(.15, 818753803 + (.05)(—1.636688875))
= f(.15,.736919359) = —2(.736919359) + (.15)% 3 = —1.471338457,
ks = flaz1+h/2,y1 + hka1/2) = f(.15,.818753803 + (.05)(—1.471338457))
= f(.15,.745186880) = —2(.745186880) + (.15)% 3 = —1.487873498,
(
(-

ka = f~’01+hy1+hk31) /
— (.2, .669966453) = —2(.

h
Y2 = Y1+ E(kll + 2ko1 + 2ks1 + k1),

1
= .818753803 + E(—1.636688875 + 2(—1.471338457) + 2(—1.487873498) — 1.334570346)
= .670592417.

The Runge-Kutta method is sufficiently accurate for most applications.

Example 3.3.2 Table 3.3.1 shows results of using the Runge-Kutta method with step sizes 1 = 0.1 and
h = 0.05 to find approximate values of the solution of the initial value problem

Y 42y =12, y(0)=1
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atx = 0, 0.1, 0.2, 0.3, ..., 1.0. For comparison, it also shows the corresponding approximate values
obtained with the improved Euler method in Example 3.2.2, and the values of the exact solution

672m 4
y=— @ +4)

The results obtained by the Runge-Kutta method are clearly better than those obtained by the improved
Euler method in fact; the results obtained by the Runge-Kutta method with i = 0.1 are better than those
obtained by the improved Euler method with i = 0.05.

Table 3.3.1. Numerical solution of 3 + 2y = z3e¢~2%, y(0) = 1, by the Runge-Kuttta
method and the improved Euler method.

x

h=0.1

h=0.05

h=0.1

h =0.05

Exact

0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.820040937
0.672734445
0.552597643
0.455160637
0.376681251
0.313970920
0.264287611
0.225267702
0.194879501
0.171388070

1.000000000
0.819050572
0.671086455
0.550543878
0.452890616
0.374335747
0.311652239
0.262067624
0.223194281
0.192981757
0.169680673

1.000000000
0.818753803
0.670592417
0.549928221
0.452210430
0.373633492
0.310958768
0.261404568
0.222575989
0.192416882
0.169173489

1.000000000
0.818751370
0.670588418
0.549923281
0.452205001
0.373627899
0.310953242
0.261399270
0.222571024
0.192412317
0.169169356

1.000000000
0.818751221
0.670588174
0.549922980
0.452204669
0.373627557
0.310952904
0.261398947
0.222570721
0.192412038
0.169169104

Improved Euler

Runge-Kutta

Exact

Example 3.3.3 Table 3.3.2 shows analogous results for the nonlinear initial value problem

y' = =2y + xy + 2%, y(0) = 1.

We applied the improved Euler method to this problem in Example 3.

Table 3.3.2. Numerical solution of 3/ = —2y* 4+ 2y + 22, y(0) = 1, by the Runge-Kuttta
method and the improved Euler method.

x

h=0.1

h =0.05

h=0.1

h =0.05

“Exact”

0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.840500000
0.733430846
0.661600806
0.615961841
0.591634742
0.586006935
0.597712120
0.626008824
0.670351225
0.730069610

1.000000000
0.838288371
0.730556677
0.658552190
0.612884493
0.588558952
0.582927224
0.594618012
0.622898279
0.667237617
0.726985837

1.000000000
0.837587192
0.729644487
0.657582449
0.611903380
0.587576716
0.581943210
0.593630403
0.621908378
0.666251988
0.726017378

1.000000000
0.837584759
0.729642155
0.657580598
0.611901969
0.587575635
0.581942342
0.593629627
0.621907553
0.666250942
0.726015908

1.000000000
0.837584494
0.729641890
0.657580377
0.611901791
0.587575491
0.581942225
0.593629526
0.621907458
0.666250842
0.726015790

Improved Euler

Runge-Kutta

“Exact”
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Example 3.3.4 Tables 3.3.3 and 3.3.4 show results obtained by applying the Runge-Kutta and Runge-
Kutta semilinear methods to to the initial value problem

y —2xy =1, y(0) =3,

which we considered in Examples 3.1.4 and 3.2.4.

Table 3.3.3. Numerical solution of ¢’ — 2zy = 1, y(0) = 3, by the Runge-Kutta method.

x h =02 h=0.1 h =0.05 “Exact”
0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.327846400 3.327851633 3.327851952 3.327851973
04 3.966044973 3.966058535 3.966059300 3.966059348
0.6 5.066996754 5.067037123 5.067039396 5.067039535
0.8 6.936534178 6.936690679 6.936700320 6.936700945
1.0 | 10.184232252 | 10.184877733 | 10.184920997 | 10.184923955
1.2 | 16.064344805 | 16.066915583 | 16.067098699 | 16.067111677
1.4 | 27278771833 | 27.288605217 | 27.289338955 | 27.289392347
1.6 | 49.960553660 | 49.997313966 | 50.000165744 | 50.000377775
1.8 | 98.834337815 | 98.971146146 | 98.982136702 | 98.982969504
2.0 | 211.393800152 | 211.908445283 | 211.951167637 | 211.954462214

Table 3.3.4. Numerical solution of ¢/ — 2zy = 1, y(0) = 3, by the Runge-Kutta semilinear

method.
T h=0.2 h=0.1 h =0.05 “Exact”
0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.327853286 3.327852055 3.327851978 3.327851973
04 3.966061755 3.966059497 3.966059357 3.966059348
0.6 5.067042602 5.067039725 5.067039547 5.067039535
0.8 6.936704019 6.936701137 6.936700957 6.936700945
1.0 10.184926171 10.184924093 10.184923963 10.184923955
1.2 16.067111961 16.067111696 16.067111678 16.067111677
14 27.289389418 27.289392167 27.289392335 27.289392347
1.6 50.000370152 50.000377302 50.000377745 50.000377775
1.8 98.982955511 98.982968633 98.982969450 98.982969504
2.0 | 211.954439983 | 211.954460825 | 211.954462127 | 211.954462214

The Case Where x( Isn’t The Left Endpoint

So far in this chapter we’ve considered numerical methods for solving an initial value problem

y/ = .f(xay)a

on an interval [z, b], for which z is the left endpoint. We haven’t discussed numerical methods for
solving (3.3.3) on an interval [a, xo], for which xq is the right endpoint. To be specific, how can we
obtain approximate values y_1, y_o, ..., Yy_n of the solution of (3.3.3) at zy — h, ..., x9 — nh, where
h = (zo — a)/n? Here’s the answer to this question:

y(o) = Yo (3.3.3)

Consider the initial value problem

2= —f(-x,2), z(—x0)=yo, (3.3.4)
on the interval [—xz¢, —a], for which —x is the left endpoint. Use a numerical method to obtain approxi-
mate values z1, 2o, ..., 2, of the solution of (3.3.4) at —x¢ + h, —xg + 2h, ..., —x¢9 + nh = —a. Then
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Y_1 = 21,Y—2 = 22, ..., Y_n = 2, are approximate values of the solution of (3.3.3) at zy — h, o — 2h,
..., rg — nh = a.

The justification for this answer is sketched in Exercise 23. Note how easy it is to make the change the
given problem (3.3.3) to the modified problem (3.3.4): first replace f by —f and then replace z, x(, and
y by —x, —x¢, and z, respectively.

Example 3.3.5 Use the Runge-Kutta method with step size h = 0.1 to find approximate values of the
solution of
(y -1 =20+3, y(1)=4 (3.3.5)

atr =0,0.1,0.2,..., 1.

Solution We first rewrite (3.3.5) in the form (3.3.3) as

2z +3
y/:ﬁ, y(1) = 4. (3.3.6)

Since the initial condition y(1) = 4 is imposed at the right endpoint of the interval [0, 1], we apply the
Runge-Kutta method to the initial value problem
2z —3
= -1)=14 3.3.7
on the interval [—1, 0]. (You should verify that (3.3.7) is related to (3.3.6) as (3.3.4) is related to (3.3.3).)
Table 3.3.5 shows the results. Reversing the order of the rows in Table 3.3.5 and changing the signs of
the values of x yields the first two columns of Table 3.3.6. The last column of Table 3.3.6 shows the exact

values of y, which are given by
y =1+ (322 4+ 9z + 15)/3,

(Since the differential equation in (3.3.6) is separable, this formula can be obtained by the method of
Section 2.2.)

2 —
Table 3.3.5. Numerical solution of 2’ = LES, z(=1) =4,0n [-1,0].
(z—1)?

x z
-1.0 | 4.000000000
-0.9 | 3.944536474
-0.8 | 3.889298649
-0.7 | 3.834355648
-0.6 | 3.779786399
-0.5 | 3.725680888
-04 | 3.672141529
-0.3 | 3.619284615
-0.2 | 3.567241862
-0.1 | 3.516161955

0.0 | 3.466212070

Table 3.3.6. Numerical solution of (y — 1)%y = 2z + 3, y(1) = 4, 0n [0, 1].
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T Y Exact
0.00 | 3.466212070 | 3.466212074
0.10 | 3.516161955 | 3.516161958
0.20 | 3.567241862 | 3.567241864
0.30 | 3.619284615 | 3.619284617
0.40 | 3.672141529 | 3.672141530
0.50 | 3.725680888 | 3.725680889
0.60 | 3.779786399 | 3.779786399
0.70 | 3.834355648 | 3.834355648
0.80 | 3.889298649 | 3.889298649
0.90 | 3.944536474 | 3.944536474
1.00 | 4.000000000 | 4.000000000

We leave it to you to develop a procedure for handling the numerical solution of (3.3.3) on an interval
[a, b] such that a < 2 < b (Exercises 26 and 27).

3.3 Exercises

Most of the following numerical exercises involve initial value problems considered in the exercises in
Sections 3.2. You’ll find it instructive to compare the results that you obtain here with the corresponding
results that you obtained in those sections.

In Exercises 1-5 use the Runge-Kutta method to find approximate values of the solution of the given initial
value problem at the points x; = xo + ih, where xq is the point where the initial condition is imposed

andi =1, 2.

1. [Cly =242 +3y> -2, y(2)=1; h=0.05

2. [Cly=y+VaP+ 2 yO) =1 h=0.1

3. [Cly +3y=2a—3ey+42, y(0)=2; h=0.05
1

4 [Cy=125 v =3 n=01
—y

5 y’+x2y:sinxy, y(l)==m; h=0.2

(=

Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of the initial value problem

y(0) =2,

atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solution y = e** 4-¢~3% which can be obtained by the method of Section 2.1. Present your results
in a table like Table 3.3.1.

Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of the initial value problem

Y + 3y = 7e**,

2 3
! —_Y = — 1 1:1
y+-_y=—5+1 yd)

atx = 1.0,1.1,1.2,1.3, ..., 2.0. Compare these approximate values with the values of the exact
solution

1
y= 3x—2(91nx+:c3+2),

which can be obtained by the method of Section 2.1. Present your results in a table like Table 3.3.1.
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Use the Runge-Kutta method with step sizes » = 0.05, b = 0.025, and h = 0.0125 to find
approximate values of the solution of the initial value problem

, Yyt ey —a?
Yy =—
X

;o oy(l) =2

at z = 1.0, 1.05, 1.10, 1.15 ..., 1.5. Compare these approximate values with the values of the

exact solution
_ z(1+a?/3)

1—a22/3 7
which was obtained in Example 2.2.3. Present your results in a table like Table 3.3.1.

In Example 2.2.3 it was shown that
v 4+y=a2>+z—-4
is an implicit solution of the initial value problem

,  2x41

Y :W, y(2) =1 (A)

Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and A = 0.025 to find approxi-
mate values of the solution of (A) at x = 2.0, 2.1, 2.2,2.3, ..., 3.0. Present your results in tabular
form. To check the error in these approximate values, construct another table of values of the
residual

Rz, y)=y’ +y—2*> -z +4
for each value of (z, y) appearing in the first table.

You can see from Example 2.5.1 that
oty + 2% + 20y =4
is an implicit solution of the initial value problem

) A2ty 4 2ay° + 2y
4 3rty? + b2yt + 22

y(1) = 1. (A)

Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and A = 0.025 to find approxi-
mate values of the solutionof (A) atz = 1.0,1.1, 1.2, 1.3, ..., 2.0. Present your results in tabular
form. To check the error in these approximate values, construct another table of values of the
residual

R(x,y) = zty® + 2% + 20y — 4

for each value of (z, y) appearing in the first table.

Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of the initial value problem

(3y* +4y)y +2x +cosx =0, y(0) =1 (Exercise 2.2.13),

atz =0,0.1,0.2,0.3, ..., 1.0.
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12.

13.

Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of the initial value problem

(y+ D)y -1y -2)
x+1
atz = 1.0,1.1,1.2,1.3, ..., 2.0.

Use the Runge-Kutta method and the Runge-Kutta semilinear method with step sizes h = 0.1,
h = 0.05, and A = 0.025 to find approximate values of the solution of the initial value problem

Y+

=0, y(1) =0 (Exercise 2.2.14),

Y + 3y =e?"(1 —da + 327 — 42%), y(0) = -3

atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solutiony = —e~3%(3 — x + 222 — 23 + x*), which can be obtained by the method of Section 2.1.
Do you notice anything special about the results? Explain.

The linear initial value problems in Exercises 14—19 can’t be solved exactly in terms of known elementary

functions. In each exercise use the Runge-Kutta and the Runge-Kutta semilinear methods with the indi-
cated step sizes to find approximate values of the solution of the given initial value problem at 11 equally
spaced points (including the endpoints) in the interval.

14.

15

16

17

18

19.

1
Y =2 =g ¥(2)=2 h=01,0.0500250n 23

Y +2zy =22, y(0)=3; h=02,0.1,0.050n [0, 2] (Exercise 2.1.38)

L
Y+ —y= MUT  y1) =2 h=0.2,0.1,0.050n[1,3] (Exercise 2.139)

z2 )’

ey
Y ry="TT (1) =0; h=0.050.025,0.01250n [1,1.5] (Exercise 2.1.40)
T
T S y(0) =1; h=0.2,0.1,0.050n [0, 2] (Exercise 2.1,41)
1+CC2 (1 +CC2)2, ) ) ) ) 5

zy +(x+1y=e, y(1)=2; h=0.050.0250.01250n[1,1.5] (Exercise 2.142)

In Exercises 20-22 use the Runge-Kutta method and the Runge-Kutta semilinear method with the indi-
cated step sizes to find approximate values of the solution of the given initial value problem at 11 equally
spaced points (including the endpoints) in the interval.

20.
21.

22,

23.

v +3y=a2(y+1), y0)=1; h=0.1,0.050.0250n0,1]

x
Cly —d4y=———, y(0)=1; h=0.1,0.050.0250n [0, 1
Yy +1) ) 10.1]
2
x
Y +2y = T y(2) =1; h=0.1,0.05,0.0250n [2, 3]
Suppose a < zg, so that —zg < —a. Use the chain rule to show that if z is a solution of

/

= _.f(_'raz)a Z(—.Io) = Yo,
on [—zo, —a], then y = z(—x) is a solution of
v =fz.y), yl@o) =,

on [a, zg).
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Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of

, P tay—a®
Yy =—

2 ’ y(z) =-1
atx = 1.1, 1.2, 1.3, ...2.0. Compare these approximate values with the values of the exact
solution

_ x(4—32?)

C 4+ 322

which can be obtained by referring to Example 2.4.3.

Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of

/

y =2ty —ay?, y(1) =1

atz=0,0.1,0.2,..., 1.

Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of

1 7 3
y+-y=—+3 yl)=;
T T 2
atz = 0.5, 0.6,..., 1.5. Compare these approximate values with the values of the exact solution
Tlhe 3z
Y= + a0
T 2

which can be obtained by the method discussed in Section 2.1.

Use the Runge-Kutta method with step sizes h = 0.1, h = 0.05, and h = 0.025 to find
approximate values of the solution of

ry + 2y =82%, y(2)=5

atx = 1.0, 1.1, 1.2, ..., 3.0. Compare these approximate values with the values of the exact
solution 19
0.2
y=2a" — 22

which can be obtained by the method discussed in Section 2.1.
NUMERICAL QUADRATURE (see Exercise 3.1.23).

(a) Derive the quadrature formula

b h pid , 2 & ,
/f(:c)drmg(f(a)+f(b))+ng(aHh)Jr?Zf(aJr(%—1)h/2) (A)

(where h = (b — a)/n) by applying the Runge-Kutta method to the initial value problem

Y =f(), yla)=0.

This quadrature formula is called Simpson’s Rule.


http://www-history.mcs.st-and.ac.uk/Mathematicians/Simpson.html
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(b) For several choices of a, b, A, B, C, and D apply (A) to f(z) = A+ Bx + Cx + Da3,
with n = 10, 20, 40, 80, 160, 320. Compare your results with the exact answers and explain
what you find.

(c) For several choices of a, b, A, B, C, D, and E apply (A) to f(z) = A+ Bz + Cx? +
Dzx? + Ex*, withn = 10, 20, 40, 80, 160, 320. Compare your results with the exact answers
and explain what you find.



CHAPTER 4
Applications of First Order Equations

IN THIS CHAPTER we consider applications of first order differential equations.

SECTION 4.1 begins with a discussion of exponential growth and decay, which you have probably al-
ready seen in calculus. We consider applications to radioactive decay, carbon dating, and compound
interest. We also consider more complicated problems where the rate of change of a quantity is in part
proportional to the magnitude of the quantity, but is also influenced by other other factors for example, a
radioactive susbstance is manufactured at a certain rate, but decays at a rate proportional to its mass, or a
saver makes regular deposits in a savings account that draws compound interest.

SECTION 4.2 deals with applications of Newton’s law of cooling and with mixing problems.

SECTION 4.3 discusses applications to elementary mechanics involving Newton’s second law of mo-
tion. The problems considered include motion under the influence of gravity in a resistive medium, and
determining the initial velocity required to launch a satellite.

SECTION 4.4 deals with methods for dealing with a type of second order equation that often arises in
applications of Newton’s second law of motion, by reformulating it as first order equation with a different
independent variable. Although the method doesn’t usually lead to an explicit solution of the given
equation, it does provide valuable insights into the behavior of the solutions.

SECTION 4.5 deals with applications of differential equations to curves.

129



130 Chapter 4 Applications of First Order Equations
4.1 GROWTH AND DECAY

Since the applications in this section deal with functions of time, we’ll denote the independent variable
by t. If Q is a function of ¢, Q' will denote the derivative of Q) with respect to ¢; thus,

,_4Q
Q_dt'

Exponential Growth and Decay

One of the most common mathematical models for a physical process is the exponential model, where
it’s assumed that the rate of change of a quantity () is proportional to @; thus

Q = aQ, 4.1.1)

where a is the constant of proportionality.
From Example 3, the general solution of (4.1.1) is

Q = ce™
and the solution of the initial value problem

Q' =aQ, Q(to) = Qo
is
Q = Qoe =10, (4.12)

Since the solutions of ' = a( are exponential functions, we say that a quantity @ that satisfies this
equation grows exponentially if a > 0, or decays exponentially if a < 0 (Figure 4.1.1).

Radioactive Decay

Experimental evidence shows that radioactive material decays at a rate proportional to the mass of the
material present. According to this model the mass Q(t) of a radioactive material present at time ¢
satisfies (4.1.1), where a is a negative constant whose value for any given material must be determined
by experimental observation. For simplicity, we’ll replace the negative constant a by —k, where k is a
positive number that we’ll call the decay constant of the material. Thus, (4.1.1) becomes

Q' = —kQ.
If the mass of the material present at ¢t = ¢y is o, the mass present at time ¢ is the solution of
Q' =-kQ, Q(to) = Qo.
From (4.1.2) with a = —k, the solution of this initial value problem is
Q = QoeF1). (4.1.3)

The half-life T of a radioactive material is defined to be the time required for half of its mass to decay;
that is, if Q(tp) = Qo, then

Q(T +to) = % (4.1.4)
From (4.1.3) with t = 7 + to, (4.1.4) is equivalent to
Qo
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SO

Taking logarithms yields

so the half-life is

Figure 4.1.1 Exponential growth and decay

—kT

N~

1
_kT:1n§ =—1In2,

1
T = Eln2
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4.1.5)

(Figure 4.1.2). The half-life is independent of ¢y and @), since it’s determined by the properties of
material, not by the amount of the material present at any particular time.

Example 4.1.1 A radioactive substance has a half-life of 1620 years.
(a) If its mass is now 4 g (grams), how much will be left 810 years from now?

(b) Find the time ¢; when 1.5 g of the substance remain.

SoLuTioN(a) From (4.1.3) withtg = 0 and Qg = 4,

Q= 4€7kt,

where we determine k from (4.1.5), with 7= 1620 years:

k71n27 In2
71620

Substituting this in (4.1.6) yields

Q= fo—(t1n2)/1620

(4.1.6)

4.1.7)
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Figure 4.1.2 Half-life of a radioactive substance

Therefore the mass left after 810 years will be

Q(Slo) — 467(8101n 2)/1620 _ 467(1n2)/2
= 2\/5 g.

SOLUTION(b) Setting ¢t = t; in (4.1.7) and requiring that Q(¢1) = 1.5 yields

3 _ je(~t1m2)/1620
5 .
Dividing by 4 and taking logarithms yields
3 tl In2
n-=-— .
8 1620
Since In3/8 = —1n8/3,
1
t = 1620 1118/3 ~ 2292.4 years.
n

Interest Compounded Continuously

Suppose we deposit an amount of money () in an interest-bearing account and make no further deposits
or withdrawals for ¢ years, during which the account bears interest at a constant annual rate r. To calculate
the value of the account at the end of ¢ years, we need one more piece of information: how the interest
is added to the account, or—as the bankers say—how it is compounded. 1f the interest is compounded
annually, the value of the account is multiplied by 1 + r at the end of each year. This means that after ¢
years the value of the account is

Q) = Qo1 + 7).
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If interest is compounded semiannually, the value of the account is multiplied by (1 + r/2) every 6
months. Since this occurs twice annually, the value of the account after ¢ years is

Q=0 (1+2)".

In general, if interest is compounded n times per year, the value of the account is multiplied n times per
year by (1 4 r/n); therefore, the value of the account after ¢ years is

r\nt
Q(t) = Qo (1 + 5) . (4.1.8)
Thus, increasing the frequency of compounding increases the value of the account after a fixed period

of time. Table 4.1.7 shows the effect of increasing the number of compoundings over ¢ = 5 years on an
initial deposit of Qg = 100 (dollars), at an annual interest rate of 6%.

Table 4.1.7. Table The effect of compound interest

5n

n $100 (1 + E)

n
(number of compoundings | (value in dollars

per year) after 5 years)
1 $133.82
2 $134.39
4 $134.68
8 $134.83
364 $134.98

You can see from Table 4.1.7 that the value of the account after 5 years is an increasing function of
n. Now suppose the maximum allowable rate of interest on savings accounts is restricted by law, but
the time intervals between successive compoundings isn’t ; then competing banks can attract savers by
compounding often. The ultimate step in this direction is to compound continuously, by which we mean
that n — oo in (4.1.8). Since we know from calculus that

lim (1 + Z) =e",
n

this yields
r\nt r\”m t
Q(t) = lim Qo(1+—) :Qo[nm (1+—) }
n n—o0 n
= Qoe".
Observe that Q = Qpe™ is the solution of the initial value problem
Q' =rQ, Q(0)=Qo;

that is, with continuous compounding the value of the account grows exponentially.
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Example 4.1.2 If $150 is deposited in a bank that pays 5%% annual interest compounded continuously,
the value of the account after ¢ years is

Q(t) = 150e9%°"

dollars. (Note that it’s necessary to write the interest rate as a decimal; thus, r = .055.) Therefore, after
t = 10 years the value of the account is

Q(10) = 150e*® ~ $259.99.

Example 4.1.3 We wish to accumulate $10,000 in 10 years by making a single deposit in a savings
account bearing 5%% annual interest compounded continuously. How much must we deposit in the
account?

Solution The value of the account at time ¢ is

Q(t) = Qoe . (4.1.9)
Since we want Q(10) to be $10,000, the initial deposit )y must satisfy the equation

10000 = Qe ?, (4.1.10)
obtained by setting ¢ = 10 and Q(10) = 10000 in (4.1.9). Solving (4.1.10) for Q yields

Qo = 10000e™°° ~ $5769.50.
Mixed Growth and Decay

Example 4.1.4 A radioactive substance with decay constant k is produced at a constant rate of a units of
mass per unit time.
(a) Assuming that Q(0) = Qo, find the mass Q(¢) of the substance present at time ¢.

(b) Find limy_... Q(1).

SOLUTION(a) Here

Q' = rate of increase of QQ — rate of decrease of Q.

The rate of increase is the constant a. Since () is radioactive with decay constant k, the rate of decrease
is kQ). Therefore

Q =a—kQ.

This is a linear first order differential equation. Rewriting it and imposing the initial condition shows that
@ is the solution of the initial value problem

Q +kQ=a, Q)=Qo. (4.1.11)

kt is a solution of the complementary equation, the solutions of (4.1.11) are of the form Q =

—kt — g, sou’ = aeFt. Hence,

Since e~
ue~Ft where u'e

a Kt
—e

u = +c
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Ak form —

>t
Figure 4.1.3 Q(t) approaches the steady state value % ast — oo

and a

Q=ue M= 4ce

k
Since Q(0) = Qo, setting t = 0 here yields
Q():%—FC or C:Qo—%.

Therefore a a

Q=7+ (Qo - E) e, (4.1.12)

SoLUTION(b) Since k > 0, lim;_,o, e ¥t = 0, so from (4.1.12)

a

lim Q(¢t)

t—oo

=

This limit depends only on a and k, and not on Q. We say that a/k is the steady state value of (). From
(4.1.12) we also see that ) approaches its steady state value from above if Q9 > a/k, or from below if
Qo < a/k. If Qo = a/k, then @) remains constant (Figure 4.1.3).

Carbon Dating

The fact that () approaches a steady state value in the situation discussed in Example 4 underlies the
method of carbon dating, devised by the American chemist and Nobel Prize Winner W.S. Libby.

Carbon 12 is stable, but carbon-14, which is produced by cosmic bombardment of nitrogen in the upper
atmosphere, is radioactive with a half-life of about 5570 years. Libby assumed that the quantity of carbon-
12 in the atmosphere has been constant throughout time, and that the quantity of radioactive carbon-14


http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1960/libby-lecture.pdf
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achieved its steady state value long ago as a result of its creation and decomposition over millions of
years. These assumptions led Libby to conclude that the ratio of carbon-14 to carbon-12 has been nearly
constant for a long time. This constant, which we denote by R, has been determined experimentally.

Living cells absorb both carbon-12 and carbon-14 in the proportion in which they are present in the
environment. Therefore the ratio of carbon-14 to carbon-12 in a living cell is always R. However, when
the cell dies it ceases to absorb carbon, and the ratio of carbon-14 to carbon-12 decreases exponentially
as the radioactive carbon-14 decays. This is the basis for the method of carbon dating, as illustrated in
the next example.

Example 4.1.5 An archaeologist investigating the site of an ancient village finds a burial ground where
the amount of carbon-14 present in individual remains is between 42 and 44% of the amount present in
live individuals. Estimate the age of the village and the length of time for which it survived.

Solution Let @ = Q(¢) be the quantity of carbon-14 in an individual set of remains ¢ years after death,
and let Q)¢ be the quantity that would be present in live individuals. Since carbon-14 decays exponentially
with half-life 5570 years, its decay constant is

~ In2
"~ 5570°

Therefore
Q _ Qoeft(ln 2)/5570

if we choose our time scale so that ¢y = 0 is the time of death. If we know the present value of () we can
solve this equation for ¢, the number of years since death occurred. This yields

nQ/Qo

t=—
BET0—5

It is given that ) = .42Q) in the remains of individuals who died first. Therefore these deaths occurred
about

In .42
t = —5570—— ~ 6971
In2
years ago. For the most recent deaths, () = .44Q); hence, these deaths occurred about
In.44
ty = —5570—— ~ 6597
In2

years ago. Therefore it’s reasonable to conclude that the village was founded about 7000 years ago, and
lasted for about 400 years.

A Savings Program

Example 4.1.6 A person opens a savings account with an initial deposit of $1000 and subsequently
deposits $50 per week. Find the value () of the account at time ¢ > 0, assuming that the bank pays 6%
interest compounded continuously.

Solution Observe that ) isn’t continuous, since there are 52 discrete deposits per year of $50 each.
To construct a mathematical model for this problem in the form of a differential equation, we make
the simplifying assumption that the deposits are made continuously at a rate of $2600 per year. This
is essential, since solutions of differential equations are continuous functions. With this assumption, )

increases continuously at the rate
Q' = 2600 + .06Q
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and therefore @) satisfies the differential equation
Q' —.06Q = 2600. (4.1.13)

(Of course, we must recognize that the solution of this equation is an approximation to the true value of
Q at any given time. We’ll discuss this further below.) Since e:°% is a solution of the complementary
equation, the solutions of (4.1.13) are of the form Q = ue%%, where u'e:?" = 2600. Hence, v’ =
2600e 6%,

2600
et
and 2600
Q = uest = 5+ ce0%t, (4.1.14)
Setting t = 0 and @ = 1000 here yields
2600
= 1000 + —
¢ 06
and substituting this into (4.1.14) yields
2
Q = 1000e%% 4 %(eﬂ“ —1), (4.1.15)

where the first term is the value due to the initial deposit and the second is due to the subsequent weekly
deposits. [ ]

Mathematical models must be tested for validity by comparing predictions based on them with the
actual outcome of experiments. Example 6 is unusual in that we can compute the exact value of the
account at any specified time and compare it with the approximate value predicted by (4.1.15) (See
Exercise 21.). The follwing table gives a comparison for a ten year period. Each exact answer corresponds
to the time of the year-end deposit, and each year is assumed to have exactly 52 weeks.

Year Approximate Value of @ Exact Value of P Error Percentage Error
(Example 4.1.6) (Exercise 21) Q-P (Q—-P)/P

1 $3741.42 $ 3739.87 $1.55 .0413%

2 6652.36 6649.17 3.19 .0479

3 9743.30 9738.37 4.93 .0506

4 13,025.38 13,018.60 6.78 .0521

5 16,510.41 16,501.66 8.75 .0530

6 20,210.94 20,200.11 10.83 .0536

7 24.,140.30 24,127.25 13.05 .0541

8 28,312.63 28,297.23 15.40 .0544

9 32,742.97 32,725.07 17.90 .0547
10 37,447.27 37,426.72 20.55 .0549
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4.1 Exercises

10.

11.

12.

13.

14.

15.

16.

The half-life of a radioactive substance is 3200 years. Find the quantity Q(¢) of the substance left
attime t > 0if Q(0) =20 g.

The half-life of a radioactive substance is 2 days. Find the time required for a given amount of the
material to decay to 1/10 of its original mass.

A radioactive material loses 25% of its mass in 10 minutes. What is its half-life?

A tree contains a known percentage pg of a radioactive substance with half-life 7. When the tree
dies the substance decays and isn’t replaced. If the percentage of the substance in the fossilized
remains of such a tree is found to be p;, how long has the tree been dead?

If ¢, and ¢, are the times required for a radioactive material to decay to 1/p and 1/q times its
original mass (respectively), how are ¢, and ¢, related?

Find the decay constant & for a radioactive substance, given that the mass of the substance is ()
at time ¢; and () at time ts.

A process creates a radioactive substance at the rate of 2 g/hr and the substance decays at a rate
proportional to its mass, with constant of proportionality k¥ = .1(hr)~L. If Q(¢#) is the mass of the
substance at time ¢, find lim;_, o, Q(2).

A bank pays interest continuously at the rate of 6%. How long does it take for a deposit of Q) to
grow in value to 2Qg?

At what rate of interest, compounded continuously, will a bank deposit double in value in 8 years?

A savings account pays 5% per annum interest compounded continuously. The initial deposit is
Qo dollars. Assume that there are no subsequent withdrawals or deposits.

(a) How long will it take for the value of the account to triple?
(b) What is Qg if the value of the account after 10 years is $100,000 dollars?

A candymaker makes 500 pounds of candy per week, while his large family eats the candy at a
rate equal to Q(¢)/10 pounds per week, where ()(¢) is the amount of candy present at time .

(a) Find Q(t) for ¢ > 0 if the candymaker has 250 pounds of candy at ¢ = 0.
(b) Find limy_ o0 Q(¢).

Suppose a substance decays at a yearly rate equal to half the square of the mass of the substance
present. If we start with 50 g of the substance, how long will it be until only 25 g remain?

A super bread dough increases in volume at a rate proportional to the volume V present. If V'
increases by a factor of 10 in 2 hours and V' (0) = Vj, find V' at any time ¢. How long will it take
for V' to increase to 100V} ?

A radioactive substance decays at a rate proportional to the amount present, and half the original
quantity Qo is left after 1500 years. In how many years would the original amount be reduced to
3Q0/4? How much will be left after 2000 years?

A wizard creates gold continuously at the rate of 1 ounce per hour, but an assistant steals it con-
tinuously at the rate of 5% of however much is there per hour. Let W (¢) be the number of ounces
that the wizard has at time ¢. Find W (¢) and limy .. W (¢) if W(0) = 1.

A process creates a radioactive substance at the rate of 1 g/hr, and the substance decays at an hourly
rate equal to 1/10 of the mass present (expressed in grams). Assuming that there are initially 20 g,
find the mass S(t) of the substance present at time ¢, and find lim;_, o S(t).
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A tank is empty at t = 0. Water is added to the tank at the rate of 10 gal/min, but it leaks out
at a rate (in gallons per minute) equal to the number of gallons in the tank. What is the smallest
capacity the tank can have if this process is to continue forever?

A person deposits $25,000 in a bank that pays 5% per year interest, compounded continuously.
The person continuously withdraws from the account at the rate of $750 per year. Find V (¢), the
value of the account at time ¢ after the initial deposit.

A person has a fortune that grows at rate proportional to the square root of its worth. Find the
worth W of the fortune as a function of ¢ if it was $1 million 6 months ago and is $4 million today.

Let p = p(t) be the quantity of a product present at time ¢. The product is manufactured continu-
ously at a rate proportional to p, with proportionality constant 1/2, and it’s consumed continuously
at a rate proportional to p?, with proportionality constant 1/8. Find p(t) if p(0) = 100.

(a) In the situation of Example 4.1.6 find the exact value P(¢) of the person’s account after ¢

years, where ¢ is an integer. Assume that each year has exactly 52 weeks, and include the
year-end deposit in the computation.
HINT: At time t the initial $1000 has been on deposit for t years. There have been 52t
deposits of $50 each. The first $50 has been on deposit for t — 1/52 years, the second for
t — 2/52 years - - - in general, the jth $50 has been on deposit for t — j/52 years (1 <
j < 52t). Find the present value of each $50 deposit assuming 6% interest compounded
continuously, and use the formula

1— anrl

l4+z+a2+ - +2" = (x #£1)

1—=z

to find their total value.
(b) Let

be the relative error after ¢ years. Find
p(oo) = lim p(t).

A homebuyer borrows P, dollars at an annual interest rate 7, agreeing to repay the loan with equal
monthly payments of M dollars per month over N years.

(a) Derive a differential equation for the loan principal (amount that the homebuyer owes) P(t)
at time ¢ > 0, making the simplifying assumption that the homebuyer repays the loan con-
tinuously rather than in discrete steps. (See Example 4.1.6 .)

(b) Solve the equation derived in (a).

(c) Use the result of (b) to determine an approximate value for M assuming that each year has
exactly 12 months of equal length.

(d) It can be shown that the exact value of M is given by

rPy

M="2(1-0+ r/12)"12N) 7

Compare the value of M obtained from the answer in (c¢) to the exact value if (i) Py =
$50, 000, r = 7%%, N =20 (ii) Py = $150, 000, = 9.0%, N = 30.

Assume that the homebuyer of Exercise 22 elects to repay the loan continuously at the rate of a M
dollars per month, where « is a constant greater than 1. (This is called accelerated payment.)
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(a) Determine the time 7'(«) when the loan will be paid off and the amount S(«) that the home-
buyer will save.

(b) Suppose Py = $50,000, 7 = 8%, and N = 15. Compute the savings realized by accelerated
payments with o = 1.05,1.10,and 1.15.

24. A benefactor wishes to establish a trust fund to pay a researcher’s salary for 7" years. The salary
is to start at Sy dollars per year and increase at a fractional rate of a per year. Find the amount
of money P, that the benefactor must deposit in a trust fund paying interest at a rate r per year.
Assume that the researcher’s salary is paid continuously, the interest is compounded continuously,
and the salary increases are granted continuously.

25. A radioactive substance with decay constant k is produced at the rate of

at
1+ btQ(¢)

units of mass per unit time, where a and b are positive constants and Q(¢) is the mass of the

substance present at time ¢; thus, the rate of production is small at the start and tends to slow when

Q is large.

(a) Set up a differential equation for ().

(b) Choose your own positive values for a, b, k, and Qo = @Q(0). Use a numerical method to
discover what happens to Q(t) as t — co. (Be precise, expressing your conclusions in terms
of a, b, k. However, no proof is required.)

26. Follow the instructions of Exercise 25, assuming that the substance is produced at the rate of
at/(1+ bt(Q(t))?) units of mass per unit of time.

27. Follow the instructions of Exercise 25, assuming that the substance is produced at the rate of
at/(1 4+ bt) units of mass per unit of time.

4.2 COOLING AND MIXING

Newton’s Law of Cooling

Newton’s law of cooling states that if an object with temperature 7'(¢) at time ¢ is in a medium with
temperature 7, (t), the rate of change of T at time ¢ is proportional to T'(t) — T, (t); thus, T satisfies a
differential equation of the form

T = —k(T —Tp,). 4.2.1)
Here £ > 0, since the temperature of the object must decrease if 7' > T,,, or increase if T' < T,,,. We'll
call k the temperature decay constant of the medium.

For simplicity, in this section we’ll assume that the medium is maintained at a constant temperature 75, .
This is another example of building a simple mathematical model for a physical phenomenon. Like most
mathematical models it has its limitations. For example, it’s reasonable to assume that the temperature of
a room remains approximately constant if the cooling object is a cup of coffee, but perhaps not if it’s a
huge cauldron of molten metal. (For more on this see Exercise 17.)

To solve (4.2.1), we rewrite it as
T + kT = kT,,.

Since e~ ** is a solution of the complementary equation, the solutions of this equation are of the form
T = ue ¥, where v'e %t = kT.,, so v = kT,,e"*. Hence,

k

u="Tne" + ¢,
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)
T =ue * = T + ce Ft.

If T(0) = Ty, setting ¢ = 0 here yields ¢ = Ty — T}y, sO
T =T, + (Ty — T)n)e . (4.2.2)
Note that T — T,,, decays exponentially, with decay constant k.
Example 4.2.1 A ceramic insulator is baked at 400°C and cooled in a room in which the temperature is
25°C. After 4 minutes the temperature of the insulator is 200°C. What is its temperature after 8 minutes?
Solution Here Ty = 400 and T,,, = 25, so (4.2.2) becomes
T = 25 4 375e k. (4.2.3)
We determine & from the stated condition that 7'(4) = 200; that is,
200 = 25 + 375¢~4;

hence,

Taking logarithms and solving for k yields

Substituting this into (4.2.3) yields
15

T =25+ 375407

(Figure 4.2.1). Therefore the temperature of the insulator after 8 minutes is

T(8) =25+ 375¢ 2107

7 2
=92 —_— ~1 ° .
5+375(15> 07°C

Example 4.2.2 An object with temperature 72°F is placed outside, where the temperature is —20°F. At
11:05 the temperature of the object is 60°F and at 11:07 its temperature is 50°F. At what time was the
object placed outside?

Solution Let T'(¢) be the temperature of the object at time ¢. For convenience, we choose the origin
to = 0 of the time scale to be 11:05 so that T, = 60. We must determine the time 7 when T'(7) = 72.
Substituting 7y = 60 and 7}, = —20 into (4.2.2) yields

T = —20 + (60 — (—20))e ™

or
T = —20 + 80e~**. (4.2.4)
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Figure 4.2.1 T = 25 + 375~ (t/4)In15/7

We obtain k from the stated condition that the temperature of the object is S0°F at 11:07. Since 11:07 is
t = 2 on our time scale, we can determine % by substituting 7' = 50 and ¢t = 2 into (4.2.4) to obtain

50 = —20 + 80e 2"
(Figure 4.2.2); hence,
—2k _ 70 _ 7'
Taking logarithms and solving for k yields
1.7 1 8
k=—=-In<-=-In—.
2 '8 27

Substituting this into (4.2.4) yields
8

T =—20+80e "7,

and the condition T'(7) = 72 implies that

72 = —20+80e 2" 7;

)

hence,

_r;pe 92 23
e 2 7T = — = —,
80 20

Taking logarithms and solving for 7 yields

2In 2
7= —"220 & 2,09 min.
In 7
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60

40 -

20 -

-5 5 10 15 20 30 35 40

Figure 4.2.2T = —20 + ROe—5In 3

Therefore the object was placed outside about 2 minutes and 5 seconds before 11:05; that is, at 11:02:55.
Mixing Problems

In the next two examples a saltwater solution with a given concentration (weight of salt per unit volume
of solution) is added at a specified rate to a tank that initially contains saltwater with a different concentra-
tion. The problem is to determine the quantity of salt in the tank as a function of time. This is an example
of a mixing problem. To construct a tractable mathematical model for mixing problems we assume in
our examples (and most exercises) that the mixture is stirred instantly so that the salt is always uniformly
distributed throughout the mixture. Exercises 22 and 23 deal with situations where this isn’t so, but the
distribution of salt becomes approximately uniform as ¢ — oc.

Example 4.2.3 A tank initially contains 40 pounds of salt dissolved in 600 gallons of water. Starting at

to = 0, water that contains 1/2 pound of salt per gallon is poured into the tank at the rate of 4 gal/min and

the mixture is drained from the tank at the same rate (Figure 4.2.3).

(a) Find a differential equation for the quantity Q(¢) of salt in the tank at time ¢ > 0, and solve the
equation to determine Q(t).

(b) Find lim_.. Q(t).

SoLuTION(a) To find a differential equation for (), we must use the given information to derive an
expression for (Q'. But Q' is the rate of change of the quantity of salt in the tank changes with respect to
time; thus, if rate in denotes the rate at which salt enters the tank and rate out denotes the rate by which
it leaves, then

Q' = rate in — rate out. (4.2.5)
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4 gal/min; .5 Ib/gal

4 gal/min

Figure 4.2.3 A mixing problem

The rate in is )
(5 lb/ga1> x (4 gal/min) = 2 Ib/min.

Determining the rate out requires a little more thought. We’re removing 4 gallons of the mixture per
minute, and there are always 600 gallons in the tank; that is, we’re removing 1/150 of the mixture per
minute. Since the salt is evenly distributed in the mixture, we are also removing 1/150 of the salt per
minute. Therefore, if there are ()(¢) pounds of salt in the tank at time ¢, the rate out at any time ¢ is
Q(t)/150. Alternatively, we can arrive at this conclusion by arguing that

rate out = (concentration) x (rate of flow out)
= (Ib/gal) x (gal/min)
Q(t) Q)
600 "~ 150
We can now write (4.2.5) as
Q
=22
@ 150
This first order equation can be rewritten as
Q
/
— =2.
@ 150

Since e~*/159 is a solution of the complementary equation, the solutions of this equation are of the form
Q = ue /150 where u/e~t/1%0 = 2, 50w’ = 2¢!/150, Hence,

u = 300e"/10 4 ¢,
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250

200

150

100

50

100 200 300 400 500 600 700 800 900

Figure 4.2.4 Q = 300 — 260e~*/150

SO
Q = ue /159 = 300 + ce~ /10 (4.2.6)

(Figure 4.2.4). Since Q(0) = 40, ¢ = —260; therefore,
Q = 300 — 260e~/150,

SOLUTION(b) From (4.2.6), we see that that lim;_, ., Q(t) = 300 for any value of Q(0). This is intu-
itively reasonable, since the incoming solution contains 1/2 pound of salt per gallon and there are always
600 gallons of water in the tank.

Example 4.2.4 A 500-liter tank initially contains 10 g of salt dissolved in 200 liters of water. Starting
at to = 0, water that contains 1/4 g of salt per liter is poured into the tank at the rate of 4 liters/min and
the mixture is drained from the tank at the rate of 2 liters/min (Figure 4.2.5). Find a differential equation
for the quantity Q(¢) of salt in the tank at time ¢ prior to the time when the tank overflows and find the
concentration K (t) (g/liter) of salt in the tank at any such time.

Solution We first determine the amount W (¢) of solution in the tank at any time ¢ prior to overflow.
Since W (0) = 200 and we’re adding 4 liters/min while removing only 2 liters/min, there’s a net gain of
2 liters/min in the tank; therefore,

W(t) = 2t + 200.

Since W (150) = 500 liters (capacity of the tank), this formula is valid for 0 < ¢ < 150.
Now let Q(¢) be the number of grams of salt in the tank at time ¢, where 0 < ¢ < 150. As in
Example 4.2.3,
Q' = rate in — rate out. 4.2.7)
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4 liters/min; .25 g/liter

2t+200 liters

-

Figure 4.2.5 Another mixing problem

The rate in is )
(Z g/liter) x (4 liters/min ) = 1 g/min. (4.2.8)

To determine the rate out, we observe that since the mixture is being removed from the tank at the constant
rate of 2 liters/min and there are 2¢ 4 200 liters in the tank at time ¢, the fraction of the mixture being

removed per minute at time ¢ is
2 1

2t +200 t+100°
We’re removing this same fraction of the salt per minute. Therefore, since there are Q(¢) grams of salt in
the tank at time ¢,
Q)

t+ 100
Alternatively, we can arrive at this conclusion by arguing that

rate out =

4.2.9)

rate out = (concentration) x (rate of flow out) = (g/liter) x (liters/min)

o, QW
2t 4200 t+100°
Substituting (4.2.8) and (4.2.9) into (4.2.7) yields
Q / 1
00 @i

By separation of variables, 1/(¢ + 100) is a solution of the complementary equation, so the solutions of
(4.2.10) are of the form

Q=

Q=1. (4.2.10)

/

where =1,
t+ 100

Q so u' =t+100.

- u
~ t+100°
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Hence,
(t +100)?
2
Since Q(0) = 10 and v = (¢ + 100)Q, (4.2.11) implies that

u =

100)2
(100)(10) = ( 2> +c,
SO )
100
¢ =100(10) — % = —4000
and therefore )
t+1
u= ﬂ — 4000.
2
Hence,
Q- u 7t+100_ 4000
Ct+200 2 t 4100

Now let K (t) be the concentration of salt at time ¢. Then

1 2
K= L2000
4  (t+100)2
(Figure 4.2.6).
K
A
.25
.20
A5
10
.05
L L L L L . t
200 400 600 800 1000

2000

. 1
Flgure 4.2.6 K(t) = Z — m

42.11)
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4.2 Exercises

10.

11.

12.

13.

A thermometer is moved from a room where the temperature is 70°F to a freezer where the tem-
perature is 12°F'. After 30 seconds the thermometer reads 40°F. What does it read after 2 minutes?

A fluid initially at 100°C is placed outside on a day when the temperature is —10°C, and the
temperature of the fluid drops 20°C in one minute. Find the temperature 7'(¢) of the fluid for
t>0.

At 12:00 PM a thermometer reading 10°F is placed in a room where the temperature is 70°F. It
reads 56° when it’s placed outside, where the temperature is 5°F, at 12:03. What does it read at
12:05 pm?

A thermometer initially reading 212°F is placed in a room where the temperature is 70°F. After 2
minutes the thermometer reads 125°F.

(a) What does the thermometer read after 4 minutes?
(b) When will the thermometer read 72°F?
(¢) When will the thermometer read 69°F?

An object with initial temperature 150°C is placed outside, where the temperature is 35°C. Its
temperatures at 12:15 and 12:20 are 120°C and 90°C, respectively.

(a) At what time was the object placed outside?
(b) When will its temperature be 40°C?

An object is placed in a room where the temperature is 20°C. The temperature of the object drops
by 5°C in 4 minutes and by 7°C in 8 minutes. What was the temperature of the object when it was
initially placed in the room?

A cup of boiling water is placed outside at 1:00 PM. One minute later the temperature of the water
is 152°F. After another minute its temperature is 112°F. What is the outside temperature?

A tank initially contains 40 gallons of pure water. A solution with 1 gram of salt per gallon of
water is added to the tank at 3 gal/min, and the resulting solution dranes out at the same rate. Find
the quantity Q(t) of salt in the tank at time ¢ > 0.

A tank initially contains a solution of 10 pounds of salt in 60 gallons of water. Water with 1/2
pound of salt per gallon is added to the tank at 6 gal/min, and the resulting solution leaves at the
same rate. Find the quantity Q(¢) of salt in the tank at time ¢ > 0.

A tank initially contains 100 liters of a salt solution with a concentration of .1 g/liter. A solution
with a salt concentration of .3 g/liter is added to the tank at 5 liters/min, and the resulting mixture
is drained out at the same rate. Find the concentration K (¢) of salt in the tank as a function of ¢.

A 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A salt solution
with 1/4 pound of salt per gallon is added to the tank at 4 gal/min, and the resulting mixture is
drained out at 2 gal/min. Find the quantity of salt in the tank as it’s about to overflow.

Suppose water is added to a tank at 10 gal/min, but leaks out at the rate of 1/5 gal/min for each
gallon in the tank. What is the smallest capacity the tank can have if the process is to continue
indefinitely?

A chemical reaction in a laboratory with volume V' (in ft®) produces ¢; ft3/min of a noxious gas as
a byproduct. The gas is dangerous at concentrations greater than ¢, but harmless at concentrations
< ¢. Intake fans at one end of the laboratory pull in fresh air at the rate of gz ft3/min and exhaust
fans at the other end exhaust the mixture of gas and air from the laboratory at the same rate.
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Assuming that the gas is always uniformly distributed in the room and its initial concentration cg
is at a safe level, find the smallest value of g5 required to maintain safe conditions in the laboratory
for all time.

A 1200-gallon tank initially contains 40 pounds of salt dissolved in 600 gallons of water. Starting
at top = 0, water that contains 1/2 pound of salt per gallon is added to the tank at the rate of 6
gal/min and the resulting mixture is drained from the tank at 4 gal/min. Find the quantity Q(t) of
salt in the tank at any time ¢ > 0 prior to overflow.

Tank 77 initially contain 50 gallons of pure water. Starting at ¢y = 0, water that contains 1 pound
of salt per gallon is poured into 77 at the rate of 2 gal/min. The mixture is drained from T} at the
same rate into a second tank 75, which initially contains 50 gallons of pure water. Also starting at
tp = 0, a mixture from another source that contains 2 pounds of salt per gallon is poured into 75
at the rate of 2 gal/min. The mixture is drained from 75 at the rate of 4 gal/min.

(a) Find a differential equation for the quantity Q(¢) of salt in tank 75 at time ¢ > 0.
(b) Solve the equation derived in (a) to determine Q(t).
(c¢) Find lim;—, o Q(2).

Suppose an object with initial temperature T is placed in a sealed container, which is in turn placed
in a medium with temperature 7,,,. Let the initial temperature of the container be Sy. Assume that
the temperature of the object does not affect the temperature of the container, which in turn does
not affect the temperature of the medium. (These assumptions are reasonable, for example, if the
object is a cup of coffee, the container is a house, and the medium is the atmosphere.)

(a) Assuming that the container and the medium have distinct temperature decay constants k and
k., respectively, use Newton’s law of cooling to find the temperatures S(t) and T'(¢) of the
container and object at time ¢.

(b) Assuming that the container and the medium have the same temperature decay constant £,
use Newton’s law of cooling to find the temperatures S(¢) and T'(¢) of the container and
object at time ¢.

(¢) Find lim .,_..S(t) and limy_o T'(t) .

In our previous examples and exercises concerning Newton’s law of cooling we assumed that the
temperature of the medium remains constant. This model is adequate if the heat lost or gained by
the object is insignificant compared to the heat required to cause an appreciable change in the tem-
perature of the medium. If this isn’t so, we must use a model that accounts for the heat exchanged
between the object and the medium. Let 7' = T'(¢) and T},, = T,,(t) be the temperatures of the
object and the medium, respectively, and let T and 7}, be their initial values. Again, we assume
that 7" and T, are related by Newton’s law of cooling,

T' = —k(T — Tpy). (A)

We also assume that the change in heat of the object as its temperature changes from 7q to 1" is
a(T — Tp) and that the change in heat of the medium as its temperature changes from T, to T,
i8S @ (T, — Timo), where a and a,,, are positive constants depending upon the masses and thermal
properties of the object and medium, respectively. If we assume that the total heat of the system
consisting of the object and the medium remains constant (that is, energy is conserved), then

a(T — Tp) + am (T — Tmo) = 0. (B)

(a) Equation (A) involves two unknown functions 7" and 7,,,. Use (A) and (B) to derive a differ-
ential equation involving only 7'.



150

18.

19.

20.

21.

22,

23.

Chapter 4 Applications of First Order Equations

(b) Find T'(t) and T,,(¢t) for t > 0.
(¢) Findlim; .o T'(t) and lim;—, o0 T}y, (2).
Control mechanisms allow fluid to flow into a tank at a rate proportional to the volume V' of fluid

in the tank, and to flow out at a rate proportional to V2. Suppose V (0) = V; and the constants of
proportionality are a and b, respectively. Find V' (¢) for ¢ > 0 and find lim;_, o, V().

Identical tanks 7T} and 75 initially contain W gallons each of pure water. Starting at {5 = 0, a
salt solution with constant concentration c is pumped into 7} at 7 gal/min and drained from T}
into T5 at the same rate. The resulting mixture in 75 is also drained at the same rate. Find the
concentrations ¢ (t) and co(t) in tanks 77 and T3 for ¢ > 0.

An infinite sequence of identical tanks 77, 715, ..., Ty, ..., initially contain W gallons each of
pure water. They are hooked together so that fluid drains from T, into T}, 41 (n = 1,2, -+ ). A salt
solution is circulated through the tanks so that it enters and leaves each tank at the constant rate of
7 gal/min. The solution has a concentration of ¢ pounds of salt per gallon when it enters 77 .

(a) Find the concentration c,,(t) in tank 7T,, for ¢ > 0.
(b) Find lim;_, o, ¢, (t) for each n.
Tanks 77 and 75 have capacities W and W liters, respectively. Initially they are both full of dye
solutions with concentrations c¢; and cy grams per liter. Starting at £g = 0, the solution from 77 is
pumped into 75 at a rate of r liters per minute, and the solution from 7% is pumped into 7} at the
same rate.
(a) Find the concentrations ¢; (¢) and co(t) of the dye in 77 and T5 for ¢ > 0.
(b) Find lim;_, o ¢1(t) and limy—, o0 co(t).
Consider the mixing problem of Example 4.2.3, but without the assumption that the mixture
is stirred instantly so that the salt is always uniformly distributed throughout the mixture. Assume
instead that the distribution approaches uniformity as ¢ — oo. In this case the differential equation
for ) is of the form

a(t)

=2
150Q

Q'+
where lim; o, a(t) = 1.
(a) Assuming that Q(0) = Qo, can you guess the value of lim;_.., Q(t)?.
(b) Use numerical methods to confirm your guess in the these cases:

() alt)=t/(1+1) (i) alt)=1—e" (ii) at)=1—sin(e").

Consider the mixing problem of Example 4.2.4 in a tank with infinite capacity, but without
the assumption that the mixture is stirred instantly so that the salt is always uniformly distributed
throughout the mixture. Assume instead that the distribution approaches uniformity as ¢ — oco. In
this case the differential equation for () is of the form

a(t)
t+ 100

Q'+ Q=1

where lim; o, a(t) = 1.

(a) Let K(t) be the concentration of salt at time ¢. Assuming that Q(0) = (o, can you guess
the value of lim;_, o, K (t)?

(b) Use numerical methods to confirm your guess in the these cases:

() a(t)=t/(1+1) (i) alt)=1—e" (i) a(t) =1 +sin(e™).
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4.3 ELEMENTARY MECHANICS

Newton’s Second Law of Motion

In this section we consider an object with constant mass m moving along a line under a force F'. Let
y = y(t) be the displacement of the object from a reference point on the line at time ¢, and let v = v(¢)
and a = a(t) be the velocity and acceleration of the object at time ¢. Thus, v = ¢’ and a = v = ¢,
where the prime denotes differentiation with respect to ¢. Newton’s second law of motion asserts that the
force I and the acceleration a are related by the equation

F =ma. 4.3.1)

Units

In applications there are three main sets of units in use for length, mass, force, and time: the cgs, mks, and
British systems. All three use the second as the unit of time. Table 1 shows the other units. Consistent
with (4.3.1), the unit of force in each system is defined to be the force required to impart an acceleration
of (one unit of length)/ s to one unit of mass.

Length Force Mass
cgs centimeter (cm) dyne (d) gram (g)
mks meter (m) newton (N) | kilogram (kg)
British foot (ft) pound (1b) slug (sI)
Table 1.

If we assume that Earth is a perfect sphere with constant mass density, Newton’s law of gravitation
(discussed later in this section) asserts that the force exerted on an object by Earth’s gravitational field
is proportional to the mass of the object and inversely proportional to the square of its distance from the
center of Earth. However, if the object remains sufficiently close to Earth’s surface, we may assume that
the gravitational force is constant and equal to its value at the surface. The magnitude of this force is
mg, where g is called the acceleration due to gravity. (To be completely accurate, g should be called
the magnitude of the acceleration due to gravity at Earth’s surface.) This quantity has been determined
experimentally. Approximate values of g are

g =980 cm/s® (cgs)
g =9.8m/s’ (mks)
g =32fts (British).

In general, the force F' in (4.3.1) may depend upon ¢, y, and y/. Since a = ", (4.3.1) can be written in
the form
my" = F(t,y,y'), (4.3.2)

which is a second order equation. We’ll consider this equation with restrictions on F' later; however, since
Chapter 2 dealt only with first order equations, we consider here only problems in which (4.3.2) can be
recast as a first order equation. This is possible if F' does not depend on y, so (4.3.2) is of the form

my" = F(t,y').
Letting v = 3/ and v/ = ¢’ yields a first order equation for v:

mv = F(t,v). (4.3.3)
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Solving this equation yields v as a function of ¢. If we know y(to) for some time ¢y, we can integrate v to
obtain y as a function of £.
Equations of the form (4.3.3) occur in problems involving motion through a resisting medium.

Motion Through a Resisting Medium Under Constant Gravitational Force

Now we consider an object moving vertically in some medium. We assume that the only forces acting on
the object are gravity and resistance from the medium. We also assume that the motion takes place close
to Earth’s surface and take the upward direction to be positive, so the gravitational force can be assumed
to have the constant value —mg. We’ll see that, under reasonable assumptions on the resisting force, the
velocity approaches a limit as ¢ — oco. We call this limit the terminal velocity.

Example 4.3.1 An object with mass m moves under constant gravitational force through a medium that
exerts a resistance with magnitude proportional to the speed of the object. (Recall that the speed of an
object is |v|, the absolute value of its velocity v.) Find the velocity of the object as a function of ¢, and
find the terminal velocity. Assume that the initial velocity is vg.

Solution The total force acting on the object is
F = —mg+ F1, 434

where —myg is the force due to gravity and F is the resisting force of the medium, which has magnitude
k|v|, where k is a positive constant. If the object is moving downward (v < 0), the resisting force is
upward (Figure 4.3.1(a)), so

Fy = klv| = k(—v) = —kv.

On the other hand, if the object is moving upward (v > 0), the resisting force is downward (Fig-
ure 4.3.1(b)), so
Fy = —k|v| = —kv.

Thus, (4.3.4) can be written as
F=—mg— kv, “4.3.5)

regardless of the sign of the velocity.
From Newton’s second law of motion,

/
F=ma=mv,

so (4.3.5) yields

mv' = —mg — kv,
or
, Kk
v 4+ —v = —g. (4.3.6)
m
Since e~/ is a solution of the complementary equation, the solutions of (4.3.6) are of the form v =

ue *t/™m where u'e Ft/™ = —g, so u' = —geF/™ . Hence,
= _@ekt/m_i_ ¢,
k
) "
v = ue~kt/m — —79 + cekt/m. (43.7)
Since v(0) = vy,
mg
Vo = ——— + )
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Figure 4.3.1 Resistive forces

SO mg
TRt
and (4.3.7) becomes
Letting t — oo here shows that the terminal velocity is
: _.mg
tlg(r)lov(t) Tk

which is independent of the initial velocity vy (Figure 4.3.2).

Example 4.3.2 A 960-1b object is given an initial upward velocity of 60 ft/s near the surface of Earth.
The atmosphere resists the motion with a force of 3 1b for each ft/s of speed. Assuming that the only other
force acting on the object is constant gravity, find its velocity v as a function of ¢, and find its terminal
velocity.

Solution Since mg = 960 and g = 32, m = 960/32 = 30. The atmospheric resistance is —3v Ib if v is
expressed in feet per second. Therefore

300" = —960 — 3v,
which we rewrite as

1
! ) = —
v +1()v 32.
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\J

Figure 4.3.2 Solutions of mv’ = —mg — kv

Since e~*/'0 is a solution of the complementary equation, the solutions of this equation are of the form
v = ue t/10 where u'et/10 = —32, s0 u’ = —32¢!/10. Hence,

u = —320e"/10 + ¢,
SO

v =ue 10 = _320 4+ ce /10, (4.3.8)

The initial velocity is 60 ft/s in the upward (positive) direction; hence, vg = 60. Substituting ¢ = 0 and
v = 60 in (4.3.8) yields
60 = —320 + ¢,

so ¢ = 380, and (4.3.8) becomes
v = —320 + 380e /1 fus

The terminal velocity is

tlir?o v(t) = —320 ft/s.
Example 4.3.3 A 10 kg mass is given an initial velocity vg < 0 near Earth’s surface. The only forces
acting on it are gravity and atmospheric resistance proportional to the square of the speed. Assuming that
the resistance is 8 N if the speed is 2 m/s, find the velocity of the object as a function of ¢, and find the
terminal velocity.

Solution Since the object is falling, the resistance is in the upward (positive) direction. Hence,

mv’ = —mg + kv?, (4.3.9)
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where £ is a constant. Since the magnitude of the resistance is 8 N when v = 2 m/s,

k(2%) =8,
sok=2 N-SQ/mQ. Since m = 10 and g = 9.8, (4.3.9) becomes
100" = —98 + 202 = 2(v* — 49). (4.3.10)
Ifvg = —7,thenv = —T7forall t > 0. If vy # —7, we separate variables to obtain
1 , 1
—v == 4.3.11
2—49" T 5 (43-11)
which is convenient for the required partial fraction expansion
1 1 1 1 1
— = |— _ . 4.3.12)
=49 (w-TNw+T7) 1d|lv-T7T ov+7

Substituting (4.3.12) into (4.3.11) yields

1.t L], _1
14 v—7 o+7]|" "5

1 11, 14
— v = —=.
v—T v+T 5

SO

Integrating this yields
Injo—7—Injv+ 7] =14t/5+ k.

Therefore
v—17

v+ 7

Since Theorem 2.3.1 implies that (v — 7)/(v 4+ 7) can’t change sign (why?), we can rewrite the last
equation as

’ — okeldat/s

v—17
_ 061415/5

= , 4.3.13
v+ 7 ( )
which is an implicit solution of (4.3.10). Solving this for v yields
c+ e—14t/5
Since v(0) = vy, it (4.3.13) implies that
. Vo — 7
N vo+ T

Substituting this into (4.3.14) and simplifying yields

700(1 4 671415/5) _ 7(1 _ 671415/5)
vo(l _ 671415/5) _ 7(1 + e—14t/5 "

Since vg < 0, v is defined and negative for all £ > 0. The terminal velocity is

tlim v(t) = =7 m/s,

independent of vy. More generally, it can be shown (Exercise 11) that if v is any solution of (4.3.9) such
that vg < 0 then
Jim vlt) = = /==

(Figure 4.3.3).
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v

ve—(mgk)Rf - -

Figure 4.3.3 Solutions of mv’ = —mg + kv?, v(0) = vg <0

Example 4.3.4 A 10-kg mass is launched vertically upward from Earth’s surface with an initial velocity
of vp m/s. The only forces acting on the mass are gravity and atmospheric resistance proportional to the
square of the speed. Assuming that the atmospheric resistance is 8 N if the speed is 2 m/s, find the time
T required for the mass to reach maximum altitude.

Solution The mass will climb while v > 0 and reach its maximum altitude when v = 0. Therefore v > 0
for0 <t < T and v(T') = 0. Although the mass of the object and our assumptions concerning the forces
acting on it are the same as those in Example 3, (4.3.10) does not apply here, since the resisting force is
negative if v > 0; therefore, we replace (4.3.10) by

100 = —98 — 202, (4.3.15)
Separating variables yields
)
71—)/ e — y
v2 449
and integrating this yields
> tan ™ Y t+
—tan” - =—t+c
7 7
(Recall that tan~! v is the number 6 such that —7/2 < 6 < 7/2 and tan 6 = w.) Since v(0) = v,
)
c= = tan ™ 070,

so v is defined implicitly by

5
Ztan 1Y = ¢4 2tan1 Y

v 0
— — <t<T. 3.
z - z = 0<t<LT (4.3.16)



Section 4.3 Elementary Mechanics 157
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Figure 4.3.4 Solutions of (4.3.15) for various vy > 0

Solving this for v yields

Tt
v = Ttan (—g +tan! 07()) .
Using the identity
tan A — tan B
tan(A—B) = ———
an( ) 1+ tan Atan B

v

4.3.17)

with A = tan=!(vy/7) and B = 7t/5, and noting that tan(tan—' §) = 0, we can simplify (4.3.17) to

p _ 70 = Ttan(7t/5)
- T+ wotan(7t/5)

Since v(T') = 0 and tan—*(0) = 0, (4.3.16) implies that

7+ 2 tan! “70 =0.

7
Therefore 5
T=2tan"' 2,
7 7
Since tan~!(vg/7) < /2 for all vy, the time required for the mass to reach its maximum altitude is less
than 5
2~ 11225
14

regardless of the initial velocity. Figure 4.3.4 shows graphs of v over [0, T'] for various values of vg.
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Figure 4.3.5 Escape velocity

Escape Velocity

Suppose a space vehicle is launched vertically and its fuel is exhausted when the vehicle reaches an
altitude h above Earth, where h is sufficiently large so that resistance due to Earth’s atmosphere can be
neglected. Let £ = 0 be the time when burnout occurs. Assuming that the gravitational forces of all other
celestial bodies can be neglected, the motion of the vehicle for ¢ > 0 is that of an object with constant
mass m under the influence of Earth’s gravitational force, which we now assume to vary inversely with
the square of the distance from Earth’s center; thus, if we take the upward direction to be positive then
gravitational force on the vehicle at an altitude y above Earth is

K
F=—— 4.3.18
OERGE (319
where R is Earth’s radius (Figure 4.3.5).
Since F' = —mg when y = 0, setting y = 0 in (4.3.18) yields

K.
i

—-mg =

therefore K = mgR? and (4.3.18) can be written more specifically as

mgR?
F= _@573)2' (43.19)

From Newton’s second law of motion,
d?y
F=m——1,
dt?
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so (4.3.19) implies that
d2y gR2
_— = 4.3.20
dt2 (y+ R)? ( )

We’ll show that there’s a number v, called the escape velocity, with these properties:

1. If vg > v, then v(¢t) > 0 for all ¢ > 0, and the vehicle continues to climb for all ¢ > 0; that is,

it “escapes” Earth. (Is it really so obvious that lim;_,, y(t) = oo in this case? For a proof, see
Exercise 20.)

2. If vg < v then v(t) decreases to zero and becomes negative. Therefore the vehicle attains a
maximum altitude y,,, and falls back to Earth.

Since (4.3.20) is second order, we can’t solve it by methods discussed so far. However, we’re concerned
with v rather than y, and v is easier to find. Since v = y’ the chain rule implies that
d’y dv dvdy dv
—_—= = — — = ).
dt2  dt  dydt dy
Substituting this into (4.3.20) yields the first order separable equation

d R?
o9 (4.3.21)
dy (y + R)?
When t = 0, the velocity is vg and the altitude is h. Therefore we can obtain v as a function of y by
solving the initial value problem

dv gR?
Integrating (4.3.21) with respect to y yields
v? gR?
i ) 4.3.22
RS +c ( )
Since v(h) = vy,
_ v gR?
2 h+R
so (4.3.22) becomes
2 R2 2 R2
v_49 “_ 9 , (4.3.23)
2 y+R 2 h+R

If

- 29R2 1/2
U
°=\h+R ’

the parenthetical expression in (4.3.23) is nonnegative, so v(y) > 0 for y > h. This proves that there’s an
escape velocity ve. We’ll now prove that
2 2\ 1/2
Ve = 9l
( h+ R)

by showing that the vehicle falls back to Earth if

2 R2 1/2
z@<(hiR> . (4.3.24)
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If (4.3.24) holds then the parenthetical expression in (4.3.23) is negative and the vehicle will attain a
maximum altitude y,,, > h that satisfies the equation

o— 9 (w _ o
ym+R \2 h+R)

The velocity will be zero at the maximum altitude, and the object will then fall to Earth under the influence
of gravity.

4.3 Exercises

Except where directed otherwise, assume that the magnitude of the gravitational force on an object with
mass m is constant and equal to mg. In exercises involving vertical motion take the upward direction to
be positive.

1. A firefighter who weighs 192 1b slides down an infinitely long fire pole that exerts a frictional
resistive force with magnitude proportional to his speed, with & = 2.5 1b-s/ft. Assuming that he
starts from rest, find his velocity as a function of time and find his terminal velocity.

2. A firefighter who weighs 192 Ib slides down an infinitely long fire pole that exerts a frictional
resistive force with magnitude proportional to her speed, with constant of proportionality k. Find
k, given that her terminal velocity is -16 ft/s, and then find her velocity v as a function of . Assume
that she starts from rest.

3. Aboat weighs 64,000 1b. Its propellor produces a constant thrust of 50,000 1b and the water exerts
a resistive force with magnitude proportional to the speed, with £ = 2000 Ib-s/ft. Assuming that
the boat starts from rest, find its velocity as a function of time, and find its terminal velocity.

4. A constant horizontal force of 10 N pushes a 20 kg-mass through a medium that resists its motion
with .5 N for every m/s of speed. The initial velocity of the mass is 7 m/s in the direction opposite
to the direction of the applied force. Find the velocity of the mass for ¢ > 0.

5. A stone weighing 1/2 1b is thrown upward from an initial height of 5 ft with an initial speed of 32
ft/s. Air resistance is proportional to speed, with kK = 1/128 1b-s/ft. Find the maximum height
attained by the stone.

6. A 3200-1b car is moving at 64 ft/s down a 30-degree grade when it runs out of fuel. Find its
velocity after that if friction exerts a resistive force with magnitude proportional to the square of
the speed, with k = 1 Ib-s? / ft*. Also find its terminal velocity.

7. A 96 1b weight is dropped from rest in a medium that exerts a resistive force with magnitude
proportional to the speed. Find its velocity as a function of time if its terminal velocity is -128 ft/s.

8. An object with mass m moves vertically through a medium that exerts a resistive force with magni-
tude proportional to the speed. Let y = y(¢) be the altitude of the object at time ¢, with y(0) = yq.
Use the results of Example 4.3.1 to show that

m
y(t) = yo + Z(Uo — v — gt).

9. An object with mass m is launched vertically upward with initial velocity vy from Earth’s surface
(yo = 0) in a medium that exerts a resistive force with magnitude proportional to the speed. Find
the time 7" when the object attains its maximum altitude y,,,. Then use the result of Exercise 8 to
find ¥, .



10.

11.

12.

13.

14.

15.

16.
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An object weighing 256 1b is dropped from rest in a medium that exerts a resistive force with
magnitude proportional to the square of the speed. The magnitude of the resisting force is 1 Ib
when |v| = 4 ft/s. Find v for ¢ > 0, and find its terminal velocity.

An object with mass m is given an initial velocity vy < 0 in a medium that exerts a resistive force
with magnitude proportional to the square of the speed. Find the velocity of the object for ¢ > 0,
and find its terminal velocity.

An object with mass m is launched vertically upward with initial velocity vy in a medium that
exerts a resistive force with magnitude proportional to the square of the speed.

(a) Find the time 7" when the object reaches its maximum altitude.
(b) Use the result of Exercise 11 to find the velocity of the object for ¢t > T

An object with mass m is given an initial velocity v9 < 0 in a medium that exerts a resistive
force of the form a|v|/(1 + |v|), where a is positive constant.

(a) Set up a differential equation for the speed of the object.

(b) Use your favorite numerical method to solve the equation you found in (a), to convince your-
self that there’s a unique number ag such that lim;_,, s(t) = 0o if a < ag and lim; ., » s(t)
exists (finite) if a > ag. (We say that ag is the bifurcation value of a.) Try to find ap and
lim;_, o s(t) in the case where a > ag. HINT: See Exercise 14.

An object of mass m falls in a medium that exerts a resistive force f = f(s), where s = |v| is
the speed of the object. Assume that f(0) = 0 and f is strictly increasing and differentiable on
(0, 00).

(a) Write a differential equation for the speed s = s(¢) of the object. Take it as given that all
solutions of this equation with s(0) > 0 are defined for all ¢ > 0 (which makes good sense
on physical grounds).

(b) Show thatif lims_. f(s) < mg then lim;_,, s(t) = co.

(c) Show that if lims o f(s) > mg then lim;_, s(t) = st (terminal speed), where f(sr) =
mg. HINT: Use Theorem 2.3.1.

A 100-g mass with initial velocity vg < 0 falls in a medium that exerts a resistive force proportional
to the fourth power of the speed. The resistance is .1 N if the speed is 3 m/s.

(a) Set up the initial value problem for the velocity v of the mass for ¢t > 0.

(b) Use Exercise 14(c) to determine the terminal velocity of the object.

(¢ To confirm your answer to (b), use one of the numerical methods studied in Chapter 3
to compute approximate solutions on [0, 1] (seconds) of the initial value problem of (a), with

initial values vo9 = 0, —2, —4, ..., —12. Present your results in graphical form similar to
Figure 4.3.3.

A 64-1b object with initial velocity vy < 0 falls through a dense fluid that exerts a resistive force
proportional to the square root of the speed. The resistance is 64 1b if the speed is 16 ft/s.
(a) Set up the initial value problem for the velocity v of the mass for ¢t > 0.
(b) Use Exercise 14(c) to determine the terminal velocity of the object.
(¢ To confirm your answer to (b), use one of the numerical methods studied in Chapter 3
to compute approximate solutions on [0, 4] (seconds) of the initial value problem of (a), with

initial values vg = 0, —5, —10, ..., —30. Present your results in graphical form similar to
Figure 4.3.3.

In Exercises 17-20, assume that the force due to gravity is given by Newton’s law of gravitation. Take the
upward direction to be positive.
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17. A space probe is to be launched from a space station 200 miles above Earth. Determine its escape
velocity in miles/s. Take Earth’s radius to be 3960 miles.

18. A space vehicle is to be launched from the moon, which has a radius of about 1080 miles. The
acceleration due to gravity at the surface of the moon is about 5.31 ft/s. Find the escape velocity
in miles/s.

19. (a) Show that Eqn. (4.3.23) can be rewritten as

h—y
2 2 2
v :y+Rve+vo.

(b) Show that if vg = pv. with 0 < p < 1, then the maximum altitude y,,, attained by the space

vehicle is

h + Rp?

Ym = T 7
—p

(c) By requiring that v(y,,) = 0, use Eqn. (4.3.22) to deduce that if vy < v, then
1/2

(L= ) —9)]"

y+ R

|’U| = Ve )

where y,,, and p are as defined in (b) and y > h.

(d) Deduce from (c) that if v < v,, the vehicle takes equal times to climb fromy = htoy = ym,
and to fall back from y = y,,, toy = h.

20. In the situation considered in the discussion of escape velocity, show that lim; . y(t) = oo if
v(t) > 0 forallt > 0.

HINT: Use a proof by contradiction. Assume that there’s a number y,,, such that y(t) < y,, for all
t > 0. Deduce from this that there’s positive number « such that y"’ (t) < —a for all t > 0. Show
that this contradicts the assumption that v(t) > 0 for all t > 0.

4.4 AUTONOMOUS SECOND ORDER EQUATIONS

A second order differential equation that can be written as

y' =F(y,y) (4.4.1)

where [ is independent of ¢, is said to be autonomous. An autonomous second order equation can be
converted into a first order equation relating v = 3’ and y. If we let v = %/, (4.4.1) becomes

v = F(y,v). (4.4.2)

Since
, dv  dvdy dv

=—=——=v— 4.4,
VT @ T ayat ~ ay (4.4.3)
(4.4.2) can be rewritten as
d
v = Fly,v). (44.4)
dy

The integral curves of (4.4.4) can be plotted in the (y, v) plane, which is called the Poincaré phase plane
of (4.4.1). If y is a solution of (4.4.1) then y = y(¢),v = y/(¢) is a parametric equation for an integral
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curve of (4.4.4). We’ll call these integral curves trajectories of (4.4.1), and we’ll call (4.4.4) the phase
plane equivalent of (4.4.1).
In this section we’ll consider autonomous equations that can be written as

Y +q(y, vy +ply) = 0. (4.4.5)

Equations of this form often arise in applications of Newton’s second law of motion. For example,
suppose y is the displacement of a moving object with mass m. It’s reasonable to think of two types
of time-independent forces acting on the object. One type - such as gravity - depends only on position.
We could write such a force as —mp(y). The second type - such as atmospheric resistance or friction -
may depend on position and velocity. (Forces that depend on velocity are called damping forces.) We
write this force as —mq(y, y' )y, where q(y, y') is usually a positive function and we’ve put the factor 3/’
outside to make it explicit that the force is in the direction opposing the motion. In this case Newton’s,
second law of motion leads to (4.4.5).
The phase plane equivalent of (4.4.5) is

dv
v@ + q(y,v)v+p(y) =0. (4.4.6)

Some statements that we’ll be making about the properties of (4.4.5) and (4.4.6) are intuitively reasonable,
but difficult to prove. Therefore our presentation in this section will be informal: we’ll just say things
without proof, all of which are true if we assume that p = p(y) is continuously differentiable for all y and
q = q(y, v) is continuously differentiable for all (y, v). We begin with the following statements:

* Statement 1. If yo and v are arbitrary real numbers then (4.4.5) has a unique solution on (—00, o)
such that y(0) = yo and ¢ (0) = vo.

* Statement 2.) If y = y(t) is a solution of (4.4.5) and 7 is any constant then y; = y(t — 7) isalso a
solution of (4.4.5), and y and y; have the same trajectory.

* Statement 3. If two solutions y and y; of (4.4.5) have the same trajectory then y; (t) = y(t — 7)
for some constant 7.

» Statement 4. Distinct trajectories of (4.4.5) can’t intersect; that is, if two trajectories of (4.4.5)
intersect, they are identical.

* Statement 5. If the trajectory of a solution of (4.4.5) is a closed curve then (y(t), v(t)) traverses
the trajectory in a finite time 7", and the solution is periodic with period T'; that is, y(t + T') = y(t)
for all t in (—o00, 00).

If 7 is a constant such that p(y) = 0 then y = 7 is a constant solution of (4.4.5). We say that 7 is an
equilibrium of (4.4.5) and (g, 0) is a critical point of the phase plane equivalent equation (4.4.6). We say
that the equilibrium and the critical point are stable if, for any given € > 0 no matter how small, there’s a

0 > 0, sufficiently small, such that if
\ (Wo —7)%2+v3 <6

then the solution of the initial value problem

' +q(y, )y +ply) =0, y0) =y, ¥ (0)=nro

satisfies the inequality

V() = 7% + (v()? < e
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forall £ > 0. Figure 4.4.1 illustrates the geometrical interpretation of this definition in the Poincaré phase
plane: if (yo, vo) is in the smaller shaded circle (with radius 0), then (y(¢), v(¢)) must be in in the larger
circle (with radius €) for all ¢ > 0.

v
<

Figure 4.4.1 Stability: if (yo, vo) is in the smaller circle then (y(t), v(¢)) is in the larger circle for all
t>0

If an equilibrium and the associated critical point are not stable, we say they are unstable. To see if
you really understand what stable means, try to give a direct definition of unstable (Exercise 22). We’ll
illustrate both definitions in the following examples.

The Undamped Case

We’ll begin with the case where ¢ = 0, so (4.4.5) reduces to
Y +p(y) =0. 4.4.7)

We say that this equation - as well as any physical situation that it may model - is undamped. The phase
plane equivalent of (4.4.7) is the separable equation

— =0.
vay p(y)
Integrating this yields
2
% L Py) =c (4.4.8)

where c is a constant of integration and P(y) = [ p(y) dy is an antiderivative of p.
If (4.4.7) is the equation of motion of an object of mass m, then mv? /2 is the kinetic energy and
mP(y) is the potential energy of the object; thus, (4.4.8) says that the total energy of the object remains
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constant, or is conserved. In particular, if a trajectory passes through a given point (yo, vo) then

c=— + P(yo)-

Example 4.4.1 [The Undamped Spring - Mass System] Consider an object with mass m suspended from
a spring and moving vertically. Let y be the displacement of the object from the position it occupies when
suspended at rest from the spring (Figure 4.4.2).

Figure442 (a)y >0 (b)y=0 (c)y <O

Assume that if the length of the spring is changed by an amount AL (positive or negative), then the
spring exerts an opposing force with magnitude k|AL|, where k is a positive constant. In Section 6.1 it
will be shown that if the mass of the spring is negligible compared to m and no other forces act on the
object then Newton’s second law of motion implies that

my" = —ky, (4.4.9)

which can be written in the form (4.4.7) with p(y) = ky/m. This equation can be solved easily by a
method that we’ll study in Section 5.2, but that method isn’t available here. Instead, we’ll consider the
phase plane equivalent of (4.4.9).

From (4.4.3), we can rewrite (4.4.9) as the separable equation

Integrating this yields
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> <

A
Y

Figure 4.4.3 Trajectories of my” + ky =0

which implies that
mv? +ky? =p (4.4.10)

(p = 2c¢). This defines an ellipse in the Poincaré phase plane (Figure 4.4.3).
We can identify p by setting ¢ = 0 in (4.4.10); thus, p = mwv3 + ky2, where yo = y(0) and vy = v(0).
To determine the maximum and minimum values of y we set v = 0 in (4.4.10); thus,

Ymax = B and  ymin = —R, with R = \/% : 4.4.11)

Equation (4.4.9) has exactly one equilibrium, 7 = 0, and it’s stable. You can see intuitively why this is
so: if the object is displaced in either direction from equilibrium, the spring tries to bring it back.

In this case we can find y explicitly as a function of . (Don’t expect this to happen in more complicated
problems!) If v > 0 on an interval I, (4.4.10) implies that

on /. This is equivalent to

k
Nresrw el where  wp = 4/ o (4.4.12)
p—rY

Since
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======= AN
A

Figure 4.4.4 y = Rsin(wot + ¢)

(see (4.4.11)), (4.4.12) implies that that there’s a constant ¢ such that
.1 (Y ) ¢
= — +
sin ( wo 10}

or
y = Rsin(wot + ¢)

for all ¢ in I. Although we obtained this function by assuming that v > 0, you can easily verify that y
satisfies (4.4.9) for all values of ¢. Thus, the displacement varies periodically between —R and R, with
period T' = 27 /wy (Figure 4.4.4). (If you’ve taken a course in elementary mechanics you may recognize
this as simple harmonic motion.)

Example 4.4.2 [The Undamped Pendulum| Now we consider the motion of a pendulum with mass m,
attached to the end of a weightless rod with length L that rotates on a frictionless axle (Figure 4.4.5). We
assume that there’s no air resistance.

Let y be the angle measured from the rest position (vertically downward) of the pendulum, as shown in
Figure 4.4.5. Newton’s second law of motion says that the product of m and the tangential acceleration
equals the tangential component of the gravitational force; therefore, from Figure 4.4.5,

mLy" = —mgsiny,

or
Y = —% siny. (4.4.13)

Since sinnm = 0 if n is any integer, (4.4.13) has infinitely many equilibriay,, = nn. If n is even, the
mass is directly below the axle (Figure 4.4.6 (a)) and gravity opposes any deviation from the equilibrium.
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Figure 4.4.5 The undamped pendulum

(a) Stable equilibrium (b) Unstable equilibrium

Figure 4.4.6 (a) Stable equilibrium (b) Unstable equilibrium

However, if n is odd, the mass is directly above the axle (Figure 4.4.6 (b)) and gravity increases any
deviation from the equilibrium. Therefore we conclude on physical grounds that 7,,, = 2mm is stable
and 7,,,, 1 = (2m + 1)7 is unstable.

The phase plane equivalent of (4.4.13) is

dv g .
v— = —=sin
dy L y,

where v = 3/ is the angular velocity of the pendulum. Integrating this yields

% - % cosy + c. (4.4.14)
If v = vp when y = 0, then
2
%9
2 L
so (4.4.14) becomes
2 2 2
2
% = U?O— (1 —cosy) = U?O— fgsm2%,
which is equivalent to
v? =12 — 02 sin? % (4.4.15)

where
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The curves defined by (4.4.15) are the trajectories of (4.4.13). They are periodic with period 27 in y,
which isn’t surprising, since if y = y(t) is a solution of (4.4.13) then so is y,, = y(t) + 2nx for any
integer n. Figure 4.4.7 shows trajectories over the interval [—7, 7]. From (4.4.15), you can see that if
|vo| > v, then v is nonzero for all ¢, which means that the object whirls in the same direction forever, as in
Figure 4.4.8. The trajectories associated with this whirling motion are above the upper dashed curve and
below the lower dashed curve in Figure 4.4.7. You can also see from (4.4.15) that if 0 < |vg| < ve,then
v = 0 when y = £¥ymax, Where

Ymax = 2sin(Jvo| /ve).

In this case the pendulum oscillates periodically between —ymax and ymax, as shown in Figure 4.4.9. The
trajectories associated with this kind of motion are the ovals between the dashed curves in Figure 4.4.7.
It can be shown (see Exercise 21 for a partial proof) that the period of the oscillation is

/2 4o
T:8/ —_—
0 4/v2—v3sin?0

Although this integral can’t be evaluated in terms of familiar elementary functions, you can see that it’s
finite if |vg| < ve.

The dashed curves in Figure 4.4.7 contain four trajectories. The critical points (7, 0) and (—m, 0) are
the trajectories of the unstable equilibrium solutions ¥ = 4. The upper dashed curve connecting (but
not including) them is obtained from initial conditions of the form y(to) = 0, v(tg) = ve. If y is any
solution with this trajectory then

(4.4.16)

lim y(t) =7 and lim y(t) = —m.
t—oo t——o0
The lower dashed curve connecting (but not including) them is obtained from initial conditions of the
form y(tp) = 0, v(tg) = —v.. If y is any solution with this trajectory then
lim y(t) = —7 and lim y(t) = .
t—oo t——o0
Consistent with this, the integral (4.4.16) diverges to oo if vg = Fv.. (Exercise 21) .
Since the dashed curves separate trajectories of whirling solutions from trajectories of oscillating solu-
tions, each of these curves is called a separatrix.

In general, if (4.4.7) has both stable and unstable equilibria then the separatrices are the curves given
by (4.4.8) that pass through unstable critical points. Thus, if (7, 0) is an unstable critical point, then

,02
>+ P(y) = P(3) (@417

defines a separatrix passing through (7, 0).
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Figure 4.4.7 Trajectories of the undamped pendulum

‘\\
4 .\\ ® ,4:}@9{ {’rpg)g,;\
® °
e
- ~ . -7
Figure 4.4.8 The whirling undamped pendulum Figure 4.4.9 The oscillating undamped pendulum
Stability and Instability Conditions for ¥ + p(y) = 0
It can be shown (Exercise 23) that an equilibrium % of an undamped equation
v +ply) =0 (4.4.18)
is stable if there’s an open interval (a, b) containing 7 such that
py) <0 if a<y<y and p(y) >0 if y<y<b. (4.4.19)

If we regard p(y) as a force acting on a unit mass, (4.4.19) means that the force resists all sufficiently
small displacements from %.

We’ve already seen examples illustrating this principle. The equation (4.4.9) for the undamped spring-
mass system is of the form (4.4.18) with p(y) = ky/m, which has only the stable equilibrium?y = 0. In
this case (4.4.19) holds with a = —oco and b = oo. The equation (4.4.13) for the undamped pendulum is
of the form (4.4.18) with p(y) = (g/L) siny. We’ve seen that J = 2m is a stable equilibrium if m is an
integer. In this case

p(y) =siny <0 if 2m— D)7 <y < 2mnw

and
p(y) >0 if 2mr <y < (2m + 1)7.
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It can also be shown (Exercise 24) that 7 is unstable if there’s a b > 7 such that
ply) <0 if g<y<d (4.4.20)

or an a < ¥ such that
p(y) >0 if a<y<7. (4.4.21)

If we regard p(y) as a force acting on a unit mass, (4.4.20) means that the force tends to increase all
sufficiently small positive displacements from 7, while (4.4.21) means that the force tends to increase the
magnitude of all sufficiently small negative displacements from .

The undamped pendulum also illustrates this principle. We’ve seen that 7 = (2m + 1) is an unstable
equilibrium if m is an integer. In this case

siny <0 if 2m+ )7 <y < (2m+ 2)m,
$0 (4.4.20) holds with b = (2m + 2)7, and
siny > 0 if 2mr <y < (2m+ 1),
so (4.4.21) holds with a = 2mr.

Example 4.4.3 The equation
v +yly—1)=0 (4.4.22)
is of the form (4.4.18) with p(y) = y(y — 1). Therefore g = 0 and § = 1 are the equilibria of (4.4.22).
Since
yy—1)>0 ify<O0ory>1,
<0 if0<y<l,

y = 0 is unstable and y = 1 is stable.
The phase plane equivalent of (4.4.22) is the separable equation

d
v—v—l-y(y—l):().

dy
Integrating yields
2 3 2
CAN A
2 3 2
which we rewrite as 1
v? 4 §y2(2y -3)=c (4.4.23)

after renaming the constant of integration. These are the trajectories of (4.4.22). If y is any solution of
(4.4.22), the point (y(t), v(t)) moves along the trajectory of y in the direction of increasing y in the upper
half plane (v = 3’ > 0), or in the direction of decreasing y in the lower half plane (v = 3 < 0).

Figure 4.4.10 shows typical trajectories. The dashed curve through the critical point (0, 0), obtained by
setting ¢ = 0 in (4.4.23), separates the y-v plane into regions that contain different kinds of trajectories;
again, we call this curve a separatrix. Trajectories in the region bounded by the closed loop (b) are closed
curves, so solutions associated with them are periodic. Solutions associated with other trajectories are not
periodic. If y is any such solution with trajectory not on the separatrix, then

tlim y(t) = —oo, tli{n y(t) = —oo,
lim v(t) = —oo, lim v(t) =  oo.

t—o00 t——o0
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Figure 4.4.10 Trajectories of 4/ +y(y — 1) =0

The separatrix contains four trajectories of (4.4.22). One is the point (0, 0), the trajectory of the equi-
librium 7 = 0. Since distinct trajectories can’t intersect, the segments of the separatrix marked (a), (b),
and (c¢) — which don’t include (0, 0) — are distinct trajectories, none of which can be traversed in finite
time. Solutions with these trajectories have the following asymptotic behavior:

tlim y(t) = 0, . lim y(t) = —oo,
tlim v(t) = 0, . lim v(t) = oo (on(a))
tlim y(t) = 0, . lim y(t) = 0,
tlim v(t) = 0, . lim o(t) = 0 (on(b)) °
tlim y(t) = —o0, . lim y(t) = 0,
tlim v(t) = —o0, . lim o(t) = 0 (on(c)).
The Damped Case
The phase plane equivalent of the damped autonomous equation
Y + a9y +ply) =0 (4.4.24)

is
v% + q(y,v)v +p(y) =0.
Y
This equation isn’t separable, so we can’t solve it for v in terms of y, as we did in the undamped case,
and conservation of energy doesn’t hold. (For example, energy expended in overcoming friction is lost.)
However, we can study the qualitative behavior of its solutions by rewriting it as

o = _Q(ya ’U) - Z@

&= (4.4.25)
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and considering the direction fields for this equation. In the following examples we’ll also be showing
computer generated trajectories of this equation, obtained by numerical methods. The exercises call for
similar computations. The methods discussed in Chapter 3 are not suitable for this task, since p(y)/v in
(4.4.25) is undefined on the y axis of the Poincaré phase plane. Therefore we’re forced to apply numerical
methods briefly discussed in Section 10.1 to the system

y o= v

/

vo= —q(y,v)v - p(y),

which is equivalent to (4.4.24) in the sense defined in Section 10.1. Fortunately, most differential equation
software packages enable you to do this painlessly.
In the text we’ll confine ourselves to the case where ¢ is constant, so (4.4.24) and (4.4.25) reduce to

' +cy +ply) =0 (4.4.26)
and
v p)
dy v

(We’ll consider more general equations in the exercises.) The constant c is called the damping constant.
In situations where (4.4.26) is the equation of motion of an object, ¢ is positive; however, there are
situations where ¢ may be negative.

The Damped Spring-Mass System

Earlier we considered the spring - mass system under the assumption that the only forces acting on the
object were gravity and the spring’s resistance to changes in its length. Now we’ll assume that some
mechanism (for example, friction in the spring or atmospheric resistance) opposes the motion of the
object with a force proportional to its velocity. In Section 6.1 it will be shown that in this case Newton’s
second law of motion implies that

my” +cy +ky =0, (4.4.27)

where ¢ > 0 is the damping constant. Again, this equation can be solved easily by a method that
we’ll study in Section 5.2, but that method isn’t available here. Instead, we’ll consider its phase plane
equivalent, which can be written in the form (4.4.25) as

dv _ ¢ _ky (4.4.28)

dy m o mu
(A minor note: the ¢ in (4.4.26) actually corresponds to ¢/m in this equation.) Figure 4.4.11 shows a
typical direction field for an equation of this form. Recalling that motion along a trajectory must be in the
direction of increasing y in the upper half plane (v > 0) and in the direction of decreasing y in the lower
half plane (v < 0), you can infer that all trajectories approach the origin in clockwise fashion. To confirm
this, Figure 4.4.12 shows the same direction field with some trajectories filled in. All the trajectories
shown there correspond to solutions of the initial value problem

my” +cy’ +ky=0, y(0)=yo, ¥ (0)=nwo,

where
mug + kyg = p (apositive constant);

thus, if there were no damping (¢ = 0), all the solutions would have the same dashed elliptic trajectory,
shown in Figure 4.4.14.
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Figure 4.4.12 Figure 4.4.11 with some trajectories
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Solutions corresponding to the trajectories in Figure 4.4.12 cross the y-axis infinitely many times. The
corresponding solutions are said to be oscillatory (Figure 4.4.13) It is shown in Section 6.2 that there’s
a number c; such that if 0 < ¢ < ¢; then all solutions of (4.4.27) are oscillatory, while if ¢ > ¢;, no
solutions of (4.4.27) have this property. (In fact, no solution not identically zero can have more than two
zeros in this case.) Figure 4.4.14 shows a direction field and some integral curves for (4.4.28) in this case.

A

Figure 4.4.13 An oscillatory solution of my” + ¢y’ + ky =0

Example 4.4.4 (The Damped Pendulum) Now we return to the pendulum. If we assume that some
mechanism (for example, friction in the axle or atmospheric resistance) opposes the motion of the pen-
dulum with a force proportional to its angular velocity, Newton’s second law of motion implies that

mLy' = —cy — mgsiny, (4.4.29)

where ¢ > 0 is the damping constant. (Again, a minor note: the c in (4.4.26) actually corresponds to
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0. For each m = 0, 1,
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v, causes the pendulum to make m complete revolutions and
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¢/mL in this equation.) To plot a direction field for (4.4.29) we write its phase plane equivalent as

Figure 4.4.15 shows trajectories of four solutions of (4.4.29), all satisfying y(0)

then settle into decaying oscillation about the stable equilibriumy = 2mr.

2, 3, imparting the initial velocity v
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Figure 4.4.14 A typical direction field for my” 4 cy’ + ky = 0 with ¢ > ¢;

Figure 4.4.15 Four trajectories of the damped pendulum
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4.4 Exercises

In Exercises 1-4 find the equations of the trajectories of the given undamped equation. Identify the
equilibrium solutions, determine whether they are stable or unstable, and plot some trajectories. HINT:
Use Egn. (4.4.8) to obtain the equations of the trajectories.

1. y”+y3:0 2. y”—l—yQ:O
3. [CG]y +ylyl=0 4. [C/G]y" +yev =0

In Exercises 5-8 find the equations of the trajectories of the given undamped equation. Identify the
equilibrium solutions, determine whether they are stable or unstable, and find the equations of the sepa-
ratrices (that is, the curves through the unstable equilibria). Plot the separatrices and some trajectories
in each of the regions of Poincaré plane determined by them. HINT: Use Eqn. (4.4.17) to determine the
separatrices.

5. [C/Gly =y +4y=0 6. [CIG]y" +v*—4y=0

7. [CG]y" +y(® — 1) —4) =0 8 [C/G]y" +yly—2)(y—1D(y+2)=0

In Exercises 9—12 plot some trajectories of the given equation for various values (positive, negative, zero)
of the parameter a. Find the equilibria of the equation and classify them as stable or unstable. Explain
why the phase plane plots corresponding to positive and negative values of a differ so markedly. Can you
think of a reason why zero deserves to be called the critical value of a?

9. y”+y2—a:0 10. y”—i—y?’—ay:()
11. y”—y?’—i-ay:() 12. y”—i—y—ay?’:()

In Exercises 13-18 plot trajectories of the given equation for ¢ = 0 and small nonzero (positive and
negative) values of c to observe the effects of damping.

13. y”+cy’+y3:0 14. y”+cy’—y:0
15. [L]y +¢ey +4° =0 16. [L]y' +cy/ +12=0

17. y”+cy’+y|y|:0 18. y”—i—y(y—l)—i—cy:()
19. The van der Pol equation
y' = nl =)y +y =0, (A)
where 4 is a positive constant and y is electrical current (Section 6.3), arises in the study of an
electrical circuit whose resistive properties depend upon the current. The damping term

—u(1 — y?)y’ works to reduce |y| if |y] < 1 or to increase |y| if |y| > 1. It can be shown that
van der Pol’s equation has exactly one closed trajectory, which is called a limit cycle. Trajectories


http://www-history.mcs.st-and.ac.uk/Mathematicians/Van_der_Pol.html

20.

21.
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inside the limit cycle spiral outward to it, while trajectories outside the limit cycle spiral inward to it
(Figure 4.4.16). Use your favorite differential equations software to verify this for 4 = .5,1.1.5, 2.
Useagrid with —4 <y <4and —4 <v < 4.

Figure 4.4.16 Trajectories of van der Pol’s equation

Rayleigh’s equation,
Y = n(l =) /3y +y=0
also has a limit cycle. Follow the directions of Exercise 19 for this equation.
In connection with Eqn (4.4.15), suppose y(0) = 0 and 3/ (0) = vg, where 0 < vg < ve.

(a) Let T} be the time required for ¥ to increase from zero to Yyax = 2sin™* (vo/v.). Show that

W iy —ozsi?yfa, 0<i<m, (4)

(b) Separate variables in (A) and show that

U du
T, = / (B)
0 ’U%

2 ¢in?
—vZsin“u/2

(c) Substitute sinu/2 = (vo/v.) sin@ in (B) to obtain

/2 0
T1:2/ d— (©)
0 4/v2—v3sin®0


http://www-history.mcs.st-and.ac.uk/Mathematicians/Rayleigh.html
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(d) Conclude from symmetry that the time required for (y(¢), v(t)) to traverse the trajectory

2_ .2 2.2
v° = w5 — v:sin”y/2

is T = 4T}, and that consequently y(t +T) = y(t) and v(t + T') = o(t); that is, the
oscillation is periodic with period T'.

(e) Show that if vy = v, the integral in (C) is improper and diverges to co. Conclude from this
that y(t) < = forall ¢ and lim;_,~ y(t) = 7.

22. Give a direct definition of an unstable equilibrium of y" + p(y) = 0.

23. Let p be continuous for all y and p(0) = 0. Suppose there’s a positive number p such that p(y) > 0
if0<y<pandp(y) <0if —p <y < 0.For0 < r < plet

a(r)—min{/orp(:c)d:c, /Or|p(x)|d:c} and 5(r)_max{/(:p(x)dx, /i|p(x)|d:c}.

Let y be the solution of the initial value problem

¥ +p(y) =0, y(0)=wo, ¢ (0)=mo,

and define c(yo, vo) = v} + 2 [ p(z) dz.

(a) Show that
0 < c(yo,v0) < vh +26(|yol) if 0 < |yl < p.

(b) Show that
y
v? + 2/ p(x)dz = ¢(yo,vo), t>0.
0

(¢) Conclude from (b) that if ¢(yo, vo) < 2a(r) then |y| < r, ¢t > 0.
(d) Given e > 0, let 6 > 0 be chosen so that

5% + 25(6) < max {62/2, 204(6/\/5)} :

Show that if \/y2 + v3 < 6 then \/y? + v? < € for ¢ > 0, which implies thaty = 0 is a
stable equilibrium of ¢ + p(y) = 0.

(e) Now let p be continuous for all y and p(y) = 0, where 7 is not necessarily zero. Suppose
there’s a positive number p such that p(y) > 0if y <y <y+pand p(y) < 0if g —p <
y < 7. Show that 7 is a stable equilibrium of y" + p(y) = 0.
24. Let p be continuous for all y.

(a) Suppose p(0) = 0 and there’s a positive number p such that p(y) < 0if 0 < y < p. Let € be
any number such that 0 < € < p. Show that if y is the solution of the initial value problem

Y +py) =0, y(0)=yo, ¥'(0)=0

with 0 < yo < ¢, then y(t) > € for some ¢ > 0. Conclude that 7 = 0 is an unstable
equilibrium of ¥ + p(y) = 0. HINT: Let k = min, << (—p(z)), which is positive. Show
that if y(t) < efor0 <t < T then kT? < 2(e — yp).
(b) Now let p(g) = 0, where 7 isn’t necessarily zero. Suppose there’s a positive number p such
that p(y) < 0if 7 < y < 7+ p. Show that 7 is an unstable equilibrium of y" + p(y) = 0.
(¢) Modify your proofs of (a) and (b) to show that if there’s a positive number p such that
p(y) > 0ifg — p <y < 7, then 7 is an unstable equilibrium of y" + p(y) = 0.
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4.5 APPLICATIONS TO CURVES

One-Parameter Families of Curves

We begin with two examples of families of curves generated by varying a parameter over a set of real
numbers.

Example 4.5.1 For each value of the parameter c, the equation
y—cx?=0 4.5.1)

defines a curve in the xy-plane. If ¢ # 0, the curve is a parabola through the origin, opening upward if
¢ > 0 or downward if ¢ < 0. If ¢ = 0, the curve is the x axis (Figure 4.5.1).

- X
Figure 4.5.1 A family of curves defined by y — cx? = 0
Example 4.5.2 For each value of the parameter c the equation
y=z+c 4.5.2)
defines a line with slope 1(Figure 4.5.2).
Definition 4.5.1 An equation that can be written in the form
H(z,y,c) =0 (4.5.3)

is said to define a one-parameter family of curves if, for each value of ¢ in in some nonempty set of real
numbers, the set of points (z, y) that satisfy (4.5.3) forms a curve in the xy-plane.
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<

)
Y

Figure 4.5.3 A family of circles defined by
Figure 4.5.2 A family of lines defined by y = x + ¢ 2+y2—-ct=0

Equations (4.5.1) and (4.5.2) define one—parameter families of curves. (Although (4.5.2) isn’t in the
form (4.5.3), it can be written in this formas y —x — ¢ = 0.)

Example 4.5.3 If ¢ > 0, the graph of the equation
224+ —c=0 4.5.4)

is a circle with center at (0,0) and radius \/c. If ¢ = 0, the graph is the single point (0,0). (We don’t
regard a single point as a curve.) If ¢ < 0, the equation has no graph. Hence, (4.5.4) defines a one—
parameter family of curves for positive values of c. This family consists of all circles centered at (0, 0)
(Figure 4.5.3).

Example 4.5.4 The equation
+yP+c2=0

does not define a one-parameter family of curves, since no (z, y) satisfies the equation if ¢ # 0, and only
the single point (0, 0) satisfies it if ¢ = 0. [ |

Recall from Section 1.2 that the graph of a solution of a differential equation is called an integral curve
of the equation. Solving a first order differential equation usually produces a one—parameter family of
integral curves of the equation. Here we are interested in the converse problem: given a one—parameter
family of curves, is there a first order differential equation for which every member of the family is an
integral curve. This suggests the next definition.

Definition 4.5.2 If every curve in a one-parameter family defined by the equation

H(z,y,c) =0 (4.5.5)
is an integral curve of the first order differential equation

F(z,y,y") =0, (4.5.6)

then (4.5.6) is said to be a differential equation for the family.
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To find a differential equation for a one—parameter family we differentiate its defining equation (4.5.5)
implicitly with respect to x, to obtain

H,(z,y,c) + Hy(z,y,c)y’ = 0. 4.5.7)

If this equation doesn’t, then it’s a differential equation for the family. If it does contain ¢, it may be
possible to obtain a differential equation for the family by eliminating c between (4.5.5) and (4.5.7).

Example 4.5.5 Find a differential equation for the family of curves defined by

y = cx?. (4.5.8)

Solution Differentiating (4.5.8) with respect to x yields
y = 2cx.
Therefore ¢ = y' /2, and substituting this into (4.5.8) yields

xy

2

as a differential equation for the family of curves defined by (4.5.8). The graph of any function of the
form y = cx? is an integral curve of this equation. [ ]

The next example shows that members of a given family of curves may be obtained by joining integral
curves for more than one differential equation.

Example 4.5.6
(a) Try to find a differential equation for the family of lines tangent to the parabola y = x2.

(b) Find two tangent lines to the parabola y = z? that pass through (2,3), and find the points of
tangency.

SOLUTION(a) The equation of the line through a given point (z, yo) with slope m is
Yy = yo +m(x — xo). 4.5.9)

If (20, yo) is on the parabola, then yo = 3 and the slope of the tangent line through (x¢, #3) is m = 2x;
hence, (4.5.9) becomes
y = x5 + 2x0(z — 70),

or, equivalently,
y = —x3 + 2w (4.5.10)
Here xq plays the role of the constant ¢ in Definition 4.5.1; that is, varying x over (—oo, 00) produces
the family of tangent lines to the parabola y = 2.
Differentiating (4.5.10) with respect to x yields ¢y’ = 2x(.. We can express xq in terms of = and y by
rewriting (4.5.10) as

3 —2wpr +y =0

and using the quadratic formula to obtain

o=zt 1?2 —y. (4.5.11)
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We must choose the plus sign in (4.5.11) if x < 2 and the minus sign if x > x; thus,

3:0:(3:+\/3:2—y) if z <z

and
3:0:(3:— 3:2—y) if x> xg.

Since y = 2x, this implies that

Y :2(3:—|— \/xQ—y), if oz < (4.5.12)

and
y’zz(x— x2—y), if 2> . (4.5.13)

Neither (4.5.12) nor (4.5.13) is a differential equation for the family of tangent lines to the parabola
y = 2. However, if each tangent line is regarded as consisting of two tangent half lines joined at the
point of tangency, (4.5.12) is a differential equation for the family of tangent half lines on which z is less
than the abscissa of the point of tangency (Figure 4.5.4(a)), while (4.5.13) is a differential equation for
the family of tangent half lines on which x is greater than this abscissa (Figure 4.5.4(b)). The parabola
y = x? is also an integral curve of both (4.5.12) and (4.5.13).

<
<

Figure 4.5.4

SOLUTION(b) From (4.5.10) the point (x,y) = (2, 3) is on the tangent line through (z¢, 23) if and only
if
3= —xg + 4xg,
which is equivalent to
r3 —4x0+3 = (19— 3)(x0 — 1) = 0.
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Letting ¢ = 3 in (4.5.10) shows that (2, 3) is on the line
y = —9+ 6x,

which is tangent to the parabola at (xq, 23) = (3, 9), as shown in Figure 4.5.5
Letting g = 1 in (4.5.10) shows that (2, 3) is on the line

y=—1+ 2z,

which is tangent to the parabola at (za.2z3) = (1. 1). as shown in Figure 4.5.5.

A y=xX

Figure 4.5.5

Geometric Problems

We now consider some geometric problems that can be solved by means of differential equations.
Example 4.5.7 Find curves y = y(z) such that every point (xo, y(zo)) on the curve is the midpoint of the

line segment with endpoints on the coordinate axes and tangent to the curve at (xq, y(xo)) (Figure 4.5.6).

Solution The equation of the line tangent to the curve at P = (xq, y(zo) is
y = y(xo) + ¥/ (xo)(x — o).
If we denote the x and y intercepts of the tangent line by x; and y; (Figure 4.5.6), then

0= y(xo) + ¥ (w0) (w1 — x0o) (4.5.14)

and
yr = y(xo) — ¥ (zo)zo. (4.5.15)
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From Figure 4.5.6, P is the midpoint of the line segment connecting (x,0) and (0, y;) if and only if
x; = 2x¢ and y; = 2y(xg). Substituting the first of these conditions into (4.5.14) or the second into
(4.5.15) yields

y(zo) + ¥/ (z0)z0 = 0.

Since x is arbitrary we drop the subscript and conclude that y = y(x) satisfies

y+ay =0,
which can be rewritten as
(zy)" = 0.
Integrating yields xy = ¢, or
c
Yy=—-
T

If ¢ = 0 this curve is the line y = 0, which does not satisfy the geometric requirements imposed by the
problem; thus, ¢ # 0, and the solutions define a family of hyperbolas (Figure 4.5.7).

,5yl -

Figure 4.5.6 Figure 4.5.7

Example 4.5.8 Find curves y = y(x) such that the tangent line to the curve at any point (xo, y(xo))
intersects the z-axis at (23, 0). Figure 4.5.8 illustrates the situation in the case where the curve is in the
first quadrant and 0 < = < 1.

Solution The equation of the line tangent to the curve at (xq, y(z¢)) is
y = y(zo) + ¥ (zo)(z — 20).
Since (23, 0) is on the tangent line,
0 = y(wo) + ¥/ (z0)(a — o).
Since x is arbitrary we drop the subscript and conclude that y = y(x) satisfies

y+y(2® —x)=0.
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/7

Figure 4.5.8 Figure 4.5.9

Therefor

y I 1 1 1

y 22—z  xxz-1) =z x-1
SO

Inly| =ln|z| —ln|z — 1|+ k=In x1’+k,
T —
and
o
v= x—1

If ¢ = 0, the graph of this function is the z-axis. If ¢ # 0, it’s a hyperbola with vertical asymptote x = 1
and horizontal asymptote y = c. Figure 4.5.9 shows the graphs for ¢ # 0.

Orthogonal Trajectories

Two curves C; and Cs are said to be orthogonal at a point of intersection (g, yo) if they have perpen-
dicular tangents at (xq,yo). (Figure 4.5.10). A curve is said to be an orthogonal trajectory of a given
family of curves if it’s orthogonal to every curve in the family. For example, every line through the origin
is an orthogonal trajectory of the family of circles centered at the origin. Conversely, any such circle is
an orthogonal trajectory of the family of lines through the origin (Figure 4.5.11).

Orthogonal trajectories occur in many physical applications. For example, if u = u(z, y) is the tem-
perature at a point (z, y), the curves defined by

u(z,y) =c (4.5.16)

are called isothermal curves. The orthogonal trajectories of this family are called heat-flow lines, because
at any given point the direction of maximum heat flow is perpendicular to the isothermal through the
point. If u represents the potential energy of an object moving under a force that depends upon (z, y), the
curves (4.5.16) are called equipotentials, and the orthogonal trajectories are called lines of force.

From analytic geometry we know that two nonvertical lines L; and Lo with slopes m, and mo, re-
spectively, are perpendicular if and only if mo = —1/m;; therefore, the integral curves of the differential
equation

YT @)

N\
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y
Figure 4.5.10 Curves orthogonal at a point of Figure 4.5.11 Orthogonal families of circles and
intersection lines

are orthogonal trajectories of the integral curves of the differential equation

y/ = f(xay)a

because at any point (zg, yo) where curves from the two families intersect the slopes of the respective

tangent lines are
1

f(zo, yo)'

This suggests a method for finding orthogonal trajectories of a family of integral curves of a first order
equation.

my = f(xo, yo) and mo = —

Finding Orthogonal Trajectories

Step 1. Find a differential equation
y = flx,y)
for the given family.

Step 2. Solve the differential equation

Yy ==
fz,y)
to find the orthogonal trajectories.
Example 4.5.9 Find the orthogonal trajectories of the family of circles
224+t =2 (e>0). (4.5.17)
Solution To find a differential equation for the family of circles we differentiate (4.5.17) implicitly with

respect to x to obtain
2x + 2yy’ =0,
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or

Therefore the integral curves of

are orthogonal trajectories of the given family. We leave it to you to verify that the general solution of
this equation is
y = ka,

where k is an arbitrary constant. This is the equation of a nonvertical line through (0, 0). The y axis is
also an orthogonal trajectory of the given family. Therefore every line through the origin is an orthogonal
trajectory of the given family (4.5.17) (Figure 4.5.11). This is consistent with the theorem of plane
geometry which states that a diameter of a circle and a tangent line to the circle at the end of the diameter
are perpendicular.

Example 4.5.10 Find the orthogonal trajectories of the family of hyperbolas
zy=c (c#0) (4.5.18)

(Figure 4.5.7).

Solution Differentiating (4.5.18) implicitly with respect to x yields

y+ay =0,
or
r Y.
Yy =—=
x
thus, the integral curves of
y =1
Y

are orthogonal trajectories of the given family. Separating variables yields
/
yy==

and integrating yields
y2 - CC2 = ka

which is the equation of a hyperbola if &k # 0, or of the lines y = x and y = —z if k = 0 (Figure 4.5.12).
Example 4.5.11 Find the orthogonal trajectories of the family of circles defined by
(x—c)+y2=c* (c#0). (4.5.19)

These circles are centered on the z-axis and tangent to the y-axis (Figure 4.5.13(a)).

Solution Multiplying out the left side of (4.5.19) yields

2 —2cx+y* =0, (4.5.20)
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y

7

| N

Figure 4.5.12 Orthogonal trajectories of the hyperbolas zy = ¢

and differentiating this implicitly with respect to = yields

2(x —¢) +2yy = 0. (4.5.21)
From (4.5.20),
o= 2?2 4 o2
2z
)
I 22y a2 g?
N 2 2z

Substituting this into (4.5.21) and solving for ' yields

2 _ .2
y =47 (4.5.22)
2zy
The curves defined by (4.5.19) are integral curves of (4.5.22), and the integral curves of
’ 2y
by =" Y2

are orthogonal trajectories of the family (4.5.19). This is a homogeneous nonlinear equation, which we
studied in Section 2.4. Substituting y = ux yields

- 2z (ux) __2u
22— (uz)? 1 —wu?’
S0
L — 2u e u(u2+1),

T 1—w? 1—wu?
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Separating variables yields
1—u? 1

/

u(u? + l)u T

R
u  uZ+1 Y=

In |u| —In(u? + 1) = In|z| + k.

or, equivalently,

Therefore

By substituting u = y/x, we see that
In|y| — In|z| — In(z? + »?) + In(2?) = In|z| + &,
which, since In(z?) = 21n |z|, is equivalent to
Infy| —In(a® +y*) = k,
or
|yl = " (@? + y).
To see what these curves are we rewrite this equation as
o® +Jyl* = e Myl =0
and complete the square to obtain

o®+ (Jyl = e7*/2)* = (e7F/2)%.

This can be rewritten as
2?4 (y — h)? = h?,
where

- ify >0,

-—— ify <.
B Iy =

189

Thus, the orthogonal trajectories are circles centered on the y axis and tangent to the z axis (Fig-
ure 4.5.13(b)). The circles for which h > 0 are above the z-axis, while those for which h < 0 are

below.

Fionre 45 12 (a) The cirelee (v — 22 122 — 22 (h) The cirelee 2 1 (0 — B2 — B2
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4.5 Exercises

In Exercises 1-8 find a first order differential equation for the given family of curves.

1. y@@?>+y?) =c 2. e =c¢y
3. In|ay| = c(2? +y?) 4. y=x"?+cx
5. y= e + ce 6. y=a"+ %
y =sinx + ce® 8. y=ce"+c(l+2?)

Show that the family of circles
(x —20)? +9y* =1, —00 < 79 < 0,

can be obtained by joining integral curves of two first order differential equations. More specifi-
cally, find differential equations for the families of semicircles

(x—z0)?+9y° =1, zg <z <x04+ 1, —00 < T < 00,
(r—20)+9° =1, 20— 1<z <z, —00 < 20 < 0.

10. Suppose f and g are differentiable for all . Find a differential equation for the family of functions
y = f + cg (c=constant).

In Exercises 11-13 find a first order differential equation for the given family of curves.

11. Lines through a given point (xo, yo)-
12. Circles through (—1,0) and (1, 0).
13. Circles through (0, 0) and (0, 2).

14. Use the method Example 4.5.6(a) to find the equations of lines through the given points tangent to
the parabola y = 2. Also, find the points of tangency.

15. (a) Show that the equation of the line tangent to the circle

o’ +yf =1 (A)
at a point (g, yo) on the circle is
1—
y=— T i gy £ £L (B)
Yo

(b) Show thatif /' is the slope of a nonvertical tangent line to the circle (A) and (x, y) is a point
on the tangent line then

() (@* = 1) —2zyy’ +y° —1=0. (©)



16.

17.

18.

(c)

(d)
(e)

(a)

(b)

(c)

(d)
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Show that the segment of the tangent line (B) on which (z — x¢)/yo > 0 is an integral curve
of the differential equation
zy — /o2 +y? —1
y = 5 : (D)
4 —1

while the segment on which (z — xg)/yo < 01is an integral curve of the differential equation

p_ryt+tVattyt—1
2 -1 '

(E)

HINT: Use the quadratic formula to solve (C) for y'. Then substitute (B) for y and choose
the + sign in the quadratic formula so that the resulting expression for y' reduces to the
known slope y' = —x0/yo.

Show that the upper and lower semicircles of (A) are also integral curves of (D) and (E).

Find the equations of two lines through (5,5) tangent to the circle (A), and find the points of
tangency.

Show that the equation of the line tangent to the parabola
z =y’ (A)
at a point (zo, yo) # (0, 0) on the parabola is

Yo x
== 4+ —. B
Yy 2+2y0 (B)

Show that if 3/ is the slope of a nonvertical tangent line to the parabola (A) and (z,y) is a
point on the tangent line then

42%(y')? — dxyy +x = 0. (©)
Show that the segment of the tangent line defined in (a) on which & > z is an integral curve
of the differential equation
I Y + V y2 — T (D)
2x ’

while the segment on which x < ¢ is an integral curve of the differential equation

;Y=Y -z )

y_ 2CC ’

Y

HINT: Use the quadratic formula to solve (C) for y'. Then substitute (B) for y and choose
the + sign in the quadratic formula so that the resulting expression for y' reduces to the
known slope y’ = —.

240
Show that the upper and lower halves of the parabola (A), givenby y = \/x and y = —\/x
for x > 0, are also integral curves of (D) and (E).

Use the results of Exercise 16 to find the equations of two lines tangent to the parabola z = 32 and
passing through the given point. Also find the points of tangency.

Find a curve y = y(x) through (1,2) such that the tangent to the curve at any point (zo, y(zo))
intersects the x axis at ;7 = x¢/2.
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19.

20.

21.

22,

23.

24.
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Find all curves y = y(x) such that the tangent to the curve at any point (xg, y(xo)) intersects the
Taxisatz; = x}.

Find all curves y = y(z) such that the tangent to the curve at any point passes through a given
point (1, y1).

Find a curve y = y(x) through (1, —1) such that the tangent to the curve at any point (zo, y(zo))
intersects the y axis at y; = .

Find all curves y = y(x) such that the tangent to the curve at any point (xg, y(xo)) intersects the
y axis at y; = xo.

Find a curve y = y(z) through (0, 2) such that the normal to the curve at any point (xo, y(z¢))
intersects the x axis at x7 = xg + 1.

Find a curve y = y(x) through (2, 1) such that the normal to the curve at any point (zo, y(zo))
intersects the y axis at y; = 2y(xo).

In Exercises 25-29 find the orthogonal trajectories of the given family of curves.

25.

27.

29.
30.

31.

32.

33.

34.

2?4+ 2% = ¢? 26. 2 +4dry+y?=c
y = ce*® 28. xyex2 =c

ce”
Yy=——

x

Find a curve through (—1, 3) orthogonal to every parabola of the form
y=1+ cx?
that it intersects. Which of these parabolas does the desired curve intersect?
Show that the orthogonal trajectories of
2?4+ 2axy + 1% =¢
satisfy
ly — 2|y + 2| =k

If lines L and L, intersect at (x¢, yo) and « is the smallest angle through which L must be rotated
counterclockwise about (xg, yo) to bring it into coincidence with L, we say that « is the angle
from L to Lq; thus, 0 < o < 7. If L and L; are tangents to curves C' and (1, respectively, that
intersect at (o, yo), we say that C intersects C' at the angle «.. Use the identity

tan A + tan B
tan(A+ B) = —————
an(4 + B) 1 —tan Atan B
to show that if C' and C'; are intersecting integral curves of

fz,y) + tana (a#g),

/ — d / _ J\mg) P
y=flzy and y =-— Fz.y) tana
respectively, then C intersects C' at the angle a.

Use the result of Exercise 32 to find a family of curves that intersect every nonvertical line through
the origin at the angle o = 7 /4.

Use the result of Exercise 32 to find a family of curves that intersect every circle centered at the
origin at a given angle o # /2.



CHAPTER 5
Linear Second Order Equations

IN THIS CHAPTER we study a particularly important class of second order equations. Because of
their many applications in science and engineering, second order differential equation have historically
been the most thoroughly studied class of differential equations. Research on the theory of second order
differential equations continues to the present day. This chapter is devoted to second order equations that
can be written in the form

Po(a)y’ + Pi(2)y + Pa(a)y = F(a).

Such equations are said to be linear. As in the case of first order linear equations, (A) is said to be
homogeneous if F' = 0, or nonhomogeneous if F' # 0.

SECTION 5.1 is devoted to the theory of homogeneous linear equations.
SECTION 5.2 deals with homogeneous equations of the special form
ay” + by + cy =0,
where a, b, and c are constant (a # 0). When you’ve completed this section you’ll know everything there
is to know about solving such equations.
SECTION 5.3 presents the theory of nonhomogeneous linear equations.

SECTIONS 5.4 AND 5.5 present the method of undetermined coefficients, which can be used to solve
nonhomogeneous equations of the form

ay” + by + cy = F(z),

where a, b, and ¢ are constants and F’ has a special form that is still sufficiently general to occur in many
applications. In this section we make extensive use of the idea of variation of parameters introduced in
Chapter 2.

SECTION 5.6 deals with reduction of order, a technique based on the idea of variation of parameters,
which enables us to find the general solution of a nonhomogeneous linear second order equation provided
that we know one nontrivial (not identically zero) solution of the associated homogeneous equation.

SECTION 5.6 deals with the method traditionally called variation of parameters, which enables us to
find the general solution of a nonhomogeneous linear second order equation provided that we know two
nontrivial solutions (with nonconstant ratio) of the associated homogeneous equation.

193
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5.1 HOMOGENEOUS LINEAR EQUATIONS

A second order differential equation is said to be linear if it can be written as

Y +p()y +q(x)y = f(x). (5.1.1)

We call the function f on the right a forcing function, since in physical applications it’s often related to
a force acting on some system modeled by the differential equation. We say that (5.1.1) is homogeneous
if f = 0 or nonhomogeneous if f #Z 0. Since these definitions are like the corresponding definitions in
Section 2.1 for the linear first order equation

Y +plx)y = f(2), (5.12)

it’s natural to expect similarities between methods of solving (5.1.1) and (5.1.2). However, solving (5.1.1)
is more difficult than solving (5.1.2). For example, while Theorem 2.1.1 gives a formula for the general
solution of (5.1.2) in the case where f = 0 and Theorem 2.1.2 gives a formula for the case where f # 0,
there are no formulas for the general solution of (5.1.1) in either case. Therefore we must be content to
solve linear second order equations of special forms.

In Section 2.1 we considered the homogeneous equation ¢’ +p(x)y = 0 first, and then used a nontrivial
solution of this equation to find the general solution of the nonhomogeneous equation y' + p(x)y = f(x).
Although the progression from the homogeneous to the nonhomogeneous case isn’t that simple for the
linear second order equation, it’s still necessary to solve the homogeneous equation

Y + @)y +q(z)y =0 (5.1.3)

in order to solve the nonhomogeneous equation (5.1.1). This section is devoted to (5.1.3).
The next theorem gives sufficient conditions for existence and uniqueness of solutions of initial value
problems for (5.1.3). We omit the proof.

Theorem 5.1.1 Suppose p and q are continuous on an open interval (a,b), let o be any point in (a,b),
and let ko and k1 be arbitrary real numbers. Then the initial value problem

y' + o)y +q(@)y =0, y(xo) = ko, ' (z0) = k1
has a unique solution on (a, b).

Since y = 0 is obviously a solution of (5.1.3) we call it the frivial solution. Any other solution is
nontrivial. Under the assumptions of Theorem 5.1.1, the only solution of the initial value problem

Y+ @)y 4+ q(x)y =0, y(zo) =0, ¥/ (x0) =0

on (a, b) is the trivial solution (Exercise 24).

The next three examples illustrate concepts that we’ll develop later in this section. You shouldn’t be
concerned with how to find the given solutions of the equations in these examples. This will be explained
in later sections.

Example 5.1.1 The coefficients of ¢’ and y in
y' —y=0 (5.1.4)

are the constant functions p = 0 and ¢ = —1, which are continuous on (—o0, c0). Therefore Theo-
rem 5.1.1 implies that every initial value problem for (5.1.4) has a unique solution on (—o0, 00).
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(a) Verify thaty; = e¢® and yo = e~ are solutions of (5.1.4) on (—o0, 00).
(b) Verify that if ¢; and ¢, are arbitrary constants, y = ¢je*+coe™* is a solutionof (5.1.4) on (—o0, 00).

(¢) Solve the initial value problem

y'—y=0, y0)=1, ¥ (0)=3. (5.1.5)

SOLUTION(a) Ify; = e theny] = e®andy) = e* = y1,s0y) —y1 = 0. If yo = e %, thenyh = —e™*
and y = e * =yo,80 yy —yo = 0.

SOLUTION(b) If

y=cie’ +cae”” (5.1.6)
then
Y =ci1e” —coe”” (5.1.7)
and
Yy =cie” +cpe”,
SO

/!

y -y = (Clex =+ 0267x) — (Clex + 0267x)
= e®—€")4c(e®—eF)=0

for all . Therefore y = c1e® + coe™® is a solution of (5.1.4) on (—o0, 00).

SOLUTION(¢) We can solve (5.1.5) by choosing ¢; and ¢5 in (5.1.6) so that y(0) = 1 and y'(0) = 3.
Setting x = 0 in (5.1.6) and (5.1.7) shows that this is equivalent to

c1+co
Cl1 —Co = 3.
Solving these equations yields ¢; = 2 and c; = —1. Therefore y = 2e” — e™* is the unique solution of

(5.1.5) on (—o00, 00).
Example 5.1.2 Let w be a positive constant. The coefficients of 3 and y in
Yy +wly=0 (5.1.8)

are the constant functions p = 0 and ¢ = w?, which are continuous on (—oo, 00). Therefore Theo-
rem 5.1.1 implies that every initial value problem for (5.1.8) has a unique solution on (—o0, 00).
(a) Verify that y; = coswz and y, = sin wz are solutions of (5.1.8) on (—o0, 00).

(b) Verify that if ¢; and ¢, are arbitrary constants then y = ¢; cos wzx + ¢2 sin wz is a solution of (5.1.8)
on (—00, 00).

(¢) Solve the initial value problem

'+ Wiy =0, y0)=1, % (0)=3. (5.1.9)

SOLUTION(a) Ify; = coswz then ¢} = —wsinwz and ¥} = —w? coswr = —w?y1, so v} +w?y; = 0.
If yo = sinwz then, ¥, = wcoswz and y§ = —w? sinwr = —w?ys, so0 ¥4 + w?yz = 0.
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SOLUTION(b) If

Y = €1 COSWT + C2 sinwx (5.1.10)
then
Yy = w(—c1 sinwz + o cos wr) (5.1.11)
and
Y’ = —w?(c1 coswr + cosinwr),
S0
Y +w?y = —w?(ercoswr + casinwr) + w?(eg coswr + cosinwr)

= ciw?(—coswz + coswa) + cow?(—sinwz + sinwz) =0
for all z. Therefore y = ¢; coswzx + ¢ sinwa is a solution of (5.1.8) on (—o0, ).

SOLUTION(¢) To solve (5.1.9), we must choosing ¢; and ¢z in (5.1.10) so that y(0) = 1 and 3/ (0) = 3.
Setting x = 0 in (5.1.10) and (5.1.11) shows that ¢; = 1 and ¢2 = 3/w. Therefore

Y = COswx + — sinwx
w

is the unique solution of (5.1.9) on (—oc0, 00). [ |
Theorem 5.1.1 implies that if kg and k; are arbitrary real numbers then the initial value problem

Po(z)y" + Pi(x)y + P2(2)y =0, y(xo) = ko, ¥ (z0) =k (5.1.12)

has a unique solution on an interval (a, b) that contains ¢, provided that Py, Py, and P» are continuous
and Py has no zeros on (a, b). To see this, we rewrite the differential equation in (5.1.12) as

Pi(z) ,  P(z)

/!
+ + —0
YT R@ T R@”
and apply Theorem 5.1.1 withp = P, /Py and ¢ = P>/ P.
Example 5.1.3 The equation
22y +ay —4y =0 (5.1.13)

has the form of the differential equation in (5.1.12), with Py(z) = 22, Pi(z) = z, and Py(z) = —4,
which are are all continuous on (—oo, 00). However, since P(0) = 0 we must consider solutions of
(5.1.13) on (—00, 0) and (0, c0). Since P, has no zeros on these intervals, Theorem 5.1.1 implies that the
initial value problem
oy’ +ay —dy =0, ylwo) =ko, y'(w0) =k
has a unique solution on (0, 00) if 29 > 0, or on (—00, 0) if ¢ < 0.
(a) Verify that y; = 22 is a solution of (5.1.13) on (—0co, c0) and yo = 1/x2 is a solution of (5.1.13)
on (—o0,0) and (0, c0).

(b) Verify that if ¢; and ¢y are any constants then yy = ¢y 22 +c2 /2?2 is a solution of (5.1.13) on (—o0, 0)
and (0, 00).

(¢) Solve the initial value problem

x2y” + xy/ — 4y =0, y(l) =2, y’(l) = 0. (5.1.14)
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(d) Solve the initial value problem

x2y” +ay —4dy=0, y(-1)=2, 4y (-1)=0. (5.1.15)

SOLUTION(a) Ify; = 22 then g} = 2z and y{ = 2, so
2y + xy| — 4y = 2%(2) + 2(22) — 42® = 0

for x in (—o0, 00). If y2 = 1/22, then y, = —2/2°% and 34 = 6/x%, so

6 2 4
Yy + ayhy — dyp = 2° (x—4>—x(;> _FZO

for z in (—o0, 0) or (0, ).

SOLUTION(b) If

y=c1a? + 0_22 (5.1.16)
T
then 5
Y =212 — 2 (5.1.17)
T
and 6
y// = 201 + %a
T
SO

x2y// 4 xy/ _ 4y

6 2
z? (201 + %) + x(2clx — i;) — 4(01332 + 0—22)
T T T

2 4
c1(22% 4 227 — 42?) + 02(E B _>

c1-04+c-0=0
for z in (—o0, 0) or (0, ).

SOLUTION(¢) To solve (5.1.14), we choose ¢; and ¢z in (5.1.16) so that y(1) = 2and 3/ (1) = 0. Setting
z =11in(5.1.16) and (5.1.17) shows that this is equivalent to

c1+ c2
201 — 202 =
Solving these equations yields ¢c; = 1 and ¢z = 1. Therefore y = 22 + 1/2? is the unique solution of

(5.1.14) on (0, 00).

SOLUTION(d) We can solve (5.1.15) by choosing ¢; and ¢z in (5.1.16) so that y(—1) = 2 and ¢/ (—1) =
0. Setting x = —1 in (5.1.16) and (5.1.17) shows that this is equivalent to

C1 =+ (6] =
—201 + 202 =

Solving these equations yields ¢c; = 1 and ¢z = 1. Therefore y = 22 + 1/2? is the unique solution of
(5.1.15) on (— o0, 0). [ ]
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Although the formulas for the solutions of (5.1.14) and (5.1.15) are both y = 22 + 1/22, you should
not conclude that these two initial value problems have the same solution. Remember that a solution of
an initial value problem is defined on an interval that contains the initial point; therefore, the solution
of (5.1.14) is y = a? + 1/2? on the interval (0, 00), which contains the initial point zo = 1, while the
solution of (5.1.15) is y = x? + 1/2? on the interval (—oo, 0), which contains the initial point zg = —1.

The General Solution of a Homogeneous Linear Second Order Equation

If y; and ys are defined on an interval (a, b) and ¢; and co are constants, then

Y = C1Y1 + C2y2

is a linear combination of y, and y2. For example, y = 2cosz + 7sinz is a linear combination of
y1 = cosx and y2 = sinx, withc; =2 and cp = 7.
The next theorem states a fact that we’ve already verified in Examples 5.1.1, 5.1.2, and 5.1.3.

Theorem 5.1.2 If y; and ys are solutions of the homogeneous equation

y' +p(@)y +a(z)y =0 (5.1.18)

on (a,b), then any linear combination

Y = c1y1 + C2y2 (5.1.19)
of y1 and ys is also a solution of (5.1.18) on (a, b).
Proof If

Y = c1y1 + C2Y2
then

Y =ciyy +eayy and ' =iyl + oy

Therefore

Y+ @)y + q(z)y (cryy + cayy) + p(x)(cryy + cayy) + q(x)(cryr + cayz)
c1 (Y +p(@)yy +a(@)y1) + ca (y5 +p(x)ys + q(2)y2)

= 01'0+02'0:0,

since y; and y are solutions of (5.1.18). [ ]

We say that {y1, y2} is a fundamental set of solutions of (5.1.18) on (a, b) if every solution of (5.1.18)
on (a,b) can be written as a linear combination of y; and yo as in (5.1.19). In this case we say that
(5.1.19) is general solution of (5.1.18) on (a, b).

Linear Independence

We need a way to determine whether a given set {y;, y2} of solutions of (5.1.18) is a fundamental set.
The next definition will enable us to state necessary and sufficient conditions for this.

We say that two functions y; and y, defined on an interval (a, b) are linearly independent on (a, b) if
neither is a constant multiple of the other on (a, b). (In particular, this means that neither can be the trivial
solution of (5.1.18), since, for example, if y; = 0 we could write y; = Oy2.) We’ll also say that the set
{y1, Y2} is linearly independent on (a, b).

Theorem 5.1.3 Suppose p and q are continuous on (a,b). Then a set {y1,y=} of solutions of
Y +p@)y +q(x)y =0 (5.1.20)

on (a,b) is a fundamental set if and only if {y1, y2} is linearly independent on (a, b).
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We'll present the proof of Theorem 5.1.3 in steps worth regarding as theorems in their own right.
However, let’s first interpret Theorem 5.1.3 in terms of Examples 5.1.1, 5.1.2, and 5.1.3.

Example 5.1.4

(a) Since ¢*/e™* = €%® is nonconstant, Theorem 5.1.3 implies that y = c1e® + coe™7 is the general
solution of ¥y — y = 0 on (—o0, ).

(b) Since coswz/sinwzr = cotwz is nonconstant, Theorem 5.1.3 implies that y = ¢; coswz +
c2 sinwz is the general solution of 3/ + w?y = 0 on (—o0, 00).

4

(¢) Since 22/x~2 = z* is nonconstant, Theorem 5.1.3 implies that y = c¢122 + c3 /22 is the general
2,1

solution of z°y" 4+ xy’ — 4y = 0 on (—00, 0) and (0, c0).

The Wronskian and Abel’s Formula

To motivate a result that we need in order to prove Theorem 5.1.3, let’s see what is required to prove that
{y1,y2} is a fundamental set of solutions of (5.1.20) on (a, b). Let x be an arbitrary point in (a, b), and
suppose y is an arbitrary solution of (5.1.20) on (a, b). Then y is the unique solution of the initial value
problem

y' +p@)y +a(@)y =0, y(xo)=ko, ¥y (z0)=ki; (5.1.21)

that is, kg and k1 are the numbers obtained by evaluating y and 3’ at xg. Moreover, kg and k1 can be
any real numbers, since Theorem 5.1.1 implies that (5.1.21) has a solution no matter how kg and k; are
chosen. Therefore {y1, y2} is a fundamental set of solutions of (5.1.20) on (a, b) if and only if it’s possible
to write the solution of an arbitrary initial value problem (5.1.21) as y = c1y1 + c2y2. This is equivalent
to requiring that the system

c1y1(xo) + cay2(z0) = ko

5.1.22

auyh (@) + cavhlze) = I o122

has a solution (¢, ¢2) for every choice of (kg, k1). Let’s try to solve (5.1.22).
Multiplying the first equation in (5.1.22) by y4(zo) and the second by y2(z) yields

cay1(wo)ys(wo) + cayz(wo)yz(ro) = ya(zo)ko
e (zo)y2(wo) + cays (z0)y2(zo) ya(xo)k1,

and subtracting the second equation here from the first yields

(y1(zo)ya (wo) — ¥y (w0)y2(x0)) c1 = Yo (o) ko — y2(xo)k1. (5.1.23)
Multiplying the first equation in (5.1.22) by ¥} (z¢) and the second by y; (z¢) yields
c1y1(wo)y1 (o) + c2y2(wo)yi (z0) = yi(zo)ko
1y (wo)y1 (wo) + c2a(wo)yr(zo) = y1(wo)k1,

and subtracting the first equation here from the second yields

(y1(20)y2 (o) — Y1 (z0)y2(20)) c2 = y1(20)k1 — 1 (20)ko- (5.1.24)
If
y1(20)ys (o) — 41 (20)y2(70) = 0,
it’s impossible to satisfy (5.1.23) and (5.1.24) (and therefore (5.1.22)) unless k( and k; happen to satisfy
yi(zo)k1 —yi(zo)ko = 0
Yo(z0)ko — y2(zo)k1 = 0.
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On the other hand, if
y1(zo)yh (o) — Yy (zo)y2(xo) #0 (5.1.25)

we can divide (5.1.23) and (5.1.24) through by the quantity on the left to obtain

o = Y5 (w0)ko — y2(z0)k1

y1(wo)ys(zo) — y:1 (z0)y2(z0) (5.1.26)
P y1(wo)k1 — 4 (zo)ko

y1(0)yy(zo) — ¥1 (x0)y2(20)

no matter how kg and k; are chosen. This motivates us to consider conditions on y; and y, that imply
(5.1.25).

Theorem 5.1.4 Suppose p and q are continuous on (a,b), let y1 and yo be solutions of

v +p@)y +q(z)y =0 (5.1.27)
on (a,b), and define
W = y1ys — ¥y v (5.1.28)
Let xo be any point in (a,b). Then
W) = Wag)e Jo?@% ocw<n (5.1.29)
Therefore either W has no zeros in (a,b) or W = 0 on (a, b).
Proof Differentiating (5.1.28) yields
W' =419 + v19s — yivs — Yiv2 = 1195 — Y1 v2. (5.1.30)

Since y; and y2 both satisfy (5.1.27),

vl =—pyy —qui and ¥y = —pys — qye.
Substituting these into (5.1.30) yields
W' = —yi(pvs + qu2) +v2(pyi + aun)

—p(1ys — v2u1) — a(y1y2 — youyr)
= —pyysy — v2vh) = —pW.

Therefore W’ + p(z)W = 0; that is, W is the solution of the initial value problem

Y +p@)y =0, ylzo) = W(xo).

We leave it to you to verify by separation of variables that this implies (5.1.29). If W (xo) # 0, (5.1.29)

implies that W has no zeros in (a, ), since an exponential is never zero. On the other hand, if W (xo) = 0,

(5.1.29) implies that W (z) = 0 for all z in (a, b). [ |
The function W defined in (5.1.28) is the Wronskian of {y1, y-}. Formula (5.1.29) is Abel’s formula.
The Wronskian of {y;,y2} is usually written as the determinant

Y1 Y2
W = ,

Y Yo
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The expressions in (5.1.26) for ¢; and c2 can be written in terms of determinants as

1 ko y2(zo) y1(wo) ko

W (zo)

_ 1
W (zo)

Cc1 =

| and ¢y =

k1 y5(wo) y1(zo) k1

If you’ve taken linear algebra you may recognize this as Cramer’s rule.

Example 5.1.5 Verify Abel’s formula for the following differential equations and the corresponding so-
lutions, from Examples 5.1.1, 5.1.2, and 5.1.3:

@ ¥ —y=0 yp=e,pp=e"
(b) " +w?y = 0; Y1 = COSwzT, Y2 = sinww

(© 2% +axy —4y=0; y1=a? yo=1/a?

SOLUTION(a) Since p = 0, we can verify Abel’s formula by showing that W is constant, which is true,
since

for all .

SOLUTION(b) Again, since p = 0, we can verify Abel’s formula by showing that W is constant, which
18 true, since

COS WX sinwx

W(x) = |

—wsinwr wcoswe

= coswz(wcoswr) — (—w sinwz) sinwx
w(cos? wr + sinwr) = w

for all .

SOLUTION(¢) Computing the Wronskian of 3; = 2% and yo = 1/22 directly yields

2 1 2
RV (_%) B x(%) :_%_ (5.1.31)

2r —2/x3
To verify Abel’s formula we rewrite the differential equation as

1 4
'+ -y - Sy =
X X

to see that p(x) = 1/x. If 2o and z are either both in (—o0, 0) or both in (0, c0) then
/ p(t)dt:/ ——111(3),
xo o t xO
W(x) = Wiao)e "/") = W(zo)="

4
- (—) 20)  from (5.1.31)
Zo
é
.I

so Abel’s formula becomes
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which is consistent with (5.1.31). |
The next theorem will enable us to complete the proof of Theorem 5.1.3.

Theorem 5.1.5 Suppose p and q are continuous on an open interval (a,b), let y; and y2 be solutions of

Yy +px)y +qlx)y =0 (5.1.32)

on (a,b), and let W = y1y5 — y\ya2. Then yy and y, are linearly independent on (a,b) if and only if W
has no zeros on (a, b).

Proof We first show that if W (zo) = 0 for some x¢ in (a, b), then y; and yo are linearly dependent on
(a,b). Let I be a subinterval of (a, b) on which y; has no zeros. (If there’s no such subinterval, y; = 0 on
(a,b), so y1 and yo are linearly independent, and we’re finished with this part of the proof.) Then yo /y1
is defined on I, and

(y_2>/ _ b W 5.133)
Y1 Y1 Y1

However, if W (xz) = 0, Theorem 5.1.4 implies that W = 0 on (a,b). Therefore (5.1.33) implies that
(y2/y1) =0, so y2/y1 = ¢ (constant) on I. This shows that y2(z) = cy; (x) for all z in I. However, we
want to show that yo = cy;(«) for all  in (a,b). Let Y = yo — cy;. Then Y is a solution of (5.1.32)
on (a,b) such that Y = 0 on I, and therefore Y’ = 0 on I. Consequently, if x( is chosen arbitrarily in 1
then Y is a solution of the initial value problem

Y +p@)y +q(@)y=0, ylxo) =0, y'(x0)=0,

which implies that Y = 0 on (a, b), by the paragraph following Theorem 5.1.1. (See also Exercise 24).
Hence, y2 — cy1 = 0 on (a, b), which implies that y; and y, are not linearly independent on (a, b).

Now suppose W has no zeros on (a,b). Then y; can’t be identically zero on (a,b) (why not?), and
therefore there is a subinterval I of (a, b) on which y; has no zeros. Since (5.1.33) implies that yo /y1 is
nonconstant on I, yo isn’t a constant multiple of y; on (a, b). A similar argument shows that y; isn’t a
constant multiple of ¥, on (a, b), since

(y_1> _ v —yp W
Y2 v3 v3
on any subinterval of (a, b) where yo has no zeros. [ ]
We can now complete the proof of Theorem 5.1.3. From Theorem 5.1.5, two solutions y; and yo of
(5.1.32) are linearly independent on (a, b) if and only if W has no zeros on (a, b). From Theorem 5.1.4
and the motivating comments preceding it, {y1, y2} is a fundamental set of solutions of (5.1.32) if and
only if W has no zeros on (a, b). Therefore {y1, y=} is a fundamental set for (5.1.32) on (a, b) if and only
if {y1, y2} is linearly independent on (a, b). [ |
The next theorem summarizes the relationships among the concepts discussed in this section.

Theorem 5.1.6 Suppose p and q are continuous on an open interval (a,b) and let iy, and y2 be solutions
of
Y +p@)y +qlx)y =0 (5.1.34)

on (a, b). Then the following statements are equivalent; that is, they are either all true or all false.
(@) The general solution of (5.1.34) on (a,b) is y = c1y1 + cayo.

) {y1,y2} is a fundamental set of solutions of (5.1.34) on (a, b).
(©) {y1,y2} is linearly independent on (a, b).
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(d) The Wronskian of {y1,ya2} is nonzero at some point in (a, b).
(e) The Wronskian of {y1,y2} is nonzero at all points in (a, b).
We can apply this theorem to an equation written as
Po(x)y” + Pr(x)y + Pa(x)y = 0
on an interval (a, b) where Py, P;, and P» are continuous and Py has no zeros.

Theorem 5.1.7 Suppose c is in (a,b) and o and 3 are real numbers, not both zero. Under the assump-
tions of Theorem 5.1.7, suppose y, and ya are solutions of (5.1.34) such that

ayi(c) + Byi(c) =0 and  aysz(c) + Bys(c) = 0. (5.1.35)
Then {y1,y2} isn’t linearly independent on (a,b).

Proof Since a and 3 are not both zero, (5.1.35) implies that

’ w(e) vi(e) ’ ~ 0 so ’ yie) wa(e) ’ _0
y2(c)  ya(c) ’ vi(e) ya(c)
and Theorem 5.1.6 implies the stated conclusion.
5.1 Exercises
1.  (a) Verify that y; = €2 and yo = € are solutions of
y' =Ty +10y =0 (A)

on (—00, 00).

(b) Verify that if ¢; and c5 are arbitrary constants then y = c1€%% + c9€5* is a solution of (A) on
(=00, 00).

(¢) Solve the initial value problem

y' =Ty +10y =0, y(0)=-1, ¢ (0)=1.
(d) Solve the initial value problem
y' =T +10y =0, y(0) =ko, y'(0) =k
2. (a) Verify thaty; = e” cosx and y = €® sinx are solutions of
y' =2y +2y=0 (A)

on (—o00, 00).

(b) Verity that if ¢; and co are arbitrary constants then y = c1e® cos x + c2€” sin x is a solution
of (A) on (—o0, 00).

(¢) Solve the initial value problem

y' =2y +2y=0, y(0)=3, y(0)=-2



204 Chapter 5 Linear Second Order Equations

(d)

Solve the initial value problem

y' =2y +2y=0, y(0)=ko, y'(0)= k.

3 (a) Verify that y; = €® and yo = xe” are solutions of
y' =2y +y=0 (4)
on (—00, 00).
(b) Verify that if ¢; and co are arbitrary constants then y = e¢*(c¢1 4 cox) is a solution of (A) on
(—OO, OO)
(¢) Solve the initial value problem
y' =2/ +y=0, y(0)=7 y(0) =4
(d) Solve the initial value problem
y' =2y +y=0, y(0)=ko, ¥(0)=ki.
4. (a) Verifythaty; = 1/(x — 1) and yo = 1/(x + 1) are solutions of
(x? = 1)y +4xy +2y =0 (A)
on (—oo,—1), (=1,1), and (1,00). What is the general solution of (A) on each of these
intervals?
(b) Solve the initial value problem
(@® = 1)y + 4wy’ +2y =0, y(0)=-5 4 (0)=1
What is the interval of validity of the solution?
(© Graph the solution of the initial value problem.
(d) Verify Abel’s formula for y; and yo, with g = 0.
5. Compute the Wronskians of the given sets of functions.
(@) {1,e*} (b) {e*, e*sinx}
(© {z+1,2° +2} (@) {z'/2,z71/3}

(e {

sinx cosx

} ) {zIn|z|, 2%In|z|}

r oz

(g) {e* cos\/z, e* sin/x}

6. Find the Wronskian of a given set {y1, y2 } of solutions of

y' 4+ 3(x* + 1)y — 2y =0,

given that W (m) = 0.
7. Find the Wronskian of a given set {y1, y2 } of solutions of

(1— )y — 209/ + ala+ )y =0,

given that W (0) = 1. (This is Legendre’s equation.)
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8. Find the Wronskian of a given set {y1, y2 } of solutions of

x2y” _,’_xy/ 4 (xQ _ I/2)y — 0,

given that W (1) = 1. (This is Bessel’s equation.)

9. (This exercise shows that if you know one nontrivial solution of 3/ + p(x)y’ + g(x)y = 0, you
can use Abel’s formula to find another.)

Suppose p and ¢ are continuous and ¥; is a solution of

v +p@)y +q(z)y =0 (A)
that has no zeros on (a, b). Let P(x) = [ p(x) dz be any antiderivative of p on (a, b).

(a) Show thatif K is an arbitrary nonzero constant and y, satisfies
nvh — hye = Ke 7 (B)

on (a,b), then yo also satisfies (A) on (a, b), and {y1,y2} is a fundamental set of solutions
on (A) on (a, b).
e—P(m)

yi(r)

(b) Conclude from (a) that if yo = uy; where v’ = K , then {y1,y2} is a fundamental

set of solutions of (A) on (a, b).

In Exercises 10-23 use the method suggested by Exercise 9 to find a second solution yy that isn’t a
constant multiple of the solution y,. Choose K conveniently to simplify ys.

10. " -2y —3y=0; gy =¢32

1.y’ =6y +9y=0; y =€
12. 4’ —2ay +a’y =0 (a = constant); y; = e
13. 2%/ +ay —y=0, y1=x
4. 2% -2y +y=0;, y1 =2
15. 2%y’ — (2a — 1)xy’ + a®y = 0 (a = nonzero constant); x > 0; y; = ¢
16. 422y —4dxy + (3 — 1622y =0; y; = 21/
17. -1y —ay +y=0; y1 =€
18. 2%y —2xy + (2> +2)y =0; y1 =xcosz
19. 42?(sinz)y” —4x(vcosx +sinx)y + (2zcosz + 3sinz)y =0; y = x'/2
20 Bz—1)y" —(Bx+2)y — (6z—8)y=0; y3 =e**
21, (22 —4) +4ay +2y=0; oy = xl—Z
1

22, (2z+ Day” —2222 - 1)y —4(z+ 1Dy =0; y = -

23, (2 —20)y"+(2—-2)y +(2x—2)y=0; y =¢€*

24. Suppose p and g are continuous on an open interval (a, b) and let zo be in (a, b). Use Theorem 5.1.1
to show that the only solution of the initial value problem

Y + @)y +q(@)y =0, ylxo) =0, ¥ (x0)=0

on (a, b) is the trivial solutiony = 0.


http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
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25.

26.

27.

28.

29.

30.

Suppose Py, Py, and P, are continuous on (a, b) and let g be in (a, b). Show that if either of the
following statements is true then Py(x) = 0 for some z in (a, b).

(a) The initial value problem
Po(x)y" + Pi(x)y + Pa(x)y =0, y(xo) = ko, o' (x0) =k

has more than one solution on (a, b).
(b) The initial value problem

Po(x)y" + Pi(z)y + Po(x)y =0, y(xo) =0, ¥ (x0) =

has a nontrivial solution on (a, b).

Suppose p and ¢ are continuous on (a, b) and y; and ys are solutions of

Y +p@)y +qlx)y=0 (A)
on (a,b). Let
z1=ay; + Py and 2o = Yy + Oyo,

where «, (3, v, and 0 are constants. Show that if {z7, 25} is a fundamental set of solutions of (A)
on (a, b) then so is {y1, Y=}

Suppose p and q are continuous on (a, b) and {y1, y2} is a fundamental set of solutions of

y' + @)y +q(z)y =0 (A)

on (a,b). Let
z1=oays + Py2 and 2o = Yy + Iya,
where «, 3,7, and § are constants. Show that {z1, zo} is a fundamental set of solutions of (A) on
(a,b) if and only if ay — 36 # 0.
Suppose y; is differentiable on an interval (a, b) and yo = ky;, where k is a constant. Show that
the Wronskian of {y, 32} is identically zero on (a, b).
Let
23

_ .3 _ ) CCZO,
=t wd p={ 70

(a) Show that the Wronskian of {y1, y2} is defined and identically zero on (—oo, 00).
(b) Suppose a < 0 < b. Show that {y1,y2} is linearly independent on (a, b).

(¢) Use Exercise 25(b) to show that these results don’t contradict Theorem 5.1.5, because neither
41 nor yo can be a solution of an equation

Y + @)y +q(z)y =0

on (a, b) if p and ¢ are continuous on (a, b).

Suppose p and ¢ are continuous on (a, b) and {y1,y2} is a set of solutions of

Y + @)y +q(xz)y=0

on (a, b) such that either y; (xo) = y2(x0) = 0 or ¥i(x0) = y4(xo) = 0 for some zg in (a,b).
Show that {y1,y2} is linearly dependent on (a, b).



31.

32.

33.

34.

3s.

36.

37.
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Suppose p and q are continuous on (a, b) and {y1, y2} is a fundamental set of solutions of

Y +p@)y +q(xz)y=0

on (a, b). Show that if y; (1) = y1(x2) = 0, where a < 1 < 2 < b, then yo(x) = 0 for some x
in (21, x2). HINT: Show that if y, has no zeros in (x1, ©2), then y1/ys is either strictly increasing
or strictly decreasing on (1, x2), and deduce a contradiction.

Suppose p and ¢ are continuous on (a, b) and every solution of

Y +px)y +qlx)y=0 (A)

on (a, b) can be written as a linear combination of the twice differentiable functions {y1, y2}. Use
Theorem 5.1.1 to show that y; and yo are themselves solutions of (A) on (a, b).

Suppose p1, p2, g1, and g2 are continuous on (a, b) and the equations

Y +pi(@)y + qu(x)y=0 and " 4+ pa(2)y + q2(z)y =0

have the same solutions on (a, b). Show that p; = p2 and ¢; = ¢2 on (a,b). HINT: Use Abel’s
Sformula.

(For this exercise you have to know about 3 x 3 determinants.) Show that if y; and y» are twice
continuously differentiable on (a, b) and the Wronskian W of {1, y2} has no zeros in (a, b) then
the equation

Yooy e
1 / / /
il =0
W Yy Y1 Ys
(VAN T4

can be written as

y" +p(2)y +q(x)y =0, (A)
where p and ¢ are continuous on (a,b) and {y1,y2} is a fundamental set of solutions of (A) on
(a,b). HINT: Expand the determinant by cofactors of its first column.

Use the method suggested by Exercise 34 to find a linear homogeneous equation for which the
given functions form a fundamental set of solutions on some interval.

(@) e®cos2x, e*sinx (b)z, €%
(©z, zlhnz (d) cos(Inz), sin(lnz)
(e) coshz, sinhz ®z2-1, 2241

Suppose p and ¢ are continuous on (a, b) and {y1, y2} is a fundamental set of solutions of

Y+ plx)y +qlx)y =0 (A)

on (a,b). Show that if y is a solution of (A) on (a, b), there’s exactly one way to choose ¢; and ¢
so that y = c1y1 + coy2 on (a, b).

Suppose p and q are continuous on (a, b) and x¢ is in (a, b). Let y; and y be the solutions of

v +p(x)y +qlx)y=0 (A)

such that
yi(ro) =1, yy(xo) =0 and ya(zo) =0, yh(wo) = 1.

(Theorem 5.1.1 implies that each of these initial value problems has a unique solution on (a, b).)
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38.

39.

40.

41.

(a) Show that {y1, y2} is linearly independent on (a, b).
(b) Show that an arbitrary solution y of (A) on (a, b) can be written as y = y(z¢)y1 + ¥ (zo)y2.
(c) Express the solution of the initial value problem

y' +p(@)y +a(z)y =0, ylwo) =ko, y'(z0)=h
as a linear combination of y; and ys.

Find solutions y; and y» of the equation 3" = 0 that satisfy the initial conditions
yi(zo) =1, yi(wo) =0 and yo(zo) =0, yy(w0) =1
Then use Exercise 37 (c¢) to write the solution of the initial value problem
y'=0, y0)=ko, ¥(0)=h

as a linear combination of y; and ys.

Let z( be an arbitrary real number. Given (Example 5.1.1) that ¢* and e~* are solutions of y/ —y =
0, find solutions y; and y2 of /' — y = 0 such that

yi(zo) =1, yi(xo) =0 and ya(wo) =0, yh(zo) = 1.
Then use Exercise 37 (c¢) to write the solution of the initial value problem
y' =y =0, ylxo) =ko, ¥'(x0)=hk

as a linear combination of y; and ys.

Let x¢ be an arbitrary real number. Given (Example 5.1.2) that coswz and sin wx are solutions of
y" + w?y = 0, find solutions of 3"/ 4+ w?y = 0 such that

yi1(zo) =1, yi(xo) =0 and ya(zo) =0, ys(xo) = 1.
Then use Exercise 37 (c¢) to write the solution of the initial value problem
y' +wly =0, ylwo) =ko, ¥(z0)=h
as a linear combination of y; and y». Use the identities

cos(A+B) = cosAcosB —sinAsinB
sin(A+ B) = sinAcosB + cos Asin B

to simplify your expressions for 1, yo, and y.

Recall from Exercise 4 that 1/(x — 1) and 1/(x + 1) are solutions of
(x? — 1)y + 4oy’ +2y =0 (A)
on (—1,1). Find solutions of (A) such that
»(0)=1, 24(0)=0 and y5(0) =0, y5(0) = L.
Then use Exercise 37 (c¢) to write the solution of initial value problem
(® = 1)y +4day +2y =0, y(0) =ko, ¥ (0)=h

as a linear combination of y; and ys.



42,

43.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)
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Verify that y; = 22 and 1y = 23 satisfy
2%y —dxy +6y=0 (A)

on (—oo,00) and that {y1,y2} is a fundamental set of solutions of (A) on (—o0,0) and
(0, 00).
Let a1, as, b1, and by be constants. Show that

B a1x? 4+ arx®, x>0,
biz? +box®, <0

is a solution of (A) on (—oco, 00) if and only if a; = b;. From this, justify the statement that
y is a solution of (A) on (—o0, 0c0) if and only if

B c1x? 4+ a3, x>0,
Y= ca® + 32, 2 <0,

where c1, c2, and c3 are arbitrary constants.
For what values of & and k; does the initial value problem

nyN - 4:Cy/ + 69 = O; y(o) = k05 y/(o) = kl

have a solution? What are the solutions?
Show that if zg # 0 and ko, k are arbitrary constants, the initial value problem

a?y" —dxy +6y =0, ylzo) =ko, y'(z0) =k (B)
has infinitely many solutions on (—o0o, co). On what interval does (B) have a unique solution?
Verify that y; = x and yo = 2 satisfy

2%y —2xy +2y =0 (A)

on (—o0,00) and that {y1,y2} is a fundamental set of solutions of (A) on (—o0,0) and
(0, 00).
Let a1, as, b1, and by be constants. Show that

| ez + asx?, x>0,
y= bz + bax?, <0

is a solution of (A) on (—o00, 00) if and only if a; = b and as = by. From this, justify the
statement that the general solution of (A) on (—o0,00)isy = c1z + cox?, where ¢; and co
are arbitrary constants.

For what values of & and k; does the initial value problem
oy’ =2y +2y=0, y(0)=ko, ¥(0)="F

have a solution? What are the solutions?
Show that if xg # 0 and ko, k are arbitrary constants then the initial value problem

2y’ — 2zy + 2y =0, y(zo) = ko, ¥ (z0) = k1

has a unique solution on (—oco, 00).
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44. (a) Verify that y; = 22 and yo = 2* satisfy
2%y — 6xy’ + 12y =0 (A)
on (—o0,00), and that {y1,y2} is a fundamental set of solutions of (A) on (—o0,0) and
(0, 00).
(b) Show that y is a solution of (A) on (—o0, co) if and only if

B a1z’ + agzt, >0,
Tl biz® +bozt, <0,

where a1, az, b1, and bs are arbitrary constants.
(¢) For what values of ky and k; does the initial value problem

2%y —6xy’ +12y =0, y(0) =ko, ¥ (0) =k,

have a solution? What are the solutions?
(d) Show thatif xg # 0 and ko, k1 are arbitrary constants then the initial value problem

2y —6xy +12y =0, ylzo) =ko, Y (20) =k (B)

has infinitely many solutions on (—oo, o). On what interval does (B) have a unique solution?

5.2 CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS

If a, b, and c are real constants and a # 0, then
ay” + by +cy = F(z)

is said to be a constant coefficient equation. In this section we consider the homogeneous constant coef-
ficient equation
ay” + by + cy = 0. (5.2.1)

As we’ll see, all solutions of (5.2.1) are defined on (—o0, o). This being the case, we’ll omit references
to the interval on which solutions are defined, or on which a given set of solutions is a fundamental set,
etc., since the interval will always be (—oco, 00).

The key to solving (5.2.1) is that if y = €"* where r is a constant then the left side of (5.2.1) is a

multiple of e™®; thus, if y = €™ then ¢ = re”™® and y"/ = r2e™, so

ay’ +by + cy = ar’e”™ +bre’™ 4 ce”™ = (ar® 4+ br + c)e’”. (5.2.2)
The quadratic polynomial
p(r) =ar® +br+c

is the characteristic polynomial of (5.2.1), and p(r) = 0 is the characteristic equation. From (5.2.2) we
can see that y = e is a solution of (5.2.1) if and only if p(r) = 0.
The roots of the characteristic equation are given by the quadratic formula

_ —b=£ Vb? —4ac
o 2a '

r

(5.2.3)

We consider three cases:
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CASE 1. b? — 4ac > 0, so the characteristic equation has two distinct real roots.
CASE 2. b? — 4ac = 0, so the characteristic equation has a repeated real root.
CASE 3. b? — 4ac < 0, so the characteristic equation has complex roots.

In each case we’ll start with an example.

Case 1: Distinct Real Roots

Example 5.2.1
(a) Find the general solution of
y" +6y +5y =0. (5.2.4)
(b) Solve the initial value problem
y' +6y +5y=0, y0)=3,y(0)=—1. (5.2.5)

SOLUTION(a) The characteristic polynomial of (5.2.4) is

p(r)=r>+6r+5=(r+1)(r+5).

Since p(—1) = p(=5) = 0, y1 = e~ and yo = e~>* are solutions of (5.2.4). Since y2/y1 = e ** is

nonconstant, 5.1.6 implies that the general solution of (5.2.4) is

y=cre " +coe %, (5.2.6)

SOLUTION(b) We must determine c¢; and ¢y in (5.2.6) so that y satisfies the initial conditions in (5.2.5).
Differentiating (5.2.6) yields

Y = —cie ™

— Bege %, (5.2.7)
Imposing the initial conditions y(0) = 3, ¥/(0) = —1 in (5.2.6) and (5.2.7) yields

c1+ ¢ = 3
—C1 — 502 = -1

The solution of this system is ¢; = 7/2, co = —1/2. Therefore the solution of (5.2.5) is

Figure 5.2.1 is a graph of this solution.

If the characteristic equation has arbitrary distinct real roots r; and ro, then y; = €% and yo = €"2”
are solutions of ay’ + by’ + cy = 0. Since o /y1 = e("2~")% is nonconstant, Theorem 5.1.6 implies that
{y1, y2} is a fundamental set of solutions of ay’”” + by’ + cy = 0.
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1 2 3 4 5
: —x 1 —5x
Figure 52.1y = —e™* — 56
Case 2: A Repeated Real Root
Example 5.2.2
(a) Find the general solution of
y" + 6y +9y = 0. (5.2.8)

(b) Solve the initial value problem

y' +6y +9y =0, y(0)=3,y(0)=-1. (5.2.9)

SOLUTION(a) The characteristic polynomial of (5.2.8) is

p(r) =724+ 6r+9=(r+3)%

so the characteristic equation has the repeated real root 7y = —3. Therefore y; = €37 is a solution

of (5.2.8). Since the characteristic equation has no other roots, (5.2.8) has no other solutions of the
form e™®. We look for solutions of the form y = uy; = we 3%, where u is a function that we’ll now
determine. (This should remind you of the method of variation of parameters used in Section 2.1 to
solve the nonhomogeneous equation 3y + p(x)y = f(z), given a solution y; of the complementary
equation y' + p(z)y = 0. It’s also a special case of a method called reduction of order that we’ll study
in Section 5.6. For other ways to obtain a second solution of (5.2.8) that’s not a multiple of ¢~3%, see
Exercises 5.1.9, 5.1.12, and 33.
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If y = ue=3%, then

Y =u'e 3" — 3ue

—3x and y// _ u//ef?mc _ 6u/€73m 4 guef?m,
SO

' +6y +9y = e [(u — 6u 4 9u) + 6(u — 3u) + 9u]
= W —(6—6)u +(9— 18 +9)u] = ue ",

Therefore y = ue™3% is a solution of (5.2.8) if and only if /" = 0, which is equivalent to u = ¢; + ca,
where c¢; and ¢, are constants. Therefore any function of the form
y=e3(c; + cox) (5.2.10)

is a solution of (5.2.8). Letting ¢c; = 1 and c3 = 0 yields the solution y; = e~3% that we already knew.
Letting ¢c; = 0 and ¢y = 1 yields the second solution y3 = xe 3. Since y2/y1 = x is nonconstant, 5.1.6
implies that {y1, y=} is fundamental set of solutions of (5.2.8), and (5.2.10) is the general solution.

SoLUTION(b) Differentiating (5.2.10) yields
Y = =3¢ % (cy + cox) + coe 3", (5.2.11)

Imposing the initial conditions (0) = 3, y'(0) = —1 in (5.2.10) and (5.2.11) yields ¢; = 3 and —3¢; +
co = —1, so ¢y = 8. Therefore the solution of (5.2.9) is

y=e 2"(3 4+ 82).

Figure 5.2.2 is a graph of this solution.

Y
<

Figure 5.2.2 y = ¢ 73%(3 + 8x)
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If the characteristic equation of ay”’ + by’ + cy = 0 has an arbitrary repeated root r1, the characteristic
polynomial must be
p(r) =a(r —r)? = a(r® — 2ryr + ).

Therefore
ar? +br + ¢ = ar® — (2ar)r + ar?,

which implies that b = —2ar; and ¢ = ar?. Therefore ay”’ + by’ + cy = 0 can be written as a(y” —
271y’ + 1r2y) = 0. Since a # 0 this equation has the same solutions as

Y —2ry 4+ iy =0. (5.2.12)

Since p(r1) = 0, ty; = €% is a solution of ay” + by’ + cy = 0, and therefore of (5.2.12). Proceeding
as in Example 5.2.2, we look for other solutions of (5.2.12) of the form y = ue"*; then

y =u'e™” +rue™® and ¢y’ =u"e"? +2ru' e + T%ue”x,
)
' =2ry +riy = €7 [(u” +2r0 + r3u) — 2r (W + riu) + T%u]
= " [u + (2r = 2r)u + (r] = 2r} + r)u] = o

Therefore y = ue™ is a solution of (5.2.12) if and only if u” = 0, which is equivalent to u = ¢; + cox,
where c¢; and ¢, are constants. Hence, any function of the form

y=e"(c1 + ) (5.2.13)

is a solution of (5.2.12). Letting ¢c; = 1 and cy = 0 here yields the solution y; = € ” that we already
knew. Letting ¢; = 0 and co = 1 yields the second solution y, = xe™®. Since y2/y; = x is noncon-
stant, 5.1.6 implies that {y1, y-} is a fundamental set of solutions of (5.2.12), and (5.2.13) is the general
solution.

Case 3: Complex Conjugate Roots

Example 5.2.3
(a) Find the general solution of
y' +4y +13y = 0. (5.2.14)
(b) Solve the initial value problem
Y’ +4y +13y =0, y(0) =2, y'(0)=-3. (5.2.15)

SOLUTION(a) The characteristic polynomial of (5.2.14) is
p(r)=r4+4r+13=r>+4r4+4+9=(r+2)*+9.

The roots of the characteristic equation are r; = —2 4 37 and 7o = —2 — 3¢. By analogy with Case 1, it’s
reasonable to expect that e(=2+3)% and (=237 are solutions of (5.2.14). This is true (see Exercise 34);
however, there are difficulties here, since you are probably not familiar with exponential functions with
complex arguments, and even if you are, it’s inconvenient to work with them, since they are complex—
valued. We’ll take a simpler approach, which we motivate as follows: the exponential notation suggests

that
6(72+31)x — 22531 gnd 6(72731)x — 2T 3ix

3
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so even though we haven’t defined €3 and e~3%*, it’s reasonable to expect that every linear combination
of e(=2+30)7 and e(—2-3) can be written as y = ue 2%, where u depends upon x. To determine u, we
note that if y = ue =27 then

y/ — u/€72x _ 2’[1,672&0 and y// — u//€72x _ 4’[1,/6721‘ 4 4’[1,6721‘,
$O
' +4y +13y = e (v — 4 +4u) + 4(u — 2u) + 13u]
= e — (4 -4+ (4 -8+ 13)u] = e 2 (u" + u).
—2x

Therefore y = ue is a solution of (5.2.14) if and only if

'+ 9u = 0.
From Example 5.1.2, the general solution of this equation is
u = ¢1 co8 3x + ¢ sin 3x.
Therefore any function of the form

y = e 2(c1 cos 3x + ¢y sin 3x) (5.2.16)
is a solution of (5.2.14). Letting ¢; = 1 and cp = 0 yields the solution ; = e~2% cos 3z. Letting ¢; = 0
and co = 1 yields the second solution y, = e~2" sin 3z. Since y2/y1 = tan 3z is nonconstant, 5.1.6
implies that {y;, y=} is a fundamental set of solutions of (5.2.14), and (5.2.16) is the general solution.

SoLuTION(b) Imposing the condition y(0) = 2 in (5.2.16) shows that ¢; = 2. Differentiating (5.2.16)
yields
Y = —2e **(cy cos 3x + cosin 3x) + 3”2 (—cy sin 3z + ¢z cos 3z),

and imposing the initial condition 3’ (0) = —3 here yields —3 = —2¢; + 3co = —4 4 3¢2, 80 2 = 1/3.
Therefore the solution of (5.2.15) is

1
y=e **(2cos 3z + 3 sin 3x).

Figure 5.2.3 is a graph of this function. [ ]
Now suppose the characteristic equation of ay” + by’ + cy = 0 has arbitrary complex roots; thus,
b? — 4dac < 0 and, from (5.2.3), the roots are

_ —b+ividac — b2 —b —iv4ac — b2

L A
which we rewrite as
rr=Atiw, Tro=A\—iw, 5.2.17)

with

b vdac — b2

22 ¥ 2a

Don’t memorize these formulas. Just remember that 71 and ro are of the form (5.2.17), where ) is an
arbitrary real number and w is positive; A and w are the real and imaginary parts, respectively, of ry.
Similarly, A and —w are the real and imaginary parts of ro. We say that 1 and ro are complex conjugates,
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1
Figure 5.2.3 y = ¢ **(2cos 3z + 3 sin 3z)

which means that they have the same real part and their imaginary parts have the same absolute values,
but opposite signs.

As in Example 5.2.3, it’s reasonable to to expect that the solutions of ay” + by’ + cy = 0 are linear
combinations of e(*+)* and e(A~w)% - Again, the exponential notation suggests that

e()\Jriw)x _ 6)\&0 W

e and e()\fiw)x _ 6)\&0 —iwz

€ )

so even though we haven’t defined e** and e ~*“®, it’s reasonable to expect that every linear combination
of €Az and e(A =) can be written as y = ue®, where u depends upon x. To determine u we first
observe that since r; = A + iw and 79 = A\ — iw are the roots of the characteristic equation, p must be of
the form
p(r) = a(r—r)(r—ra)

= a(r—A—iw)(r —A+iw)

= al(r—N*+uw?

= a(r? —2x\r + X2 +w?).

Therefore ay”’ + by’ 4+ cy = 0 can be written as
aly’ =22/ + (N +wy] =0.
Since a # 0 this equation has the same solutions as
Y =20 4+ (A% +wy =0. (5.2.18)
To determine u we note that if y = ue*® then

y/ _ u/e)\x + )\ue)\x and y// _ u//e)\x + 2)\’&/6)\1‘ + )\211,6)\1:.
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Substituting these expressions into (5.2.18) and dropping the common factor e*? yields
(u” + 20 + Nu) — 20 (v 4 M) + (A 4 w?)u = 0,

which simplifies to
v+ w?u=0.
From Example 5.1.2, the general solution of this equation is
U = €1 COSWT + Co Sinwe.
Therefore any function of the form
Az (

y = €7 (c1 coswx + ¢o sinwx) (5.2.19)

is a solution of (5.2.18). Letting ¢c; = 1 and co = 0 here yields the solution y; = e** coswx. Letting
c1 = 0 and ¢ = 1 yields a second solution y» = e* sinwz. Since y2/y1 = tanwz is nonconstant,
so Theorem 5.1.6 implies that {y;,y2} is a fundamental set of solutions of (5.2.18), and (5.2.19) is the
general solution.

Summary

The next theorem summarizes the results of this section.
Theorem 5.2.1 Let p(r) = ar? + br + c be the characteristic polynomial of
ay” + by + cy = 0. (5.2.20)

Then:
(@) Ifp(r) = 0 has distinct real roots 1 and ro, then the general solution of (5.2.20) is

y=c1e™" + coe™”.
(b) Ifp(r) = 0 has a repeated root r1, then the general solution of (5.2.20) is
7’1%(

y=¢€""(c1 + cox).

(¢) Ifp(r) = 0 has complex conjugate roots r1 = A + iw and ro = \ — iw (where w > 0), then the
general solution of (5.2.20) is

y = e (¢ coswz + cpsinwz).

5.2 Exercises

In Exercises 1-12 find the general solution.

1. ¢ +5y —6y=0 2. ' —4y +5y=0
3. ¥y +8) +Ty=0 4. o' —4y +4y=0

5. ¥/ +2y +10y=0 6. y'+6y +10y=0
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7. y' =8y +16y =0 8. ¥ +y =0
9. ¥ -2y +3y=0 10. o+ 6y + 13y =0
1. 4y" +4y +10y =0 12. 10y -3y —y=0

In Exercises 13—17 solve the initial value problem.

13. "+ 14y +50y =0, y(0)=2, ¢'(0)=-17
4. 6y —y —y=0, y(0)=10, ¥ (0)=0
15. 6y +y —y=0, y0)=-1, ¢ (0)=3
13 23
16. 4y — 4y — 3y = =2 o)==
6. 4y Yy =3y =0, y(0) o Y (0) 54
5
17. 4y" =12y’ + 9y =0, y(0)=3, ¥ (0) =3

In Exercises 18-21 solve the initial value problem and graph the solution.
18. Y + Ty +12y =0, y(0)=—-1, 3 (0)=0
19. Y =6y +9y=0, y(0)=0, 3 (0)=2
20. 36y — 12y +y =0, y0)=3, ' (0)=
21. Y +4y +10y =0, y(0) =3, y(0)=-2

22. (a) Suppose y is a solution of the constant coefficient homogeneous equation

N | Ot

ay” +by + cy = 0.
Let z(z) = y(z — o), where z is an arbitrary real number. Show that

az”" + b2 +cz=0.

(b)

(c)

Let z1(x) = y1(x — x9) and 22(x) = ya(x — x0), where {y1,y2} is a fundamental set of
solutions of (A). Show that {21, 22} is also a fundamental set of solutions of (A).
The statement of Theorem 5.2.1 is convenient for solving an initial value problem

ay’ +by +cy =0, y(0)=ko, 3(0)=ki,
where the initial conditions are imposed at xo = 0. However, if the initial value problem is
ay” +by’ +cy=0, y(zo)="ko, ¥ (z0)= ki, (B)
where x( # 0, then determining the constants in
A

y=c1e™" +c2e™",  y=¢€""(c1 + cax), ory = e *(c¢1 coswz + co sinw)

(whichever is applicable) is more complicated. Use (b) to restate Theorem 5.2.1 in a form
more convenient for solving (B).

In Exercises 23-28 use a method suggested by Exercise 22 to solve the initial value problem.

23.

y'+3y +2y=0, y(1)=-1, y(1)=4



24.
25.

26.

27.
28.
29.

30.

31.

32.

33.
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1

y' =6y —Ty=0, y2)=-3, Yy(2)=-5

y' =14y +49y =0, y(1)=2, y(1)=11
14

W'y +y=0, y@2)=2 Y2 =-+

W' +dy=0, ylr/4)=2, y(r/4)=-2
y'+3y=0, y(r/3)=2 y(r/3)=-1
Prove: If the characteristic equation of

ay” +by +cy=0 (A)

has a repeated negative root or two roots with negative real parts, then every solution of (A) ap-
proaches zero as x — o0.

Suppose the characteristic polynomial of ay” + by’ + cy = 0 has distinct real roots r1 and 2. Use
a method suggested by Exercise 22 to find a formula for the solution of

ay’ +by + ey =0, ylwo)=ko, ¥ (x0)= k1.

Suppose the characteristic polynomial of ay” + by’ + cy = 0 has a repeated real root r1. Use a
method suggested by Exercise 22 to find a formula for the solution of

ay’ +by +cy=0, y(zo) =ko, y(x0)=ki.

Suppose the characteristic polynomial of ay” + by’ + cy = 0 has complex conjugate roots \ 4 iw.
Use a method suggested by Exercise 22 to find a formula for the solution of

ay’ +by’ +cy=0, ylo) =ko, ¥ (xo)= k1
Suppose the characteristic equation of
ay” +by +cy=0 (A)

has a repeated real root ;. Temporarily, think of €"* as a function of two real variables x and 7.
(a) Show that
0? 0
= (") 4+ p—
o2 (™) + Oz

(b) Differentiate (B) with respect to r to obtain

(€) + ce™ = a(r —ry)%e™. (B)

a(% (;—1@”)) + b(% ((%(e”)) +e(xe™) =24 (r—ri)z]a(r —r)e™.  (C)

(¢) Reverse the orders of the partial differentiations in the first two terms on the left side of (C)
to obtain

32

CL@(SC@TI) —+ bﬂ(:cerx) + c(xerx) — [2 + (T — Tl)x]a(T _ Tl)erx' (D)

oxr

(d) Setr =rpin(B)and (D) to see that y; = € and y, = xe"'* are solutions of (A)
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34. Incalculus you learned that e*, cos u, and sin u can be represented by the infinite series

“ = u” w o u? oud u”
e :Z%H:”ﬂ*ﬁ*ﬁ*'”*m*'” (A)
e nu2n u? ut nu2n
COS”:;)(_U 2 R BT A c I (B)
and
& u2n+1 ’LL3 ’LL5 u2n+l
inu = ) (e — 4. C
s ;( A TR e o (©)

for all real values of u. Even though you have previously considered (A) only for real values of u,
we can set u = 16, where 6 is real, to obtain

o0

n!
n=0

Given the proper background in the theory of infinite series with complex terms, it can be shown
that the series in (D) converges for all real 6.

(a) Recalling that 2 = —1, write enough terms of the sequence {i"} to convince yourself that
the sequence is repetitive:

1,4,—1,—4,1,4, -1, —4,1,¢,—1,—4, 1,4, —1, =4, - - .
Use this to group the terms in (D) as
- 62 04 6 6
1/0 P _— _— DR ) _—— —_— DEEE
e _<1—2+4+ >+z(9 TR )
& g2n & g2n+1
= )" —+i 1)t
D0 G Y Gy

n=0
By comparing this result with (B) and (C), conclude that

610

= cosf +isinb. (E)

This is Euler’s identity.
(b) Starting from o
e91¢%2 = (cos f) 4 isin6;)(cos By + isin fy),

collect the real part (the terms not multiplied by ¢) and the imaginary part (the terms multi-
plied by 7) on the right, and use the trigonometric identities

cos(f1 +62) = cosb cosfy —sin b sin by

sin(fy + 62) = sinf; cos By + cos by sin by

to verify that
e’i(91+92) — eiel e’iez’

as you would expect from the use of the exponential notation .


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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(¢) If o and S are real numbers, define
TP = %6 = ¢%(cos 3 + isin 3). (F)
Show that if z; = a3 + i1 and zo = aip + i3> then

ez1+Z2 — eFle?2,

(d) Let a, b, and c be real numbers, with a # 0. Let z = u + iv where u and v are real-valued
functions of z. Then we say that z is a solution of

ay” +by +cy=0 (G)

if w and v are both solutions of (G). Use Theorem 5.2.1(c) to verify that if the characteristic
equation of (G) has complex conjugate roots A % iw then z; = eA ) and 2y = P —iw)®
are both solutions of (G).

5.3 NONHOMOGENEOUS LINEAR EQUATIONS

We’ll now consider the nonhomogeneous linear second order equation

v +p()y +qlx)y = f(x), (5.3.1)

where the forcing function f isn’t identically zero. The next theorem, an extension of Theorem 5.1.1,
gives sufficient conditions for existence and uniqueness of solutions of initial value problems for (5.3.1).
We omit the proof, which is beyond the scope of this book.

Theorem 5.3.1 Suppose p, ,q and f are continuous on an open interval (a,b), let xo be any point in
(a,b), and let ko and ky be arbitrary real numbers. Then the initial value problem

v+ @)y +a(@)y = f(z), ylxo) = ko, ¥ (o) = ka
has a unique solution on (a, b).

To find the general solution of (5.3.1) on an interval (a,b) where p, ¢, and f are continuous, it’s
necessary to find the general solution of the associated homogeneous equation

Y + @)y +q(z)y =0 (5.3.2)

on (a, b). We call (5.3.2) the complementary equation for (5.3.1).

The next theorem shows how to find the general solution of (5.3.1) if we know one solution y,, of
(5.3.1) and a fundamental set of solutions of (5.3.2). We call y,, a particular solution of (5.3.1); it can be
any solution that we can find, one way or another.

Theorem 5.3.2 Suppose p, q, and f are continuous on (a,b). Let y, be a particular solution of

v + @)y +a(z)y = f(x) (5.3.3)
on (a,b), and let {y1,y2} be a fundamental set of solutions of the complementary equation
v +p@)y +q(z)y =0 (5.3.4)

on (a,b). Then y is a solution of (5.3.3) on (a, b) if and only if
Y =Yp +c1y1 + cayz, (5.3.5)

where c1 and co are constants.
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Proof We first show that y in (5.3.5) is a solution of (5.3.3) for any choice of the constants ¢; and cs.
Differentiating (5.3.5) twice yields
Y =y, +cay +eyy and Y’ =yl 4 iy 4 cayy,

SO

Y +p@)y +ql@)y = (v, + vy +coyy) +p(x) (Y, + 1y + cays)
+q(7)(yp + c1y1 + c2y2)

(yp +p(@)y, + q(2)yp) + a1 (v +p(@)yh +q(2)y1)
+e2(ys + p(2)ys + q(2)y2)

= f4+c-04+c-0=Ff,

since y,, satisfies (5.3.3) and y; and y» satisfy (5.3.4).

Now we’ll show that every solution of (5.3.3) has the form (5.3.5) for some choice of the constants c;
and cy. Suppose y is a solution of (5.3.3). We’ll show that iy — ¥, is a solution of (5.3.4), and therefore of
the form y — y, = c1y1 + coy2, which implies (5.3.5). To see this, we compute

(=) +p@)y—y) +a@)y—y) = " —y,)+p@)¥ —vy,)
+q(2)(y — yp)
= (' +p@)y +q(2)y)
—(yp + (@)Y, +a(x)yp)
= flz) - flz) =0,

since y and y,, both satisfy (5.3.3). [ ]
We say that (5.3.5) is the general solution of (5.3.3) on (a, b).
If Py, P1, and F are continuous and P, has no zeros on (a, b), then Theorem 5.3.2 implies that the

general solution of
Py(z)y" + Pi(x)y + Pe(x)y = F(x) (5.3.6)

on (a,b) is y = yp + c1y1 + c2y2, Where y, is a particular solution of (5.3.6) on (a, b) and {y1,y} is a
fundamental set of solutions of

Po(z)y" + Pi(z)y’ + Pa(x)y =0
on (a, b). To see this, we rewrite (5.3.6) as

Py(x) Py(x) Y= F(x)
Po(z) Po(z)”  Po(x)

and apply Theorem 5.3.2 withp = P, /Py, ¢ = P>/ Py, and f = F/P,.

To avoid awkward wording in examples and exercises, we won’t specify the interval (a, b) when we ask
for the general solution of a specific linear second order equation, or for a fundamental set of solutions of
a homogeneous linear second order equation. Let’s agree that this always means that we want the general
solution (or a fundamental set of solutions, as the case may be) on every open interval on which p, ¢, and
f are continuous if the equation is of the form (5.3.3), or on which Py, P;, P», and F are continuous and
Py has no zeros, if the equation is of the form (5.3.6). We leave it to you to identify these intervals in
specific examples and exercises.

For completeness, we point out that if Py, P;, P, and F are all continuous on an open interval (a, b),
but Py does have a zero in (a, b), then (5.3.6) may fail to have a general solution on (a, b) in the sense
just defined. Exercises 42—44 illustrate this point for a homogeneous equation.

In this section we to limit ourselves to applications of Theorem 5.3.2 where we can guess at the form
of the particular solution.

y// _"_ y/ _"_
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Example 5.3.1

(a) Find the general solution of
Yy +y=1 5.3.7)

(b) Solve the initial value problem

Y +y=1, y0)=2, 3 (0)=T. (5.3.8)

SoLUTION(a) We can apply Theorem 5.3.2 with (a, b) = (—o0, 00), since the functionsp =0, ¢ = 1,
and f = 11in(5.3.7) are continuous on (—o0, c0). By inspection we see that y,, = 1is a particular solution
of (5.3.7). Since y; = cosx and y» = sinz form a fundamental set of solutions of the complementary
equation y” + y = 0, the general solution of (5.3.7) is

y=14cicosx+ cosinz. (5.3.9)
SoLuTION(b) Imposing the initial condition y(0) = 2 in (5.3.9) yields 2 = 1 + ¢4, so ¢; = 1. Differen-

tiating (5.3.9) yields
Yy = —cisinz 4 ¢ cos .

Imposing the initial condition 3’ (0) = 7 here yields co = 7, so the solution of (5.3.8) is
y=1+4cosz+ 7sinx.

Figure 5.3.1 is a graph of this function.

Example 5.3.2
(a) Find the general solution of
' =2y +y=-3—2+2> (5.3.10)
(b) Solve the initial value problem
y' =2 +y=-3—2+2% y0)=-2, ¢(0)=1 (5.3.11)

SOLUTION(a) The characteristic polynomial of the complementary equation
y' =2y +y=0

isr2—2r+1 = (r — 1)2, so y1 = €” and yo = xe” form a fundamental set of solutions of the
complementary equation. To guess a form for a particular solution of (5.3.10), we note that substituting a
second degree polynomial y, = A + Bx + Cz? into the left side of (5.3.10) will produce another second
degree polynomial with coefficients that depend upon A, B, and C'. The trick is to choose A, B, and C
so the polynomials on the two sides of (5.3.10) have the same coefficients; thus, if

Yyp = A+ Br + Cx? then y;:B—l-ZCx and y]’o’:2C,
)

Yy — 2y, +yp = 2C—2(B+2Cz)+ (A+ Bz +Cx?)
= (20-2B+ A) + (—4C + B)x + C2? = -3 —x + 2°.
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Figure 5.3.1 y =14 cosxz + 7sinx

Equating coefficients of like powers of = on the two sides of the last equality yields

c = 1
B—4C = -1
A-2B+2C = -3,

s0C=1,B=-1+4C=3,and A = —3 —2C + 2B = 1. Therefore y, = 1+ 3z + z? is a particular
solution of (5.3.10) and Theorem 5.3.2 implies that

y =143z + 2%+ e(c1 + cox) (5.3.12)

is the general solution of (5.3.10).

SoLuTION(b) Imposing the initial condition y(0) = —2 in (5.3.12) yields —2 = 14 ¢1, s0 ¢; = —3.
Differentiating (5.3.12) yields

Yy =3+ 2z + e"(c1 + caw) + c2e”,

and imposing the initial condition ¢’ (0) = 1 here yields 1 = 3 + ¢; + ¢, so co = 1. Therefore the
solution of (5.3.11) is
y=1+3z+2%—e"(3—2).

Figure 5.3.2 is a graph of this solution.
Example 5.3.3 Find the general solution of

22y + xy — 4y = 22* (5.3.13)
on (—o0,0) and (0, c0).
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/er( 1.0 15 2.0

Figure 532 y =1+ 3z + 2 — e (3 — 1)

Solution In Example 5.1.3, we verified that y; = 22 and y» = 1/x? form a fundamental set of solutions

of the complementary equation

22y +ay —4y =0

on (—oc,0) and (0, 00). To find a particular solution of (5.3.13), we note that if y, = Az*, where A is a
constant then both sides of (5.3.13) will be constant multiples of 2 and we may be able to choose A so
the two sides are equal. This is true in this example, since if y, = Ax* then

3:2yg + zy, — 4y, = 22(1242%) + 2(4A2%) — 4Az* = 1242* = 22*

if A = 1/6; therefore, y,, = 2% /6 is a particular solution of (5.3.13) on (—00, 00). Theorem 5.3.2 implies
that the general solution of (5.3.13) on (—oc0, 0) and (0, c©) is

4
X 2 (6]
=—+ + —-
V=g 7T T2
The Principle of Superposition

The next theorem enables us to break a nonhomogeous equation into simpler parts, find a particular
solution for each part, and then combine their solutions to obtain a particular solution of the original
problem.

Theorem 5.3.3 [The Principle of Superposition] Suppose yy, is a particular solution of
v +p@)y +a(@)y = fi(z)
on (a,b) and y,, is a particular solution of

Y +p()y + q(x)y = f2(2)
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on (a,b). Then
Yp = Yp1 T Yps
is a particular solution of
v+ @)y +a(@)y = fi(x) + fa(2)
on (a,b).

Proof Ify, = yp, + yp, then
Yp + 2@y, + 4@y = (Ypy T Ypo)" + (@) Wpr + Yp) + A(2) (Ypy + Yps)

(v, + Py, + a(x)yp,) + (U, + 2(@)1), + a(@)Yp,)
fi(@) + fa(z). W

It’s easy to generalize Theorem 5.3.3 to the equation

Y+ pla)y +qx)y = f(x) (5.3.14)

where
F=h+l++ fi
thus, if y,,, is a particular solution of
y' @)y +a(@)y = fi(z)

on (a,b) fori = 1,2, ..., k, then y,, + yp, + -+ + yp, is a particular solution of (5.3.14) on (a, b).
Moreover, by a proof similar to the proof of Theorem 5.3.3 we can formulate the principle of superposition
in terms of a linear equation written in the form

Po(z)y" + Pi(z)y + Pa(a)y = F(z)
(Exercise 39); that is, if 4, is a particular solution of

Po(z)y" + Pi(z)y’ + Pa(2)y = Fi(z)
on (a, b) and yp, is a particular solution of

Po(z)y" + Pi(z)y’ + Pa(2)y = Fa(z)
on (a, b), then yp,, + yp, is a solution of

Po(@)y" + Pi(2)y’ + Pa(z)y = Fi(2) + Fa(z)

on (a,b).
Example 5.3.4 The function y,, = x*/15 is a particular solution of

/!

22y + day + 2y = 22! (5.3.15)
on (—o0, 00) and y,, = 2%/3 is a particular solution of

22y + dxy 4 2y = 42° (5.3.16)
on (—o00, 00). Use the principle of superposition to find a particular solution of

22y + dxy 4 2y = 22t + 422 (5.3.17)

on (—o00, 00).
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Solution The right side F'(x) = 22* + 422 in (5.3.17) is the sum of the right sides
Fi(z) =2z* and Fy(z) = 42>

in (5.3.15) and (5.3.16). Therefore the principle of superposition implies that

zt 2?

yp:yp1+ypzzﬁ+§

is a particular solution of (5.3.17).

5.3 Exercises

227

In Exercises 1-6 find a particular solution by the method used in Example 5.3.2. Then find the general

solution and, where indicated, solve the initial value problem and graph the solution.

y" 4+ 5y — 6y = 22 + 18z — 1822

y' —4y +5y =1+ 5z

y' 4+ 8y +Ty=—8 —x + 24z + 723

Yy — 4y + 4y =2+ 8z — 42

Y’ + 2y + 10y = 4+ 26z + 622 + 1023, y(0) =2, ' (0)=9
Y’ + 6y + 10y = 22+ 20z, y(0) =2, /(0) = —2

Show that the method used in Example 5.3.2 won’t yield a particular solution of

N, W=

y//+y/:1+2x+x2;

(A)

that is, (A) does’nt have a particular solution of the form y, = A+ Bx + Cx?, where A, B, and

C' are constants.

In Exercises 8—13 find a particular solution by the method used in Example 5.3.3.

6 9. % —Txy + Ty = 13z/?
2,11 / —
8. x%y + Txy +8y—x

2,01 __ ! — 3 1
10. =« Yy xy +y= 2z 11. {E2y// + 5$y/ + 4y — ;

12. 2%y + 2y +y = 102173 13.  2%y" —3zy + 13y = 224

14. Show that the method suggested for finding a particular solution in Exercises 8-13 won’t yield a

particular solution of

1
2y + 3y — 3y = —;
x

that is, (A) doesn’t have a particular solution of the form y, = A/z3.

15. Prove: If a, b, ¢, a, and M are constants and M # 0 then

az?y” + bxy' + cy = Mz®

has a particular solution y, = Az® (A = constant) if and only if ac(ov — 1) + b + ¢ # 0.

(A)
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If a, b, ¢, and « are constants, then

a(e®®)" +b(e*) + ce™” = (ac® 4 ba + c)e*”.

Use this in Exercises 16-21 to find a particular solution . Then find the general solution and, where
indicated, solve the initial value problem and graph the solution.

16.
18.
19.

20.
22,

23.

y// 4 5y/ _ 6y — 663&0 17. y// _ 4y/ + 5y — 62x
Y+ 8y + Ty =10e7>*, y(0) = -2, y'(0) =10
y' 4y +dy=e", y(0)=2, y(0)=0

Y+ 2y + 10y = e*/? 21y 46y + 10y =e >

Show that the method suggested for finding a particular solution in Exercises 16-21 won’t yield a
particular solution of
Y =Ty + 12y = 5e*%; (A)

that is, (A) doesn’t have a particular solution of the form y,, = At

Prove: If o and M are constants and M # 0 then constant coefficient equation

ay// + by/ + Cy — Meam

[e %4

has a particular solution y, = Ae®* (A = constant) if and only if e** isn’t a solution of the

complementary equation.

If w is a constant, differentiating a linear combination of coswx and sinwx with respect to x yields
another linear combination of coswx and sin wz. In Exercises 24-29 use this to find a particular solution
of the equation. Then find the general solution and, where indicated, solve the initial value problem and
graph the solution.

24.
25.
26.
27.
28.

29.
30.

31.

Yy’ — 8y + 16y = 23 cosx — Tsinx
y' +y = —8cos2x + 6sin2x

Yy’ — 2y + 3y = —6cos 3z + 6sin 3z
Yy’ + 6y + 13y = 18cosx + Gsinx

Y + Ty +12y = —2cos2x + 36sin 2z, y(0) =—3, ¢ (0)=3
Y’ — 6y + 9y = 18cos 3z + 18sin3z, y(0) =2, ¢ (0)=2
Find the general solution of

Y’ 4+ wiy = M coswx + N sinwr,

where M and N are constants and w and wq are distinct positive numbers.

Show that the method suggested for finding a particular solution in Exercises 24-29 won’t yield a
particular solution of
y" +y=cosz+sinz; (A)

that is, (A) does not have a particular solution of the form y, = Acosx + Bsinx.
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32. Prove: If M, N are constants (not both zero) and w > 0, the constant coefficient equation
ay” + by + cy = M coswzx + N sinwx (A)

has a particular solution that’s a linear combination of cos wz and sin wz if and only if the left side
of (A) is not of the form a (3" +w?y), so that cos wx and sin wx are solutions of the complementary
equation.

In Exercises 33-38 refer to the cited exercises and use the principal of superposition to find a particular
solution. Then find the general solution.

33. ¢ +5y — 6y =22+ 18x — 1822 + 6e3* (See Exercises 1 and 16.)
34. " —4y +5y =1+ 5x + €2 (See Exercises 2 and 17.)
35. o +8y +7Ty=—8—x+ 24x% + 723 + 10e~2* (See Exercises 3 and 18.)
36. ' —4y +4y =2+ 8z — 42% + e* (See Exercises 4 and 19.)
37. o’ +2y + 10y = 4 + 262 + 622 + 102> + e*/? (See Exercises 5 and 20.)
38. 4+ 6y + 10y = 22 + 20z + 3% (See Exercises 6 and 21.)
39. Prove: If y,,, is a particular solution of
Po(x)y" + Pu(x)y' + Pa(x)y = Fi(x)
on (a, b) and y,, is a particular solution of
Po(z)y” + Pi(x)y + Pa(x)y = Fa(x)
on (a,b), then y, = yp, + Yp, i8 a solution of
Po(z)y" + Pi(2)y’ + Pa(2)y = Fi(z) + F2(2)
on (a,b).

40. Suppose p, ¢, and f are continuous on (a, b). Let y1, y2, and y,, be twice differentiable on (a, b),
such that y = c1y1 + cay2 + ¥ is a solution of

Y +p)y +qlx)y=f

on (a, b) for every choice of the constants c1, co. Show that y; and y» are solutions of the comple-
mentary equation on (a, b).

5.4 THE METHOD OF UNDETERMINED COEFFICIENTS I

In this section we consider the constant coefficient equation
ay” + by + cy = e**G(x), (54.1)

where « is a constant and G is a polynomial.
From Theorem 5.3.2, the general solution of (5.4.1) is y = y, + c1y1 + c2¥y2, wWhere ¥, is a particular
solution of (5.4.1) and {y1, y=} is a fundamental set of solutions of the complementary equation

ay” + by + cy = 0.

In Section 5.2 we showed how to find {y1, y2 }. In this section we’ll show how to find y,,. The procedure
that we’ll use is called the method of undetermined coefficients.
Our first example is similar to Exercises 16-21.
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Example 5.4.1 Find a particular solution of
Y =Ty + 12y = 4€**. (5.4.2)

Then find the general solution.

Solution Substitutingy,, = Ae>* for y in (5.4.2) will produce a constant multiple of Ae** on the left side
of (5.4.2), so it may be possible to choose A so that y,, is a solution of (5.4.2). Let’s try it; if y, = Ae**
then

Yy — Ty, + 12y, = 44> — 14A4e*® 4 124e*” = 24" = 4e™*

if A = 2. Therefore y, = 2" is a particular solution of (5.4.2). To find the general solution, we note
that the characteristic polynomial of the complementary equation

y' =Ty +12y =0 (5.4.3)

isp(r) = r2 —7r +12 = (r — 3)(r — 4), so {€3%, e**} is a fundamental set of solutions of (5.4.3).
Therefore the general solution of (5.4.2) is

y = 2e* 4 1% + coet®.
Example 5.4.2 Find a particular solution of
Y’ — Ty + 12y = 5ete. (5.4.4)

Then find the general solution.

Solution Fresh from our success in finding a particular solution of (5.4.2) — where we chose y, = Ae**
because the right side of (5.4.2) is a constant multiple of €2” — it may seem reasonable to try y, = Aet®
as a particular solution of (5.4.4). However, this won’t work, since we saw in Example 5.4.1 that ** is
a solution of the complementary equation (5.4.3), so substituting y, = Ae*® into the left side of (5.4.4)
produces zero on the left, no matter how we choose A. To discover a suitable form for y,,, we use the same
approach that we used in Section 5.2 to find a second solution of

ay” +by +cy=0

in the case where the characteristic equation has a repeated real root: we look for solutions of (5.4.4) in
the form y = ue*®, where u is a function to be determined. Substituting

y=ue® oy =ue*® +4ue?®, and " = u"e® + 8u/ e + 16uet” (54.5)
into (5.4.4) and canceling the common factor e*? yields
(u'" +8u 4+ 16u) — 7(u' + 4u) + 12u = 5,

or
u” +u' = 5.

By inspection we see that u, = 5x is a particular solution of this equation, so ¥, = 5zel® is a particular
solution of (5.4.4). Therefore
Yy = 5zet® 4 163" + cpe®

is the general solution.
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Example 5.4.3 Find a particular solution of

Y’ — 8y + 16y = 2¢**. (5.4.6)

Solution Since the characteristic polynomial of the complementary equation
y' — 8y + 16y =0 (5.4.7)

isp(r) =12 —8r +16 = (r — 4)%, both y; = €** and y» = xe*® are solutions of (5.4.7). Therefore
(5.4.6) does not have a solution of the form y,, = Ae*® or Yp = Axe*®. As in Example 5.4.2, we look
for solutions of (5.4.6) in the form y = ue*®, where u is a function to be determined. Substituting from
(5.4.5) into (5.4.6) and canceling the common factor et yields

(v’ + 8u’ 4+ 16u) — 8(u' + 4u) + 16u = 2,

or
u' = 2.
2

Integrating twice and taking the constants of integration to be zero shows that u, = x

solution of this equation, so ¥, = x2e® is a particular solution of (5.4.4). Therefore

is a particular

y = e*® (22 + 1 + o)

is the general solution. [ ]
The preceding examples illustrate the following facts concerning the form of a particular solution
of a constant coefficent equation
ay” + by + cy = ke®®,

where k is a nonzero constant:

(a) If e** isn’t a solution of the complementary equation
ay’ +by +cy =0, (5.4.8)

then y, = Ae®*, where A is a constant. (See Example 5.4.1).

(b) If e®” is a solution of (5.4.8) but xe** is not, then y, = Axe™*, where A is a constant. (See
Example 5.4.2.)

(c) If both e*® and xe®® are solutions of (5.4.8), then y, = Az?e®®, where A is a constant. (See
Example 5.4.3.)
See Exercise 30 for the proofs of these facts.
In all three cases you can just substitute the appropriate form for y,, and its derivatives directly into

ayg + by; + cyp = ke,
and solve for the constant A, as we did in Example 5.4.1. (See Exercises 31-33.) However, if the equation
is
ay” + by + cy = ke®*G(x),

where G is a polynomial of degree greater than zero, we recommend that you use the substitution y =
ue®® as we did in Examples 5.4.2 and 5.4.3. The equation for w will turn out to be

au” + p'(a)u’ + p(a)u = G(z), (5.4.9)
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where p(r) = ar? + br + c is the characteristic polynomial of the complementary equation and p’(r) =
2ar + b (Exercise 30); however, you shouldn’t memorize this since it’s easy to derive the equation for
u in any particular case. Note, however, that if e** is a solution of the complementary equation then
p(a) =0, so (5.4.9) reduces to

av” +p'(a)u’ = G(x),

while if both e*® and xe®® are solutions of the complementary equation then p(r) = a(r — «)? and
P’ (r) = 2a(r — @), so p(a) = p'(a)) = 0 and (5.4.9) reduces to

av” = G(x)
Example 5.4.4 Find a particular solution of
Y =3y + 2y = 37 (—1 + 2z + 2?). (5.4.10)
Solution Substituting
y = ue3x, y/ _ u/e3x + 3ue3x, and y// _ u//e3x + 6u/e3x + 9u€3x

into (5.4.10) and canceling 3% yields
(u" 4 6w’ + 9u) — 3(uv’ + 3u) +2u = —1 + 22 + 22,

or
W +3u 4 2u=—1+ 2z + 22 (5.4.11)

As in Example 2, in order to guess a form for a particular solution of (5.4.11), we note that substituting a
second degree polynomial u, = A + Bz + Cz? for w in the left side of (5.4.11) produces another second
degree polynomial with coefficients that depend upon A, B, and C'; thus,

if w,=A+Br+Cz® then wu,=B+2Cz and uj, =2C.
If w,, is to satisfy (5.4.11), we must have

uy 4 3u, 4+ 2u, = 2C+ 3(B+2Cxz)+ 2(A+ Bz + Ca?)
= (2C+3B+2A)+ (6C +2B)x 4 202% = —1 + 2z + 2°.

Equating coefficients of like powers of = on the two sides of the last equality yields

2C = 1
2B+6C = 2
2A+3B+2C = -1
Solving these equations for C, B, and A (in that order) yields C = 1/2,B = —1/2,A = —1/4.

Therefore 1
Up = —1(1 + 2z — 22%)
is a particular solution of (5.4.11), and

e3x

Yp = upe®” = _T(l + 2z — 22%)

is a particular solution of (5.4.10).
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Example 5.4.5 Find a particular solution of

Y — 4y + 3y = 37 (6 + 8z + 122%). (5.4.12)

Solution Substituting

y = ue3x, y/ _ u/e3x + 3ue3x, and y// _ u//e3x + 6u/e3x + 9u€3x

into (5.4.12) and canceling 3% yields
(u" +6u’ + 9u) — 4(u’ + 3u) + 3u = 6 + 8z + 122,

or
u” + 20’ = 6 + 8z + 1222 (5.4.13)

There’s no u term in this equation, since 3% is a solution of the complementary equation for (5.4.12).

(See Exercise 30.) Therefore (5.4.13) does not have a particular solution of the form u, = A+ Bx + Cz?
that we used successfully in Example 5.4.4, since with this choice of u,,

uy, + 2uy, = 2C + (B 4 2Cx)

can’t contain the last term (1222) on the right side of (5.4.13). Instead, let’s try up = Az + Bz? + Cz3
on the grounds that
w, = A+2Bx+3Cz? and w, =2B+6Cx

together contain all the powers of = that appear on the right side of (5.4.13).
Substituting these expressions in place of v’ and w” in (5.4.13) yields

(2B + 6Cx) + 2(A + 2Bx + 3C2?) = (2B + 2A) + (6C + 4B)z + 6C2* = 6 + 8z + 122°.

Comparing coefficients of like powers of = on the two sides of the last equality shows that u,, satisfies
(5.4.13) if

6C = 12
4B+6C = 8
2A+2B = 6.

Solving these equations successively yields C' = 2, B = —1, and A = 4. Therefore
up = o(4 — z + 227)
is a particular solution of (5.4.13), and
Yp = upe®® = 2 (4 — x + 22%)
is a particular solution of (5.4.12).

Example 5.4.6 Find a particular solution of

4y + 4y +y = e/ (=8 + 48z + 144x?). (5.4.14)
Solution Substituting
y = uefx/Q, y/ _ u/efx/Q _ %ueimﬂ, and y// _ u//efx/Q _ u/efx/Q + iuefx/Q
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into (5.4.14) and canceling e~*/2 yields

4(u”—u’+ %) +4(u’— g) fu=4u" = —8 + 48z + 14442,
or

' = =24 12z + 3622, (5.4.15)

which does not contain u or u’ because e~*/2 and ze~*/2 are both solutions of the complementary

equation. (See Exercise 30.) To obtain a particular solution of (5.4.15) we integrate twice, taking the
constants of integration to be zero; thus,

uy, = =2z + 622 +122° and  w, = —x? + 203 + 30 = 2%(—1 + 22 + 32?).

Therefore
Yp = upe /% = 2% %/2(—1 + 22 + 32?)

is a particular solution of (5.4.14).
Summary

The preceding examples illustrate the following facts concerning particular solutions of a constant coef-
ficent equation of the form
ay” + by + cy = e**G(x),

where G is a polynomial (see Exercise 30):
(a) If e** isn’t a solution of the complementary equation

ay’ +by +cy =0, (5.4.16)

then y, = e**Q(z), where () is a polynomial of the same degree as G. (See Example 5.4.4).

(b) If e*” is a solution of (5.4.16) but ze®” is not, then y, = ze**Q(x), where @ is a polynomial of
the same degree as GG. (See Example 5.4.5.)

(c) If both e** and xe** are solutions of (5.4.16), then y, = x2e*Q(x), where Q is a polynomial of
the same degree as GG. (See Example 5.4.6.)
In all three cases, you can just substitute the appropriate form for ,, and its derivatives directly into

ay, + by, + cyp = "G (),

and solve for the coefficients of the polynomial (). However, if you try this you will see that the compu-
tations are more tedious than those that you encounter by making the substitution y = ue®” and finding
a particular solution of the resulting equation for u. (See Exercises 34-36.) In Case (a) the equation for u
will be of the form

au” + p' (@) + pla)u = G(x),

with a particular solution of the form u, = Q(z), a polynomial of the same degree as G, whose coeffi-
cients can be found by the method used in Example 5.4.4. In Case (b) the equation for u will be of the
form

av” 4+ p'(a)u’ = G(z)

(no u term on the left), with a particular solution of the form u, = zQ(z), where () is a polynomial of
the same degree as G whose coefficents can be found by the method used in Example 5.4.5. In Case (c)
the equation for u will be of the form

av” = G(x)
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with a particular solution of the form u, = 2?Q(x) that can be obtained by integrating G(z)/a twice and
taking the constants of integration to be zero, as in Example 5.4.6.

Using the Principle of Superposition

The next example shows how to combine the method of undetermined coefficients and Theorem 5.3.3,
the principle of superposition.

Example 5.4.7 Find a particular solution of

Y — Ty + 12y = 4e*® + 5et2. (5.4.17)

Solution In Example 5.4.1 we found that y,, = 2¢® is a particular solution of
Y =Ty + 12y = 42",
and in Example 5.4.2 we found that y,,, = 5ze*® is a particular solution of
Y’ — Ty + 12y = 5ete.
Therefore the principle of superposition implies that v, = 2¢%% 4 51e*? is a particular solution of (5.4.17).

5.4 Exercises

In Exercises 1-14 find a particular solution.

Ly =3y +2y=e*(1+x) 2.y’ =6y + by =e (35— 8x)

3. Y/ —2y —3y=c"(—8+32) 4. ' +2y +y=e*(-T— 152+ 927)
5. o/ +dy=e"(7T—4dz+522) 6. y —y —2y=e"(9+ 2z — da?)
7.y —4y —5y=—6re”" 8. y' =3y +2y=e"(3—4x)

9. Y4y —12y=e¥(—6+T7z) 10. 2y —3y —2y = 2*(—6 + 10z)

11. " 4+2y +y=e""(2+3x) 12. " =2y +y=e"(1—6x)
13. " — 4y + 4y = **(1 — 3z + 62?)
14. 9y +6y +y=e*/3(2 — 4z + 42?)

In Exercises 15—19 find the general solution.

15. o' =3y +2y=e>(1+2) 16. y" — 6y +8y =e"(11 - 62)

17. ' +6y +9y=e**(3—5z) 18 ¢"+2) —3y = —16ze”
19. o' —2y +y=e%(2—122)
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In Exercises 20-23 solve the initial value problem and plot the solution.

20.
21.
22,
23.

24.
25.
26.
27.
28.
29.
30.

C/G|y" —4y =5y =9¢*(1+x), y(0)=0, v
(CIG|y" +3y — 4y = e (T+6x), y(0) =2

y'+4y +3y=—e""(2+8z), y(0)=1, ¥ (0)=2
y' =3y —10y="Te 2", y(0)=1, y'(0)=-17

In Exercises 24-29 use the principle of superposition to find a particular solution.

Yy +y +y=xze+e*(14 22)
Yy =Ty +12y = —e® (17 — 427) — &3

y// _

8y + 16y = 6xe*® + 2 + 162 + 1622

Y =3y +2y = —e2®(3+ 4x) — e®

y// _

2y + 2y =e®(1+ ) + e %(2 — 8x + 5z?)

Yy =e (2 — 4z + 222%) + 3*(8 — 120 — 102?)

(a)

(b)

(c)

(d)

Prove that y is a solution of the constant coefficient equation
ay’ +by' +cy =e*G(x) (A)
if and only if y = ue®”, where u satisfies
au” + pl (@)’ + pla)u = G(x) (B)
and p(r) = ar? + br + c is the characteristic polynomial of the complementary equation
ay’ + by + cy = 0.

For the rest of this exercise, let G be a polynomial. Give the requested proofs for the case
where
G(z) = go + q1& + gox® + gsa®.

Prove that if e*” isn’t a solution of the complementary equation then (B) has a particular
solution of the form w, = A(z), where A is a polynomial of the same degree as G, as in
Example 5.4.4. Conclude that (A) has a particular solution of the form y,, = e** A(x).
Show that if e** is a solution of the complementary equation and ze®” isn’t , then (B)
has a particular solution of the form u, = zA(x), where A is a polynomial of the same
degree as G, as in Example 5.4.5. Conclude that (A) has a particular solution of the form
yp = e A(x).

Show that if e** and xe®* are both solutions of the complementary equation then (B) has a
particular solution of the form u, = x*A(x), where A is a polynomial of the same degree as
G, and 22 A(z) can be obtained by integrating G/ a twice, taking the constants of integration
to be zero, as in Example 5.4.6. Conclude that (A) has a particular solution of the form
yp = 2% A(z).

Exercises 31-36 treat the equations considered in Examples 5.4.1-5.4.6. Substitute the suggested form
of yp into the equation and equate the resulting coefficients of like functions on the two sides of the
resulting equation to derive a set of simultaneous equations for the coefficients in y,. Then solve for the
coefficients to obtain y,. Compare the work you’ve done with the work required to obtain the same results
in Examples 5.4.1-5.4.6.



31.

32.

33.

34.

35.

36.

37.

38.
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Compare with Example 5.4.1:
Y =Ty + 12y = 4e**;  y, = Ae*®

Compare with Example 5.4.2:

Y =Ty +12y = 5y, = Aze”
Compare with Example 5.4.3.

Y’ — 8y + 16y = 2¢*;  y, = Az?e?”
Compare with Example 5.4.4:

Y’ =3y +2y=e*(—1+2x+2%), y,=e"(A+ Br+Cz?)
Compare with Example 5.4.5:
Y’ — 4y + 3y = **(6 + 8z + 122%), vy, = *“(Azx + Bx* + Ca?)
Compare with Example 5.4.6:
4y + 4y +y = e (8 + 48z + 1442?), y, = e /?(Az? 4 Ba® + Cxt)

Write y = ue®” to find the general solution.

@y +2y +y= £ _ )y’ +6y +9y=eIlnx

Jz

2x
©y" —4y +4y =

1
‘ (d) 4y" + 4y +y = de”"/? (— + x)
1+ T
Suppose o # 0 and k is a positive integer. In most calculus books integrals like [ x¥e™® dx are
evaluated by integrating by parts k times. This exercise presents another method. Let

y= /e‘”P(m) dx
with
P(x)=po+prx+--- +pra®,  (where py #0).

(a) Show that y = e“®u, where
u 4+ au = P(z). (A)
(b) Show that (A) has a particular solution of the form
up:A0+A1:c+~~~+Ak:ck,
where Ay, Ax_1, ..., Ag can be computed successively by equating coefficients of xk , k-1

on both sides of the equation
uy, + aup, = P(x).

(¢) Conclude that
/e‘”P(:c) de = (Ao + Az + -+ Ak:ck) e’ + ¢,

where c is a constant of integration.

P
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39. Use the method of Exercise 38 to evaluate the integral.

(@) [ e (44 z)dx M®) [e (-1 +2?)dx
(c) fa:gefh dx (d) f (1+z)%dx
() [ e**(—14 4 30z + 27z?) dx (0 [e (1 +62% — 142 + 3z) dz

40. Use the method suggested in Exercise 38 to evaluate | x¥e*® dx, where k is an arbitrary positive
integer and o # 0.

5.5 THE METHOD OF UNDETERMINED COEFFICIENTS II

In this section we consider the constant coefficient equation
Y + by +cy = e (P(z) coswr + Q(x) sinwz) (5.5.1)

where A and w are real numbers, w # 0, and P and @) are polynomials. We want to find a particular
solution of (5.5.1). As in Section 5.4, the procedure that we will use is called the method of undetermined
coefficients.

Forcing Functions Without Exponential Factors

We begin with the case where A = 0 in (5.5.1); thus, we we want to find a particular solution of
y' 4+ by + cy = P(x) coswz + Q(x) sinwz, (5.5.2)

where P and @) are polynomials.
Differentiating " coswx and =" sin wz yields

— g coswr = —wz sinwr+rz" " coswr

dxr

and d—azr sinwr = wz” coswz + rz" " Lsinwz.
T

This implies that if
yp = A(z) coswz + B(z) sinwez
where A and B are polynomials, then

ay, + by, + cy, = F(x) coswz + G(z) sinwz,

where F' and G are polynomials with coefficients that can be expressed in terms of the coefficients of A
and B. This suggests that we try to choose A and B so that ' = P and G = (), respectively. Then y,
will be a particular solution of (5.5.2). The next theorem tells us how to choose the proper form for y,.
For the proof see Exercise 37.

Theorem 5.5.1 Suppose w is a positive number and P and Q) are polynomials. Let k be the larger of the
degrees of P and Q). Then the equation

vy 4+ by + cy = P(x) coswx + Q(x) sinwax

has a particular solution

yp = A(z) coswz + B(z) sinwe, (5.5.3)
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where
Alz) = Ao+ Az + -+ Aga® and B(x) = By + Bix + - + Bga®,

provided that cos wx and sinwx are not solutions of the complementary equation. The solutions of
a(y” + w?y) = P(x) coswz + Q(z) sinwz
(for which cos wx and sin wzx are solutions of the complementary equation) are of the form (5.5.3), where
A(z) = Agx + Aya® 4+ -+ Aga™™ and  B(x) = Box + Bz + - + Bra™ T
For an analog of this theorem that’s applicable to (5.5.1), see Exercise 38.

Example 5.5.1 Find a particular solution of

y" — 2y +y = 5cos 2z + 10sin 2z. (5.5.4)
Solution In (5.5.4) the coefficients of cos 2z and sin 2x are both zero degree polynomials (constants).
Therefore Theorem 5.5.1 implies that (5.5.4) has a particular solution

yp = Acos2x + Bsin2x.

Since
Yy, = —2Asin2x 4+ 2Bcos2x and y, = —4(Acos 2z + Bsin2z),

replacing y by y,, in (5.5.4) yields

Yy =2y, +yp = —4(Acos2x+ Bsin2z) —4(—Asin2z + Bcos 2z)
+(Acos 2z + Bsin2x)
= (-3A—4B)cos2z + (4A — 3B)sin 2z.

Equating the coefficients of cos 2z and sin 2z here with the corresponding coefficients on the right side
of (5.5.4) shows that y,, is a solution of (5.5.4) if

—-3A—-4B = 5
4A—-3B = 10.

Solving these equations yields A = 1, B = —2. Therefore
Yp = €08 2x — 2sin2x
is a particular solution of (5.5.4).
Example 5.5.2 Find a particular solution of
y" + 4y = 8 cos 2z + 12sin 2x. (5.5.5)
Solution The procedure used in Example 5.5.1 doesn’t work here; substituting y,, = A cos 2z + B sin 22
for y in (5.5.5) yields

Yy, + 4y, = —4(Acos 2z + Bsin 2z) + 4(Acos 2z + Bsin2z) = 0
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for any choice of A and B, since cos 2z and sin 2x are both solutions of the complementary equation
for (5.5.5). We're dealing with the second case mentioned in Theorem 5.5.1, and should therefore try a
particular solution of the form

yp = (A cos 2z + Bsin2z). (5.5.6)
Then
y, = Acos2x+ Bsin2z+ 2x(—Asin2z + Bcos 2x)
and y, = —4Asin2x+ 4B cos2x — 4x(Acos2x + Bsin2z)
—4Asin 2z 4 4B cos 2x — 4y, (see (5.5.6)),
S0

Yy, + 4y, = —4Asin 2z + 4B cos 2z.
Therefore y,, is a solution of (5.5.5) if

—4Asin2x + 4B cos 2x = 8 cos 2z + 12 sin 2z,
which holds if A = —3 and B = 2. Therefore
yp = —x(3 cos 2z — 2sin2x)
is a particular solution of (5.5.5).
Example 5.5.3 Find a particular solution of
y" + 3y + 2y = (16 + 202) cosx + 10 sin . (5.5.7)

Solution The coefficients of cosx and sinz in (5.5.7) are polynomials of degree one and zero, respec-
tively. Therefore Theorem 5.5.1 tells us to look for a particular solution of (5.5.7) of the form

yp = (Ao + A1) cosz + (By + Bix)sinz. (5.5.8)
Then
y;/n = (Al + BO + le) cosx + (Bl - AO - Alx) sinx (559)
and
Yy, = (2B1 — Ay — Ayx) cosz — (2A; 4+ By + Bix)sinz, (5.5.10)
SO
y;/o/+3y;/n+2yp = [A0+3A1+3Bo+231 +(A1 +3Bl)$] CcOoS T (5.5.11)

+ [Bo +3B1 —34p — 241 + (Bl — 3A1)$] sinx.

Comparing the coefficients of x cosx, z sinz, cos x, and sin x here with the corresponding coefficients
in (5.5.7) shows that g, is a solution of (5.5.7) if

A1 +3B; = 20

—-3A1+ B = 0

Ao +3By+ 34, +2B, = 16
340+ By—24,+3B, = 10.

Solving the first two equations yields A; = 2, B; = 6. Substituting these into the last two equations
yields
Ap+3By = 16—34; —2B; =-2
—3A0+ By 10 +2A, — 3B = —4.
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Solving these equations yields Ag = 1, By = —1. Substituting Ag = 1, A; = 2, By = —1, B; = 6 into
(5.5.8) shows that
yYp = (14 2z)cosz — (1 — 6z)sinx

is a particular solution of (5.5.7).
A Useful Observation

In (5.5.9), (5.5.10), and (5.5.11) the polynomials multiplying sin = can be obtained by replacing Ag, A1, Bo,
and B; by By, B1, — Ao, and — A1, respectively, in the polynomials mutiplying cos . An analogous re-
sult applies in general, as follows (Exercise 36).

Theorem 5.5.2 If
yp = A(z) coswz + B(z) sinwe,

where A(x) and B(x) are polynomials with coefficients Ay ..., Ay and By, ..., By, then the polynomials
multiplying sin wz in
/ /! /! / /! 2
Yps  Yps ayp +by, +cy, and y, +wy,

can be obtained by replacing Ay, ..., A by By, ..., By and By, ..., B by —Ay, ..., —Ay in the
corresponding polynomials multiplying cos wzx.

We won’t use this theorem in our examples, but we recommend that you use it to check your manipu-
lations when you work the exercises.

Example 5.5.4 Find a particular solution of

y'+y=(8—4x)cosxz — (8 + 8x)sinz. (5.5.12)

Solution According to Theorem 5.5.1, we should look for a particular solution of the form

Yp = (Agz + A12?) cos z + (Boz + B12?)sin, (5.5.13)
since cos = and sin x are solutions of the complementary equation. However, let’s try

yp = (Ao + A1) cosz + (By + Bix)sinx (5.5.14)
first, so you can see why it doesn’t work. From (5.5.10),
y, = (2B1 — Ao — Ayz) cosz — (2A1 + By + Byix)sinz,
which together with (5.5.14) implies that
Y, +yp = 2By cosx — 2A; sinz.

Since the right side of this equation does not contain x cos x or x sinx, (5.5.14) can’t satisfy (5.5.12) no
matter how we choose Ay, A1, By, and Bj.
Now let y,, be as in (5.5.13). Then

Yy, = [Ao + (241 + By)z + By1z?] cos @
+ [Bo + (2B1 — Ag)z — A1a®] sinz
and y, = [24; + 2By — (Ao — 4By)z — Ay2*] cosz

+ [2B1 — 240 — (Bo + 4A1)z — By2®| sin,
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$0
Yy +yp = (241 + 2By + 4B1x) cosx + (2B1 — 249 — 4A,x) sinz.

Comparing the coefficients of cos x and sin = here with the corresponding coefficients in (5.5.12) shows
that g, is a solution of (5.5.12) if

4B, = -4

44, = -8
2By +24; = 8
—240+2B; = -8.

The solution of this system is A; = 2, B; = —1, Ay = 3, By = 2. Therefore
yYp = [(3+ 2x)cosz + (2 — z) sinz]
is a particular solution of (5.5.12).
Forcing Functions with Exponential Factors
To find a particular solution of
ay’” + by + cy = e (P(x) coswz + Q(z) sinwz) (5.5.15)

when ) # 0, we recall from Section 5.4 that substituting y = ue*® into (5.5.15) will produce a constant
coefficient equation for u with the forcing function P(x) coswz + Q(x) sinwz. We can find a particular
solution u,, of this equation by the procedure that we used in Examples 5.5.1-5.5.4. Then y,, = upe)‘x is
a particular solution of (5.5.15).

Example 5.5.5 Find a particular solution of

y' =3y + 2y =e **[2cos3x — (34 — 150z) sin 3z] . (5.5.16)

Solution Let y = ue=2%. Then

v =3y +2y = e 2 [(u — 4 +4u) — 3(u — 2u) + 2u]
= e 2 — Tu' + 12u)
e %" [2cos 3x — (34 — 150z) sin 3x]
if
u” —Tu' 4+ 12u = 2 cos 3z — (34 — 150x) sin 3z. (5.5.17)

Since cos 3z and sin 3z aren’t solutions of the complementary equation
u” — 7 +12u =0,

Theorem 5.5.1 tells us to look for a particular solution of (5.5.17) of the form

up = (Ag + A1) cos 3z + (By + Byz) sin 3z. (5.5.18)
Then
u, = (A1 +3By+3Biz)cos3z+ (By — 34 —3A;z)sin 3z
and ’UJ;/D/ = (—9140 + 6Bl - 9A1{E) cos3xr — (gBO + 6A1 + 9B1{E) sin 3$,
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SO

u, — Tu, +12u, = [3A¢ —21By — TA; + 6B; + (3A; — 21By)x] cos 3z
+[2140 + 3By — 64, — 7B + (214, + 3B))a] sin 3.

Comparing the coefficients of x cos 3z, x sin 3z, cos 3z, and sin 3z here with the corresponding coeffi-
cients on the right side of (5.5.17) shows that w,, is a solution of (5.5.17) if

3A1 - 21B1 = 0
21A; + 3By = 150
2140+ 3By — 64, — 7By = —34.

Solving the first two equations yields A; = 7, By = 1. Substituting these values into the last two
equations of (5.5.19) yields

3A0—21By = 2+ 7A; —6B; =45
21A0+ 3By = —-34+6A,+7B; =15.

Solving this system yields Aqg = 1, By = —2. Substituting Ay = 1, A; =7, By = —2, and B; = 1 into
(5.5.18) shows that
up = (14 7x)cos3z — (2 — ) sin 3z
is a particular solution of (5.5.17). Therefore
yp = e 2 [(1 + 7x) cos 3z — (2 — z) sin 3]
is a particular solution of (5.5.16).

Example 5.5.6 Find a particular solution of

Y+ 2y + 5y =e " [(6 — 16z) cos 2z — (8 + 8) sin 2] . (5.5.20)

Solution Lety = ue™™. Then

y' +2y +5y = e T [(u —2u +u)+2(u —u)+ 5ul
= e "(u" +4u)
e [(6 — 16x) cos 2z — (8 + 8x) sin 2z]

if
u' +4u = (6 — 16x) cos2x — (8 + 8z) sin 2z. (5.5.21)

Since cos 2z and sin 2z are solutions of the complementary equation
u” +4u =0,
Theorem 5.5.1 tells us to look for a particular solution of (5.5.21) of the form

up = (Aox + Arz?) cos 2z + (Boz + Bi2?) sin 2.
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Then
w, = [Ao+ (2414 2By)x + 2B12”] cos 2z
+ [Bo + (2By — 24¢)z — 24;12°] sin 2z
and uy = [24; +4By — (44 — 8B1)x — 4A127] cos 2z
+ [2B1 — 440 — (4By + 8A1)x — 4B;2°] sin 2,
SO

uy +4u, = (241 + 4By + 8Byx) cos 2z + (2B1 — 44 — 8A;x) sin 2.

Equating the coefficients of = cos 2z, = sin 2z, cos 2z, and sin 22 here with the corresponding coefficients
on the right side of (5.5.21) shows that u,, is a solution of (5.5.21) if

8B, = -16
4B, ;22 — 2 (5.5.22)
—4A0+2B; = -8
The solution of this system is A; = 1, By = —2, By = 1, Ag = 1. Therefore
up = z[(1 4+ x) cos 2z + (1 — 2z) sin 2z
is a particular solution of (5.5.21), and
yp = ze °[(1 + z) cos 2z + (1 — 2x) sin 2z]
is a particular solution of (5.5.20). |

You can also find a particular solution of (5.5.20) by substituting
yp =xe ° [(Ag + Arx) cos 2z + (By + Biz) sin 27]

for y in (5.5.20) and equating the coefficients of xe™" cos 2z, ze™ " sin 2z, e~ cos 2z, and e~ sin 2z in
the resulting expression for
Yy, + 2y, + 5yp

with the corresponding coefficients on the right side of (5.5.20). (See Exercise 38). This leads to the same
system (5.5.22) of equations for Ay, A1, By, and Bj that we obtained in Example 5.5.6. However, if you
try this approach you’ll see that deriving (5.5.22) this way is much more tedious than the way we did it
in Example 5.5.6.

5.5 Exercises

In Exercises 1-17 find a particular solution.

y' +3y +2y=Tcosx —sinx

y' 4+ 3y +y=(2—6z)cosx — 9sinz

Yy’ + 2y +y=e*(6cosz + 17sinx)

y" + 3y — 2y = —e2*(5cos 2z + 9sin 2x)

v ' —y +y=e"(2+z)sinz

y' 43y — 2y = e 2* [(4 + 20x) cos 3z + (26 — 32z) sin 3z

AR S o
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y" + 4y = —12cos 2z — 4sin 2z
y' +y=(—4+8x)cosx+ (8 — 4x)sinx
9. 4y’ +y=—4cosx/2— 8xsinx/2
10. " +2y +2y=e""(8cosx — 6sinx)
11. " —2y + 5y =€ [(6 + 8z) cos 2z + (6 — 8x) sin 2]
12. ¢’ +2y +y=28z%cosz — dzsinz
13. " +3y +2y = (12 + 20z + 102?) cos x + 8z sinx
14. y"+3y +2y=(1—2—42?) cos2x — (1 + Tz + 22%)sin 2z
15. y" =5y +6y=—e” [(4+ 62— 2%) cosz — (2 — 4z + 32?) sin z]
16. y" —2y +y=—€" [(3+ 4z —a?)cosz + (3 — 4z — 2?)sin z]
17. y" =2y +2y=e® [(2 — 22 — 622) cosz + (2 — 10z + 622) sinz]

In Exercises 1-17 find a particular solution and graph it.

18. y' +2y +y=e"*[(5—2z)cosz — (3+ 3z)sinz]

19. Yy 4+ 9y = —6cos3x — 12sin 3z

20. ' +3y +2y=(1—x—42?)cos2z — (1 + Tz + 22?)sin 2x
21. Y +4y +3y=e"[(24x +2?) cosz + (5 + 4z + 227%) sin x|

In Exercises 22-26 solve the initial value problem.

22, Yy’ =Ty +6y=—e*(1Tcosxz — 7Tsinz), y(0)=4, y/(0)=2

23. ' =2y +2y=—e"(6cosz +4sinx), y0)=1, y/(0) =4

24, ¢’ +6y + 10y = —40e“sinz, y(0)=2, ' (0)=-3

25. Y —6y +10y = —e3*(6cosx + 4sinz), y(0)=2, 3 (0)=7

26. " —3y +2y=e3"[21cosx — (11 + 10x)sinz], y(0) =0, ¢ (0) =6
In Exercises 27-32 use the principle of superposition to find a particular solution. Where indicated, solve
the initial value problem.

27. o' — 2y — 3y = 4e3% + e%(cosx — 2sinw)

28. y'+y=4cosx —2sinx + ze* +e %

29. 9y — 3y +2y=1we® +2e** +sinx

30. 3’ —2y +2y=4xe®cost +xe T+ 1+ a?

3. Y — 4y +4y =e**(1+ ) +e**(cosx —sinx) + 3e3® + 1 + o

32. ' — 4y +4y = 6e2® + 25sinz, y(0) =5, ¢'(0) =3

In Exercises 33-35 solve the initial value problem and graph the solution.

33. Y +4y=—e"2[(4—Tx)cosx + (2 —4x)sinx], y(0) =3, ' (0)=1
34. Y + 4y +4y = 2cos 2z + 3sin 2z + e, y(0) = —1, /(0) =2
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35.
36.

37.

Y’ +4y = (11 + 152) 4 8 cos 2z — 12sin2z, y(0) =3, ¥/ (0) =5

(a) Verify that if
yp = A(z) coswr + B(z) sinwz

where A and B are twice differentiable, then

y]’o = (A" 4+wB)coswr + (B’ — wA) sin wx and
Yy = (A" +2wB —w?A)coswr + (B" — 2wA’ — w?B) sinwz.

(b) Use the results of (a) to verify that
ay, +by, ey = [(c— aw®)A + bwB + 2awB’ +bA" + aA"] cos wz +
[—bwA + (¢ — aw®)B — 2awA’ + bB' + aB"| sinwz.
(c) Use the results of (a) to verify that
Yy +w’yp = (A" + 2wB') coswz + (B” — 2wA') sinwz.

(d) Prove Theorem 5.5.2.

Let a, b, ¢, and w be constants, with a # 0 and w > 0, and let

P(x)=po+pix+---+pez® and Q(z) = qo + qz + -+ qra®,

where at least one of the coefficients pg, qx is nonzero, so k is the larger of the degrees of P and Q.

(a) Show that if cos wx and sin wzx are not solutions of the complementary equation
ay” +by' +cy =0,
then there are polynomials

A($)2A0+A1x+~~-+Akxk and B(x) =By + Bz + -+ Bpa®

such that
(c — aw?)A+ bwB + 2awB’ + bA' + aA” = P
—bwA + (¢ — aw?)B — 2awA’ + bB' +aB" = Q,
where (Ag, By), (Ag—1, Br—1), ...,(Ao, Bo) can be computed successively by solving the
systems
(c —aw?)Ap +bwBr = pg
—bwAy + (c —aw?)By = q,
and,if 1 <r <k,
(c—aw?)Ag_ +bwBr_» = pr_p+--
—bwAi_r + (¢ —aw?)By_y = qu_r+--,
where the terms indicated by *“- - -7 depend upon the previously computed coefficients with

subscripts greater than k£ — r. Conclude from this and Exercise 36(b) that
yp = A(z) coswr + B(z) sinwaz
is a particular solution of

ay” + by + cy = P(x) coswx + Q(x) sinwx.
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(b) Conclude from Exercise 36(c) that the equation
a(y’ + w?y) = P(z) coswr + Q(x) sinwz (©)

does not have a solution of the form (B) with A and B as in (A). Then show that there are
polynomials

A(z) = Agz + A12® + -+ Apa®™ and  B(z) = Boz + Biaz® + -+ + Byt

such that
a(A" +2wB') = P
a(B" —2wA) = Q,
where the pairs (Ag, Bx), (Ak—1, Bx—1), ..., (Ao, Bo) can be computed successively as
follows:
dk
A = ——7——
k 2aw(k + 1)
DPr
B, = _
F 2aw(k + 1)’
and, ifk > 1,
A = - |—B=i 49y
J 2w lalk—j+1) J
Br, = o |—Pei k49 Ae
J 2w lalk—j7+1) J

for 1 < j < k. Conclude that (B) with this choice of the polynomials A and B is a particular
solution of (C).

Show that Theorem 5.5.1 implies the next theorem: Suppose w is a positive number and P and ()
are polynomials. Let k be the larger of the degrees of P and Q). Then the equation

ay” +by + cy = e (P(z) coswz + Q(z) sin wz)
has a particular solution
yp = & (A(z) coswz + B(z) sinwz) (A)
where
Alz) = Ag+ Az + -+ Apz® and B(x) = By + Bix + - - - + Bra”,

provided that e** cos wx and e* sinwx are not solutions of the complementary equation. The
equation
aly’ =22/ + (A +w?)y| = M (P(z) coswz + Q(z) sinwz)

(for which e** cos wx and e* sin wx are solutions of the complementary equation) has a partic-
ular solution of the form (A), where

A(z) = Aoz + A1z + -+ Apz™ and  B(zx) = Box + Biz? 4 - -+ Bpz™ .
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39. This exercise presents a method for evaluating the integral
y = /e)‘x (P(x) coswz + Q(z) sinwz) dx

where w # 0 and

P(z)=po+pix+ - +pa®, Q) =qo+ @z + - + gz
(a) Show thaty = ey, where

u' + du = P(z) coswz + Q(r) sinwz. (A)
(b) Show that (A) has a particular solution of the form
up = A(z) coswz + B(z) sinwz,
where
A(x) = Ao+ Az + -+ Apz®, B(z) = By + Biz + - - + Bra”,

and the pairs of coefficients (A, Bk), (Ag—1, Bx—1), -..,(Ao, Bo) can be computed succes-
sively as the solutions of pairs of equations obtained by equating the coefficients of " cos wzx
and 2" sinwx forr =k, k—1,...,0.

(¢) Conclude that

/ M (P(x) coswr + Q(z) sinwz) dr = e (A(x) coswx + B(z) sinwzx) + ¢,

where c is a constant of integration.

40. Use the method of Exercise 39 to evaluate the integral.

(a) [ 2% coszdx (b) [ z?%e® cosx dx
(c) f re *sin 2z dr (d) f z?e T sinz dx
(e) [z3e” sinz dx () [e” [xcosz — (14 3z)sinz| dz

(@ [e ™ [(1+a?) cosx + (1 —2?)sinz] dx

5.6 REDUCTION OF ORDER

In this section we give a method for finding the general solution of
Po(a)y" + Pri(x)y + Pa(z)y = F(x) (5.6.1)

if we know a nontrivial solution y; of the complementary equation
Po(z)y" + Pi(x)y + Pa(z)y = 0. (5.6.2)

The method is called reduction of order because it reduces the task of solving (5.6.1) to solving a first
order equation. Unlike the method of undetermined coefficients, it does not require Py, P, and P5 to be
constants, or F' to be of any special form.
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By now you shoudn’t be surprised that we look for solutions of (5.6.1) in the form

Y =ul1 (5.6.3)

where u is to be determined so that y satisfies (5.6.1). Substituting (5.6.3) and

/

y = vy +uy
/! — u//yl + 2u/y/1 _"_uy/l/

into (5.6.1) yields
Po(x)(w"yr + 2u'y) + uyy) + Pr(@)(u'yr + uyy) + Pa(2)uyy = F(z).
Collecting the coefficients of u, v/, and u” yields
(Poy1)u" + (2Poy; + Puyn)u’ + (Poyy + Piyy + Payr)u = F. (5.6.4)
However, the coefficient of u is zero, since y; satisfies (5.6.2). Therefore (5.6.4) reduces to
Qo(z)u” + Q1 (z)u' = F, (5.6.5)

with
QO = Poyl and Ql = 2P0y/1 —+ Plyl-

(It isn’t worthwhile to memorize the formulas for )y and @1!) Since (5.6.5) is a linear first order equation
in u’, we can solve it for v/ by variation of parameters as in Section 1.2, integrate the solution to obtain
u, and then obtain y from (5.6.3).

Example 5.6.1

(a) Find the general solution of
zy’ — 2z 4+ 1)y + (z + 1)y = 22, (5.6.6)
given that y; = e* is a solution of the complementary equation
zy”" — 24+ 1)y + (x+ 1)y = 0. (5.6.7)

(b) As abyproduct of (a), find a fundamental set of solutions of (5.6.7).

SoLuTIiON(a) Ify = ue®, theny’ = v'e® + ue® and " = u”’e® + 2u'e® + ue®, so

' — e+ 1Dy +(x+ 1Dy = z(u”’e” + 2u'e” + ue®)
—(2z + 1)(v'e” +ue®) + (z + 1ue®

= (zu" —u')e”.

Therefore y = ue” is a solution of (5.6.6) if and only if

(zu” —u')e” = 22,
which is a first order equation in u/. We rewrite it as
!/
u _
v — — =ze ", (5.6.8)

T
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To focus on how we apply variation of parameters to this equation, we temporarily write z = v/, so that

(5.6.8) becomes
-2 = gem. (5.6.9)

x

We leave it to you to show (by separation of variables) that z; = z is a solution of the complementary
equation
, 2
z ——=0
x

for (5.6.9). By applying variation of parameters as in Section 1.2, we can now see that every solution of
(5.6.9) is of the form

—X / —x

z=wvx where vr=1xe " so vV =c¢ and v=—e"+0C.

Since v’ = z = vz, u is a solution of (5.6.8) if and only if

, _
v =ve = —xe * + Crx.

Integrating this yields
C
u=(x+ e+ 71502 + Cs.

Therefore the general solution of (5.6.6) is

C
y=ue" =z +1+ 71$26x + Coe”. (5.6.10)

SOLUTION(b) By letting C; = Cz = 01in (5.6.10), we see that y,, = = + 1 is a solution of (5.6.6). By
letting Cy, = 2and Cy = 0, we see that y,,, = x+1+2z2€® is also a solution of (5.6.6). Since the difference
of two solutions of (5.6.6) is a solution of (5.6.7), Y2 = Yp, — Yp, = 22€” is a solution of (5.6.7). Since
y2/y1 is nonconstant and we already know that y; = €” is a solution of (5.6.6), Theorem 5.1.6 implies
that {e®, 22¢*} is a fundamental set of solutions of (5.6.7). [ |

Although (5.6.10) is a correct form for the general solution of (5.6.6), it’s silly to leave the arbitrary co-
efficient of z2e® as C; /2 where C is an arbitrary constant. Moreover, it’s sensible to make the subscripts
of the coefficients of y; = e and 3, = z?e® consistent with the subscripts of the functions themselves.
Therefore we rewrite (5.6.10) as

y=1x+1+cre® + cpz?e®

by simply renaming the arbitrary constants. We’ll also do this in the next two examples, and in the
answers to the exercises.

Example 5.6.2

(a) Find the general solution of

x2y//+xy’—y:x2+1,

given that y; = x is a solution of the complementary equation
2%y +ay —y=0. (5.6.11)

As a byproduct of this result, find a fundamental set of solutions of (5.6.11).

(b) Solve the initial value problem

x2y” tay —y= 2+ 1, y(1)=2,4/(1)=-3. (5.6.12)
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SoLuTiON(a) Ify = ux, theny’ = v'z + vwand y”" = "z + 2u/, so
2y vay —y = 22wz +2u)+ (s +u) —ux

w3 + 322’
Therefore y = ux is a solution of (5.6.12) if and only if
22U + 3220 = 22 + 1,
which is a first order equation in u/. We rewrite it as

3 1 1
'+ 2 =2 4 —. (5.6.13)
x T
To focus on how we apply variation of parameters to this equation, we temporarily write z = v/, so that

(5.6.13) becomes
3 1 1

z/—i-—z:——i-—g.
T r

(5.6.14)

We leave it to you to show by separation of variables that z; = 1/22 is a solution of the complementary
equation

3
2+ =2=0
T
for (5.6.14). By variation of parameters, every solution of (5.6.14) is of the form

/ 1 1 3
where v_:_+_ so v =2z>+1 and v:x——l-x—l-Cl.

z=—
3 3 oz z3

Since u’ = z = v/x3, w is a solution of (5.6.14) if and only if

Integrating this yields

2 C
y=ur =2 —1- 24 Oz (5.6.15)
3 2z
Reasoning as in the solution of Example 5.6.1(a), we conclude that y; = z and yo = 1/x form a

fundamental set of solutions for (5.6.11).
As we explained above, we rename the constants in (5.6.15) and rewrite it as

$2

y=" 14ert 2 (5.6.16)
3 T

SOLUTION(b) Differentiating (5.6.16) yields

Y ==+c—-—. (5.6.17)
X
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Setting x = 1 in (5.6.16) and (5.6.17) and imposing the initial conditions y(1) = 2 and y'(1) = —3
yields

8
c1+c = g

11
C1 — C2 = —3

Solving these equations yields ¢c; = —1/2, ¢a = 19/6. Therefore the solution of (5.6.12) is

7x2 1 x+19
L 2" 6z

Using reduction of order to find the general solution of a homogeneous linear second order equation
leads to a homogeneous linear first order equation in u’ that can be solved by separation of variables. The
next example illustrates this.

Example 5.6.3 Find the general solution and a fundamental set of solutions of
%y —3zy 4+ 3y = 0, (5.6.18)

given that y; = x is a solution.

Solution If y = uz theny’ = vz + w and y’ = v”x 4 2u/, so

22y =32y’ +3y = 2%’z +2u') - 3z(v'z +u) + 3uz
— 3,1 2./
= z°u —zxu.
Therefore y = ux is a solution of (5.6.18) if and only if

12 /
220" — 2% = 0.

Separating the variables v’ and z yields

u' 1

s
SO

In|u'| =In|z|+ k, or, equivalently, u' = Ciz.
Therefore o
U = —1$2 + CQ,
2
so the general solution of (5.6.18) is
C
Y =ur = 71333 + Csz,

which we rewrite as

Yy=cx+ 02333.

Therefore {x, 23} is a fundamental set of solutions of (5.6.18).

5.6 Exercises

In Exercises 1-17 find the general solution, given that y; satisfies the complementary equation. As a
byproduct, find a fundamental set of solutions of the complementary equation.



10.
11.
12.
13.
14.
15.
16.
17.

E A

L2 R AW
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2+ 1)y — 2y
( )y

~—~

20 +3)y =0z +1)% y=e*

2,01

2%y +ay —y= Yy1=2

&N| o~

x2y”—$y’+y:$; =z

2x

y' =3y +2y = y1=e

Tres
Y =2y +y=Tx3 2" y ="
422y + (4 — 822y + (422 —dx — 1)y = 4$1/2€m(1 Vdz); = L1/20m
y' -2y +2y=¢e%secx; y; =e®cosx
y' +dzy + (427 +2)y = 8e " HD; gy ="
2’y +ay —dy=—6r—4; y =2’
22y + 2x(x — 1)y + (2% — 22 +2)y = 23e2%;  y; = xe ®
22y — 22z — 1)y + (22 —x — 1)y = 2%e%;  y; = xe®
(1—22)y" +2y + (22— 3)y = (1 — 4w + 42%)e®; y1 = €”
a2y’ — 3zy +4y =4zt y = 2?
2y’ + (4o + 1)y + (20 + 1y = 32'2™"; y1=e™"
zy’ — 2z + 1)y + (z+1y=—€" y1=¢"
4oy —dx(z 4+ 1)y + (22 + 3)y = 425/2e2*; 4 = 1/?

22y — by + 8y = 42%;,  y = 2?

In Exercises 18-30 find a fundamental set of solutions, given that vy, is a solution.

18.
19.
20.
21.
22,
23.
24.
25.
26.
27.
28.
29.
30.

' +2-20)y +(x—2)y=0; 1y =¢e"
a?y’ —day' +6y=0; y =a°

(0o (e ey + 2+ ey =0 3y <Inle
dzy’ + 2y +y=0; y1 =sinyz
Yy — 2z +2)y + (x+2)y=0; y =¢e"
2%y’ — (2a — Dy +a’y=0; y; =2

2y —2xy' + (22 +2)y=0; y; = xsinw
2y’ — (dr+ 1)y + (4 +2)y =0; y =e*®
422(sinx)y” — dx(xcosx + sinz)y’ + (2zcosz + 3sinz)y =0; 1y =
4oy —dxy + (3 —1622)y =0; 1y = x'/2e>®
2z + Voy” —2(222 = 1)y —4(z+ Dy =0; y1=1/x
(@2 =22)y" + (2 -2y + (22 —2)y=0; y =€"
2y — (4 + 1)y + 4z +2)y=0; 1y =e2*

1/2
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In Exercises 31-33 solve the initial value problem, given that y; satisfies the complementary equation.

31.
32.

22y — 3zy 4+ 4y = 4zt, y(=1) =7, Y (-1)=-8; vy = 2>
Bz -1y — @Bz +2)y — (6o -8)y =0, y0)=2 y(0)=3; y=e**
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33.

(z+1)?%" =2+ 1)y — (@ +2r -1y = (z+1)%", y0)=1, y(0)= -1
y1 = (z +1)e”

In Exercises 34 and 35 solve the initial value problem and graph the solution, given that vy, satisfies the
complementary equation.

34.

35.
36.

37.

38.

39.

5 3
2y 2wy — =27 y() =3y (D=5 n=a
1

C/G| (@2 —4)y" +4ay +2y =z +2, y0) =-3. YO =-1 yn=—7

Suppose p; and po are continuous on (a, b). Let y; be a solution of

Y +p1(x)y + pa(x)y =0 (A)

that has no zeros on (a, b), and let z( be in (a, b). Use reduction of order to show that ; and

) =) [ R (— / s) ds) dt

form a fundamental set of solutions of (A) on (a, b). (NOTE: This exercise is related to Exercise 9.)

The nonlinear first order equation

v+ +plx)y + q(z) =0 (A)

is a Riccati equation. (See Exercise 2.4.55.) Assume that p and q are continuous.

(a) Show that y is a solution of (A) if and only if y = 2’/z, where
2"+ p(x)2' + q(z)z = 0. (B)
(b) Show that the general solution of (A) is

2] + a2
= 7, C
Y C121 + C222 ©
where {21, 22} is a fundamental set of solutions of (B) and ¢; and c9 are arbitrary constants.
(¢) Does the formula (C) imply that the first order equation (A) has a two—parameter family of
solutions? Explain your answer.

Use a method suggested by Exercise 37 to find all solutions. of the equation.

@y +y*+k*=0 My +y*—3y+2=0
©y +y2+5y—6=0 Ay +y2+8y+7=0
@y +y>+ 14y +50 =0 ®) 6y +6y>—y—1=0

(g) 36y’ +36y%> —12y+1=0

Use a method suggested by Exercise 37 and reduction of order to find all solutions of the equation,
given that y; is a solution.

(@ 22(y +9y?) —z(x+2y+x+2=0; y =1/x

(b) o +9? +dzy+4224+2=0; y =22

© Qe+ +y")-2y—(22+3)=0; y=-1

@ Br—1)W+y*)—Br+2)y—6x+8=0; y =2
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1 1
(e) xQ(y/—i-yQ)—i-xy—i-:cQ—Z:O; ylz—tan:c—%
® 2 +y°) - Tay+T=0; p=1/z

40. The nonlinear first order equation
Y +r(@)y? +p(e)y +q(z) =0 (A)

is the generalized Riccati equation. (See Exercise 2.4.55.) Assume that p and g are continuous
and r is differentiable.

(a) Show that y is a solution of (A) if and only if y = 2’/rz, where

r'(x)
r(x)

2+ |pla) - 7 +r(z)g(z)z = 0. (B)
e

(b) Show that the general solution of (A) is

/ /
c12] + C225

r(ciz1 + caz2)’

where {21, 22 } is a fundamental set of solutions of (B) and ¢; and c9 are arbitrary constants.

5.7 VARIATION OF PARAMETERS

In this section we give a method called variation of parameters for finding a particular solution of
Po(x)y" + Pr(x)y + Pa(z)y = F(x) (5.7.1)
if we know a fundamental set {y1, y2} of solutions of the complementary equation
Po(z)y" + Pi(x)y + Pa(z)y = 0. (5.7.2)
Having found a particular solution g, by this method, we can write the general solution of (5.7.1) as

Y = Yp + C1Y1 + C2Y2.

Since we need only one nontrivial solution of (5.7.2) to find the general solution of (5.7.1) by reduction
of order, it’s natural to ask why we’re interested in variation of parameters, which requires two linearly
independent solutions of (5.7.2) to achieve the same goal. Here’s the answer:

* If we already know two linearly independent solutions of (5.7.2) then variation of parameters will
probably be simpler than reduction of order.

* Variation of parameters generalizes naturally to a method for finding particular solutions of higher
order linear equations (Section 9.4) and linear systems of equations (Section 10.7), while reduction
of order doesn’t.

* Variation of parameters is a powerful theoretical tool used by researchers in differential equations.
Although a detailed discussion of this is beyond the scope of this book, you can get an idea of what
it means from Exercises 37-39.
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We’ll now derive the method. As usual, we consider solutions of (5.7.1) and (5.7.2) on an interval (a, b)
where Py, Pi, P>, and F are continuous and Py has no zeros. Suppose that {y1,y2} is a fundamental
set of solutions of the complementary equation (5.7.2). We look for a particular solution of (5.7.1) in the
form

Yp = U1Y1 + U2Y2 (5.7.3)

where u; and uo are functions to be determined so that ¥, satisfies (5.7.1). You may not think this is a
good idea, since there are now two unknown functions to be determined, rather than one. However, since
u1 and uy have to satisfy only one condition (that y,, is a solution of (5.7.1)), we can impose a second
condition that produces a convenient simplification, as follows.

Differentiating (5.7.3) yields

A

Yp ury) + uzys +ulyr + ubys. 5.7.4)

As our second condition on u; and uy we require that
w\yr + uhys = 0. (5.7.5)

Then (5.7.4) becomes
Yy, = 1Y) + UYs; (5.7.6)

that is, (5.7.5) permits us to differentiate ¥, (once!) as if u; and uo are constants. Differentiating (5.7.4)
yields

Yp =
(There are no terms involving u} and u4 here, as there would be if we hadn’t required (5.7.5).) Substitut-
ing (5.7.3), (5.7.6), and (5.7.7) into (5.7.1) and collecting the coefficients of u; and us yields

uryy + uays + uhyy + ubys. (5.7.7)

u1(Poyy + Pryy + Payr) + uz(Poys + Pryy + Paya) + Po(ujyy + ubys) = F.

As in the derivation of the method of reduction of order, the coefficients of ©; and uo here are both zero
because y; and ys satisfy the complementary equation. Hence, we can rewrite the last equation as

Po(uyy) + uayh) = F. (5.7.8)
Therefore y,, in (5.7.3) satisfies (5.7.1) if

iy +ugys = 0
F (5.7.9)
u tuyy = 5
0

where the first equation is the same as (5.7.5) and the second is from (5.7.8).

We’ll now show that you can always solve (5.7.9) for u} and u/. (The method that we use here will
always work, but simpler methods usually work when you’re dealing with specific equations.) To obtain
uf, multiply the first equation in (5.7.9) by 5 and the second equation by y». This yields

w1y + ugyayy = 0
F
Uiy Y + ubyhys = ?y;.
Subtracting the second equation from the first yields
Fy,
uy (Y1 — vhye) = ——— (5.7.10)
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Since {y1,y2} is a fundamental set of solutions of (5.7.2) on (a, b), Theorem 5.1.6 implies that the
Wronskian y1y5 — ¥} y2 has no zeros on (a, b). Therefore we can solve (5.7.10) for , to obtain

Fy,
U, =2 (5.7.11)
b Po(yh — vhue)
We leave it to you to start from (5.7.9) and show by a similar argument that
Fy,
5= 5.7.12
uh = - (5.7.12)

0 (15 — YiY2)

We can now obtain u; and ug by integrating v and u). The constants of integration can be taken to be
zero, since any choice of u; and ug in (5.7.3) will suffice.
You should not memorize (5.7.11) and (5.7.12). On the other hand, you don’t want to rederive the
whole procedure for every specific problem. We recommend the a compromise:
(a) Write
Yp = U1Y1 + U2Y2 (5.7.13)
to remind yourself of what you’re doing.

(b) Write the system
uwiys +ubye = 0

F 5.7.14
e bubh = C71D

for the specific problem you’re trying to solve.
(c¢) Solve (5.7.14) for v/ and u}, by any convenient method.
(d) Obtain u; and us by integrating u} and u}, taking the constants of integration to be zero.

(e) Substitute u; and ug into (5.7.13) to obtain y,.
Example 5.7.1 Find a particular solution y,, of

22y — 22y + 2y = x9/2, (5.7.15)

given that y; = x and yp = 22

are solutions of the complementary equation
22y — 22y 4+ 2y = 0.

Then find the general solution of (5.7.15).

Solution We set
Yp = U1T + us?,

where
/ /.2 _
uiT + usr® = 0
9/2
/ / €T 5/2
U] +2Uusxr = —— ="
1 2 12
From the first equation, u) = —ubz. Substituting this into the second equation yields uhz = 2°/2, so
ufy, = 23/2 and therefore v} = —ub2 = —x°/2. Integrating and taking the constants of integration to be
zero yields
2 772 2 5.2

uy = —?:c and wug = g:c
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Therefore 5 5 A
Yp = UIX + u2:c2 = —?x7/2:c + gx5/2x2 = £x9/2,
and the general solution of (5.7.15) is
Yy = i509/2 +cix + 02502
35 '

Example 5.7.2 Find a particular solution g, of
(x— 1)y —ay +y=(z—1)% (5.7.16)
given that y; = x and yo = e* are solutions of the complementary equation
(x — 1)y —xy +y=0.
Then find the general solution of (5.7.16).

Solution We set
Yp = UIT + uge”,

where
/ I
T + ure” = 0
2
/ !z (x — 1)
u; Fu,et = ——=zx—1.
1 2 r—1
Subtracting the first equation from the second yields —uj(x — 1) = z — 1, so u} = —1. From this and
the first equation, u = —ze *u} = xe™*. Integrating and taking the constants of integration to be zero
yields
up =—x and ug=—(x+ 1)e ”.
Therefore

2

Yp = w T + we® = (—z)r + (—(z+ 1)e %)e* = —z° —z — 1,

so the general solution of (5.7.16) is

2

y=yp+cx+ce® =—a"—x—1+cix+coe” = —22 — 1+ (c1 — 1)z + coe®. (5.7.17)

However, since c; is an arbitrary constant, so is ¢; — 1; therefore, we improve the appearance of this result
by renaming the constant and writing the general solution as

y=—a2—14crz+ c2e®. B (5.7.18)

There’s nothing wrong with leaving the general solution of (5.7.16) in the form (5.7.17); however, we
think you’ll agree that (5.7.18) is preferable. We can also view the transition from (5.7.17) to (5.7.18)
differently. In this example the particular solutiony, = —z*—x—1 contained the term —z, which satisfies
the complementary equation. We can drop this term and redefine y, = —z% — 1, since —z? —z — lisa
solution of (5.7.16) and z is a solution of the complementary equation; hence, —22—1 = (—2?—z—1)+x
is also a solution of (5.7.16). In general, it’s always legitimate to drop linear combinations of {yi, y2}
from particular solutions obtained by variation of parameters. (See Exercise 36 for a general discussion
of this question.) We’ll do this in the following examples and in the answers to exercises that ask for a
particular solution. Therefore, don’t be concerned if your answer to such an exercise differs from ours
only by a solution of the complementary equation.
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Example 5.7.3 Find a particular solution of

"+ 3y +2y = . 5.7.19
Yy 3y +2y =1 e ( )
Then find the general solution.
Solution
The characteristic polynomial of the complementary equation
Yy + 3y +2y=0 (5.7.20)

isp(r)=r2+3r+2=(r+1)(r+2),s0y; = e * and y2 = e~ 2* form a fundamental set of solutions
of (5.7.20). We look for a particular solution of (5.7.19) in the form

Yp =ure T+ uge 2%,
where
ue ™ + uhe ™ = 0
1
—uhe™" — 2ubhe ™ =
1+e®
Adding these two equations yields
2
! —2x 1 ! e’
—use ) Uy = —
1+e® 1+e®
From the first equation,
ex
uy] = —ube " = .
1+e®

Integrating by means of the substitution v = e¢” and taking the constants of integration to be zero yields

ulz/ c d:c:/ dv =1In(1+4v) =In(1 4 €%)

1+e® 1+
and
Uy = —/1j_2xexdsc——/1j_vdv—/[liv—l} dv
= In(l+v)—v=In(1+¢")—e".
Therefore
Yp = we + uge %
(14 e™)]e ™ + [In(1 4 €%) — e*] e 2%,
)

Yp= (e +e ) In(l+e") —e ™.
Since the last term on the right satisfies the complementary equation, we drop it and redefine
yp = (7" +e ) In(1 + €").
The general solution of (5.7.19) is

Yy=yp+cie " +ee” = (e +e ) In(1+ €") + cre” " + coe” .
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Example 5.7.4 Solve the initial value problem

2
(% = 1)y +4day +2y = T y(0) = -1, ¢'(0) = -5, (5.7.21)
given that
m=o_g ad 2=y

are solutions of the complementary equation

(22 = 1)y + 4ay/ + 2y = 0.

Solution We first use variation of parameters to find a particular solution of

2
(% = 1)y +4ay’ +2y = —

r+1
on (—1,1) in the form
- ul ug
Y= o171 +1’
where
uy g
=0 5.7.22
r—1 r+1 ( )
u) uh B 2
(x—1)2 (z+1)2  (z+1)(a2-1)

Multiplying the first equation by 1/(x — 1) and adding the result to the second equation yields

L L N 5723
[ﬁ-fﬂmﬂ%w_@+mﬁ_u (5.723)

Since

[ 11_(1U]_@+U—@_U 2
2 — z+1)2

(x4+ D22 -1)  (z+1)(22-1)
(5.7.23) implies that uf, = 1. From (5.7.22),

rz—1, z—1

_x+1u2:_:c+1'

[
Uy =

Integrating and taking the constants of integration to be zero yields

r—1 r+1-—2
2
= /[x—i—l_l} de =2In(z+1) -z

and

u2:/d:c::c.
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Therefore
U1 U2 1 1
o = x—1+x+1:[2ln(x+1)_x]:c—1+x:c+1
_ 2ln(x+1)+x[ 11 ]_2111(:0—1—1)_ 2z
x—1 z+1 z-1 xz—1 (x+1)(x—1)

However, since

(:sz(cx—n - [:ci1+xi1]

is a solution of the complementary equation, we redefine

~ 2In(z +1)
Y= rz—1
Therefore the general solution of (5.7.24) is
2In(x + 1) 1 Co
= . 5.7.24
z—1 + z—1 + z+1 ( )
Differentiating this yields
,_ 2 2lm(z+1) g o
Yo 1 -1 @12 @+l
Setting « = 0 in the last two equations and imposing the initial conditions y(0) = —1 and y'(0) = —5

yields the system

—Cc1+co = -1

-2 — Cli —Cp = —5.

The solution of this system is ¢c; = 2, co = 1. Substituting these into (5.7.24) yields

2In(z +1) 2 1
+ +

r—1 r—1 x+1
B 21n(x+1)+3:c+1
z—1 2 -1

as the solution of (5.7.21). Figure 5.7.1 is a graph of the solution.
Comparison of Methods

We’ve now considered three methods for solving nonhomogeneous linear equations: undetermined co-
efficients, reduction of order, and variation of parameters. It’s natural to ask which method is best for a
given problem. The method of undetermined coefficients should be used for constant coefficient equa-
tions with forcing functions that are linear combinations of polynomials multiplied by functions of the
form e®*, e** cos wz, or e sin wz. Although the other two methods can be used to solve such problems,
they will be more difficult except in the most trivial cases, because of the integrations involved.

If the equation isn’t a constant coefficient equation or the forcing function isn’t of the form just spec-
ified, the method of undetermined coefficients does not apply and the choice is necessarily between the
other two methods. The case could be made that reduction of order is better because it requires only
one solution of the complementary equation while variation of parameters requires two. However, vari-
ation of parameters will probably be easier if you already know a fundamental set of solutions of the
complementary equation.
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2In(z + 1) +3x+1
r—1 2 -1

Figure 5.7.1 y =

5.7 Exercises

In Exercises 1-6 use variation of parameters to find a particular solution.

1. ¢’ +9y=tan3zx 2. y"+4y =sin2zsec® 2z

1" ot — 2.7
3.y —3y +2y— 4. ' — 2y 4+ 2y =3e"secx

1+e®

5. ' =2y +y= 14232 6. o' —y= o 4612
—e x
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In Exercises 7-29 use variation of parameters to find a particular solution, given the solutions vy, y2 of
the complementary equation.

1
7. 2% 4y —y=222+2; y ==, 2= —
xT
8. zy' +(2—22)y + (x -2y =e*"; y =€, y2:%
9. da?y’ + (4 — 822)y + (4a® — 4z — 1)y = 4x'/%e*, 2 >0,
g1 = a2, yp = 3 1/27
2 2

10. o/ +dxy + (422 4+ 2)y = de =@+, gy = ® g = xe
Y Y Y Y I

11. 2%y —dxy + 6y =252, 2>0; y =22, yo =2°

12. 22y —3xy/ + 3y =22*sinz; y =, yo = 2°

13, e+ 1)y -2y — 2z +3)y= 2z +1)%e% y1=e %, ys=me"

14. 43:y” +2y +y=sinx; y; =cos\/x, Y2 =sin\/T

15. 2y — 2z +2)y + (z+2)y = 62%e%; y1 =€, yo ="

16. 2%y’ — (2a — V)ay +a’y = 2%y =2%, yo=2%nz

17. 2%y — 22y + (2?2 + 2)y = 23cosx; Y =2xcosx, yp =axsinz

18. zy/ —y —dady=82% y =", pp=e
19. (sinz)y”’ + (2sinz —cosx)y’ + (sinz —cosz)y =e %; y =e %, y2=e "cosx
20. 4dz%y” —dxy + (3 — 162%)y = 8%/ = /2e® | yy = \Jre "

21, 4ay” —day + (a2 +3)y =272 oy = \/Esm T, Y2 = \/TCOST
22, 2%y —2xy — (22 -2y =32%; Yy = we®, yo = a7

23. 2%y —2x(x+ 1)y + (2% + 22+ 2)y = 23e%;,  y; = xe®, Yo = 2%

24, 2%y —xy —3y=2a%2 yi=1/z, yp=2a°

25. 2%y —x(x4+4)y +2(x +3)y =2t y =2, yp = 2%e”

26. 2%y —2z(z+2)y + (22 + 42 +6)y = 2ze”; Y1 = 2%, Y2 = 23

27. 2%y —dxy + (22 +6)y = 2%y =2%cosx, yp = a’sinw

28. (z—1)y' —ay +y=2(x—1)2%e% y =z, y2=¢"

29, 4ay’ —dx(x+ 1)y + (2 +3)y = 2%/%®; oy =1, Y2 = Jae®
In Exercises 30-32 use variation of parameters to solve the initial value problem, given y,, Y2 are solu-
tions of the complementary equation.

30. (3z-— ) " — Bz +2)y — (62 —8)y = (3z — 1)%e**, y(0) =1, ¥/(0) = 2;

Y1 = €2 yo = ze ®

e o 12— 20—y 2= 1% y(0)=3, ¢(0) = 6;
y1=z—1, y2:3:2—1

2. - —-@2-1)y+(@+1y=(x—-1)3e* y0)=4, % (0)=-6;

n=(x—-1)" y=2-1



264 Chapter 5 Linear Second Order Equations

In Exercises 33-35 use variation of parameters to solve the initial value problem and graph the solution,
given that yy , y2 are solutions of the complementary equation.

33.

34.

35.

36.

37.

38.

39.

1 1

(z® = 1)y +day +2y =2z, y(0) =0,y (0)=-2 y=——, 1=
rx—1 x+1

1
vy 42wy — =27 y(1)=1,y(1)=-1 p=11p=—
X
(x4 1)(2x +3)y" +2(x +2)y —2y = (22 +3)2, y(0) =0, 3 (0)=0;
1

= 2 = —
Y1 =x+2, Yo r 1

Suppose
Yp =Y + a1y1 + azy2

is a particular solution of
Po(z)y” + Pi(x)y + Po(z)y = F(x), (A)
where y; and y, are solutions of the complementary equation
Py(x)y” + Pa(z)y’ + Pa(x)y = 0.

Show that 3 is also a solution of (A).

Suppose p, g, and f are continuous on (a, b) and let xo be in (a, b). Let y; and ys be the solutions
of

Y +p@)y +q(x)y =0
such that
yl(xo) = 15 y/l('ro) = Oa yQ(xO) = Oa y/Q(xO) =1

Use variation of parameters to show that the solution of the initial value problem

Y +p@)y +ql@)y = flx), ylxo) = ko, ¥ (x0) = ki,

T ) = k(@) + k)

+ / () — (@ (6)) £(8) exp (/

0

t

() ds> dt.

0

HINT: Use Abel’s formula for the Wronskian of {y1,y=}, and integrate v} and v}, from xq to x.
Show also that

y'(z) = koyi(x) + kiys()

+ / (@) — ¥ (2)a(6) £E) exp (/

0

t

() ds> dt.

0

Suppose f is continuous on an open interval that contains x¢ = 0. Use variation of parameters to
find a formula for the solution of the initial value problem

Y —y=f(x), y(0)=ko, ¢ (0)=F.

Suppose f is continuous on (a, o), where a < 0, so 2o = 0is in (a, 00).
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(a) Use variation of parameters to find a formula for the solution of the initial value problem
v +y=Fflx), y0) =k, y(0)=r.
HINT: You will need the addition formulas for the sine and cosine:

sin(A+ B) = sinAcosB + cos Asin B
cos(A+ B) = cosAcosB —sin Asin B.

For the rest of this exercise assume that the improper integral fooo f(¢) dt is absolutely convergent.

(b) Show that if y is a solution of

v +y=f(z) (A)
on (a, 00), then
lim (y(z) — Agcosz — Aysinz) =0 (B)
and
lim (' (z) + Agsinz — Ay cosz) = 0, (©)
where

Aozko—/ f(t)sintdt and A1:k1+/ f(t) cos tdt.
0 0

HINT: Recall from calculus that iffooo f(t) dt converges absolutely, thenlim, .o [ | f(t)| dt = 0.

(¢) Show that if Ag and A; are arbitrary constants, then there’s a unique solution of 3/ + y =
f(z) on (a, co) that satisfies (B) and (C).






CHAPTER 6

Applications of Linear Second Order
Equations

IN THIS CHAPTER we study applications of linear second order equations.
SECTIONS 6.1 AND 6.2 is about spring—mass systems.
SECTION 6.2 is about RLC circuits, the electrical analogs of spring—mass systems.

SECTION 6.3 is about motion of an object under a central force, which is particularly relevant in the
space age, since, for example, a satellite moving in orbit subject only to Earth’s gravity is experiencing
motion under a central force.
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6.1 SPRING PROBLEMS I

We consider the motion of an object of mass m, suspended from a spring of negligible mass. We say that
the spring—mass system is in equilibrium when the object is at rest and the forces acting on it sum to zero.
The position of the object in this case is the equilibrium position. We define y to be the displacement of
the object from its equilibrium position (Figure 6.1.1), measured positive upward.

(a) (b) (©

Figure 6.1.1 (a)y >0 (b)y =0, (¢)y <0  Figure 6.1.2 A spring — mass system with damping

Our model accounts for the following kinds of forces acting on the object:

The force —mg, due to gravity.

A force Fs exerted by the spring resisting change in its length. The natural length of the spring
is its length with no mass attached. We assume that the spring obeys Hooke’s law: If the length
of the spring is changed by an amount AL from its natural length, then the spring exerts a force
Fy = kAL, where k is a positive number called the spring constant. If the spring is stretched then
AL > 0and Fg > 0, so the spring force is upward, while if the spring is compressed then AL < 0
and Fs < 0, so the spring force is downward.

A damping force F; = —cy that resists the motion with a force proportional to the velocity of
the object. It may be due to air resistance or friction in the spring. However, a convenient way to
visualize a damping force is to assume that the object is rigidly attached to a piston with negligible
mass immersed in a cylinder (called a dashpot) filled with a viscous liquid (Figure 6.1.2). As the
piston moves, the liquid exerts a damping force. We say that the motion is undamped if ¢ = 0, or
damped if ¢ > 0.

An external force F', other than the force due to gravity, that may vary with ¢, but is independent of
displacement and velocity. We say that the motion is free if F' = 0, or forced if F' # 0.

From Newton’s second law of motion,

my' =-mg+Fj+Fs+F=-mg—cy +Fs+ F. (6.1.1)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Hooke.html
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Figure 6.1.3 (a) Natural length of spring (b) Spring stretched by mass

We must now relate F to y. In the absence of external forces the object stretches the spring by an amount
Al to assume its equilibrium position (Figure 6.1.3). Since the sum of the forces acting on the object is
then zero, Hooke’s Law implies that mg = kAl. If the object is displaced y units from its equilibrium
position, the total change in the length of the spring is AL = Al — y, so Hooke’s law implies that

Fo = kAL = kAl — ky.
Substituting this into (6.1.1) yields
my" = —mg —cy + kAL —ky+ F.
Since mg = kAl this can be written as
my” +cy +ky=F. (6.1.2)

We call this the equation of motion.
Simple Harmonic Motion

Throughout the rest of this section we’ll consider spring—mass systems without damping; that is, ¢ = 0.
We’ll consider systems with damping in the next section.
We first consider the case where the motion is also free; that is, '=0. We begin with an example.

Example 6.1.1 An object stretches a spring 6 inches in equilibrium.
(a) Set up the equation of motion and find its general solution.

(b) Find the displacement of the object for ¢ > 0 if it’s initially displaced 18 inches above equilibrium
and given a downward velocity of 3 ft/s.
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SOLUTION(a) Setting c = 0 and F' = 0in (6.1.2) yields the equation of motion
my" +ky =0,
which we rewrite as .
y' 4+ —y=0. (6.1.3)
m

Although we would need the weight of the object to obtain & from the equation mg = kAl we can obtain
k/m from Al alone; thus, k/m = g/Al. Consistent with the units used in the problem statement, we
take g = 32 ft/s?. Although Al is stated in inches, we must convert it to feet to be consistent with this
choice of g; that is, Al = 1/2 ft. Therefore

k 32
=— =064
m  1/2
and (6.1.3) becomes
y" + 64y = 0. (6.1.4)
The characteristic equation of (6.1.4) is
r? 464 =0,

which has the zeros » = 8. Therefore the general solution of (6.1.4) is

Yy = c1 cos 8t + c2 sin 8t. (6.1.5)

SOLUTION(b) The initial upward displacement of 18 inches is positive and must be expressed in feet.
The initial downward velocity is negative; thus,

y(0) = g and 7/ (0) = —3.

Differentiating (6.1.5) yields
1y = —8cy sin 8t + 8co cos 8t. (6.1.6)

Setting ¢ = 0 in (6.1.5) and (6.1.6) and imposing the initial conditions shows that ¢; = 3/2 and co =
—3/8. Therefore

Y= gcos&— gsin8t,

where y is in feet (Figure 6.1.4).
We’ll now consider the equation
my' +ky=0

where m and k are arbitrary positive numbers. Dividing through by m and defining wy = \/k/—m yields
Y+ wgy =0.
The general solution of this equation is
Yy = c¢1 coswot + ca sinwyt. (6.1.7)

We can rewrite this in a more useful form by defining

R=\/c + 2, (6.1.8)
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A A NN
RIRVRY

Figure 6.1.4 y = g cos 8t — % sin 8¢

and
= Rcos¢ and ¢y = Rsin¢. (6.1.9)

Substituting from (6.1.9) into (6.1.7) and applying the identity
cos wot cos ¢ + sin wot sin ¢ = cos(wot — @)

yields
y = Rcos(wot — @). (6.1.10)

From (6.1.8) and (6.1.9) we see that the R and ¢ can be interpreted as polar coordinates of the point
with rectangular coordinates (c1, co) (Figure 6.1.5). Given ¢; and c¢2, we can compute R from (6.1.8).
From (6.1.8) and (6.1.9), we see that ¢ is related to ¢; and ¢, by

C1 . C2
and sing =

2 2 2 2"
€+ ¢ Vel e

There are infinitely many angles ¢, differing by integer multiples of 2, that satisfy these equations. We
will always choose ¢ so that —7 < ¢ < 7.

The motion described by (6.1.7) or (6.1.10) is simple harmonic motion. We see from either of these
equations that the motion is periodic, with period

cos ¢ =

T = 27 /wyg.

This is the time required for the object to complete one full cycle of oscillation (for example, to move from
its highest position to its lowest position and back to its highest position). Since the highest and lowest
positions of the object are y = R and y = — R, we say that R is the amplitude of the oscillation. The
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v

Figure 6.1.5 R = \/c? +c3; ¢ = Rcos¢; c¢2 = Rsing

angle ¢ in (6.1.10) is the phase angle. 1t’s measured in radians. Equation (6.1.10) is the amplitude—phase
form of the displacement. If ¢ is in seconds then wy is in radians per second (rad/s); it’s the frequency of
the motion. It is also called the natural frequency of the spring—mass system without damping.

Example 6.1.2 We found the displacement of the object in Example 6.1.1 to be
3 3
y=35 cos 8t — 3 sin 8t.

Find the frequency, period, amplitude, and phase angle of the motion.

Solution The frequency is wy = 8 rad/s, and the period is T = 27 /wp = /4 s. Since ¢; = 3/2 and
co = —3/8, the amplitude is

R—\/@—”@)QJF@)Q—%&-

The phase angle is determined by

3
3 4
COSp= —2— = — 6.1.11
W BV (6.1.11)
and
_3
sing = —5= = —L. (6.1.12)
V1T V17

Using a calculator, we see from (6.1.11) that

¢ ~ +.245 rad.
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Since sin ¢ < 0 (see (6.1.12)), the minus sign applies here; that is,
¢ ~ —.245 rad.

Example 6.1.3 The natural length of a spring is 1 m. An object is attached to it and the length of the
spring increases to 102 cm when the object is in equilibrium. Then the object is initially displaced
downward 1 cm and given an upward velocity of 14 cm/s. Find the displacement for ¢ > 0. Also, find
the natural frequency, period, amplitude, and phase angle of the resulting motion. Express the answers in
cgs units.

Solution In cgs units g = 980 cm/s?. Since Al = 2 cm, wi = g/Al = 490. Therefore
y' +490y =0, y(0)=-1, y'(0)=14
The general solution of the differential equation is

y = ¢1 cos 7V 10t + co sin 7TV 10¢,

o)
y =710 (—01 sin 7v/10t + ¢ cos 7\/10t) .
Substituting the initial conditions into the last two equations yields ¢; = —1 and ¢o = 2/+/10. Hence,

2
= —cos 7V 10t + ——sin 7V 10t.
Y V10

The frequency is 7v/10 rad/s, and the period is T' = 27 /(7+/10) s. The amplitude is

R_m_\/(—nu (\/il_oy_\/gcm.

The phase angle is determined by

2
cos¢:%:— g and sin(b:%: =

Therefore ¢ is in the second quadrant and

¢ =cos " <—\/§> ~ 2.58 rad.

Undamped Forced Oscillation

In many mechanical problems a device is subjected to periodic external forces. For example, soldiers
marching in cadence on a bridge cause periodic disturbances in the bridge, and the engines of a propeller
driven aircraft cause periodic disturbances in its wings. In the absence of sufficient damping forces, such
disturbances — even if small in magnitude — can cause structural breakdown if they are at certain critical
frequencies. To illustrate, this we’ll consider the motion of an object in a spring—mass system without
damping, subject to an external force

F(t) = Fycoswt
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where Fj is a constant. In this case the equation of motion (6.1.2) is
my” + ky = Fy coswt,

which we rewrite as

F,
Y’ +wiy = 2 coswt (6.1.13)
m

with wg = /k/m. We’ll see from the next two examples that the solutions of (6.1.13) with w # wy
behave very differently from the solutions with w = wy.

Example 6.1.4 Solve the initial value problem
" 2 Fo /

Y Fuwiy = Ecoswt, y(0) =0, ¥'(0)=0, (6.1.14)
given that w # wy.
Solution We first obtain a particular solution of (6.1.13) by the method of undetermined coefficients.
Since w # wy, coswt isn’t a solution of the complementary equation

Yy + wgy =0.

Therefore (6.1.13) has a particular solution of the form

yp = Acoswt + Bsinwt.

Since
Yy = —w*(Acoswt + Bsinwt),
E
" 2 0
= — 4
Yp T WoYp - COs w
if and only if
E
(wi — w?) (Acoswt + Bsinwt) = =9 coswt.
m
This holds if and only if
E
A= 2702 and B = O,
m(wi — w?)
o)
Fy .
= ——5——+ coswt.
Y m(wg — w?)
The general solution of (6.1.13) is
Ey .
cos wt + 1 cos wot + c2 sin wot, (6.1.15)

v= m(wg — w?)

)

12 _WF . .
Y = ————5 sinwt + wo(—e1 sinwpt + ¢ coswot).
m(wi — w?)

The initial conditions y(0) = 0 and 3/ (0) = 0 in (6.1.14) imply that

Fy

— v d =0.
m(wg _w2) an C2

Cl1 = —
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Substituting these into (6.1.15) yields

Fo (cos wt t) (6.1.16)
= ————(coswt — coswpt). 1.
I m( ) '
It is revealing to write this in a different form. We start with the trigonometric identities

cos(a—fB) = cosacosf+ sinasinf

cos(a+B) = cosacosf —sinasinf.

Subtracting the second identity from the first yields

cos(a — ) — cos(a + ) = 2sinasin 8 (6.1.17)

Now let
a—f=wt and «+ [ = wot, (6.1.18)

so that
R (6.1.19)

Substituting (6.1.18) and (6.1.19) into (6.1.17) yields

—w)t t
(wo —wt . (wo+w)

cos wt — coswot = 2sin

B) 5
and substituting this into (6.1.16) yields
y = R(t)sin M (6.1.20)
where
R(t) = m(ng_o 7y sin (o 5 Wt (6.121)

From (6.1.20) we can regard y as a sinusoidal variation with frequency (wp +w)/2 and variable ampli-
tude | R(t)|. In Figure 6.1.6 the dashed curve above the ¢ axis is y = | R(t)|, the dashed curve below the ¢
axis is y = —|R(t)|, and the displacement y appears as an oscillation bounded by them. The oscillation
of y for ¢ on an interval between successive zeros of R(t) is called a beat.

You can see from (6.1.20) and (6.1.21) that

2|Fo]

mlw?

ly(t)] <

— w2

moreover, if w + wy is sufficiently large compared with w — wy, then |y| assumes values close to (perhaps
equal to) this upper bound during each beat. However, the oscillation remains bounded for all ¢. (This
assumes that the spring can withstand deflections of this size and continue to obey Hooke’s law.) The
next example shows that this isn’t so if w = wy.

Example 6.1.5 Find the general solution of

F,
Y’ + wiy = =2 cos wot. (6.1.22)
m



276 Chapter 6 Applications of Linear Second Order Equations

Figure 6.1.6 Undamped oscillation with beats

Solution We first obtain a particular solution y, of (6.1.22). Since coswyt is a solution of the comple-
mentary equation, the form for g, is

yp = t(Acoswot + Bsinwt). (6.1.23)

Then
y]’o = Acoswot + Bsinwot + wot(—Asinwot + B cos wot)

and
Yy = 2wo(—Asinwgt + B coswot) — wjt(A cos wot + Bsinwot). (6.1.24)

From (6.1.23) and (6.1.24), we see that y, satisfies (6.1.22) if

F
—2Awg sin wot + 2Bwq cos wgt = 9 cos wot;
m

that is, if
A=0 and B= 10
2muwg
Therefore
Yp sinwpt

T 2muwy

is a particular solution of (6.1.22). The general solution of (6.1.22) is

Fot . .
= sinwgt 4 ¢1 cos wot + co sin wot.
2muwg
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~ y=F01‘/2m0)0

I

- y=—F0t/2mu)0

Figure 6.1.7 Unbounded displacement due to resonance

The graph of ¥, is shown in Figure 6.1.7, where it can be seen that y,, oscillates between the dashed lines

LY Fot
v= 2muwyg 2muwg

and y=

with increasing amplitude that approaches oo as ¢ — oo. Of course, this means that the spring must
eventually fail to obey Hooke’s law or break. [ ]

This phenomenon of unbounded displacements of a spring—mass system in response to a periodic
forcing function at its natural frequency is called resonance. More complicated mechanical structures
can also exhibit resonance—like phenomena. For example, rhythmic oscillations of a suspension bridge
by wind forces or of an airplane wing by periodic vibrations of reciprocating engines can cause damage
or even failure if the frequencies of the disturbances are close to critical frequencies determined by the
parameters of the mechanical system in question.

6.1 Exercises

In the following exercises assume that there’s no damping.

1. An object stretches a spring 4 inches in equilibrium. Find and graph its displacement for
t > 0 if it’s initially displaced 36 inches above equilibrium and given a downward velocity of 2
ft/s.

2. An object stretches a string 1.2 inches in equilibrium. Find its displacement for ¢ > 0 if it’s
initially displaced 3 inches below equilibrium and given a downward velocity of 2 ft/s.

3. A spring with natural length .5 m has length 50.5 cm with a mass of 2 gm suspended from it.
The mass is initially displaced 1.5 cm below equilibrium and released with zero velocity. Find its
displacement for ¢t > 0.
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10.

11.

12.

13.

14.

15.

16.

17.

18.
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An object stretches a spring 6 inches in equilibrium. Find its displacement for £ > 0 if it’s initially
displaced 3 inches above equilibrium and given a downward velocity of 6 inches/s. Find the
frequency, period, amplitude and phase angle of the motion.

An object stretches a spring 5 cm in equilibrium. It is initially displaced 10 cm above
equilibrium and given an upward velocity of .25 m/s. Find and graph its displacement for ¢ > 0.
Find the frequency, period, amplitude, and phase angle of the motion.

A 10 kg mass stretches a spring 70 cm in equilibrium. Suppose a 2 kg mass is attached to the
spring, initially displaced 25 cm below equilibrium, and given an upward velocity of 2 m/s. Find
its displacement for ¢ > 0. Find the frequency, period, amplitude, and phase angle of the motion.

A weight stretches a spring 1.5 inches in equilibrium. The weight is initially displaced 8 inches
above equilibrium and given a downward velocity of 4 ft/s. Find its displacement for ¢ > 0.

A weight stretches a spring 6 inches in equilibrium. The weight is initially displaced 6 inches
above equilibrium and given a downward velocity of 3 ft/s. Find its displacement for ¢ > 0.

A spring—mass system has natural frequency 7+/10 rad/s. The natural length of the spring is .7 m.
What is the length of the spring when the mass is in equilibrium?

A 64 1b weight is attached to a spring with constant k£ = 8 Ib/ft and subjected to an external force
F(t) = 2sint. The weight is initially displaced 6 inches above equilibrium and given an upward
velocity of 2 ft/s. Find its displacement for ¢ > 0.

A unit mass hangs in equilibrium from a spring with constant £ = 1/16. Starting at ¢ = 0, a force
F(t) = 3sint is applied to the mass. Find its displacement for ¢ > 0.

A 4 1b weight stretches a spring 1 ft in equilibrium. An external force F'(t) = .25sin 8¢
Ib is applied to the weight, which is initially displaced 4 inches above equilibrium and given a
downward velocity of 1 ft/s. Find and graph its displacement for ¢ > 0.

A 2 1b weight stretches a spring 6 inches in equilibrium. An external force F'(t) = sin 8¢ b is ap-
plied to the weight, which is released from rest 2 inches below equilibrium. Find its displacement
fort > 0.

A 10 gm mass suspended on a spring moves in simple harmonic motion with period 4 s. Find the
period of the simple harmonic motion of a 20 gm mass suspended from the same spring.

A 6 b weight stretches a spring 6 inches in equilibrium. Suppose an external force F'(t) =

6 sinwt + — coswt Ib is applied to the weight. For what value of w will the displacement
be unbounded? Find the displacement if w has this value. Assume that the motion starts from

equilibrium with zero initial velocity.

A 6 1b weight stretches a spring 4 inches in equilibrium. Suppose an external force F'(t) =
4sinwt — 6coswt 1b is applied to the weight. For what value of w will the displacement be
unbounded? Find and graph the displacement if w has this value. Assume that the motion starts
from equilibrium with zero initial velocity.

A mass of one kg is attached to a spring with constant k& = 4 N/m. An external force F(t) =
—coswt — 2sinwt n is applied to the mass. Find the displacement y for t > 0 if w equals the
natural frequency of the spring—mass system. Assume that the mass is initially displaced 3 m
above equilibrium and given an upward velocity of 450 cm/s.

An object is in simple harmonic motion with frequency wy, with y(0) = yo and 3’ (0) = vo. Find
its displacement for ¢ > 0. Also, find the amplitude of the oscillation and give formulas for the
sine and cosine of the initial phase angle.



Section 6.2 Spring Problems II 279

19. Two objects suspended from identical springs are set into motion. The period of one object is
twice the period of the other. How are the weights of the two objects related?

20. Two objects suspended from identical springs are set into motion. The weight of one object is
twice the weight of the other. How are the periods of the resulting motions related?

21. Two identical objects suspended from different springs are set into motion. The period of one
motion is 3 times the period of the other. How are the two spring constants related?

6.2 SPRING PROBLEMS II

Free Vibrations With Damping

In this section we consider the motion of an object in a spring—mass system with damping. We start with
unforced motion, so the equation of motion is

my"” +cy' +ky =0. (6.2.1)

Now suppose the object is displaced from equilibrium and given an initial velocity. Intuition suggests that
if the damping force is sufficiently weak the resulting motion will be oscillatory, as in the undamped case
considered in the previous section, while if it’s sufficiently strong the object may just move slowly toward
the equilibrium position without ever reaching it. We’ll now confirm these intuitive ideas mathematically.
The characteristic equation of (6.2.1) is

mr? +cr+k=0.

The roots of this equation are

—c— V2 —4dmk —c+ V2 —4dmk
T = om and To = .

6.2.2)

2m

In Section 5.2 we saw that the form of the solution of (6.2.1) depends upon whether ¢? — 4mk is positive,
negative, or zero. We’ll now consider these three cases.

Underdamped Motion

We say the motion is underdamped if ¢ < /4mk. In this case 1 and 79 in (6.2.2) are complex conjugates,
which we write as c c
le———iwl and TQZ——+iwl,
2m

2m
where

Vamk — c2
w=—.
! 2m
The general solution of (6.2.1) in this case is

y= efct/Qm(

¢1 coswit + cosinwit).

By the method used in Section 6.1 to derive the amplitude—phase form of the displacement of an object
in simple harmonic motion, we can rewrite this equation as

y = Re™ /™ cos(wit — o), (6.2.3)
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—ct/2m

/\ y/\Reﬂ N A ey
JARES

—ct /2m

Figure 6.2.1 Underdamped motion

where

R=\/c2+c% Rcos¢=cy, and Rsing= cs.

The factor Re~*/?™ in (6.2.3) is called the time—varying amplitude of the motion, the quantity w; is
called the frequency, and T = 27 /wy (which is the period of the cosine function in (6.2.3) is called the
quasi—period. A typical graph of (6.2.3) is shown in Figure 6.2.1. As illustrated in that figure, the graph
of y oscillates between the dashed exponential curves y = £Re /2™,
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Overdamped Motion

We say the motion is overdamped if ¢ > v/4mk. In this case the zeros r; and 7o of the characteristic
polynomial are real, with r; < ro < 0 (see (6.2.2)), and the general solution of (6.2.1) is

y = cre"™t 4 cpe™t.

Again lim;_, o, y(¢) = 0 as in the underdamped case, but the motion isn’t oscillatory, since y can’t equal
zero for more than one value of £ unless ¢; = co = 0. (Exercise 23.)

Critically Damped Motion

We say the motion is critically damped if ¢ = v/4mk. In this case r; = ro = —c¢/2m and the general
solution of (6.2.1) is
Yy = €7Ct/2m(01 + Cgt).

Again lim;_,, y(¢) = 0 and the motion is nonoscillatory, since y can’t equal zero for more than one
value of ¢ unless ¢c; = co = 0. (Exercise 22).

Example 6.2.1 Suppose a 64 Ib weight stretches a spring 6 inches in equilibrium and a dashpot provides

a damping force of c Ib for each ft/sec of velocity.

(a) Write the equation of motion of the object and determine the value of ¢ for which the motion is
critically damped.

(b) Find the displacement y for ¢ > 0 if the motion is critically damped and the initial conditions are
y(0) = 1 and ¢/ (0) = 20.

(¢) Find the displacement y for ¢ > 0 if the motion is critically damped and the initial conditions are
y(0) = 1 and ¢/ (0) = —20.

SoLuTIiON(a) Here m = 2 slugs and k = 64/.5 = 128 Ib/ft. Therefore the equation of motion (6.2.1) is

2y + ¢y + 128y = 0. (6.2.4)

The characteristic equation is
2r% +er +128 =0,

which has roots
—c+ V2 —8-128
1 .

Therefore the damping is critical if

c = V8128 = 32 Ib-sec/ft.

SOLUTION(b) Setting ¢ = 32 in (6.2.4) and cancelling the common factor 2 yields
y" + 16y + 64y = 0.

The characteristic equation is
r? 4+ 16r + 64y = (r +8)% = 0.

Hence, the general solution is
y=e % (cy + cat). (6.2.5)
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Figure 622 (a) y = e~ 3{(1 +28¢) (b) y = e~ 5¢(1 — 12¢)

Differentiating this yields

Y = =8y + coe 5. (6.2.6)
Imposing the initial conditions y(0) = 1 and ¢/ (0) = 20 in the last two equations shows that 1 = ¢; and
20 = —8 + c2. Hence, the solution of the initial value problem is

y = e SH(1 + 28t).
Therefore the object approaches equilibrium from above as ¢ — oo. There’s no oscillation.

SOLUTION(¢) Imposing the initial conditions y(0) = 1 and ' (0) = —20 in (6.2.5) and (6.2.6) yields
1 = ¢; and —20 = —8 + c2. Hence, the solution of this initial value problem is

y=e 51— 12t).

Therefore the object moves downward through equilibrium just once, and then approaches equilibrium
from below as ¢ — oo. Again, there’s no oscillation. The solutions of these two initial value problems
are graphed in Figure 6.2.2.

Example 6.2.2 Find the displacement of the object in Example 6.2.1 if the damping constant is ¢ = 4
Ib—sec/ft and the initial conditions are y(0) = 1.5 ft and ¥/ (0) = —3 ft/sec.

Solution With ¢ = 4, the equation of motion (6.2.4) becomes
y' +2y +64y =0 (6.2.7)
after cancelling the common factor 2. The characteristic equation

2+ 2r4+64=0
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has complex conjugate roots

ro 22E ”§_4'64:—1i3\ﬁi.

Therefore the motion is underdamped and the general solution of (6.2.7) is
y = e '(c1 cos 3VTt + cosin 3VTH).
Differentiating this yields
Y = —y +3VT7e  (—c; sin 3Vt + ¢y cos 3V/TH).

Imposing the initial conditions y(0) = 1.5 and ¢’ (0) = —3 in the last two equations yields 1.5 = ¢; and
—3 = —1.5+ 3v/Tcs. Hence, the solution of the initial value problem is

y=e" (g cos 3Vt — 2\% sin 3\f7t> . (6.2.8)

The amplitude of the function in parentheses is

w8 ) 5

Therefore we can rewrite (6.2.8) as

—e "t cos(3VTt — o),

where

37 1 1

cos ¢ = % =5 and sing = _2\/_—7R =-3

Therefore ¢ = —.125 radians.
Example 6.2.3 Let the damping constant in Example 1 be ¢ = 40 1b—sec/ft. Find the displacement y for
t>0ify(0) =1landy/'(0) = 1.
Solution With ¢ = 40, the equation of motion (6.2.4) reduces to

Yy + 20y + 64y =0 (6.2.9)
after cancelling the common factor 2. The characteristic equation

7?4+ 20r +64=(r +16)(r+4)=0

has the roots r; = —4 and ro = —16. Therefore the general solution of (6.2.9) is

y = cre 4 cpe 10, (6.2.10)

Differentiating this yields
Y = —de ™ — 16cpe 168
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17 5
Figure 6.2.3 y = E(f“ - Eeflﬁt

The last two equations and the initial conditions y(0) = 1 and 3/(0) = 1 imply that

c1 + Cy = 1
—401 - 1602 =1.

The solution of this system is ¢; = 17/12, co = —5/12. Substituting these into (6.2.10) yields
17 )
—4t _ 2 16t

Y= 12° 12

as the solution of the given initial value problem (Figure 6.2.3).

Forced Vibrations With Damping

Now we consider the motion of an object in a spring-mass system with damping, under the influence of a
periodic forcing function F'(t) = F cos wt, so that the equation of motion is

my” + cy + ky = Fy coswt. (6.2.11)

In Section 6.1 we considered this equation with ¢ = 0 and found that the resulting displacement y assumed
arbitrarily large values in the case of resonance (that is, when w = wg = y/k/m). Here we’ll see that in
the presence of damping the displacement remains bounded for all £, and the initial conditions have little
effect on the motion as ¢ — oo. In fact, we’ll see that for large ¢ the displacement is closely approximated

by a function of the form
y = Rcos(wt — @), (6.2.12)

where the amplitude R depends upon m, c, k, Fp, and w. We’re interested in the following question:
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QUESTION:Assuming that m, ¢, k, and Fy are held constant, what value of w produces the largest
amplitude R in (6.2.12), and what is this largest amplitude?

To answer this question, we must solve (6.2.11) and determine R in terms of Fp, wg, w, and c. We can
obtain a particular solution of (6.2.11) by the method of undetermined coefficients. Since cos wt does not
satisfy the complementary equation

my" +cy +ky =0,

we can obtain a particular solution of (6.2.11) in the form
yp = Acoswt + Bsinwt. (6.2.13)

Differentiating this yields
y, = w(—Asinwt 4 B coswt)

and
Yy = —w?(Acoswt + Bsinwt).

From the last three equations,
my, + cy, + ky, = (—mw?A 4 cwB + kA) coswt + (—mw? B — cwA + kB) sin wt,

S0 y,, satisfies (6.2.11) if

(k—mwH)A+ cwB = F
—cwA  + (k—mw?)B = 0.
Solving for A and B and substituting the results into (6.2.13) yields
Fy

Y = (k — mw?)? + 2w? [(k —mw?) coswt + cw sinwt] ,

which can be written in amplitude—phase form as

Fy

Yp = N TR cos(wt — @), (6.2.14)
where
k — mw? cw
cos ¢ = and sing = . 6.2.15
¢ V(k —mw?)? + 2w? ¢ V(k —mw?)? + 2w? ( )

To compare this with the undamped forced vibration that we considered in Section 6.1 it’s useful to

write L
kE—mw? = m(— - w2> = m(wi — w?), (6.2.16)

m

where wg = +/k/m is the natural angular frequency of the undamped simple harmonic motion of an
object with mass m on a spring with constant k. Substituting (6.2.16) into (6.2.14) yields

Fy

Yp = VM2 (@2 — w?)? + w?

cos(wt — ). (6.2.17)

The solution of an initial value problem

my"” +cy +ky = Fycoswt, y(0) =y, % (0)= v,
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is of the form y = y. + y,,, where y. has one of the three forms

Ye = €7Ct/2m(01 COS wlt + c2 sinwlt),
Ye = €7Ct/2m(01 + Cgt),
Yo = clerlt —+ 0267“215 (Tl, ro < O)

In all three cases lim;—, o y.(t) = O for any choice of ¢; and co. For this reason we say that y, is the
transient component of the solution y. The behavior of y for large ¢ is determined by v, which we call the
steady state component of y. Thus, for large ¢ the motion is like simple harmonic motion at the frequency
of the external force.

The amplitude of ¥, in (6.2.17) is

Fo

R=
\/mQ 2 02w2

(6.2.18)

which is finite for all w; that is, the presence of damping precludes the phenomenon of resonance that we
encountered in studying undamped vibrations under a periodic forcing function. We’ll now find the value
Wmax Of w for which R is maximized. This is the value of w for which the function

pw) = m?(wi — w?)? + Pw?
in the denominator of (6.2.18) attains its minimum value. By rewriting this as

p(w) = m?(w§ + w?) + (¢ — 2m°wf)w?, (6.2.19)

you can see that p is a strictly increasing function of w? if
2m2wd = V2mk.

(Recall that wg = k/m). Therefore wpax = 0 if this inequality holds. From (6.2.15), you can see that
¢ = 0if w = 0. In this case, (6.2.14) reduces to

which is consistent with Hooke’s law: if the mass is subjected to a constant force Fy, its displacement
should approach a constant y,, such that ky,, = Fj. Now suppose ¢ < v/2mk. Then, from (6.2.19),

P (W) = 2w(2m?w? + % — 2m2w}),

and wnax 18 the value of w for which the expression in parentheses equals zero; that is,

Wmax = \) - ka

(To see that p(wmax) is the minimum value of p(w), note that p’ (w) < 0 if w < wmax and p'(w) > 0
if w > wpax.) Substituting w = wWnyax in (6.2.18) and 31mp11fy1ng shows that the maximum amplitude
Ruiax 18

if ¢ <V2mk.

We summarize our results as follows.
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Theorem 6.2.1 Suppose we consider the amplitude R of the steady state component of the solution of
my” + ¢y + ky = Fycoswt

as a function of w.
(@) If ¢ > v/ 2mk, the maximum amplitude is Ryax = Fo/k and it’s attained when w = wyax = 0.
(b) If ¢ < V2mk, the maximum amplitude is

2mF0
Rmax - 6.2.20
cvVamk — ¢2 ( )
and it’s attained when
k c?
W = Wmax = ey (1 — 2km)' (6.2.21)

Note that R,.x and wmayx are continuous functions of ¢, for ¢ > 0, since (6.2.20) and (6.2.21) reduce to
Riax = Fo/k and wpayx = 0if ¢ = v 2km.
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6.2 Exercises

10.

11.

12.

13.

A 64 1b object stretches a spring 4 ft in equilibrium. It is attached to a dashpot with damping
constant ¢ = 8 Ib-sec/ft. The object is initially displaced 18 inches above equilibrium and given a
downward velocity of 4 ft/sec. Find its displacement and time—varying amplitude for ¢ > 0.

A 16 Ib weight is attached to a spring with natural length 5 ft. With the weight attached,
the spring measures 8.2 ft. The weight is initially displaced 3 ft below equilibrium and given an
upward velocity of 2 ft/sec. Find and graph its displacement for ¢ > 0 if the medium resists the
motion with a force of one b for each ft/sec of velocity. Also, find its time—varying amplitude.

An 8 1b weight stretches a spring 1.5 inches. It is attached to a dashpot with damping
constant c=8 1b-sec/ft. The weight is initially displaced 3 inches above equilibrium and given an
upward velocity of 6 ft/sec. Find and graph its displacement for ¢ > 0.

A 96 Ib weight stretches a spring 3.2 ft in equilibrium. It is attached to a dashpot with damping
constant c=18 Ib-sec/ft. The weight is initially displaced 15 inches below equilibrium and given a
downward velocity of 12 ft/sec. Find its displacement for ¢ > 0.

A 16 1b weight stretches a spring 6 inches in equilibrium. It is attached to a damping mechanism
with constant c. Find all values of ¢ such that the free vibration of the weight has infinitely many
oscillations.

An 8 1b weight stretches a spring .32 ft. The weight is initially displaced 6 inches above equilibrium
and given an upward velocity of 4 ft/sec. Find its displacement for ¢ > 0 if the medium exerts a
damping force of 1.5 1b for each ft/sec of velocity.

A 32 1b weight stretches a spring 2 ft in equilibrium. It is attached to a dashpot with constant c = 8
Ib-sec/ft. The weight is initially displaced 8 inches below equilibrium and released from rest. Find
its displacement for ¢ > 0.

A mass of 20 gm stretches a spring 5 cm. The spring is attached to a dashpot with damping
constant 400 dyne sec/cm. Determine the displacement for ¢ > 0 if the mass is initially displaced
9 cm above equilibrium and released from rest.

A 64 1b weight is suspended from a spring with constant £ = 25 1b/ft. It is initially displaced 18
inches above equilibrium and released from rest. Find its displacement for ¢ > 0 if the medium
resists the motion with 6 1b of force for each ft/sec of velocity.

A 32 1b weight stretches a spring 1 ft in equilibrium. The weight is initially displaced 6 inches
above equilibrium and given a downward velocity of 3 ft/sec. Find its displacement for ¢ > 0 if
the medium resists the motion with a force equal to 3 times the speed in ft/sec.

An 8 1b weight stretches a spring 2 inches. It is attached to a dashpot with damping constant
c=4 1b-sec/ft. The weight is initially displaced 3 inches above equilibrium and given a downward
velocity of 4 ft/sec. Find its displacement for £ > 0.

A 2 1b weight stretches a spring .32 ft. The weight is initially displaced 4 inches below
equilibrium and given an upward velocity of 5 ft/sec. The medium provides damping with constant
¢ = 1/8 1b-sec/ft. Find and graph the displacement for ¢ > 0.

An 8 1b weight stretches a spring 8 inches in equilibrium. It is attached to a dashpot with damping
constant ¢ = .5 Ib-sec/ft and subjected to an external force F'(t) = 4 cos2t 1b. Determine the
steady state component of the displacement for ¢ > 0.



14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.
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A 32 Ib weight stretches a spring 1 ft in equilibrium. It is attached to a dashpot with constant
¢ = 12 Ib-sec/ft. The weight is initially displaced 8 inches above equilibrium and released from
rest. Find its displacement for ¢ > 0.

A mass of one kg stretches a spring 49 cm in equilibrium. A dashpot attached to the spring
supplies a damping force of 4 N for each m/sec of speed. The mass is initially displaced 10 cm
above equilibrium and given a downward velocity of 1 m/sec. Find its displacement for ¢ > 0.

A mass of 100 grams stretches a spring 98 cm in equilibrium. A dashpot attached to the spring
supplies a damping force of 600 dynes for each cm/sec of speed. The mass is initially displaced 10
cm above equilibrium and given a downward velocity of 1 m/sec. Find its displacement for ¢ > 0.

A 192 1b weight is suspended from a spring with constant £ = 6 Ib/ft and subjected to an external
force F'(t) = 8cos3t Ib. Find the steady state component of the displacement for ¢ > 0 if the
medium resists the motion with a force equal to 8§ times the speed in ft/sec.

A 2 gm mass is attached to a spring with constant 20 dyne/cm. Find the steady state component of
the displacement if the mass is subjected to an external force F'(t) = 3 cos 4t — 5 sin 4t dynes and
a dashpot supplies 4 dynes of damping for each cm/sec of velocity.

A 96 1b weight is attached to a spring with constant 12 1b/ft. Find and graph the steady state
component of the displacement if the mass is subjected to an external force F'(t) = 18 cost—9sin ¢
Ib and a dashpot supplies 24 1b of damping for each ft/sec of velocity.

A mass of one kg stretches a spring 49 cm in equilibrium. It is attached to a dashpot that supplies a
damping force of 4 N for each m/sec of speed. Find the steady state component of its displacement
if it’s subjected to an external force F'(t) = 8sin 2t — 6 cos 2t N.

A mass m is suspended from a spring with constant & and subjected to an external force F'(t) =
a cos wot 4 G sin wot, where wy is the natural frequency of the spring—mass system without damp-
ing. Find the steady state component of the displacement if a dashpot with constant ¢ supplies
damping.

Show that if ¢; and ¢, are not both zero then

Yy = e“t(cl + CQt)
can’t equal zero for more than one value of £.
Show that if ¢; and ¢, are not both zero then

y = cre™! + cpe™?

can’t equal zero for more than one value of £.
Find the solution of the initial value problem
my" +cy’ +ky =0, y(0) = yo, ¥'(0) = vo,
given that the motion is underdamped, so the general solution of the equation is
Y= e*Ct/Qm(cl coswit + cosinwit).
Find the solution of the initial value problem
my” + ey +ky =0, y(0) =yo, y'(0) = vo,

given that the motion is overdamped, so the general solution of the equation is

y=cre" +coe™t (r,ro < 0).
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26. Find the solution of the initial value problem
my + ey + ky =0, y(0) =1yo, ¥'(0) = vo,

given that the motion is critically damped, so that the general solution of the equation is of the
form
Yy = eht(cl + Cgt) (Tl < O)

6.3 THE RLC CIRCUIT

In this section we consider the RLC circuit, shown schematically in Figure 6.3.1. As we’ll see, the RLC'
circuit is an electrical analog of a spring-mass system with damping.

Nothing happens while the switch is open (dashed line). When the switch is closed (solid line) we say
that the circuit is closed. Differences in electrical potential in a closed circuit cause current to flow in
the circuit. The battery or generator in Figure 6.3.1 creates a difference in electrical potential F = E(t)
between its two terminals, which we’ve marked arbitrarily as positive and negative. (We could just as
well interchange the markings.) We’ll say that £/(¢) > 0 if the potential at the positive terminal is greater
than the potential at the negative terminal, E(¢) < 0 if the potential at the positive terminal is less than
the potential at the negative terminal, and E(t) = 0 if the potential is the same at the two terminals. We
call E the impressed voltage.

Induction Coil
(Inductance L)

A0 =

Resistor g_ \v o acitor
+

C
(Resistance R) A\ e (Casgmtance C)

-
~

Switch

Battery or Generator
(Impressed Voltage E=E(t))

Figure 6.3.1 An RLC circuit

At any time ¢, the same current flows in all points of the circuit. We denote current by I = I(t). We
say that I(¢) > 0 if the direction of flow is around the circuit from the positive terminal of the battery or
generator back to the negative terminal, as indicated by the arrows in Figure 6.3.1 I(t) < 0 if the flow is
in the opposite direction, and I(t) = 0 if no current flows at time ¢.
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Differences in potential occur at the resistor, induction coil, and capacitor in Figure 6.3.1. Note that the
two sides of each of these components are also identified as positive and negative. The voltage drop across
each component is defined to be the potential on the positive side of the component minus the potential
on the negative side. This terminology is somewhat misleading, since “drop” suggests a decrease even
though changes in potential are signed quantities and therefore may be increases. Nevertheless, we’ll go
along with tradition and call them voltage drops. The voltage drop across the resistor in Figure 6.3.1 is
given by

Vr = 1R, (6.3.1)

where I is current and R is a positive constant, the resistance of the resistor. The voltage drop across the

induction coil is given by

dr
Vi=Lo =Ll 6.3.2)

where L is a positive constant, the inductance of the coil.
A capacitor stores electrical charge @) = Q(t), which is related to the current in the circuit by the

equation
t

Q)= Qo +/ I(7)dr, (6.3.3)
0
where () is the charge on the capacitor at ¢ = 0. The voltage drop across a capacitor is given by
Q
Vo == 6.3.4
c=a (6.3.4)

where C'is a positive constant, the capacitance of the capacitor.
Table 6.3.8 names the units for the quantities that we’ve discussed. The units are defined so that

1volt = 1ampere-1ohm
= lhenry - 1 ampere/second

= 1coulomb/ farad

and

lampere = 1 coulomb/second.

Table 6.3.8. Electrical Units

Symbol Name Unit
E Impressed Voltage volt
I Current ampere
Q Charge coulomb
R Resistance ohm
L Inductance henry
C Capacitance farad

According to Kirchoff’s law, the sum of the voltage drops in a closed RLC circuit equals the impressed
voltage. Therefore, from (6.3.1), (6.3.2), and (6.3.4),

LI' + RI + éQ = E(t). (6.3.5)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Kirchhoff.html
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This equation contains two unknowns, the current [ in the circuit and the charge @ on the capacitor.
However, (6.3.3) implies that Q' = I, so (6.3.5) can be converted into the second order equation

LQ" + RQ' + éQ = E(t) (6.3.6)

in . To find the current flowing in an RLC circuit, we solve (6.3.6) for () and then differentiate the
solution to obtain /.
In Sections 6.1 and 6.2 we encountered the equation

my +cy + ky = F(t) (6.3.7)

in connection with spring-mass systems. Except for notation this equation is the same as (6.3.6). The
correspondence between electrical and mechanical quantities connected with (6.3.6) and (6.3.7) is shown
in Table 6.3.9.

Table 6.3.9. Electrical and Mechanical Units

Electrical Mechanical
charge Q displacement Y
curent I velocity y
impressed voltage E(t) | external force  F(t)
inductance L Mass m
resistance R damping c
1/capacitance 1/C | cpring constant k

The equivalence between (6.3.6) and (6.3.7) is an example of how mathematics unifies fundamental
similarities in diverse physical phenomena. Since we’ve already studied the properties of solutions of
(6.3.7) in Sections 6.1 and 6.2, we can obtain results concerning solutions of (6.3.6) by simpling changing
notation, according to Table 6.3.8.

Free Oscillations

We say that an RLC circuit is in free oscillationif E(t) = 0 for ¢ > 0, so that (6.3.6) becomes

1
LQ" + RQ' + 6@ =0. (6.3.8)
The characteristic equation of (6.3.8) is

1
Lr’ +Rr+==0
e+ T—i—c ,

with roots

—R—+\/R2 —4L/C o _ —R+/R*-4L/C 6.39)
2L - 2L ' -

There are three cases to consider, all analogous to the cases considered in Section 6.2 for free vibrations
of a damped spring-mass system.

CASE 1. The oscillation is underdamped if R < \/4L/C. In this case, r1 and r2 in (6.3.9) are complex
conjugates, which we write as

= T2

le———i-iwl and TQZ———iwl,

2L 2L



Section 6.3 The RLC Circuit 293

where

JIL[C— 2

2L

w1 =
The general solution of (6.3.8) is
Q= e Bit/2L (c1 coswit + co sinwit),

which we can write as
Q = Ae 2L cos(wit — ¢), (6.3.10)

A=,/ +c% Acos¢=cy, and Asing=cs.

In the idealized case where R = 0, the solution (6.3.10) reduces to

where

t
Q—Acos<\/T_C—¢>,

which is analogous to the simple harmonic motion of an undamped spring-mass system in free vibration.
Actual RLC circuits are usually underdamped, so the case we’ve just considered is the most important.
However, for completeness we’ll consider the other two possibilities.
CASE 2. The oscillation is overdamped if R > /4L/C. In this case, the zeros 1 and ro of the
characteristic polynomial are real, with r; < ro < 0 (see (6.3.9)), and the general solution of (6.3.8) is

Q = cie™t + coe™t. (6.3.11)

CASE 3. The oscillation is critically damped if R = /4L/C. In this case, 71 = ro = —R/2L and
the general solution of (6.3.8) is
Q = e 2L (¢y + eot). (6.3.12)

If R # 0, the exponentials in (6.3.10), (6.3.11), and (6.3.12) are negative, so the solution of any
homogeneous initial value problem

LQ"+RQ'+ 5Q =0, QO)=Qu, Q)=

approaches zero exponentially as ¢ — oo. Thus, all such solutions are transient, in the sense defined
Section 6.2 in the discussion of forced vibrations of a spring-mass system with damping.

Example 6.3.1 Att = 0 a current of 2 amperes flows in an RLC circuit with resistance R = 40 ohms,
inductance L = .2 henrys, and capacitance C' = 107 farads. Find the current flowing in the circuit at
t > 0 if the initial charge on the capacitor is 1 coulomb. Assume that £(t) = 0 for t > 0.

Solution The equation for the charge @ is

1
Q" +40Q' +10000Q =0,

or
Q" + 200Q’ + 50000Q = 0. (6.3.13)

Therefore we must solve the initial value problem

Q" +200Q" +50000Q =0, Q0)=1, Q'(0)=2. (6.3.14)
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The desired current is the derivative of the solution of this initial value problem.
The characteristic equation of (6.3.13) is

2 4 2007 + 50000 = 0,
which has complex zeros » = —100 £ 200:. Therefore the general solution of (6.3.13) is
Q = e %%y cos 200t 4 co sin 200t). (6.3.15)
Differentiating this and collecting like terms yields
Q' = —e 1% [(100¢; — 200c2) cos 200t + (100cz + 200¢; ) sin 200¢] . (6.3.16)
To find the solution of the initial value problem (6.3.14), we set £ = 0 in (6.3.15) and (6.3.16) to obtain
c1=Q(0)=1 and —100c; + 200c2 = Q'(0) = 2;

therefore, ¢c; = 1 and ¢2 = 51/100, so
Q = e 109 ( cos 200t + i sin 200¢
100

is the solution of (6.3.14). Differentiating this yields

I = e 10%(2 cos 200t — 251 sin 200¢).

Forced Oscillations With Damping

An initial value problem for (6.3.6) has the form

LQ"+RQ + £Q=FE(), Q0)=Q QO)=1 63.17)

where (g is the initial charge on the capacitor and I is the initial current in the circuit. We’ve already
seen that if £ = 0 then all solutions of (6.3.17) are transient. If ¥ # 0, we know that the solution of
(6.3.17) has the form Q = Q. + @Q,, where (). satisfies the complementary equation, and approaches
zero exponentially as ¢ — oo for any initial conditions , while (), depends only on F and is independent
of the initial conditions. As in the case of forced oscillations of a spring-mass system with damping, we
call Q, the steady state charge on the capacitor of the RLC circuit. Since I = Q" = Q;, + @), and Q;,
also tends to zero exponentially as ¢ — oo, we say that I, = Q.. is the transient current and I, = Q; is
the steady state current. In most applications we’re interested only in the steady state charge and current.

Example 6.3.2 Find the amplitude-phase form of the steady state current in the RLC' circuit in Fig-
ure 6.3.1 if the impressed voltage, provided by an alternating current generator, is E(t) = Ey cos wt.

Solution We’ll first find the steady state charge on the capacitor as a particular solution of
1
LQ" + RQ + 6@ = Fpcoswt.
To do, this we’ll simply reinterpret a result obtained in Section 6.2, where we found that the steady state

solution of
my” + ¢y + ky = Fycoswt
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is
Fy

Y= \/(k — mw?)? + w?

cos(wt — @),

where

k — mw? cw

cosp = and sing = .

V(k —mw?)? + 2w? V(k —mw?)? + 2w?
(See Equations (6.2.14) and (6.2.15).) By making the appropriate changes in the symbols (according to
Table 2) yields the steady state charge

E
N/ yrep LL«?Q)Q T )
where )
cosp = 1/C — L and sing = fiw .
V/(1/C — Lw?)? + R2w? V/(1/C — Lw?)? + R2w?
Therefore the steady state current in the circuit is
(.«)EQ

Ip:Q/p:—

sin(wt — @).

V(1/C — Lw?)? + R2w?

6.3 Exercises

In Exercises 1-5 find the current in the RLC circuit, assuming that £(¢) = 0 for ¢t > 0.

R =3 ohms; L =.1henrys; C = .01 farads; Qg = 0 coulombs; Iy = 2 amperes.

R =2ohms; L = .05henrys; C = .01 farads’; Qg = 2 coulombs; Iy = —2 amperes.

R =2ohms; L =.1henrys; C = .01 farads; Qg = 2 coulombs; Iy = 0 amperes.

R =6 ohms; L =.1henrys; C = .004 farads’; Qg = 3 coulombs; I, = —10 amperes.
R =4 ohms; L = .05henrys; C = .008 farads; Q9 = —1 coulombs; [y = 2 amperes.

kW=

In Exercises 6-10 find the steady state current in the circuit described by the equation.
6. 11—OQ//+3Q/+ 100Q = 5cos 10t — 5sin 10t
7. 21—0@” +2Q" + 100Q = 10 cos 25t — 5sin 25t
8. 11_()@// +2Q" + 100Q = 3 cos 50t — 6sin 50t
9. 11—062” +6Q’ + 250Q = 10 cos 100t + 30 sin 100t

1
10. %Q” +4Q" + 125Q = 15 cos 30t — 30 sin 30t

11. Show thatif E(t) = U coswt+V sinwt where U and V are constants then the steady state current
in the RLC circuit shown in Figure 6.3.1 is

W?RE(t) + (1/C — Lw?)E'(t)
I, = A ,

where
A= (1/C — Lw?*)* + R*W2
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12. Find the amplitude of the steady state current I, in the RLC' circuit shown in Figure 6.3.1 if
E(t) = U coswt+V sinwt, where U and V' are constants. Then find the value wy of w maximizes
the amplitude, and find the maximum amplitude.

In Exercises 13-17 plot the amplitude of the steady state current against w. Estimate the value of w that
maximizes the amplitude of the steady state current, and estimate this maximum amplitude. HINT: You
can confirm your results by doing Exercise 12.

13. 1—1062” +3Q' 4 100Q = U coswt + V sinwt
14. 2—1062” +2Q' 4 100Q = U coswt + V sinwt
15. %Q” +2Q' 4 100Q = U coswt + V sinwt
16. 1—1062” +6Q' 4 250Q = U coswt + V sinwt

1
17. %Q”+4Q’+ 125Q = U coswt + V sinwt

6.4 MOTION UNDER A CENTRAL FORCE

We’ll now study the motion of a object moving under the influence of a central force; that is, a force
whose magnitude at any point P other than the origin depends only on the distance from P to the origin,
and whose direction at P is parallel to the line connecting P and the origin, as indicated in Figure 6.4.1
for the case where the direction of the force at every point is toward the origin. Gravitational forces
are central forces; for example, as mentioned in Section 4.3, if we assume that Earth is a perfect sphere
with constant mass density then Newton’s law of gravitation asserts that the force exerted on an object
by Earth’s gravitational field is proportional to the mass of the object and inversely proportional to the
square of its distance from the center of Earth, which we take to be the origin.

If the initial position and velocity vectors of an object moving under a central force are parallel, then
the subsequent motion is along the line from the origin to the initial position. Here we’ll assume that the
initial position and velocity vectors are not parallel; in this case the subsequent motion is in the plane
determined by them. For convenience we take this to be the xy-plane. We’ll consider the problem of
determining the curve traversed by the object. We call this curve the orbit.

We can represent a central force in terms of polar coordinates

r=rcosf, y=rsinf

as
F(r,0) = f(r)(cos0i+sinbj).

We assume that f is continuous for all > 0. The magnitude of F at (x,y) = (rcos 0, rsinf) is | f(r)],
so it depends only on the distance r from the point to the origin the direction of F is from the point to the
origin if f(r) < 0, or from the origin to the point if f(r) > 0. We’ll show that the orbit of an object with
mass m moving under this force is given by

1
T(e) = ma
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X
Figure 6.4.1
where u is solution of the differential equation
d?u 1

and h is a constant defined below.
Newton’s second law of motion (F = ma) says that the polar coordinates r = r(¢) and 6 = 6(¢) of the
particle satisfy the vector differential equation

m(rcos@i+rsindj)’ = f(r)(cosfi+sinfj). (6.4.2)
To deal with this equation we introduce the unit vectors
e; =cosfi+sindj and e; = —sinfi+ cosdj.

Note that e; points in the direction of increasing r and e, points in the direction of increasing 6 (Fig-

ure 6.4.2); moreover,
de1 de2

Tme Tl=—el, (6.4.3)

and
e - ez = cosf(—sinf) 4 sinf cosf =0,

so e and ey are perpendicular. Recalling that the single prime (’) stands for differentiation with respect
to t, we see from (6.4.3) and the chain rule that

el =0e and e,=—0e. (6.4.4)
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\
>

Figure 6.4.2

Now we can write (6.4.2) as
m(rer)” = f(r)e;. (6.4.5)

But
(re1) =r'e; +re] =r'e; +r0ey

(from (6.4.4)), and

(rel)” = (r’el —+ r@’eg)’
= 1"e; +r'e] + (r0 +1'0)es +1r0'e,
= 7"e; +1'0es + (10 +1'0)es —r(0')%e; (from (6.4.4))
= (T” — T(o/)Q) €] —+ (r@” —+ 27"/9/)82.

Substituting this into (6.4.5) yields
m (r” — r(@’)Q) e +m(rd” +2r'0)es = f(r)e;.
By equating the coefficients of e; and ey on the two sides of this equation we see that
m (1" —r(0)?) = f(r) (6.4.6)

and
rd" + 2r'9' = 0.

Multiplying the last equation by r yields

20" + 2rr'9 = (T29/)/ =0,



Section 6.4 Motion Under a Central Force 299
S0
r?0’ = h, (6.4.7)
where & is a constant that we can write in terms of the initial conditions as
h = r%(0)6'(0).
Since the initial position and velocity vectors are
r(0)e;1(0) and 7'(0)e1(0) +(0)0'(0)e2(0),

our assumption that these two vectors are not parallel implies that &’ (0) # 0, so h # 0.
Now let u = 1/r. Then u? = ¢’ /h (from (6.4.7)) and

which implies that
r =—h— (6.4.8)

since

o du /dO  du
o dt /) dt  do’
Differentiating (6.4.8) with respect to ¢ yields

d (du d*u
" — —h— - — _h_e/
" dt (dt?) 62"

d2
" = —h? 2d_91; since 0 = hu?.

Substituting from these equalities into (6.4.6) and recalling that r = 1/u yields

which implies that

d? 1
—-m (h2u2d—91; + Eh2U4> = f(1/u),

and dividing through by —mh?u? yields (6.4.1).
Eqn. (6.4.7) has the following geometrical interpretation, which is known as Kepler’s Second Law.

Theorem 6.4.1 The position vector of an object moving under a central force sweeps out equal areas in
equal times; more precisely, if 0(t1) < 0(t2) then the (signed) area of the sector

{(z,y) = (rcosf,rsinf) : 0 <r<r(0), 0(t1) <0(tz)}
(Figure 6.4.3) is given by

h(ta —t1)

A= 5 ,

where h = 120, which we have shown to be constant.
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0=0(t,)

0=06(t)

\
>

Figure 6.4.3

Proof Recall from calculus that the area of the shaded sector in Figure 6.4.3 is
1 [0(t2)
A== / r2(6) d,
2 Jo)

where r = r(0) is the polar representation of the orbit. Making the change of variable 6 = 6(t) yields

A_ilfﬁw@wﬁmt (6.4.9)

But (6.4.7) and (6.4.9) imply that

1 (" h(ty —t1)
A—§‘/tl hdt—f,

which completes the proof.

Motion Under an Inverse Square Law Force

In the special case where f(r) = —mk/r? = —mku?, so F can be interpreted as a gravitational force,
(6.4.1) becomes
d*u k
T +u= 5k (6.4.10)
The general solution of the complementary equation
d2
u+u:0

d6?
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can be written in amplitude—phase form as
u= Acos(f — ¢),

where A > 0 and ¢ is a phase angle. Since u, = k/h? is a particular solution of (6.4.10), the general
solution of (6.4.10) is
k

u= Acos(f — ¢) + 73

hence, the orbit is given by
g\ !
r= (Acos(@—qﬁ)—l— ﬁ) ,

which we rewrite as 0

" 1+ ecos(d — )’

(6.4.11)

where
2

P= and e = Ap.
A curve satisfying (6.4.11) is a conic section with a focus at the origin (Exercise 1). The nonnegative
constant e is the eccentricity of the orbit, which is an ellipse if e < 1 ellipse (a circle if e = 0), a parabola
if e = 1, or a hyperbolaif e > 1.

v
x

Figure 6.4.4

If the orbit is an ellipse, then the minimum and maximum values of r are

Tmin = % (the perihelion distance, attained when 6 = ¢)
e
Tmax = 1L (the aphelion distance, attained when 6 = ¢ + 7).
—e

Figure 6.4.4 shows a typical elliptic orbit. The point P on the orbit where r = rp,;, is the perigee and
the point A where r = 7,y is the apogee.
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For example, Earth’s orbit around the Sun is approximately an ellipse with e &~ .017, 7y, &~ 91 x 106
miles, and 7.y ~ 95 x 10° miles. Halley’s comet has a very elongated approximately elliptical orbit
around the sun, with e & .967, rmin =~ 55 x 106 miles, and 7. =~ 33 x 10® miles. Some comets (the
nonrecurring type) have parabolic or hyperbolic orbits.

6.4 Exercises

1. Find the equation of the curve

_ P
"= 1+ ecos(f — ¢) (&)

interms of (X,Y") = (rcos(§ — ¢), rsin(f — ¢)), which are rectangular coordinates with respect
to the axes shown in Figure 6.4.5. Use your results to verify that (A) is the equation of an ellipse
if 0 < e < 1,aparabolaif e = 1, or ahyperbolaife > 1. If e < 1, leave your answer in the form

(X —X)2 | (Y —Yp)?

a? + b2 =1
and show that the area of the ellipse is
Ao T
(1 — e2)3/2
Then use Theorem 6.4.1 to show that the time required for the object to traverse the entire orbit is
- 27 p?
(1 —e2)3/2°

(This is Kepler’s third law; T is called the period of the orbit.)

Figure 6.4.5
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Suppose an object with mass m moves in the zy-plane under the central force

k
F(r,0) = — = (cos 01+ sin6j),
T

where k is a positive constant. As we shown, the orbit of the object is given by

_ P
"= 1+ ecos(f — @)’

Determine p, e, and ¢ in terms of the initial conditions
r(0) =ro, 7'(0) =r(, and 6(0) =6y, 6'(0)=6;.

Assume that the initial position and velocity vectors are not collinear.

Suppose we wish to put a satellite with mass m into an elliptical orbit around Earth. Assume that
the only force acting on the object is Earth’s gravity, given by

R2
F(r,0) = —mg (—2> (cos i+ sindj),
r

where R is Earth’s radius, g is the acceleration due to gravity at Earth’s surface, and r and 6 are
polar coordinates in the plane of the orbit, with the origin at Earth’s center.

(a) Find the eccentricity required to make the aphelion and perihelion distances equal to R~;
and Rs, respectively, where 1 < v; < 7.

(b) Find the initial conditions
r(0) =ro, 7'(0)=r(, and 0(0) =6y, 6'(0) =6

required to make the initial point the perigee, and the motion along the orbit in the direction
of increasing 6. HINT: Use the results of Exercise 2.

An object with mass m moves in a spiral orbit » = c6? under a central force
F(r,0) = f(r)(cos0i+sin6j).

Find f.

An object with mass m moves in the orbit = rye?? under a central force
F(r,0) = f(r)(cos0i+sinbj).

Find f.

Suppose an object with mass m moves under the central force

mk T
F(r,0) = —T—g(cosﬁl + sindj),
with
r(0) =719, r'(0)=r(, and 0(0) =6y, 6(0) =06,
where h = r¢6}, # 0.
(a) Set up a second order initial value problem for u = 1/r as a function of 6.
(b) Determine r = 7(6) if (i) h? < k; (i) h? = k; (iii) h? > k.






CHAPTER 7

Series Solutions of Linear Second
Equations

IN THIS CHAPTER we study a class of second order differential equations that occur in many applica-
tions, but can’t be solved in closed form in terms of elementary functions. Here are some examples:

(1) Bessel’s equation

2y’ +ay + (a® — vy =0,

which occurs in problems displaying cylindrical symmetry, such as diffraction of light through a circular
aperture, propagation of electromagnetic radiation through a coaxial cable, and vibrations of a circular
drum head.
(2) Airy’s equation,
y' —ay=0,

which occurs in astronomy and quantum physics.
(3) Legendre’s equation

(1—2?)y" — 2ay +ala+ 1)y =0,
which occurs in problems displaying spherical symmetry, particularly in electromagnetism.
These equations and others considered in this chapter can be written in the form

Po(z)y" + Pi(z)y + Pa(z)y =0, (A)

where Py, P;, and P» are polynomials with no common factor. For most equations that occur in appli-
cations, these polynomials are of degree two or less. We’ll impose this restriction, although the methods
that we’ll develop can be extended to the case where the coefficient functions are polynomials of arbitrary
degree, or even power series that converge in some circle around the origin in the complex plane.

Since (A) does not in general have closed form solutions, we seek series representations for solutions.
We’ll see that if Py(0) # 0 then solutions of (A) can be written as power series

[e ]
Y= g anz"
n=0

that converge in an open interval centered at x = 0.

305
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SECTION 7.1 reviews the properties of power series.

SECTIONS 7.2 AND 7.3 are devoted to finding power series solutions of (A) in the case where Py(0) # 0.
The situation is more complicated if Py(0) = 0; however, if P; and P; satisfy assumptions that apply to
most equations of interest, then we’re able to use a modified series method to obtain solutions of (A).

SECTION 7.4 introduces the appropriate assumptions on P; and P, in the case where Py(0) = 0, and

deals with Euler’s equation

az?y" 4 bry' 4+ cy =0,

where a, b, and c are constants. This is the simplest equation that satisfies these assumptions.

SECTIONS 7.5 —7.7 deal with three distinct cases satisfying the assumptions introduced in Section 7.4.
In all three cases, (A) has at least one solution of the form

o0
yp =" E anz”,
n=0

where 7 need not be an integer. The problem is that there are three possibilities — each requiring a different
approach — for the form of a second solution 5 such that {y1, y=} is a fundamental pair of solutions of (A).
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7.1 REVIEW OF POWER SERIES

Many applications give rise to differential equations with solutions that can’t be expressed in terms of
elementary functions such as polynomials, rational functions, exponential and logarithmic functions, and
trigonometric functions. The solutions of some of the most important of these equations can be expressed
in terms of power series. We’ll study such equations in this chapter. In this section we review relevant
properties of power series. We’ll omit proofs, which can be found in any standard calculus text.

Definition 7.1.1 An infinite series of the form

o0
Zan(x—xg)", (7.1.1)
n=0

where xy and ag, a1, ..., ay, ...are constants, is called a power series in x — xo. We say that the power

series (7.1.1) converges for a given z if the limit

N—oo

N
lim Z an(x — xo)"
n=0

exists; otherwise, we say that the power series diverges for the given x.

A power series in x — xp must converge if x = x, since the positive powers of z — x( are all zero
in this case. This may be the only value of = for which the power series converges. However, the next
theorem shows that if the power series converges for some x # x( then the set of all values of « for which
it converges forms an interval.

Theorem 7.1.2 For any power series
o0
Z an(x — xo)",
n=0

exactly one of the these statements is true:
(i) The power series converges only for x = x.

(ii) The power series converges for all values of .

(iii) There’s a positive number R such that the power series converges if |x — xg| < R and diverges

if |x — xo| > R.

In case (iii) we say that R is the radius of convergence of the power series. For convenience, we include
the other two cases in this definition by defining R = 0 in case (i) and R = oo in case (ii). We define the
open interval of convergence of 3~ an(x — x0)™ to be

(xo—R,zo+ R) if 0<R<oo, or (—o0,00) if R=oc.

If R is finite, no general statement can be made concerning convergence at the endpoints x = g + R of

the open interval of convergence; the series may converge at one or both points, or diverge at both.
Recall from calculus that a series of constants fo:o oy, 1s said to converge absolutely if the series

of absolute values Y |cv,| converges. It can be shown that a power series >~ o a,(z — )" with

a positive radius of convergence 2 converges absolutely in its open interval of convergence; that is, the

series
o0
> lan| |z — o]
n=0
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of absolute values converges if |z — 29| < R. However, if R < oo, the series may fail to converge
absolutely at an endpoint zo £ R, even if it converges there.

The next theorem provides a useful method for determining the radius of convergence of a power
series. It’s derived in calculus by applying the ratio test to the corresponding series of absolute values.
For related theorems see Exercises 2 and 4.

Theorem 7.1.3 Suppose there’s an integer N such that a,, # 0 if n > N and

Anp+41
Qn

lim =L

3

where 0 < L < occ. Then the radius of convergence of Y, an(x — )" is R = 1/ L, which should be
interpreted to mean that R = 0 if L = co,or R = oo if L = 0.

Example 7.1.1 Find the radius of convergence of the series:

o0 o0 xn o0
@ D nla" (b) D (D" @ Y 2z -1)"
n=0 n=10 n=0
SOLUTION(a) Here a,, = n!, so
n 1)!
lim |2 = lim w: lim (n+ 1) = cc.
n— oo Ay n— oo n! n— oo

Hence, R = 0.

SoLUTION(b) Here a,, = (1)"/n!forn > N = 10, so

" ! 1
lim |2 = o —0.
n—oo | ay, n—oo (n+ 1)1  n—oon+1
Hence, R = oo.
SOLUTION(¢) Here a,, = 2"n?, so
n 2n+1 1 2 1 2
i (2ot =gy 20D (1 L) 2
n—oo | Gp n—oo Inp2 n—oo n

Hence, R = 1/2.
Taylor Series

If a function f has derivatives of all orders at a point x = x(, then the Taylor series of f about x is
defined by
> f(n) (g
Zf ( 0)(x_x0)n'

n!
n=0

In the special case where x¢ = 0, this series is also called the Maclaurin series of f.
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Taylor series for most of the common elementary functions converge to the functions on their open
intervals of convergence. For example, you are probably familiar with the following Maclaurin series:

et = ii—?, —0 <z < 00, (7.1.2)
n;O x2n+1
sinz = Z(—U"m, —0 < x < 00, (7.1.3)
R
cosz = 2}(-1)“ én)!, 00 < & < 00, (7.1.4)
1i$ = ix" “l<z<l. (7.1.5)

Differentiation of Power Series

A power series with a positive radius of convergence defines a function

x) = Z an(x — xo)"
n=0

on its open interval of convergence. We say that the series represents f on the open interval of conver-
gence. A function f represented by a power series may be a familiar elementary function as in (7.1.2)—
(7.1.5); however, it often happens that f isn’t a familiar function, so the series actually defines f.

The next theorem shows that a function represented by a power series has derivatives of all orders on
the open interval of convergence of the power series, and provides power series representations of the
derivatives.

Theorem 7.1.4 A power series

x) = Z an(x — xo)"
n=0

with positive radius of convergence R has derivatives of all orders in its open interval of convergence,
and successive derivatives can be obtained by repeatedly differentiating term by term; that is,

flx) = Znan(x —x0)" 1, (7.1.6)
f(z) = Z n(n — Van(z — 20)" 2, (7.1.7)
By = Z (n—1)-(n—k+ 1)an(x — zo)" "~ (7.1.8)

Moreover, all of these series have the same radius of convergence R.
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Example 7.1.2 Let f(z) = sinz. From (7.1.3),

st 2n-+1

From (7.1.6),

n=0

which is the series (7.1.4) for cos x.

Uniqueness of Power Series

The next theorem shows that if f is defined by a power series in © — xo with a positive radius of conver-
gence, then the power series is the Taylor series of f about x.

Theorem 7.1.5 If the power series

o0
n
= E an(x — xo)
n=0
has a positive radius of convergence, then

™ (x0)

nl

(7.1.9)

Ay =

that is, > an(x — x0)™ is the Taylor series of f about .
This result can be obtained by setting = ¢ in (7.1.8), which yields
F® (o) =k(k—1)---1-a; = Klay.

This implies that
f® (20)

A

Except for notation, this is the same as (7.1.9).
The next theorem lists two important properties of power series that follow from Theorem 7.1.5.

Theorem 7.1.6

@ If
Zanx—xo Zb x—x9)"

Sfor all x in an open interval that contains x, then a,, = b, forn =0,1,2,....

(b) If

o0

Z (x—x)" =0

forall x in an open interval that contains g, then a, =0 forn =20, 1,2, ....
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To obtain (a) we observe that the two series represent the same function f on the open interval; hence,
Theorem 7.1.5 implies that

=L 20 h-0,1,2,....

(b) can be obtained from (a) by taking b,, = 0 forn =0, 1,2, ....
Taylor Polynomials
If f has N derivatives at a point x, we say that

N

o
Tn(z)=> ) nﬁ 2 (5~ zg)"
n=0 ’

is the N-th Taylor polynomial of f about x. This definition and Theorem 7.1.5 imply that if

fl@) = an(x —z0)",
n=0

where the power series has a positive radius of convergence, then the Taylor polynomials of f about z(
are given by
N
Tn(z) = Z an(x — x0)"™.
n=0
In numerical applications, we use the Taylor polynomials to approximate f on subintervals of the open
interval of convergence of the power series. For example, (7.1.2) implies that the Taylor polynomial 7
of f(x) =e* is
N on
Tn(x) = —
n=0
The solid curve in Figure 7.1.1 is the graph of y = e* on the interval [0,5]. The dotted curves in
Figure 7.1.1 are the graphs of the Taylor polynomials 77, ..., Ts of y = e” about 9 = 0. From this
figure, we conclude that the accuracy of the approximation of y = e® by its Taylor polynomial 7
improves as N increases.

Shifting the Summation Index

In Definition 7.1.1 of a power series in « — xg, the n-th term is a constant multiple of (z — xz¢)™. This
isn’t true in (7.1.6), (7.1.7), and (7.1.8), where the general terms are constant multiples of (x — xo)"fl
(x — 19)" 2, and (x — x9)" ", respectively. However, these series can all be rewritten so that their n-th
terms are constant multiples of (x — x)™. For example, letting n = k + 1 in the series in (7.1.6) yields

>

F(@)=> (k+Dags(z —zo)F, (7.1.10)
k=0

where we start the new summation index k from zero so that the first term in (7.1.10) (obtained by setting
k = 0) is the same as the first term in (7.1.6) (obtained by setting n = 1). However, the sum of a series is
independent of the symbol used to denote the summation index, just as the value of a definite integral is
independent of the symbol used to denote the variable of integration. Therefore we can replace k by n in
(7.1.10) to obtain

o0

Fl@) = "(n+Dags (e —0)", (7.1.11)

n=0


http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
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Figure 7.1.1 Approximation of y = e by Taylor polynomials about z = 0

where the general term is a constant multiple of (z — x¢)™.

It isn’t really necessary to introduce the intermediate summation index k. We can obtain (7.1.11)
directly from (7.1.6) by replacing n by n + 1 in the general term of (7.1.6) and subtracting 1 from the
lower limit of (7.1.6). More generally, we use the following procedure for shifting indices.

Shifting the Summation Index in a Power Series

For any integer k, the power series
o0
n—k
Z by (x — xg)
n=no
can be rewritten as
o0
D bagrlr —z0)";
n=ng—=k

that is, replacing n by n + k in the general term and subtracting k from the lower limit of summation
leaves the series unchanged.

Example 7.1.3 Rewrite the following power series from (7.1.7) and (7.1.8) so that the general term in
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each is a constant multiple of (z — xo)™:

(a)z (n — D)ap(z — x)" 2 (b)z (n=1)--(n—k+ Dap(x — z0)" -k,

n=2

SOLUTION(a) Replacing n by n + 2 in the general term and subtracting 2 from the lower limit of
summation yields

Z n(n — Da,(z —x0)" 2% = Z(n +2)(n+ Dapta(z — x0)™.
n=2 n=0

SOLUTION(b) Replacing n by n + k in the general term and subtracting k£ from the lower limit of
summation yields

S nln— 1) (n— k4 Dan(e — 20 = S 4 K)otk — 1) (0 + Danpae — 20)"
n=~k n=0

Example 7.1.4 Given that
=2 ana",
n=0

write the function x f”’ as a power series in which the general term is a constant multiple of 2.

Solution From Theorem 7.1.4 with xy = 0,

o0

Z (n—Dayx n—2

Therefore -

xf'(z) = Z n(n — Da,z" "t

n=2

Replacing n by n + 1 in the general term and subtracting 1 from the lower limit of summation yields

o0
Z n+ Dna, 12"

We can also write this as
o0

2f"(@) = 3 (n + napa”,

n=0
since the first term in this last series is zero. (We’ll see later that sometimes it’s useful to include zero
terms at the beginning of a series.)

Linear Combinations of Power Series
If a power series is multiplied by a constant, then the constant can be placed inside the summation; that

is,
o0

cz an(x —x0)" = Z can(x — x0)".
n=0

n=0
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Two power series

flx) = Z an(x —x0)" and g(x) = Z by (x — xo)"
n=0 n=0

with positive radii of convergence can be added term by term at points common to their open intervals of
convergence; thus, if the first series converges for |z — 29| < R; and the second converges for |x — | <
R, then

o0

F(@) + g@) =Y (an +ba) (@ — 20)"

n=0
for |x — xg| < R, where R is the smaller of R; and Ry. More generally, linear combinations of power
series can be formed term by term; for example,

o0

af(x) + cof(x) = Z(clan + coby)(x — x0)".

n=0

Example 7.1.5 Find the Maclaurin series for cosh = as a linear combination of the Maclaurin series for

e and e %,

Solution By definition,

1 1
coshx = iex + ie*x.

Since - -
- " e nxn
(& —ZW and e —Z(—l) m,
n=0 n=0
it follows that
1 z"
ho— M+ (=1 . 7.1.12
cosh x HZ:O 2[ +(-1) ]n! ( )
Since
1 n1_ ) 1 ifn =2m, an even integer,
5[1+(_1) J= { 0 ifn=2m+ 1, an odd integer,

we can rewrite (7.1.12) more simply as

e p2m
coshx = Z W .
m=0

This result is valid on (—oco, 00), since this is the open interval of convergence of the Maclaurin series for

e and e %,

Example 7.1.6 Suppose
y=
n=0

on an open interval I that contains the origin.
(a) Express
2-2)y" +2y

as a power series in x on 1.
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(b) Use the result of (a) to find necessary and sufficient conditions on the coefficients {a,, } for y to be
a solution of the homogeneous equation

2—z)y" +2y=0 (7.1.13)

on /.

SOLUTION(a) From (7.1.7) with xg = 0,

o0
-2
n(n — ap,z" ™.
n=2

Therefore

C-x)y'+2y = 2 —ay +2

> > > 7.1.14
Z 2n(n — 1)apz™ 2 - Z n(n — Dapz™ ' + Z 2a,x". ( )
n=2 n=2 n=0

To combine the three series we shift indices in the first two to make their general terms constant multiples
of z"; thus,

> 2n(n—apz" Z (n+2)(n+ 1)an 22" (7.1.15)

and - - -
Z n(n — 1apz"” Z n+ Dna, 12" Z(n + Dnanp412™, (7.1.16)

n=1 n=0

where we added a zero term in the last series so that when we substitute from (7.1.15) and (7.1.16) into
(7.1.14) all three series will start with n = 0; thus,

o0

2-a)y" +2y=> [2(n+2)(n+ Danss — (n + )nan1 + 2a,]2". (7.1.17)
n=0

SOLUTION(b) From (7.1.17) we see that y satisfies (7.1.13) on [ if

2(n+2)(n+ Dapt2 — (n+ )nap41 +2a, =0, n=0,1,2,.... (7.1.18)
Conversely, Theorem 7.1.6 (b) implies that if y = fo:o anx™ satisfies (7.1.13) on I, then (7.1.18) holds.
Example 7.1.7 Suppose

y= Z an(z —1)"
n=0
on an open interval [ that contains zo = 1. Express the function
(1+2)y" +2(z —1)*/ + 3y (7.1.19)

as a power series inz — 1 on [.
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Solution Since we want a power series in x — 1, we rewrite the coefficient of ¢/ in (7.1.19)as 1 + = =
24 (z — 1), 50 (7.1.19) becomes

2y + (x — 1)y +2(z — 1)y + 3y.

From (7.1.6) and (7.1.7) with xg = 1,

y = i nap(z —1)""' and 3’ = i n(n — 1)ap(z —1)" 2.
n=1 n—2
Therefore
20 = i 2n(n — 1)a,(x — 1)"72,
n=2
-1y = 3 aln—Dan(e— 17,
n=2
20z —1)% = i 2nay, (z — 1)"
n=1
Jy = i 3an(x —1)".
n=0

Before adding these four series we shift indices in the first three so that their general terms become
constant multiples of (x — 1)™. This yields

o0

2" = > 2(n+2)(n+ Dapsa(z —1)", (7.1.20)

n=0
oo

(@—1y" = > (n+Dnapii(z—1)" (7.121)

n=0
oo

2z —1% = > 2(n—Dan1(x—1)", (7.122)

By = > Ban(z—1)", (7.1.23)

where we added initial zero terms to the series in (7.1.21) and (7.1.22). Adding (7.1.20)—(7.1.23) yields

(I4+a)y +2(x-1)%+3y = 2"+ (x—1)y" +2(x—1)% +3y

i by (x — 1),
n=0

where

bo = das+ 3ao, (7.1.24)
b, = 2n+2)(n+1ant2+ (n+ napsr +2(n— Dap—1 4+ 3a,, n>1. (7.1.25)

The formula (7.1.24) for by can’t be obtained by setting n = 0 in (7.1.25), since the summation in (7.1.22)
begins with n = 1, while those in (7.1.20), (7.1.21), and (7.1.23) begin with n = 0.



Section 7.1 Review of Power Series 317

7.1 Exercises

For each power series use Theorem 7.1.3 to find the radius of convergence R. If R > 0, find the
open interval of convergence.

()Z 2n -1)" (b)zz" n(z —2

n! (n + 1)
(c) ; ot (d) Z (—2)
© > (1D 0 L(x +7)"
o n! s 4ntl(n 4 1)2
Suppose there’s an integer M such that b,,, # 0 for m > M, and
. berl
1 =L
e ’ b ’

where 0 < L < oco. Show that the radius of convergence of

i by (2 — 20)*™
m=0

is R = 1/\/5, which is interpreted to mean that R = 0if L = oo or R = oo if L = 0. HINT:
Apply Theorem 7.1.3 to the series > _ bmz™ and then let z = (x — x)>.

For each power series, use the result of Exercise 2 to find the radius of convergence R. If R > 0,
find the open interval of convergence.

(a) Z "(3m+ 1) (z —1)*" (b) Z 2LJFU(Mz)Qm

2m (d) Z :E + 8)

(e Z (—1)mTU$2m+l ® Z(x —1)?
m=0 m=0

Suppose there’s an integer M such that b,,, # 0 for m > M, and

=L

3

lim b1
bm

m— 00

where 0 < L < co. Let k be a positive integer. Show that the radius of convergence of

o0
E b (x — xo
m=0

is R = 1/\’“/3, which is interpreted to mean that R = 0 if L = co or R = oo if L = 0. HINT:

Apply Theorem 7.1.3 to the series > e _ b 2™ and then let z = (z — zo)".

For each power series use the result of Exercise 4 to find the radius of convergence R. If R > 0,
find the open interval of convergence.
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10.

P e 2 7m~+6
(a) Z 27 -3) (b) Z
(C) Z 9m m +1 3)4m+2 (d) Z 4m+3
4m+3 1)m _ 3m—+1
() Z (z+1) ® mzzo 8mm(m + 1) (@-1)

Graph y = sin = and the Taylor polynomial

M (_1)nx2n+l

T2M+1($) = Z W

n=0

on the interval (—27, 27r) for M = 1, 2, 3, ..., until you find a value of M for which there’s no
perceptible difference between the two graphs.

Graph y = cos z and the Taylor polynomial

(—1)"562"
T = —_—
2 (@) ; (2n)!
on the interval (—27, 27r) for M = 1, 2, 3, ..., until you find a value of M for which there’s no

perceptible difference between the two graphs.

Graph y = 1/(1 — ) and the Taylor polynomial

N
= E :Cn
n=0

on the interval [0,.95] for N = 1, 2, 3, ..., until you find a value of N for which there’s no
perceptible difference between the two graphs. Choose the scale on the y-axis so that 0 < y < 20.

Graph y = cosh « and the Taylor polynomial

M 2n
Top(x Z o)1
on the interval (—5,5) for M = 1, 2, 3, ..., until you find a value of M for which there’s no

perceptible difference between the two graphs. Choose the scale on the y-axis so that 0 < y < 75.
Graph y = sinh « and the Taylor polynomial

x2n+1

T2M+1($) = ‘ m

n=

on the interval (—5,5) for M =0, 1, 2, ..., until you find a value of M for which there’s no per-
ceptible difference between the two graphs. Choose the scale on the y-axis so that =75 < y < 75.

In Exercises 11-15 find a power series solution y(x) = >~ a,x™.

11.

13.

2+z)y +zy + 3y 12, (1+32%)y" + 322/ — 2y

(1+222)y" +(2-3z)y +4y 14, (1+22)y" +(2—2)y + 3y



15.
16.

17.

18.

19.

20.
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(1+322)y" — 22y + 4y
Suppose y(z) = >_.°; an(z + 1)" on an open interval that contains zp = — 1. Find a power

series in x + 1 for
2y’ + (4 +22)y + (2+ 2)y.

Suppose y(z) = >~ an(z —2)™ on an open interval that contains ;. = 2. Find a power series
inz — 2 for

2%y + 2xy’ — 3zy.
Do the following experiment for various choices of real numbers ag and a; .

(a) Use differential equations software to solve the initial value problem
2-2)y"+2y=0, y(0)=ao, ¥(0)=a,

numerically on (—1.95,1.95). Choose the most accurate method your software package
provides. (See Section 10.1 for a brief discussion of one such method.)

(b) For N =2,3,4,..., compute as, ..., ay from Eqn.(7.1.18) and graph

N
Tn(z) = Z anx”
n=0

and the solution obtained in (a) on the same axes. Continue increasing N until it’s obvious
that there’s no point in continuing. (This sounds vague, but you’ll know when to stop.)

Follow the directions of Exercise 18 for the initial value problem
(L+2)y" +2( - 1% +3y=0, y(1) =ao, ¥ (1)=a,

on the interval (0, 2). Use Eqns. (7.1.24) and (7.1.25) to compute {a, }.

Suppose the series ZZO:O anx™ converges on an open interval (—R, R), let r be an arbitrary real

number, and define
o0 o0
ylx) =" g anx" = g anz™ "
n=0 n=0

on (0, R). Use Theorem 7.1.4 and the rule for differentiating the product of two functions to show
that

o0

y(@) = Y (n+rjanae™

n=0

o0

y'(@) = S+ +r—Daa™?,

n=0

yF () = i(n—l—r}(n—l—r— 1) (n+7r—k)az" "k

n=0
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In Exercises 21-26 let y be as defined in Exercise 20, and write the given expression in the form x" fo:o b

2. 2*(1—2)y +z(d+2)y + (2—2)y

22, 2*(1+2)y +z(1+22)y — (4 +62)y

23. 22(1+a2)y —2(1 — 62— 22)y + (1 + 62 + 22y
24, 2%(1+32)y" +2(2+ 122 + 22)y +22(3 + )y
25. 2%(1+22%)y" + x(4+ 222y +2(1 — 2?)y

26. 222+ 22y +22(5+ 22y +2(3 — 22y

7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I

Many physical applications give rise to second order homogeneous linear differential equations of the
form
Po(z)y" + Pi(z)y + Pa(z)y =0, (7.2.1)

where Py, Py, and P> are polynomials. Usually the solutions of these equations can’t be expressed in
terms of familiar elementary functions. Therefore we’ll consider the problem of representing solutions of
(7.2.1) with series.

We assume throughout that P, P; and P, have no common factors. Then we say that zg is an ordinary
point of (7.2.1) if Py(xg) # 0, or a singular point if Py(xo) = 0. For Legendre’s equation,

(1—2%)y" — 22y + a(a+ 1)y =0, (72.2)

zo = 1 and zg = —1 are singular points and all other points are ordinary points. For Bessel’s equation,

ey’ +ay' + (2* — vy =0,
o = 018 a singular point and all other points are ordinary points. If Fy is a nonzero constant as in Airy’s
equation,
y' -y =0, (7.2.3)

then every point is an ordinary point.

Since polynomials are continuous everywhere, P;/ Py and P,/ P, are continuous at any point x that
isn’t a zero of Py. Therefore, if x¢ is an ordinary point of (7.2.1) and a¢ and a; are arbitrary real numbers,
then the initial value problem

Po(x)y" + Pi(z)y’ + Pa(x)y =0, y(zo) =ao, ¥ (x0) =ax (72.4)

has a unique solution on the largest open interval that contains x¢ and does not contain any zeros of Pj.
To see this, we rewrite the differential equation in (7.2.4) as

1" Pl(x) / PQ(x) o
TR@ T R@Y T

and apply Theorem 5.1.1 with p = P; /P, and ¢ = P»/P,. In this section and the next we consider the
problem of representing solutions of (7.2.1) by power series that converge for values of = near an ordinary
point xg.

We state the next theorem without proof.

n
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Theorem 7.2.1 Suppose Py, P1, and P> are polynomials with no common factor and Py isn’t identically
zero. Let xq be a point such that Py(xo) # 0, and let p be the distance from x to the nearest zero of Py
in the complex plane. (If Py is constant, then p = 0c.) Then every solution of

Po(z)y" + Pi(z)y + Pa(z)y =0 (7.2.5)

can be represented by a power series

o0

y=_ an(z— )" (7.2.6)

n=0

that converges at least on the open interval (xo—p, xo+p). (If Py is nonconstant, so that p is necessarily
finite, then the open interval of convergence of (7.2.6) may be larger than (xo—p, xo+p). If Py is constant
then p = 0o and (xg — p, o + p) = (—00,0).)

We call (7.2.6) a power series solution in x — xq of (7.2.5). We’ll now develop a method for finding
power series solutions of (7.2.5). For this purpose we write (7.2.5) as Ly = 0, where

Ly = Pyy"’ + Py + Pay. (7.2.7)

Theorem 7.2.1 implies that every solution of Ly = 0 on (z¢ — p, 2o + p) can be written as

o0

y = Z an(x — x0)".

n=0

Setting z = x¢ in this series and in the series

o0
y = Z nap(r — )"
n=1

shows that y(z¢) = ap and y'(xo) = a;. Since every initial value problem (7.2.4) has a unique solution,
this means that ap and a; can be chosen arbitrarily, and as, as, ...are uniquely determined by them.

To find aq, as, ..., we write Py, P;, and P> in powers of x — x(, substitute
o0
Yy = Z an(x — x0)",
n=0

o0
Yy = Z nan(x — 3:0)"71,
n=1

o0

y' = Z n(n — Da,(z — 20)" 2

n=2

into (7.2.7), and collect the coefficients of like powers of x — x¢. This yields

Ly = Z bo(z — 20)", (7.2.8)
n=0
where {bg, b1, ..., bn, ...} are expressed in terms of {ag, a1, ..., an, ...} and the coefficients of Py, P,

and P,, written in powers of x — x(. Since (7.2.8) and (a) of Theorem 7.1.6 imply that Ly = 0 if and
only if b, = 0 for n > 0, all power series solutions in z — x¢ of Ly = 0 can be obtained by choosing
ao and a; arbitrarily and computing as, as, ..., successively so that b, = 0 for n > 0. For simplicity,
we call the power series obtained this way the power series in x — xq for the general solution of Ly = 0,
without explicitly identifying the open interval of convergence of the series.
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Example 7.2.1 Let x( be an arbitrary real number. Find the power series in z—x for the general solution

of
Y +y=0. (7.2.9)
Solution Here
Ly =y" +v.
If -
Z an(z — 0)",
n=0
then -
Z (n — Dan(z —x0)" 2,
n=2
SO - -
Ly = Z n(n —1an(z — 20)" 2 + Z an(z —x0)".
n=2 n=0

To collect coefficients of like powers of z — xg, we shift the summation index in the first sum. This yields

Ly = Z(n +2)(n+ Dapyo(z —x0)™ + Z an(x —x0)" = Z bp(z — x0)",
n=0 n=0 n=0

with
bp=(n+2)(n+ 1anta + an.

Therefore Ly = 0 if and only if

—a
n n>0

mTeTT "2 (7.2.10)

Ap42 =

where ag and a; are arbitrary. Since the indices on the left and right sides of (7.2.10) differ by two, we
write (7.2.10) separately for n even (n = 2m) and n odd (n = 2m + 1). This yields

—Aa2m
m , >0, 7.2.11
d2m+2 Cm+2)2m+ 1) (7:2.1D)
and
A2t 3 —Qamil >0, (7.2.12)
(2m + 3)(2m + 2) -
Computing the coefficients of the even powers of x — z from (7.2.11) yields
Qg
ay = ——
2 2.1
. a9 . 1 ( ap )7 ao
“oT T3 T i3\ 2) T2
ag 1 ( ap ) ap
Qa, = —_—— = —— —_ -
0 6-5 6-5\4.3.2-1 6-5-4-3-2-1°
and, in general,
agm = (—1)™ 22 m > 0. (7.2.13)
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Computing the coefficients of the odd powers of x — zo from (7.2.12) yields

a
a3 = ———
° 3.2
as 1 ( a1 ) a1
as = _—_ 0 —-—— —— = —,
5-4 5-4 3-2 5-4-3-2
as 1 ( ay ) ai
Qa = —_—— = —— —_ -
’ 7-6 7-6\5-4-3-2 7-6-5-4-3-27
and, in general,
(=1)™ay
] = ————— 0 7.2.14
P = omrn T (7219
Thus, the general solution of (7.2.9) can be written as
y= Z agm(z — 20)*" + Z agm1 (@ — m0)*" 1,
m=0 m=0
or, from (7.2.13) and (7.2.14), as
(x — xo (x — x0)?mHL
y = ao Z "t Z e T T (7.2.15)
If we recall from calculus that
o'} _ m o0 _ 2m+1
mZ:O % = cos(z — ) and mz_o(—l)m% = sin(x — xg),
then (7.2.15) becomes
y = ag cos(x — x0) + ay sin(z — o),
which should look familiar. |

Equations like (7.2.10), (7.2.11), and (7.2.12), which define a given coefficient in the sequence {a,,}
in terms of one or more coefficients with lesser indices are called recurrence relations. When we use a
recurrence relation to compute terms of a sequence we’re computing recursively.

In the remainder of this section we consider the problem of finding power series solutions in x — xg
for equations of the form

(14 a(z —x0)*) y" + Bz —z0)y’ +vy =0. (7.2.16)

Many important equations that arise in applications are of this form with x¢ = 0, including Legendre’s
equation (7.2.2), Airy’s equation (7.2.3), Chebyshev’s equation,
(1 -2y —ay +ay =0,
and Hermite’s equation,
y" = 2xy + 20y = 0.

Since
Py(z) = 1+ az — xz0)?

in (7.2.16), the point x is an ordinary point of (7.2.16), and Theorem 7.2.1 implies that the solutions of
(7.2.16) can be written as power series in z — g that converge on the interval (zo—1/+/]a|, zo+1/+/]at|)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Chebyshev.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Hermite.html
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if a # 0, or on (—o0, 00) if & = 0. We’ll see that the coefficients in these power series can be obtained
by methods similar to the one used in Example 7.2.1.
To simplify finding the coefficients, we introduce some notation for products:

[0 =brbrgr--be it s>
j=r

Thus,
7
[] bi = babsbabsbebr,
j=2
4
[1@i+1) =@E)5G)(7)(9) = 945,
§j=0
and
2
Hj2 — 22 —4
j=2
We define

[[ei=1 if s<nr
j=r
no matter what the form of b;.
Example 7.2.2 Find the power series in « for the general solution of
(1+222)y" + 62y +2y = 0. (7.2.17)

Solution Here
Ly = (14 22%)y" + 6zy/ + 2y.

If -
1=
n=0
then - -
y = Z nan,x and " = Z n(n — 1ay,z"~°,
n=1 n=2
$O
Ly = (1+22%) Z n(n — apz™ % 4 6 Z nape™ "t 42 Z anz”
n=2 n=1 n=0
= Z n(n — Dape™ % + Z 2n(n —1) + 6n+ 2] apa”™
n=2 n=0

o0

= Z n(n —1Da,z™ 2 +2 Z(n +1)%a,2".

n=2 n=0
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To collect coefficients of ", we shift the summation index in the first sum. This yields

Ly =Y (n+2)(n+ Daps2r" +2 (n+1)%a,2" = bua”,
n=0 n=0 n=0

with
by = (n+2)(n+ Danie +2(n+ 1)%a,, n>0.

To obtain solutions of (7.2.17), we set b, = 0 for n > 0. This is equivalent to the recurrence relation

n+1
a
TL+2 mny

Ui = —2 n>0. (7.2.18)

Since the indices on the left and right differ by two, we write (7.2.18) separately for n = 2m and
n = 2m + 1, as in Example 7.2.1. This yields

2m+1 2m+1
- _ m = ————Q2m, >0, 7.2.1
@2m-+2 2m+2a2 m—+1 42 m 20 ( %)
and
2m + 2 m—+1
m —2 e omt1 = —d———aomt1, > 0. 7.2.2
@2m+3 2m—i—3a2 + 2m—i—3a2 +1, m=0 ( )

Computing the coefficients of even powers of x from (7.2.19) yields

1
a2 = _IQOa
_ 3 3\ (_ 1y _ 13
as = 2a2— B 1 a0—1.2a05
_ 5 5 13y _ 1:3-5
@ = Tgu T g1 )T T 3%
7 T( 135 1-3.5-7
@w = Ty T Ty \T1.2.3) 0T 1234
In general,
™ (25 -1
a2m:(—1)mL,])ao, m > 0. (7.2.21)
m.

(Note that (7.2.21) is correct for m = 0 because we defined ngl b; =1 forany b;.)
Computing the coefficients of odd powers of z from (7.2.20) yields

as = —4%@1,
as = —4%@3:—4% (—4%) a1:42%a1,
T | IMEEEN
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In general,
(=1)™4™m)
A2mt1 = o~ a1, m > 0. (7.2.22)
Hj:1(2.] +1)
From (7.2.21) and (7.2.22),
(2] 22 4™m! 2m+1
Y = ag " +ax M
Z Z Hj:1(2.] +1)

is the power series in x for the general solution of (7.2.17). Since Py(x) = 14222 has no real zeros, Theo-
rem 5.1.1 implies that every solution of (7.2.17) is defined on (—o0, 00). However, since Py(+i/v/2) = 0,
Theorem 7.2.1 implies only that the power series converges in (—1/+/2, 1/+/2) for any choice of ag and
ai.

The results in Examples 7.2.1 and 7.2.2 are consequences of the following general theorem.

Theorem 7.2.2 The coefficients {a,,} in any solutiony = %" a,(x — )" of

(14 a(@—z0)*)y" + Bz —z0)y +7y =0 (7.2.23)
satisfy the recurrence relation
(ni2 = _%an, n >0, (7.2.24)
(n+2)(n+1) -
where
p(n) =an(n—1)+ fn+~. (7.2.25)
Moreover, the coefficients of the even and odd powers of x — xg can be computed separately as
p(2m)
m = - m >0 7.2.26
fam2 @mt2)emrnm 7 (7.2.26)
and
p(2m +1)
m - m+1, >0, 7.2.27
am s @m+3)@2m+2) 2 " (7:2:27)

where ay and ay are arbitrary.

Proof Here
Ly = (1+ a(z —20)")y" + Bz — xo)y’ +y.
If -
Yy = Z (Zn(.f - 330)na
n=0
then - -
y = Z nan(x — )"t and 3y’ = Z n(n — Dan(z — x0)" 2

n=1 n=2

Hence,
Ly = Z n(n — Dan(z —20)" "2 + Z [an(n — 1) 4+ Bn+ ] an(x — x0)"
n=2 n:O

o0

= Z n—lanx—xon2+2p a,n(.I—.Io)n,

n=2 n=0



Section 7.2 Series Solutions Near an Ordinary Point1 327

from (7.2.25). To collect coefficients of powers of z — x(, we shift the summation index in the first sum.
This yields

o0

Ly =" [(n+2)(n+ Dasa + p(n)as] (z — xo)".

n=0

Thus, Ly = 0 if and only if
(n+2)(n+ Dapt2 +p(n)a, =0, n>0,

which is equivalent to (7.2.24). Writing (7.2.24) separately for the cases where n = 2m and n = 2m + 1
yields (7.2.26) and (7.2.27).

Example 7.2.3 Find the power series in « — 1 for the general solution of
(2 44z — 22%)y" —12(z — 1)y — 12y = 0. (7.2.28)
Solution We must first write the coefficient Py(x) = 2 + 4z — 22 in powers of x — 1. To do this, we

write z = (x — 1) + 1 in Py(z) and then expand the terms, collecting powers of x — 1; thus,

2+4r —22% = 244z —1)+1]-2[(x - 1)+ 1)?
4—2(x—1)>~%

Therefore we can rewrite (7.2.28) as
(4=2(x -1y —12(z — 1)y’ — 12y =0,
or, equivalently,
(1 - %(x - 1)2> y' —3(x—1)y —3y=0.
This is of the form (7.2.23) with « = —1/2, 3 = —3, and v = —3. Therefore, from (7.2.25)

n(n—1) (n+2)(n+3)

p(n) = — 5 —3n—3:—f.
Hence, Theorem 7.2.2 implies that
" _ p(2m) u
amt2 2m+2)2m+1) "
(2m 4 2)(2m + 3) 2m +3
= - >
2@m+2)@m+ 1) 2" = 2em 1)tz M=)
and
u ____ p@2m+1) u
2m—+3 — (2m+ 3)(2m+ 2) 2m—+1

(2m 4 3)(2m + 4) o om+2
202m + 3)(2m +2) " T o(m + 1) 2D

m > 0.

We leave it to you to show that

2m +1 m+1
27&0 and a2m+1 = om

azm = ay, m Z Oa
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which implies that the power series in « — 1 for the general solution of (7.2.28) is

= 2m+1 . = m+1 .
y:aoz (CC—I)Q +le Z—m(x_l)Q +1. [ |
m=0 m=0

2m

In the examples considered so far we were able to obtain closed formulas for coefficients in the power
series solutions. In some cases this is impossible, and we must settle for computing a finite number of

terms in the series. The next example illustrates this with an initial value problem.

Example 7.2.4 Compute ag, a1, ..., a7 in the series solution y = ZZO:O anx™ of the initial value prob-
lem
(1+22%)y" + 102y +8y =0, y(0) =2, ¢ (0)=-3. (7.2.29)
Solution Since o« =2, § = 10, and v = 8 in (7.2.29),
p(n) =2n(n — 1)+ 10n + 8 = 2(n + 2)2.
Therefore ( 2
n+2 n+2
n = 4T N7 N \0n = —4——(Unp, Z 0
n+2 n+2)nt1)" ntr1m "
Writing this equation separately for n = 2m and n = 2m + 1 yields
(2m +2) m+1
m = 2 . =— o > 7.2.
A2m+2 2m+1 as 2m+ 1@2 m 0 ( 30)
and
2 3 2 3
tomys = —2om =, M0, (7.231)

S Tom 2 m+ 1

Starting with ap = y(0) = 2, we compute as, a4, and ag from (7.2.30):

1
ag = —412:—8,
2 64
= —4-(-8)=—
a4 3( ) 35
3 /64 256
ag = 42 (=) =-2
5\ 3 5
Starting with a; = y'(0) = —3, we compute a3, a5 and a7 from (7.2.31):
3
as = —I(—3)—9,
4 = _29__B
5 — 2 - 25
T a5y _ s
= T3\T2) T 2

Therefore the solution of (7.2.29) is

4 4 2 1
y:2—3x—8x2+9x3+%x4—?5:05—?:064—%:07
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USING TECHNOLOGY

Computing coefficients recursively as in Example 7.2.4 is tedious. We recommend that you do this
kind of computation by writing a short program to implement the appropriate recurrence relation on a
calculator or computer. You may wish to do this in verifying examples and doing exercises (identified by
the symbol ) in this chapter that call for numerical computation of the coefficients in series solutions.
We obtained the answers to these exercises by using software that can produce answers in the form of
rational numbers. However, it’s perfectly acceptable - and more practical - to get your answers in decimal
form. You can always check them by converting our fractions to decimals.

If you’re interested in actually using series to compute numerical approximations to solutions of a
differential equation, then whether or not there’s a simple closed form for the coefficents is essentially
irrelevant. For computational purposes it’s usually more efficient to start with the given coefficients
ap = y(xg) and a1 = y'(x), compute ao, ..., ay recursively, and then compute approximate values of
the solution from the Taylor polynomial

N

Tn(z) = Z an(x — x0)".

n=0

The trick is to decide how to choose N so the approximation y(x) =~ T (x) is sufficiently accurate on
the subinterval of the interval of convergence that you’re interested in. In the computational exercises
in this and the next two sections, you will often be asked to obtain the solution of a given problem by
numerical integration with software of your choice (see Section 10.1 for a brief discussion of one such
method), and to compare the solution obtained in this way with the approximations obtained with Ty for
various values of N. This is a typical textbook kind of exercise, designed to give you insight into how
the accuracy of the approximation y(z) = T (x) behaves as a function of NV and the interval that you’re
working on. In real life, you would choose one or the other of the two methods (numerical integration or
series solution). If you choose the method of series solution, then a practical procedure for determining
a suitable value of NN is to continue increasing N until the maximum of [Ty — Tv—1| on the interval of
interest is within the margin of error that you’re willing to accept.

In doing computational problems that call for numerical solution of differential equations you should
choose the most accurate numerical integration procedure your software supports, and experiment with
the step size until you’re confident that the numerical results are sufficiently accurate for the problem at
hand.

7.2 Exercises

In Exercises 1 -8 find the power series in z for the general solution.

1. (1+2%)y" +6xy +6y=0 2. (1+a2%)y' +2xy —2y=0
3. (1+22)y" —8xy +20y =0 4. (1—2%)y’ —8xy — 12y =0

2\, 1 / — 1
5 (14227 + 7oy +2y=0 ¢ (L+ a2y + 22y’ + 7y =0

7. (1—22)y’ —bxy —4y=0 8. (1+ 2%y’ —10xy +28y =0
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3
(a) Find the power series in x for the general solution of " 4+ zy’ + 2y = 0.
(b) For several choices of ag and a1, use differential equations software to solve the initial value
problem
y'+ay +2y=0, y(0)=ao, ¥(0)=a, (A)
numerically on (=5, 5).
(c¢) For fixed rin {1,2,3,4, 5} graph
N
Tn(z) = Z anx”
n=0
and the solution obtained in (a) on (—r, ). Continue increasing N until there’s no perceptible
difference between the two graphs.
10. Follow the directions of Exercise 9 for the differential equation
y" 4+ 2xy' + 3y = 0.
In Exercises 11 13 find ay, ..., an for N at least 7 in the power series solution y = fo:o anx™ of the

initial value problem.

11.
12.
13.
14.

15.

1+22)y" +ay +y=0, y0)=2, ¢ (0)=-1
(14+22%)y" — 92y’ —6y =0, y(0)=1, y'(0)=-1
(1+822)y +2y=0, y(0)=2, ¢ (0)=—1
Do the next experiment for various choices of real numbers ag, a1, and 7, with0 < r < 1/ V2.
(a) Use differential equations software to solve the initial value problem
(1—22%)y" —ay' +3y=0, y(0)=ao, ¥(0)=a, (A)

numerically on (—r, ).
(b) For N =2,3,4, ..., compute as, ..., ay in the power series solution y = ZZO:O apx™ of
(A), and graph
N
Tn(z) = Z anx"
n=0

and the solution obtained in (a) on (—r, ). Continue increasing N until there’s no perceptible
difference between the two graphs.

Do (a) and (b) for several values of  in (0, 1):
(a) Use differential equations software to solve the initial value problem
(1 +a?)y" + 102y +1dy =0, y(0) =5, ¥ (0)=1, (A)

numerically on (—r, ).

(b) For N =2,3,4, ..., compute as, ..., ay in the power series solution y = ZZO:O apx™ of
(A), and graph

N
Tn(z) = Z anx”
n=0

and the solution obtained in (a) on (—r, 7). Continue increasing N until there’s no percep-
tible difference between the two graphs. What happens to the required NV as » — 17

(¢) Try (a) and (b) with » = 1.2. Explain your results.
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In Exercises 16 =20 find the power series in T — xg for the general solution.

16. ' —y=0; 20=317. ¢y"—(2-3)y—y=0; zo=3
18. (1 —4x+22?)y" +10(x — 1)y +6y=0; x9=1

19. (11 -8z +22%)y” —16(x —2)y +36y =0; x9=2

20. (5+6x+322)y" +9(x+ 1)y +3y=0; z0=—1

In Exercises 21 =26 find aq, ..., ay for N at least 7 in the power series y = > .~ an(x — x0)" for the
solution of the initial value problem. Take x to be the point where the initial conditions are imposed.

21. (#* =4)y" —xy =3y =0, y(0)=-1, ¢(0)=2
22. Y+ (x=3)y +3y=0, y(3)=-2, y(3)=

23. [Cl(—6z+322)y" +(x—1)y +12y =0, y(1)=-1, y(1)=1

2. |C| (422 =242 +37)y" +y =0, y(3)=4, y(3)=-6

25. [C](2®—8z+14)y" —8(z —4)y' +20y =0, y(4) =3, y(4)=—4

26. [C| (222 +4z+5)y" —20(z+ 1)y +60y =0, y(=1)=3, ¢/(-1)=-3

27. (a) Find a power series in x for the general solution of
(1 + 2y + 4ay’ +2y = 0. (A)

(b) Use (a) and the formula

1
=l (Fl<r <)

for the sum of a geometric series to find a closed form expression for the general solution of
(A)on (—1,1).
(c) Show that the expression obtained in (b) is actually the general solution of of (A) on (—o0, 00).

28. Use Theorem 7.2.2 to show that the power series in x for the general solution of
(1+az®)y” + By +vy =0

18

o m—1 2m o m— 2m+1

T T
= -1Hm 27)| —— - (2 | —.
R S TP il H R TR

29. Use Exercise 28 to show that all solutions of
(1 +az?)y" + pry +9y =0
are polynomials if and only if
an(n—1)4 pn+~v=a(n—2r)(n—2s —1),

where 7 and s are nonnegative integers.
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30.

31.

(a)

(b)

(c)

(d)

(a)

and

Use Exercise 28 to show that the power series in z for the general solution of
(1 —2%)y" — 2bxy’ + ala+2b— 1)y =0

is y = aoy1 + a1y2, where

o] —mfl i om
T

n = (2j—a)2j+a+20-1)

=1 B

and
[e%) —mfl T x2m+1
= 27+ 1—a)(2j 20) | ————.

v mz:jo j:O(J+ 0)(2] +a+20)| oy

Suppose 2b isn’t a negative odd integer and k is a nonnegative integer. Show that y; is a
polynomial of degree 2k such that y;(—x) = y;(x) if & = 2k, while y2 is a polynomial of
degree 2k+1 such that yo (—z) = —y2(—x) if @« = 2k+1. Conclude that if n is a nonnegative
integer, then there’s a polynomial P,, of degree n such that P,,(—x) = (—1)"P,(z) and

(1 — 2% P! —2bxP, +n(n+2b—1)P, = 0. (A)
Show that (A) implies that
[(1—2%P'] = —n(n+2b—1)(1 — 2?)*" 1P,

and use this to show that if m and n are nonnegative integers, then
(1= 2?)°P] Py — [(1 = 2®)° Py ) Py =
[m(m+2b—1) —n(n+2b—1)] (1 — 22)*"'P, P,.

Now suppose b > 0. Use (B) and integration by parts to show that if m # n, then
1
/ (1 — 22" 1P, (2)Py(2) dz = 0.
-1

(We say that P, and P, are orthogonal on (—1, 1) with respect to the weighting function
(1 _ x2)b71.)
Use Exercise 28 to show that the power series in x for the general solution of Hermite’s
equation
y" —2xy + 20y =0

is y = aoy1 + a1y1, where

—

m 9om 1. 2m

1:1 (2 =) | g

WK

Yy =

3
Il
=)
<
=)

3
L

2mx2m+l

wo= ) |[[Cit1-a) @m+ 1)l

3
]
o
<
I
o
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(b) Suppose k is a nonnegative integer. Show that y; is a polynomial of degree 2k such that
y1(—z) = y1(x) if « = 2k, while yo is a polynomial of degree 2k + 1 such that yo(—2) =
—yo(—x) if « = 2k+1. Conclude that if n is a nonnegative integer then there’s a polynomial
P, of degree n such that P,,(—z) = (—1)" P, (x) and

P" —2zP! +2nP, = 0. (A)

(c) Show that (A) implies that
2

e* P = —2nefx2Pn,

and use this to show that if m and n are nonnegative integers, then
e PPy — [e P.IPy = 2(m — n)e™™ PpP,. (B)

(d) Use (B) and integration by parts to show that if m # n, then
/ e Py (z)P,(x)dz = 0.

(We say that P, and P,, are orthogonal on (—oo, 00) with respect to the weighting function

e’ )
Consider the equation

(1+az®)y" + Bz*y + yay =0, (A)

and let p(n) = an(n — 1) + Bn + 7. (The special case y” — xy = 0 of (A) is Airy’s equation.)
(a) Modify the argument used to prove Theorem 7.2.2 to show that

v= Y a
n=0
is a solution of (A) if and only if as = 0 and

p(n) "> 0.

ap+3 = —mam Z

(b) Show from (a) that a,, = 0 unless n = 3m or n = 3m + 1 for some nonnegative integer m,

and that
p(3m)
m = - ms Z O,
amt3 Bm+3)3m 2™ ™
and
p(3m +1)
m - m ) Z Oa
A3m+4 Bm +4)(3m + 3) a3m+1, M

where ag and a; may be specified arbitrarily.
(¢) Conclude from (b) that the power series in z for the general solution of (A) is

o] mlp . 3m
y:az H3] 2| 3mm!
m=0 7=0
m—1

p(3j +1) | 2?mH
3j+4 | 3mm!’

m:O 7=0
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In Exercises 33 =377 use the method of Exercise 32 to find the power series in x for the general solution.

33, ¢y —zy=0 34. (1—223)y" —102% —8xy =0
35. (1423 +72% +92y=0 36. (1—223)y" + 622y + 242y =0
37. (1—23)y" +152%y — 632y =0

38. Consider the equation
(1+ az®?) y" + pa* Ty 472y =0, (A)

where k is a positive integer, and let p(n) = an(n — 1) + Bn + .
(a) Modify the argument used to prove Theorem 7.2.2 to show that

v= Y a
n=0
is a solution of (A) if and only if a,, = 0for2 <n < k+ 1 and

p(n)
n+k+2)(n+k+1)

Ap+k+2 = —( an, n>0.

(b) Show from (a) that a,, = 0 unless n = (k+2)m orn = (k + 2)m + 1 for some nonnegative
integer m, and that

p((k +2)m)

= — >
A(k+2)(m+1) ) m+ D[(k+2)(m+1) = 1]a(k+2)m, m > 0,
and
. L p((k+2)m+1) u m>0
(k+2)(m+1)+1 = [(E+2)m+ 1) +1(k+2)(m+1) (k+2)m+15 = U,

where ag and a; may be specified arbitrarily.
(¢) Conclude from (b) that the power series in z for the general solution of (A) is

y—aoS (cum | T[ 22 | et

=0 o B+2)G+1) - 1| (k+2)mm!

o) m—1 .
. E+2)j+1 gk+2)m+1

p
=0 b 2@+ 1)+ 1] (k+2)mml

In Exercises 39 —44 use the method of Exercise 38 to find the power series in x for the general solution.
39.  (1+22%)y" + 14ty + 1023y =0
4. o' +2%y=0 4. ¢ +25% +T72°y =0
42. (14 2%)y" — 1627y + 7225y =0
43. (1 —a5)y"” — 1225 — 302%y =0
4. y'+ 2%y +62'y=0
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7.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II

In this section we continue to find series solutions
y=3 anle —zo)"
n=0
of initial value problems
Py(z)y" + Pi(z)y + Pa(z)y =0, y(xo) =ao, ¥ (xo)= a1, (7.3.1)

where Py, Py, and P, are polynomials and Py(zg) # 0, so x¢ is an ordinary point of (7.3.1). However,
here we consider cases where the differential equation in (7.3.1) is not of the form

(14 oz —20)?) ¥ + Bz — m0)y + vy =0,

so Theorem 7.2.2 does not apply, and the computation of the coefficients {a,, } is more complicated. For
the equations considered here it’s difficult or impossible to obtain an explicit formula for a,, in terms of
n. Nevertheless, we can calculate as many coefficients as we wish. The next three examples illustrate
this.

Example 7.3.1 Find the coefficients ay, ..., a7 in the series solutiony = fo:o a,x™ of the initial value
problem
142422y + (1 +72)y +2y=0, y0)=-1, ¢ (0)=-2. (7.3.2)

Solution Here
Ly=(1+z+22%)y + (1 +72)y +2y.

The zeros (—1 =+ i1/7)/4 of Py(z) = 1 + 2 + 222 have absolute value 1/1/2, so Theorem 7.2.2 implies
that the series solution converges to the solution of (7.3.2) on (—1/+/2,1//2). Since

o0 o0 o0
Y= Z anx”, Y = Z napz" ' and ¢’ = Z n(n — 1a,z" 2,
n=0 n=1 n=2
o0 o0 o0
Ly = Z n(n —1a,z" 2 + Z n(n —Da,z™ t + 2 Z n(n — apz"
n=2 n=2 n=2

o0 o0 o0
+ g na,z™ t+7 g na,x" + 2 g anz”.
n=1 n=1 n=0

Shifting indices so the general term in each series is a constant multiple of " yields

Ly = Z(n +2)(n+ Daptoz™ + Z(n + Dnap4i2™ + 2 Z n(n — 1apz™
n=0 n=0 n=0

o0 o0 o0 o0
+ Z(n + Dappr1z™ +7 Z napx” + 2 Z anx” = Z bpx™,
n=0 n=0 n=0 n=0
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where
by = +2)(n+ Dapgo+ (n+ 1211+ (n+2)(2n + 1)ay,.

Therefore y = > °7  a,x™ is a solution of Ly = 0 if and only if

n=0

n+1 2n+1
nil — ——— aQp, n > 0. 7.3.
n+2a +1 n+1a n>0 (7.3.3)

ap42 = —

From the initial conditions in (7.3.2), ag = y(0) = —1 and a1 = 3/(0) = —2. Setting n = 0 in (7.3.3)
yields

1 1
a2:—§a1—a0:—§(—2)—(—1):2-
Setting n = 1 in (7.3.3) yields
2 3 2 3 )
——ag—=a; =—=(2)—=(-2)= =
a3 =—ga2—gm =32 -5 (2 =3

We leave it to you to compute ay, as, ag, a7 from (7.3.3) and show that

1 44
y:—1—2x+2x2+gx3—§x4+§x5+6—x6——3x7

12 4 8 567 T

We also leave it to you (Exercise 13) to verify numerically that the Taylor polynomials T (z) = Zﬁ;o anx™
converge to the solution of (7.3.2) on (—1/v/2,1//2).

Example 7.3.2 Find the coefficients ag, ..., as in the series solution

Y= Z an(z+1)"
n=0

of the initial value problem

B+x)y' +(1+2x)y —2—2)y=0, y(-1)=2, 3 (-1)=-3. (7.3.4)

Solution Since the desired series is in powers of z + 1 we rewrite the differential equation in (7.3.4) as

Ly = 0, with
Ly=2+(x+1)y - 1-2z+1)y - B—(x+1))y.
Since
Y= Z an(z+1)", o = Z nap(z+1)""' and ¢’ = Z n(n — Dap(z +1)"2,
n=0 n=1 n=2
Ly = 2 Z nn — Da,(z+1)" 2+ Z n(n — Dap(z + 1)1
n=2 n=2
— Z nap(x+1)""1 42 Z na,(x +1)"
n=1 n=1

=33 an(z+1)"+ D an(z+ 1"
n=0 n=0
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Shifting indices so that the general term in each series is a constant multiple of (x 4 1)™ yields

Ly = 2) n+2)(n+ Danga(z+1)"+ > (n+ Dnapp(z+1)"

n=0 n=0

= 4 Dapp(@+ 1"+ 2n—3)an(z+1)" + Y an_a(z+1)"

n=0 n=0 n=1

= Z bp(x 4+ 1),
n=0

where
bo = 4&2 —ay — 3&0

and
by =2(n+2)(n+ Dansa + (0% = Daper + 2n —3)an + an_1, n> 1.

Therefore y = >, an(x 4+ 1)™ is a solution of Ly = 0 if and only if

1
as = Z(al + 3&0) (735)
and )
ni2 = —m———— [(n? = 1a, 2n — 3)an + an— > 1. 7.3.
Gn+2 2(n+2)(n+1) [(n Jansr +(2n = )an +a 1], "= (7:30)
From the initial conditions in (7.3.4), agp = y(—1) = 2 and a; = y'(—1) = —3. We leave it to you to
compute ag, ..., as with (7.3.5) and (7.3.6) and show that the solution of (7.3.4) is
_ 3 2 9 3, 7 4 5
y——2—3(x+1)+4(x+1) —12(33—1-1) +48(x+1) —60(33—1-1) +oe

We also leave it to you (Exercise 14) to verify numerically that the Taylor polynomials T (z) = Zﬁ;o anx™
converge to the solution of (7.3.4) on the interval of convergence of the power series solution.

Example 7.3.3 Find the coefficients ag, ..., a5 in the series solutiony = fo:o anx™ of the initial value
problem
Y 3z + 4422y =0, y0)=2, ¥ (0)=-3. (7.3.7)

Solution Here
Ly =y" + 3zy' + (4 + 22%)y.

Since
o0 o0 o0
Y= Z anz™, Y = Z napz" "', and ¢ = Z n(n — 1a,z" 2,
n=0 n=1 n=2
o0 o0 o0 o0
Ly = Z n(n — l)anx"72 +3 Z na,x" + 4 Z ant” +2 Z anx" 2.
n=2 n=1 n=0 n=0

Shifting indices so that the general term in each series is a constant multiple of " yields

o0

Ly = Z(n +2)(n+ Dapt2z™ + 2(371 +4)apz™ + 2 Z ap_ox" = Z bpz™
n=0

n=0 n=0 n=2
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where
bo = 2&2 + 4&0, bl = 6&3 + 7&1,

and
bp=m+2)(n+ Dantz + Bn+4a, + 2a,-2, n>2.

Therefore y = Zi’f:o anx™ is a solution of Ly = 0 if and only if

7
as = —2&0, asz = —Eal, (738)
and 1

apio = —————7——|3Bn+4)a, + 2a,_2], n>2. 7.3.9
2T+ 2)(n+ 1) ( ) 2 (7.3.9)
From the initial conditions in (7.3.7), ag = y(0) = 2 and a; = ¥'(0) = —3. We leave it to you to

compute ag, ..., as with (7.3.8) and (7.3.9) and show that the solution of (7.3.7) is

7 79
y:2—3x—4x2+§x3+3x4—Ex5+~~~.

n

We also leave it to you (Exercise 15) to verify numerically that the Taylor polynomials T (z) = Zﬁ;o anx
converge to the solution of (7.3.9) on the interval of convergence of the power series solution.

7.3 Exercises

In Exercises 1-12 find the coefficients ay,..., a)y for N at least 7 in the series solution y = Zoo anpx™

n=0
of the initial value problem.

1 (1+32)y" +ay +2y=0, y0)=2, ¢ (0)=-3

2 (1+x+222)y" + (2+8z)y +4y =0, y(0)=—-1, 3 (0)=2
3 (1—222)y +(2—6z)y —2y=0, y0)=1, ¢ (0)=0

4 (1+z+32%)y" + (24 152)y’ + 12y =0, y(0) =0, y'(0)=1
5. Q+z)y +(1+2)y +3y=0, y0)=4, 3 (0)=3

6. [ClB+3z+a2y + (6+4z)y +2y=0, y(0)=7, y(0)=3

7 A+z)y +@Q2+a)y +2y=0, y0)=2, y(0)=5

8 (2-3z+222)y" — (4—62)y +2y=0, y(l)=1, y(1)=-1
9 3z +222)y +10(1+2)y +8y =0, y(-1) =1, o/(-1)=-1
10. [ClA-az+ad)y —(1—da)y +2y=0, y(1)=2, y(1)=-1
11. C+a)y +2+a2)y +y=0, y(-1)=-2, y(-1)=3

12. 2%y — (6 —Tz)y +8y =0, y(1)=1, ¢ (1)=-2

13. Do the following experiment for various choices of real numbers ag, a1, and 7, with 0 < r <

1/V2.



14.

15.
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(a) Use differential equations software to solve the initial value problem
(I+z+22%)y" + (1 +T2)y +2y =0, y(0) =ao, ¥ (0)=ai, (A)

numerically on (—r, 7). (See Example 7.3.1.)
(b) For N =2,3,4, ..., compute as, ..., ay in the power series solution y = ZZO:O apx™ of
(A), and graph

N
Tn(z) = Z anx”
n=0

and the solution obtained in (a) on (—r, ). Continue increasing N until there’s no perceptible
difference between the two graphs.

Do the following experiment for various choices of real numbers ag, a1, and r, with0 < r < 2.

(a) Use differential equations software to solve the initial value problem
Bta)y +(1+22)y —(2-2)y=0, y(-1)=ao, ¢ (-1)=a1, (4A)

numerically on (—1 — r, —1 4+ r). (See Example 7.3.2. Why this interval?)
(b) For N =2,3,4,..., compute as, ..., ay in the power series solution

Y= Z an(x +1)"
n=0

of (A), and graph
N
Tn(z) = Z an(z +1)"
n=0

and the solution obtained in (a) on (—1 — r, —1 + r). Continue increasing N until there’s no
perceptible difference between the two graphs.

Do the following experiment for several choices of ag, a1, and 7, with > 0.

(a) Use differential equations software to solve the initial value problem

v +3zy + (4+22%)y =0, y(0)=ao, ¥ (0)=a, (A)
numerically on (—r, 7). (See Example 7.3.3.)
(b) Find the coefficients ag, a1, ..., ay in the power series solution y = ZZO:O anpx™ of (A),
and graph

N
Tn(z) = Z anx”
n=0

and the solution obtained in (a) on (—r, ). Continue increasing N until there’s no perceptible
difference between the two graphs.
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16. Do the following experiment for several choices of ag and a;.

(a) Use differential equations software to solve the initial value problem

(1—a)y' = @2=-2)y +y=0, y0)=ao, ¥(0)=a, (A)
numerically on (—r, 7).

(b) Find the coefficients ag, a1, ..., ay in the power series solution y = ZN

o AnT" of (A),
and graph

N
Tn(z) = Z anx”
n=0

and the solution obtained in (a) on (—r, ). Continue increasing N until there’s no perceptible
difference between the two graphs. What happens as you let r — 1?

17. Follow the directions of Exercise 16 for the initial value problem
(I+2)y" +3y +32y=0, y(0)=ao, ¥(0)=a1.
18. Follow the directions of Exercise 16 for the initial value problem

(1+2%)y" +y +2y=0, y0)=ao, ¥(0)=a.

In Exercises 19-28 find the coefficients ay, ..., an for N at least 7 in the series solution
o0
y= Z an(z — xo)"
n=0

of the initial value problem. Take xq to be the point where the initial conditions are imposed.

19. (2 +4a)y’ — 4y — (6 +42)y=0, y0)=2, y(0)=-7

20. (I+22)y" —(1-22)y —(3—-22)y=0, y1)=1, ¢y (1)=-2
21. G+22)y —y +G+2)y=0, y(-2)=2, y(-2)=-1

22. (A+z)y — (d+22)y +(6+2)y=0, y(-3)=2, ¢ (-3)=-2
23. (2432)y" —axy +22y=0, y(0)=-1, ¢y (0)=2

24, B+2z2)y" +3y —xy=0, y(-1)=2, ¢'(-1)=-3

25. B+2z)y -3y —2+a)y=0, y(-2)=-2, y(-2)=3

26. (10 —22)y" + (1 +2)y =0, y(2)=2, y(2)=—4

27. (T+a)y +@+22)y + (G+a)y=0, y—4)=1, y(-4)=2
28. (6+42)y" + (1 +22)y =0, y(-1)=-1, y(-1)=2

29. Show that the coefficients in the power series in « for the general solution of

(1+ax+pe*)y” + (v+0z)y +ey =0
satisfy the recurrrence relation

v+ an Bn(n —1)+dn+e
— e pt1 — an.
n+2 (n+2)(n+1)

Anp42 =



30. (a)

(b)

(c)

(d)

(e)

®

(g

Section 7.3 Series Solutions Near an Ordinary Point II =~ 341

Let v and 3 be constants, with 3 # 0. Show that y = >_>7  a,z™ is a solution of

n=0
(14 oz + )y + (2a + 4B2)y’ + 20y =0 (A)
if and only if
Gpto + aapiq + Ba, =0, n>0. (B)

An equation of this form is called a second order homogeneous linear difference equation.
The polynomial p(r) = 72 + ar + f3is called the characteristic polynomial of (B). If r1 and
ro are the zeros of p, then 1/r; and 1/r5 are the zeros of

Py(z) =1+ ax + B

Suppose p(r) = (r — r1)(r — r2) where ry and ry are real and distinct, and let p be the
smaller of the two numbers {1/|r1|,1/|ro|}. Show that if ¢; and ¢y are constants then the
sequence

an = c1ri +cary, n >0

satisfies (B). Conclude from this that any function of the form

o0

Yy = Z(Cﬂ“? =+ CQTS).I”
n=0

is a solution of (A) on (—p, p).
Use (b) and the formula for the sum of a geometric series to show that the functions

Y1 and Yo =

1—rix 1—rox

form a fundamental set of solutions of (A) on (—p, p).

Show that {y1,y2} is a fundamental set of solutions of (A) on any interval that does’nt
contain either 1/rq or 1/rs.

Suppose p(r) = (r — r1)?, and let p = 1/|r1|. Show that if ¢; and ¢z are constants then the
sequence
an = (c1 +con)ry, n>0

satisfies (B). Conclude from this that any function of the form

o0

Y= Z(Cl =+ CQ”)T?.I”

n=0

is a solution of (A) on (—p, p).
Use (e) and the formula for the sum of a geometric series to show that the functions

_r
(1 —rix)?

Yy = 1 and Yo =
—
form a fundamental set of solutions of (A) on (—p, p).

Show that {y1,y2} is a fundamental set of solutions of (A) on any interval that does not
contain 1/71.
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31. Use the results of Exercise 30 to find the general solution of the given equation on any interval on
which polynomial multiplying ¢/ has no zeros.

(@) (14 3z +222)y” + (6 + 8z)y' + 4y =0

(b) (1 — 52 + 622)y" — (10 — 24x)y’ + 12y =0
(© (1 — 4z +42%)y” — (8 — 16x)y +8y =0
(d) (4+4z+ 22y’ + (8 +4a)y +2y =0

(e) (4+ 8z + 3z%)y" + (16 + 12z)y' + 6y = 0

—_—~ o~

—~

In Exercises 32-38 find the coefficients ay, ..., an for N at least 7 in the series solutiony = fo:o anz”
of the initial value problem.

32. Yy +2xy +(B3+22%)y =0, y0)=1, ¢ (0)=-2
33. y' —3zy +(5+22%)y =0, y0)=1, ¢ (0)=-2
34. y' +5xy —(3—2%)y =0, y0)=6, 3 (0)=-2
35. y' =2y — (24 32Y)y =0, y0)=2, 4 (0)=-5
36. Y — 3y + (2+422)y =0, y0)=3, 3 (0)=6
37. 2" +5zy + (4+222)y =0, y0) =3, 3 (0)=-2
38. 3y +2zy +(4—22)y =0, y0)=-2, 4 (0)=3

39. Find power series in « for the solutions y; and ys of
y' 4 day + (2 + 42y =0

such that y1(0) = 1, 37(0) = 0, y2(0) = 0, y5(0) = 1, and identify y; and yo in terms of
familiar elementary functions.

In Exercises 40—49 find the coefficients ay, ..., an for N at least 7 in the series solution

o0

E x—xo

of the initial value problem. Take xq to be the point where the initial conditions are imposed.

40. (1+2)y" +2% + (1+22)y =0, y0)—2, ' (0)=3
41. Y+ 142z 422y +2y=0, y(0)=2, 1 (0)=3

42. (L+22)y" + 2422y +ay=0, y0)=-3, y(0)=5
43. (I+a)y" +(1—3z+22%)y —(x—4)y=0, y1)=-2, y(1)=3
44. Y+ (134 120+ 322y + (5+22), y(=2)=2, (-2

Il
|
@

45. (1+22+322)y" + (2—a2)y + (1+2)y=0, y(0)=1, 3 (0)=—2

46. [C] B +dr+a2)y — (5+de—ady —(2+a2)y=0, y(-2)=2, y(-2)=-1
47. (1+2z 422" +(1—a2)y=0, y0)=2, ¢ (0)=-1

48. (x—222)y + (1 +3z—22)y + 2+2)y=0, y1)=1, y(1)=0

49. (16 — 11z + 222)y" + (10 — 6z + 22)y' — 2 —a)y, y(3) =1, ¥ (3)=—2
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7.4 REGULAR SINGULAR POINTS EULER EQUATIONS

This section sets the stage for Sections 1.5, 1.6, and 1.7. If you’re not interested in those sections, but wish
to learn about Euler equations, omit the introductory paragraphs and start reading at Definition 7.4.2.

In the next three sections we’ll continue to study equations of the form
Po(z)y" + Pi(z)y + Pa(z)y =0 (7.4.1)

where Py, P;, and P> are polynomials, but the emphasis will be different from that of Sections 7.2 and
7.3, where we obtained solutions of (7.4.1) near an ordinary point z( in the form of power series in
x — xg. If o is a singular point of (7.4.1) (that is, if P(xg) = 0), the solutions can’t in general be
represented by power series in x — xg. Nevertheless, it’s often necessary in physical applications to study
the behavior of solutions of (7.4.1) near a singular point. Although this can be difficult in the absence of
some sort of assumption on the nature of the singular point, equations that satisfy the requirements of the
next definition can be solved by series methods discussed in the next three sections. Fortunately, many
equations arising in applications satisfy these requirements.

Definition 7.4.1 Let P,, P;, and P be polynomials with no common factor and suppose Py(z¢) = 0.
Then x is a regular singular point of the equation

Po(x)y" + Pi(x)y + Pa(x)y =0 (7.4.2)
if (7.4.2) can be written as
(z = 20)* A(@)y” + (z = 20) B(x)y' + C(x)y =0 (7.4.3)
where A, B, and C' are polynomials and A(zg) # 0; otherwise, xq is an irregular singular point of
(74.2).
Example 7.4.1 Bessel’s equation,
22y +ay + (2 — vy =0, (7.4.4)

has the singular point o = 0. Since this equation is of the form (7.4.3) with zo = 0, A(z) = 1,
B(z) = 1, and C(x) = 22 — 12, it follows that 2o = 0 is a regular singular point of (7.4.4).

Example 7.4.2 Legendre’s equation,
(1—2%)y" — 22y + a(a+ 1)y =0, (7.4.5)
has the singular points g = £1. Mutiplying through by 1 — z yields
(@ =1+ 1y +22(x - 1)y —ala+1)(z -1y =0,
which is of the form (7.4.3) withzg = 1, A(z) = z + 1, B(z) = 2z,and C(z) = —a(a + 1)(z — 1).

Therefore x¢ = 1 is a regular singular point of (7.4.5). We leave it to you to show that zg = —1 is also a
regular singular point of (7.4.5).
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Example 7.4.3 The equation
x3y// _,’_xy/ +y= 0
has an irregular singular point at zo = 0. (Verify.)
For convenience we restrict our attention to the case where g = 0 is a regular singular point of (7.4.2).
This isn’t really a restriction, since if ¢ # 0 is a regular singular point of (7.4.2) then introducing the
new independent variable ¢ = x — z( and the new unknown Y (¢) = y(t + x) leads to a differential

equation with polynomial coefficients that has a regular singular point at g = 0. This is illustrated in
Exercise 22 for Legendre’s equation, and in Exercise 23 for the general case.

Euler Equations

The simplest kind of equation with a regular singular point at o = 0 is the Euler equation, defined as
follows.

Definition 7.4.2 An Euler equation is an equation that can be written in the form

az?y" 4 bry' 4 cy =0, (7.4.6)

where a, b, and c are real constants and a # 0.

Theorem 5.1.1 implies that (7.4.6) has solutions defined on (0, c0) and (—o0, 0), since (7.4.6) can be
rewritten as

b c
ay” + —y’ + —2y =0.
T T
For convenience we’ll restrict our attention to the interval (0, co). (Exercise 19 deals with solutions of

(7.4.6) on (—o0,0).) The key to finding solutions on (0, c0) is that if > 0 then =" is defined as a
real-valued function on (0, co) for all values of r, and substituting y = 2" into (7.4.6) produces

ar?(z")" + bx(2") +cax” = ax*r(r— 12" %+ brra"! + ca”

= [a]r(r — 1) + br + C]ZCT. (747)

The polynomial

p(r)=ar(r—1)4+br+c
is called the indicial polynomial of (7.4.6), and p(r) = 0 is its indicial equation. From (7.4.7) we can see
that y = 2" is a solution of (7.4.6) on (0, o) if and only if p(r) = 0. Therefore, if the indicial equation

has distinct real roots 1 and 73 then y; = 2™ and yo» = 2" form a fundamental set of solutions of (7.4.6)
on (0, 00), since ya/y1 = "~ is nonconstant. In this case

y=c1z"™ + cox™
is the general solution of (7.4.6) on (0, c0).
Example 7.4.4 Find the general solution of
22y —xy —8y =0 (7.4.8)

on (0, c0).

Solution The indicial polynomial of (7.4.8) is

p(r)y=r(r—1)—r—-8=(r—4)(r +2).

2

Therefore y; = z* and yo = 2 are solutions of (7.4.8) on (0, c0), and its general solution on (0, ) is

et &
Yy=cCc1x +x2'


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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Example 7.4.5 Find the general solution of
622y + by —y =0 (7.4.9)

on (0, c0).

Solution The indicial polynomial of (7.4.9) is
p(r)=6r(r—1)+5r—1=(2r —1)(3r +1).
Therefore the general solution of (7.4.9) on (0, 00) is
Yy = 013:1/2 + 023:71/3. |
If the indicial equation has a repeated root 71, then y; = x™* is a solution of
2,1

ar*y’" + bxy' + cy = 0, (7.4.10)

on (0, c0), but (7.4.10) has no other solution of the form y = . If the indicial equation has complex
conjugate zeros then (7.4.10) has no real-valued solutions of the form y = x". Fortunately we can use
the results of Section 5.2 for constant coefficient equations to solve (7.4.10) in any case.

Theorem 7.4.3 Suppose the roots of the indicial equation

ar(r—1)+br+c¢=0 (7.4.11)
are 11 and ro. Then the general solution of the Euler equation

az?y” +bxy +cy=0 (74.12)

on (0, 00) is

= 1™ 4 cox™ if r1 and ro are distinct real numbers ;

Yy 2" (1 + colnz) ifry = ro;

y = a*|eicos (wina) + cosin (wlnz)] if r, o = A £ iw withw > 0.

Proof We first show that y = y(z) satisfies (7.4.12) on (0, o) if and only if Y () = y(e') satisfies the
constant coefficient equation

A’y
dt?
on (—00, o). To do this, it’s convenient to write x = ¢!, or, equivalently, ¢ = Inx; thus, Y (t) = y(z),
where © = et. From the chain rule,

a

dy
+(b—a) = +¥ =0 (7.4.13)

dY  dydx
dt  dxdt
and, since
dx '
pri e =ux,
it follows that iy p
== xﬁ. (7.4.14)
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Differentiating this with respect to ¢ and using the chain rule again yields

@Y d (dY\ d [ dy
a2~ at\at ) dat \“dx
dx dy d?y dx
dt dz " da? dt

d d? d
= xﬁ—l—xQd—x‘g (since d_:tc —x> .

From this and (7.4.14),

,d?y  d*Y dY
T T A dt
Substituting this and (7.4.14) into (7.4.12) yields (7.4.13). Since (7.4.11) is the characteristic equation of
(7.4.13), Theorem 5.2.1 implies that the general solution of (7.4.13) on (—o0, 00) is

Y(t) = c1e™" + cpe™! if ry and 7y are distinct real numbers;
Y(t) = e™(cy +cot)ifry =ro;
Y(t) = eM(cicoswt+ casinwt) ifry,re = A+ iw withw # 0.
Since Y'(t) = y(e'), substituting ¢ = Inx in the last three equations shows that the general solution of

)
(7.4.12) on (0, 0o) has the form stated in the theorem.
Example 7.4.6 Find the general solution of
2%y —5ry +9y =0 (7.4.15)

on (0, c0).

Solution The indicial polynomial of (7.4.15) is
p(r)=r(r—1)=5r+9=(r—3)~%
Therefore the general solution of (7.4.15) on (0, 00) is
y=a3(c; +colnx).
Example 7.4.7 Find the general solution of
22y +3xy +2y =0 (7.4.16)

on (0, c0).

Solution The indicial polynomial of (7.4.16) is
p(ry=r(r—1)+3r+2=(r+1)*+1.

The roots of the indicial equation are » = —1 =+ 4 and the general solution of (7.4.16) on (0, c0) is

1
y = —lcrcos(Inz) + cosin(lnz)].
x
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7.4 Exercises

347

In Exercises 1-18 find the general solution of the given Euler equation on (0, 00).

11.

13.

15.

17.
19.

20.

22y + T2y +8y =0 2. 2% —Txy +Ty=0
22y —zy +y=0 4. 2% +5xy +4y=0
22y + a2y +y=0 6. 2%y’ —3xy +13y=0

2%y’ +3zy — 3y =0 8. 122%y” — by’ +6y=0
4r2%y" +8xy +y =0 10. 32%y" — 2y +y=0
222" — 3wy’ +2y=0 12. 2%y + 32y +5y =0
922y + 152y +y =0 14. 2% —xy +10y =0
2%y — 6y =0 16. 22%" +3xy —y=0
22y — 3y +4y =0 18. 222y + 102y +9y =0

(a) Adapt the proof of Theorem 7.4.3 to show that y = y(x) satisfies the Euler equation

az?y" +bxy +cy =0
on (—o0,0) if and only if Y (t) = y(—e")
d?Y dy
on (—00, 00).
(b) Use (a) to show that the general solution of (7.4.1) on (—o0, 0) is
y = calz|™ + co|z|™ if r1 and 7o are distinct real numbers;
y = |z|™(c1 + coln|z|)if 4 = 7o;
y = |z|*[ercos (win|z|) + cosin (wln |z])] if r1, 72 = A+ iw withw > 0.

Use reduction of order to show that if
ar(r—1)+br+c¢=0
has a repeated root 1 then y = " (¢; + ¢z In x) is the general solution of
2,1

ax*y" +bxy +cy =0

on (0, 00).

(7.4.1)
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21.

22,

23.

A nontrivial solution of
Po(x)y" + Pr(2)y + Pa(x)y =0

is said to be oscillatory on an interval (a, b) if it has infinitely many zeros on (a, b). Otherwise y
is said to be nonoscillatory on (a, b). Show that the equation

2%y +ky =0 (k= constant)

has oscillatory solutions on (0, co) if and only if &£ > 1/4.

In Example 7.4.2 we saw that zg = 1 and z¢g = —1 are regular singular points of Legendre’s
equation
(1 — 2%y — 22y’ + a(a+ 1)y = 0. (A)

(a) Introduce the new variablest =z — 1 and Y (¢) = y(¢ + 1), and show that y is a solution of
(A) if and only if Y is a solution of

d*y ay
t24+t) =5 +2(1+t)— — )Y =
@+05 5 +201+H° —ala+1)Y =0,
which has a regular singular point at g = 0.

(b) Introduce the new variables t = 2 + 1 and Y (¢) = y(¢ — 1), and show that y is a solution of
(A) if and only if Y is a solution of

d*y

dy
W+2(1—t)—+a(a+1)Y:O,

t(2—1t
2-1) p
which has a regular singular point at g = 0.

Let Py, P1, and P» be polynomials with no common factor, and suppose xo # 0 is a singular point
of
Po(z)y” + Pi(x)y + Pa(x)y = 0. (A)
Lett =2 —xgand Y (t) = y(t + o).
(a) Show that y is a solution of (A) if and only if Y is a solution of
d*y ay

Ro(t) = + Ra(t) == + Ra()Y = 0. (B)

where
Rl(t):Pl(t—i-xo), 120,1,2

(b) Show that Ry, R;, and Rs are polynomials in ¢ with no common factors, and Ry(0) = 0;
thus, o = 0 is a singular point of (B).

7.5 THE METHOD OF FROBENIUS I

In this section we begin to study series solutions of a homogeneous linear second order differential equa-
tion with a regular singular point at g = 0, so it can be written as

22 A(z)y" + zB(z)y + C(z)y =0, (7.5.1)

where A, B, C are polynomials and A(0) # 0.
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We'll see that (7.5.1) always has at least one solution of the form

o0
Yy = x’r Z anxn
n=0

where ag # 0 and r is a suitably chosen number. The method we will use to find solutions of this form
and other forms that we’ll encounter in the next two sections is called the method of Frobenius, and we’ll
call them Frobenius solutions.

It can be shown that the power series fo:o anx™ in a Frobenius solution of (7.5.1) converges on some
open interval (—p, p), where 0 < p < oo. However, since 2" may be complex for negative = or undefined
if z = 0, we’ll consider solutions defined for positive values of x. Easy modifications of our results yield
solutions defined for negative values of . (Exercise 54).

We’ll restrict our attention to the case where A, B, and C are polynomials of degree not greater than
two, so (7.5.1) becomes

(o + a1z + aox?)y" + (B + Bz + B2y + (Y0 + 117 + 22y =0, (7.5.2)

where «;, 3;, and ~y; are real constants and ag # 0. Most equations that arise in applications can be
written this way. Some examples are

az®y” + pfry +vy = 0 (Euler’s equation),
22y +xy + (z* —1v*)y = 0 (Bessel’s equation),
and
' +(1—2)y + Xy = 0, (Laguerre’sequation),

where we would multiply the last equation through by x to put it in the form (7.5.2). However, the
method of Frobenius can be extended to the case where A, B, and C are functions that can be represented
by power series in & on some interval that contains zero, and Ay (0) # 0 (Exercises 57 and 58).

The next two theorems will enable us to develop systematic methods for finding Frobenius solutions
of (7.5.2).

Theorem 7.5.1 Let

Ly = 2*(ap + a1z + a22?®)y” + 2(Bo + Sz + Box®)y + (Y0 + nx + 12z?)y,

and define
po(r) = aor(r—1)+ for + 0,
pi(r) = awr(r—1)+pir+m,
pa(r) = aor(r—1)+ Bor + 2.
Suppose the series
y=> anz"" (75.3)
n=0
converges on (0, p). Then
Ly=>Y by (7.5.4)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Frobenius.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Frobenius.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Laguerre.html
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on (0, p), where

bo = po(r)ao,
b1 = po(r+1)ai + pi(r)ao, (7.5.5)
b, = po(n+r)a,+pin+r—1an—1+p2n+r—2)an—2, n>2.

Proof We begin by showing that if y is given by (7.5.3) and «, 3, and -y are constants, then

az’y' + Bry +yy =Y p(n+r)ana"t, (75.6)

n=0

where
p(r) =ar(r—1)+ 0r+1.

Differentiating (3) twice yields

y =3 (n+r)agamt ! (75.7)
n=0
and o
y' = Z(n +7r)(n+r—1Da,az" 2 (7.5.8)
n=0

Multiplying (7.5.7) by « and (7.5.8) by 22 yields

zy = Z(n +r)anz™t"
n=0
and -
%y = Z(n +7r)(n+7r—Daz"t.
n=0
Therefore
az®y’ + Bry +yy = Z [a(n+7)(n+7r—1)+B(n+7)+ 7] apx™"
n=0
= Y pn+r)ana,
n=0
which proves (7.5.6).
Multiplying (7.5.6) by x yields
z(ax?y" + Bxy +y) = Z p(n+r)az" T = Z p(n+r—1Day,_1z"". (7.5.9)
n=0 n=1

Multiplying (7.5.6) by x2 yields

22 (axy” + Bry +yy) = Z p(n + r)a,z" T = Z p(n+ 1 —2)a, 2™, (7.5.10)
n=0

n=2
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To use these results, we rewrite
Ly = 2*(ao + anz + aoz?)y" + (B0 + Sz + o)y + (o + ma + 122”)y

as

Ly = (cwoz®y + Bozy +y) +x (a12?y’ + Brzy’ +my) 5.1
4 72 (a2$2y// _|_62;py/ +72y) . o

From (7.5.6) with p = pg,
o0
a03:2y” + 60339/ + Yy = Zpo(n +T)an$n+r,
n=0
From (7.5.9) with p = pq,
o0
z (a12®y’ + By +my) = Zpl(n +7—1)a,_12""".
n=1
From (7.5.10) with p = pa,
o0
2? (022®y" + ot/ + 72y) = D pa(n+7 —2)an ozt
n=2
Therefore we can rewrite (7.5.11) as

o0 o0
Ly = Zpo(n +7r)anz" "+ Z pr(n+7r—1Day,_ 12"

n=0 n=1

o0
+ Z p2(n+71—2)an_oz"",

n=2

or

Ly = po(r)aox” + [po(r + 1)a; + pi(r)ag] 2"

+ Z [po(n+7)an +p1(n+r—1)an_1 + pa(n +r — 2)an o] 2",

n=2
which implies (7.5.4) with {b,,} defined as in (7.5.5).
Theorem 7.5.2 Let
Ly = 2*(ag + anz + az®)y’ + x(Bo + Srz + foz?)y + (0 + Nz + 1227y,
where o # 0, and define

po(r) = aor(r—1)+ Bor + 0,
arr(r —1) + fir + 71,
pa(r) = aor(r—1)+ Bor + 2.

e
=
—
<
N
I
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Suppose r is a real number such that po(n + 1) is nonzero for all positive integers n. Define

ap(r) = 1,
ar(r) = _7101(1")
po(r+1)° (7.5.12)
an(r) = pi(n+r—Day_1(r) +pa(n+1— 2)an,2(r)’ n>o.
po(n+1)
Then the Frobenius series -
y(a,r) =a" Y an(r)a” (7.5.13)
n=0
converges and satisfies
Ly(z,r) = po(r)z" (7.5.14)

on the interval (0, p), where p is the distance from the origin to the nearest zero of A(x) = g + a1z +
az2? in the complex plane. (If A is constant, then p = .)

If {a,(r)} is determined by the recurrence relation (7.5.12) then substituting a,, = a,(r) into (7.5.5)
yields by = po(r) and b,, = 0 forn > 1, so (7.5.4) reduces to (7.5.14). We omit the proof that the series
(7.5.13) converges on (0, p). [ |

If a; = 6B; = =0fori =1, 2, then Ly = 0 reduces to the Euler equation

aoz’y" + Bozy’ + Yoy = 0.

Theorem 7.4.3 shows that the solutions of this equation are determined by the zeros of the indicial poly-
nomial

po(r) = aor(r — 1) + Bor + 0.

Since (7.5.14) implies that this is also true for the solutions of Ly = 0, we’ll also say that pg is the indicial
polynomial of (7.5.2), and that po(r) = 0 is the indicial equation of Ly = 0. We’ll consider only cases
where the indicial equation has real roots ry and rq, with 71 > 7.

Theorem 7.5.3 Let L and {ay,(r)} be as in Theorem 7.5.2, and suppose the indicial equation po(r) = 0
of Ly = 0 has real roots r1 and ro, where r1 > 13. Then

o0

yi(@) = yla,r) =™ Y an(r)z"

n=0
is a Frobenius solution of Ly = 0. Moreover, if 11 — ro isn’t an integer then

o0

y2(a) = y(z,m2) =™ Y an(ra)a”

n=0
is also a Frobenius solution of Ly = 0, and {y1, y2} is a fundamental set of solutions.
Proof Since 71 and ry are roots of po(r) = 0, the indicial polynomial can be factored as
po(r) = ag(r —r)(r — r2). (7.5.15)

Therefore
po(n+71) =nag(n+ry —ra),
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which is nonzero if n > 0, since r; — ro > 0. Therefore the assumptions of Theorem 7.5.2 hold with
r = r1, and (7.5.14) implies that Ly; = po(r1)z™ = 0.
Now suppose 71 — r2 isn’t an integer. From (7.5.15),

po(n+r2) =nag(n —ry+r2) #0 if n=1,2-.-.

Hence, the assumptions of Theorem 7.5.2 hold with 7 = r9, and (7.5.14) implies that Lys = po(ra)z™ =
0. We leave the proof that {y;, y=} is a fundamental set of solutions as an exercise (Exercise 52). [ ]

Itisn’t always possible to obtain explicit formulas for the coefficients in Frobenius solutions. However,
we can always set up the recurrence relations and use them to compute as many coefficients as we want.
The next example illustrates this.

Example 7.5.1 Find a fundamental set of Frobenius solutions of
20%(1 4z + 22y +2(9 + 11z + 1122y + (6 + 10z + 72?)y = 0. (7.5.16)

Compute just the first six coefficients ay,. .., as in each solution.

Solution For the given equation, the polynomials defined in Theorem 7.5.2 are

po(r) = 2r(r—1)+94+6 = (2r+3)(r+2),
pi(r) = 2r(r—1)+1lr+10 = (2r+5)(r+2),
pa(r) = 2r(r—1)+1lr+7 = (2r+7)(r+1).
The zeros of the indicial polynomial pg are 71 = —3/2 and ro = —2, so 1 — 2 = 1/2. Therefore

Theorem 7.5.3 implies that

=22 an(=3/2)2" and yp =27 an(-2)z" (7.5.17)
n=0 n=0

form a fundamental set of Frobenius solutions of (7.5.16). To find the coefficients in these series, we use
the recurrence relation of Theorem 7.5.2; thus,

ap(r) = 1,
pi(r)  _ (2r45)(r+2) r+2

Cpo(r+1)  (2r+5)(r+3) r+3’

ai(r) =
_pl(n +7r—1Dap-1+p2(n+r—2)an—o
po(n+7)

(n+r+1)2n+2r+3)an—1(r)+ (n+r—1)2n+ 2r + 3)a,—2(r)
(n+r+2)2n+2r+3)

an(r) =

(n+7r4+Dan-1(r) + (n+r—Day_ao(r)

-7 n+r+2 , n22
Setting r = —3/2 in these equations yields
ap(—=3/2) = 1,
a(=3/2) = -1/3 (75.18)
an(—3/2) = — (2n —1)an—1(=3/2) + (2n — 5)an,2(—3/2), —

2n+1
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and setting » = —2 yields

CL()(—2) = 1,
al(—2) = 0,

(7.5.19)
(=2 = - (n—1Dan-1(-2) + (n — 3)an—2(—2) R

n

Calculating with (7.5.18) and (7.5.19) and substituting the results into (7.5.17) yields the fundamental set
of Frobenius solutions

1 2, 5 7 76
— 8212 29 9 3, 0 4, 6 5
wo=z ( 37T ET T Tt it T )
1, 1, 1, 1
B T R N S S
Y2 x ( +2x 33: +8x +30x +

Special Cases With Two Term Recurrence Relations

For n > 2, the recurrence relation (7.5.12) of Theorem 7.5.2 involves the three coefficients a,(r),
an—1(r), and a,_o(r). We’ll now consider some special cases where (7.5.12) reduces to a two term
recurrence relation; that is, a relation involving only a.,(r) and a,—1(r) or only a,(r) and a,—o(r).
This simplification often makes it possible to obtain explicit formulas for the coefficents of Frobenius
solutions.

We first consider equations of the form

2* (o + a1z)y’ +x(Bo + Biz)y + (0 + mz)y =0

with g # 0. For this equation, g = o = 72 = 0, so po = 0 and the recurrence relations in
Theorem 7.5.2 simplify to

ap(r) = 1,
-1
an(r) = _phrrm ) (ntr )an,l(r), n>1. (7.5.20)
po(n+r)
Example 7.5.2 Find a fundamental set of Frobenius solutions of
223+ 2)y" +5x(1 +2)y — (1 —4x)y = 0. (7.5.21)
Give explicit formulas for the coefficients in the solutions.
Solution For this equation, the polynomials defined in Theorem 7.5.2 are
po(r) = 3r(r—=1)+5 -1 = @Br-1)(r+1),
pi(r) = r(r—1)4+5r+4 = (r+2)2,
pa(r) = 0.
The zeros of the indicial polynomial py are r1 = 1/3 and ro = —1, so 1 — r2 = 4/3. Therefore

Theorem 7.5.3 implies that

o0

yp =23 Z an(1/3)2™ and yp =z ! Z an(—1)z"
n=0

n=0
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form a fundamental set of Frobenius solutions of (7.5.21). To find the coefficients in these series, we use
the recurrence relationss (7.5.20); thus,

ap(r) = 1,
~ piln+r—1)
e e I
(n+r+1)2 ) (7.5.22)
= — Ap—1\T
Bn+3r—Dn+r+1) "
n+r+1
= Taga oot b
Setting r = 1/3 in (7.5.22) yields
ao(1/3) = 1,
3 4
an(1/3) = ”9;: an_1(1/3), n>1.

By using the product notation introduced in Section 7.2 and proceeding as we did in the examples in that

section yields
(=" 5= (35 +4)

an(1/3) = o] , n>
Therefore ( )
37 +4
_ ..1/3 n
=7 Z gnnl x
is a Frobenius solution of (7.5.21).
Setting r = —1 in (7.5.22) yields
ao(—l) = 1,
(-1) - (-1), n>1
an(— = - an_1(—1), n>1,
3n—4 !
SO
—1)"n!
an(-1) =
Hj:1(3] —4)
Therefore

— Zl—[] 13]_ )xn

is a Frobenius solution of (7.5.21), and {y1, y2} is a fundamental set of solutions. ]
We now consider equations of the form

22 (oo + o)y 4+ (8o + Ber®)y + (o +22?)y =0 (7.5.23)

with g # 0. For this equation, ;1 = 1 = 73 = 0, so p1 = 0 and the recurrence relations in
Theorem 7.5.2 simplify to

CLo(T) = 15
ai(r) = 0,
an(r) = —Man,g(ﬂ, n > 2.



356 Chapter 7 Series Solutions of Linear Second Order Equations

Since a1 (r) = 0, the last equation implies that a,,(r) = 0 if n is odd, so the Frobenius solutions are of
the form

o0
ylx,r) =" Z Aom (7)™,
m=0

where
ap(r) = 1,
p2(2m+r —2) (7.5.24)
m = T e, N m— 9 Z 1 .
agm (1) po@m ) agm—2(r), m
Example 7.5.3 Find a fundamental set of Frobenius solutions of
222 — 2%)y" — 2(3 + 42?)y + (2 — 22%)y = 0. (7.5.25)
Give explicit formulas for the coefficients in the solutions.
Solution For this equation, the polynomials defined in Theorem 7.5.2 are
po(r) = 2r(r—1)-3r+2 = (r—2)(2r-1),
pi(r) = 0
pa(r) = —[r(r—1)4+4r+2 = —(r+1)(r+2).
The zeros of the indicial polynomial py are 1 = 2 and ro = 1/2, so r1 — ro = 3/2. Therefore

Theorem 7.5.3 implies that

y1 =z Z agm(1/3)2%™  and  yo = x1/? Z agm(1/2)z*"
m=0

m=0

form a fundamental set of Frobenius solutions of (7.5.25). To find the coefficients in these series, we use
the recurrence relation (7.5.24); thus,

CL()(T) - 15

- D2 (2m +r— 2)

e T (7526
2m+r)2m+r—1)

= m— 9 21
Gmtr—2amtanten2), m

Setting r = 2 in (7.5.26) yields

ao(z) = 15
(m+1)2m+1)
m(2 = m— 2; 21,
azm(2) m(4m + 3) @2m-2(2), ™
SO
e 25+ 1
m(2) = 1
agm(2) = (m + )jl;[14j+3
Therefore
= 25+ 1
— 2 1 2m
Y1 xn;)(m+) jl;[14j+3 x

is a Frobenius solution of (7.5.25).
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Setting r = 1/2 in (7.5.26) yields

ap(1/2) = 1,
(dm —1)(dm+ 1)
m(1/2) = m—2(1/2), > 1,
a’2 ( / ) 8m(4m _ 3) a’2 2( / ) m
SO
(47— 1)(45+1)
asm(1/2) = Smm' 1;[ -3 )
Therefore

(45— )45 + 1)
_ 172 J ] om
- Z Smm' Hl 453 *

is a Frobenius solution of (7.5.25) and {y1, y2} is a fundamental set of solutions.

REMARK: Thus far, we considered only the case where the indicial equation has real roots that don’t
differ by an integer, which allows us to apply Theorem 7.5.3. However, for equations of the form (7.5.23),
the sequence {az,,, (1)} in (7.5.24) is defined for r = ro if 71 — 79 isn’t an even integer. It can be shown
(Exercise 56) that in this case

o0 o0
Yy =a" Z azm(r1)z*™  and  yp = 2™ Z g (7)™
m=0

m=0

form a fundamental set Frobenius solutions of (7.5.23).

USING TECHNOLOGY

As we said at the end of Section 7.2, if you’re interested in actually using series to compute numerical
approximations to solutions of a differential equation, then whether or not there’s a simple closed form
for the coefficents is essentially irrelevant; recursive computation is usually more efficient. Since it’s also
laborious, we encourage you to write short programs to implement recurrence relations on a calculator or
computer, even in exercises where this is not specifically required.

In practical use of the method of Frobenius when zy = 0 is a regular singular point, we’re interested

in how well the functions
N

yN(xaT’L') =z Za’n(ri)xna 1= 1525
n=0
approximate solutions to a given equation when r; is a zero of the indicial polynomial. In dealing with
the corresponding problem for the case where o = 0 is an ordinary point, we used numerical integration
to solve the differential equation subject to initial conditions y(0) = ag, %'(0) = a1, and compared the
result with values of the Taylor polynomial

N
x) = Z anz™.
n=0

We can’t do that here, since in general we can’t prescribe arbitrary initial values for solutions of a dif-
ferential equation at a singular point. Therefore, motivated by Theorem 7.5.2 (specifically, (7.5.14)), we
suggest the following procedure.
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Verification Procedure
Let L and Yy, (x; ;) be defined by

Ly = 2*(ap + a1z + a22®)y” + (6o + Bz + Bo2®)y + (70 + 117 + 1227y

and
N
yn (i) = 2" an(ri)a",
n=0

where the coefficients {a,,(r;)}N_, are computed as in (7.5.12), Theorem 7.5.2. Compute the error
En(z;ri) = a7 " Lyn (z;1;) /o (7.5.27)

Sor various values of N and various values of x in the interval (0, p), with p as defined in Theorem 7.5.2.

The multiplier 2~ "¢ /c on the right of (7.5.27) eliminates the effects of small or large values of z"
near r = 0, and of multiplication by an arbitrary constant. In some exercises you will be asked to
estimate the maximum value of En (x; ;) on an interval (0, §] by computing En (z,; ;) at the M points
Tm =md/M, m=1,2,..., M, and finding the maximum of the absolute values:

on(0) = max{|En(zm;7i)|, m=1,2,...,M}. (7.5.28)

(For simplicity, this notation ignores the dependence of the right side of the equation on ¢ and M .)

To implement this procedure, you’ll have to write a computer program to calculate {a,,(r;)} from the
applicable recurrence relation, and to evaluate En (z;7;).

The next exercise set contains five exercises specifically identified by that ask you to implement the
verification procedure. These particular exercises were chosen arbitrarily you can just as well formulate
such laboratory problems for any of the equations in any of the Exercises 1-10, 14-25, and 28-51

7.5 Exercises

This set contains exercises specifically identified by that ask you to implement the verification pro-
cedure. These particular exercises were chosen arbitrarily you can just as well formulate such laboratory
problems for any of the equations in Exercises 1-10, 14-25, and 28-51.

In Exercises 1-10 find a fundamental set of Frobenius solutions. Compute ag, a; ..., an for N at least 7
in each solution.

2021+ x4+ 22y’ + 23+ 3z +52%)y —y =0

.3352 "4 22(1+a — 222)y + (22 — 822)y =0

33 23+ 3x+ 22y +x(5+8r+ T22)y’ — (1 — 22 — 922)y =0
4r%y" + 2(7+ 22 + 422)y’ — (1 — 4o — T2%)y =0

1222(1 + )y 4 2(11 + 352 + 322)y/ — (1 — 10z — 522)y = 0
22(5 4+ x + 1022)y” + x(4 + 3z + 4822)y’ + (x + 3622)y = 0
.8332 " —2x(3—4dr — 2y + B3+ 6x+ 2y =0

182%(1 4 x)y” 4 3x(5 + 11z + %)y’ — (1 — 22 — 522)y = 0
3:(3—|—3:—|—3:2)y”—|—(4+x—x2)y’—|—xy:0

T S



10.
11.

12.

13.
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1022(1 + 2 + 222)y” + (13 + 13z + 6622)y — (1 + 4z + 1022)y = 0
The Frobenius solutions of

20%(1 4+ 2+ 22)y” + 2(9 + 1z + 112?)y' + (6 + 10z + 72y = 0

obtained in Example 7.5.1 are defined on (0, p), where p is defined in Theorem 7.5.2. Find p.
Then do the following experiments for each Frobenius solution, with A/ = 20 and § = .5p, .7p,
and .9p in the verification procedure described at the end of this section.

(a) Compute o () (see Eqn. (7.5.28)) for N = 5, 10, 15,..., 50.

(b) Find N such that o (8) < 1075,

(¢) Find N such that o (6) < 10719,

By Theorem 7.5.2 the Frobenius solutions of the equation in Exercise 4 are defined on (0, o).

Do experiments (a), (b), and (¢) of Exercise 11 for each Frobenius solution, with M = 20 and
0 =1, 2, and 3 in the verification procedure described at the end of this section.

The Frobenius solutions of the equation in Exercise 6 are defined on (0, p), where p is defined
in Theorem 7.5.2. Find p and do experiments (a), (b), and (¢) of Exercise 11 for each Frobenius
solution, with M = 20 and § = .3p, .4p, and .5p, in the verification procedure described at the
end of this section.

In Exercises 14-25 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-
cients in each solution.

14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24,
25.

26.

27.

222 + 23+ 22)y — (1 —2)y =0
2B+ 2)y +x(5+4z)y — (1 —22)y=0
222y +x(5+ )y — (2 —32)y =0

3%y +ax(l+x)y —y=0

222y —xy + (1 —22)y =0

922y" 4+ 9zy’ — (1 + 3z)y =0

322y +x(1+2)y — (1+32)y=0
20234+ 2)y" + (1 +5z)y + (1+2)y=0
?@A+2)y —z(1-32)y +y=0

222" +5xy + (1 +2)y =0

223+ 4x)y” + (5 +18x)y’ — (1 — 122)y =0
622y +x(10 —x)y — (2+2)y =0

By Theorem 7.5.2 the Frobenius solutions of the equation in Exercise 17 are defined on (0, co).
Do experiments (a), (b), and (¢) of Exercise 11 for each Frobenius solution, with M = 20 and
0 = 3,6, 9, and 12 in the verification procedure described at the end of this section.

The Frobenius solutions of the equation in Exercise 22 are defined on (0, p), where p is defined
in Theorem 7.5.2. Find p and do experiments (a), (b), and (¢) of Exercise 11 for each Frobenius
solution, with M = 20 and 0 = .25p, .5p, and .75p in the verification procedure described at the
end of this section.
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In Exercises 28-32 find a fundamental set of Frobenius solutions. Compute coefficients ay, ...

at least 7 in each solution.

28.
29.
30.
31.
32.

2?28+ z)y" +z(2+3z)y + (1+2)y =0
22(3 + 4z)y’ + x(11 + 4z)y' — (3 +4x)y =0
202(2 + 3z)y’ + 2(4+ 11z)y — (1 —x)y =0
2?22+ 2)y" +5z(1 — )y — (2 —8x)y

22(6 4+ 2)y" + z(11 + 42)y’ + (1 +22)y = 0

, an for N

In Exercises 33—46 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-
cients in each solution.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

In Exercises 47-51 find a fundamental set of Frobenius solutions. Compute the coefficients ay, ..

8z2y +x(2+ %)y +y=0
8x2(1 — 22)y” +2x(1 — 1322)y’ + (1 — 92%)y =0
2?(1+2?)y" —22(2 - 2?)y +4y =0

(3+x2)y”+( %)y’ — 8xy =0
2?(1 — 22y’ + 2(7 - 1922)y — (1 + 142%)y =0
2—-22) +x +(1-52%)y=0

%) (7 —(

222 — 22y + (1 - 1)y +

2?22+ 22y — (12— 72y + (T+ 323y =0

2(2+:c Yy + x4+ 722y — (1 —32%)y =0
22(1 + 222)y" + 5x(1 + 622)y — (2 — 402%)y =0

3z%(1 4+ 2?)y” + 5z (14 2?)y’ — (1 + 52%)y =0

x(1+2%)y" + 4+ 72y +8zxy =0

2?2+ %)y + 23 +2?)y —y =0

222(1 4+ 22)y" + (3 + 82%)y — (3 —42?)y =0

922y 4+ 3x(3 + 22)y’ — (1 — 5z?)y =0

for M at least 7 in each solution.

47.

48.
49.
50.

51.
52.

. 622y + x(1 +622)y + (1 +92%)y =0
22(8 + 22)y" + T2 (2 + )y — (2 — 922)y = 0
922(1 + 22)y" + 3z(3 + 132%)y’ — (1 — 252%)y = 0
4z?(1+ 2?)y" + 421+ 62%)y — (1 — 252%)y = 0
822(1 + 2a2)y" + 2x(5 + 3422)y — (1 — 302%)y = 0
Suppose 1 > 2, ag = by = 1, and the Frobenius series
yp =" i apz” and yy = 2" i bpx™
n=0 n=0

both converge on an interval (0, p).

-, Q2M



53.

54.

55.
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(a) Show that y; and y- are linearly independent on (0, p). HINT: Show that if ¢1 and co are
constants such that c1y1 + cay2 = 0 on (0, p), then

o0 o0
cpztT Z ant™ + c2 Z bz =0, 0<z<op.
n=0 n=0

Then let x — 0+ to conclude that co = 0.
(b) Use the result of (b) to complete the proof of Theorem 7.5.3.

The equation

22y +ay + (22 -1y =0 (7.5.1)

is Bessel’s equation of order v. (Here v is a parameter, and this use of “order” should not be con-

fused with its usual use as in “the order of the equation.”) The solutions of (7.5.1) are Bessel functions of order

V.

(a) Assuming that v isn’t an integer, find a fundamental set of Frobenius solutions of (7.5.1).

(b) If v = 1/2, the solutions of (7.5.1) reduce to familiar elementary functions. Identify these
functions.

(a) Verify that

2

d ~1
“ Ty r.n d e
(lz|"2™) = (n+ r)|z|"x and  ——

dxr
if z # 0.
(b) Let

(I2I"2") = (n+7)(n+r = 12|22

Ly = 2*(ag + canx + ax®)y” + x(Bo + Brx + Boz®)y + (90 + mx + 22?)y = 0.

Show that if 2" Y~ j a,z™ is a solution of Ly = 0 on (0, p) then |z|" Y 0" jan,z™ is a
solution on (—p, 0) and (0, p).

(a) Deduce from Eqn. (7.5.20) that

(b) Conclude that if po(r) = ag(r — r1)(r — r2) where r1 — 79 is not an integer, then

o0 o0
yp =2z Z an(r1)z”  and oy, =" Z an(r2)x"
n=0

n=0

form a fundamental set of Frobenius solutions of
(a0 + a1z)y” + z(Bo + frx)y + (o + mz)y = 0.
(c) Show that if p, satisfies the hypotheses of (b) then
o0 _1 n n
I E

n=0 n‘ H?:l(] + = TQ)

and

o0 _171 n
I E

mn .
! [ (G +re—r)
form a fundamental set of Frobenius solutions of

aoz®y" + Boxy' + (o +mz)y = 0.


http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
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56. Let
Ly = 2*(a0 + aoz®)y” + z(Bo + B2y + (70 +722%)y = 0
and define

po(r) = aor(r—1) 4+ Bor+790 and  pa(r) = aor(r — 1) + Baor + 2.
(a) Use Theorem 7.5.2 to show that if

aolr) =1L, (75.1)
po(2m + r)agm(r) + p2(2m +r — 2)agm—2(r) = 0, m>1, -
then the Frobenius series y(z,7) = " Y~ asnz®™ satisfies Ly(z, r) = po(r)z".

(b) Deduce from (7.5.1) that if pg(2m + ) is nonzero for every positive integer m then

ﬁ 2(25 + 1 —2)
po(25+7)

a2m

(c) Conclude that if po(r) = ag(r — r1)(r — r2) where 71 — 5 is not an even integer, then

oo o0
yp =2zt Z aom(r1)z*™  and  yp = a™ Z Ao (12) 2™

m=0
form a fundamental set of Frobenius solutions of Ly = 0.
(d) Show that if pg satisfies the hypotheses of (c) then

— (‘Um (72 )m 2
=z = _ = ™
Y1 mZ:O 2mm| Hj:1(2] —+ry — TQ) (%)

and

r - (_1)m (72 )m 2m
=x'? - - — T
Y2 mZ:O 9man | Hj:1(2] —+ 1ro — Tl) (a7}

form a fundamental set of Frobenius solutions of

aoz®y" + Boxy’ + (Y0 +122%)y = 0.
57. Let
Ly = *qo(2)y" + zq1(2)y + g2(x)y,

where

o0 o0 o0

2) =Y oyt qi(z) =Y Bl qaz) =) v,

=0 7=0 7=0

and define

pi(r) =a,r(r—1)+Bjr+;, j=0,1,....
Lety =" ", a,z". Show that

o0
Ly =2x" Z bpx™,
n=0

where
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58. (a) Let L be as in Exercise 57. Show that if

y(@,r) = 2"y an(r)a"
n=0

where

ap(r) = 1,

) L S it fan ), m>1

an(r) = ———— > pin+r—7an_;(r), n>1,

po(”‘*‘?")j:lj !

then

T

Ly(z,r) = po(r)a’.
(b) Conclude that if
po(r) = ap(r —r1)(r —ra)
where r1 — ro isn’t an integer then y; = y(x,r1) and y2 = y(x, r2) are solutions of Ly = 0.

59. Let
Ly = z*(ao + aqz?)y” + z(Bo + By + (0 + Y42y

where ¢ is a positive integer, and define
po(r) =aor(r — 1)+ for+70 and  pg(r) = agr(r —1) + Byr + 4.
(a) Show that if

o0
ylz,r) =2" Z Qgm (r)zd™
m=0

where
ap(r) = 1,
_palglm —1)+r)
po(gm + 1)

(7.5.1)

Gg(m—1) (T), m > 1,

then

T

Ly(z,r) = po(r)a’.
(b) Deduce from (7.5.1) that

aqm(r) _ (_1)m H Pq (Q(] — 1) + T) )

(c) Conclude that if po(r) = ag(r — r1)(r — r2) where 71 — 72 is not an integer multiple of g,
then

oo oo
D STRNIR IRV < P
m—0 m=0

form a fundamental set of Frobenius solutions of Ly = 0.



364 Chapter 7 Series Solutions of Linear Second Order Equations

(d) Show that if pg satisfies the hypotheses of (c) then

yo=a" i CL 20\ yam
' gmm! TTL (g7 + 71 —7r2) \evo

m=0

and

y2 =" i Sl Jq qum
gmm! T2 (g7 +7r2 —71) \ o

m=0

form a fundamental set of Frobenius solutions of
oy + Poxy’ + (v0 + 142%)y = 0.
60. (a) Suppose ag, a1, and ay are real numbers with ag # 0, and {a,, }52, is defined by
apal + ajag =0

and
oty + 1Gp_1 + Q0,2 =0, n>2.
Show that
o0
(o + a1z + apz?) Z ant™ = opag,
n=0

and infer that

> Qo
040
E apx"” = 5
oo + a1 x + aox
n=0
(b) With «y, a1, and « as in (a), consider the equation

22 (ap + c1x + aox?)y” + (8o + frx + Boz®)yY + (Yo + nz + ety =0, (7.5.1)

and define
pi(r) =a,r(r—1)+Bjr+;, j=0,1,2.
Suppose
pl(r—l)iﬂ pg(r—2)7%
po(r) Cag’ po(r) Cag’
and

po(r) = ap(r —r1)(r —ra),
where 1 > r5. Show that

"t "2

Y1 = and Yo =

oo + o x + aox? oo + oz + aox?

form a fundamental set of Frobenius solutions of (7.5.1) on any interval (0, p) on which
ao 4+ a1z + asz? has no zeros.

In Exercises 61-68 use the method suggested by Exercise 60 to find the general solution on some interval

(0, p).

61. 222(1+2)y’ —x(1-3z)y +y =0
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62. 622(1+222)y" + x(1 + 5022)y’ + (1 + 3022)y =0

63. 2822%(1 —3z)y” — Tz(5+92)y +7(2+ 9x)y =0

64. 9225+ x)y" +9x(5 +3x)y’ — (5 — 8x)y =0

65. 8x2(2 — %)y + 22(10 — 2122)y — (24 352%)y =0

66. 47?(1+ 3z + 22)y”" —4x(1 -3z —32H)y + 31—z +2%)y =0
67. 322(1+ )%y —2(1— 10z — 1122)y + (1 + 52?)y =0

68. 47?(3+ 2z + 22)y" — x(3 — 14z — 152%)y' + (3 + T2?)y =0

o~ o~ o~ o~

7.6 THE METHOD OF FROBENIUS II

In this section we discuss a method for finding two linearly independent Frobenius solutions of a homo-
geneous linear second order equation near a regular singular point in the case where the indicial equation
has a repeated real root. As in the preceding section, we consider equations that can be written as

2% (ap + 1w + aox?)y” + 2(Bo + Bz + Box®)y + (Yo + Nx + 1ez?)y =0 (7.6.1)

where g # 0. We assume that the indicial equation po(r) = 0 has a repeated real root 1. In this case
Theorem 7.5.3 implies that (7.6.1) has one solution of the form

o0
yp =a" g anx™,
n=0

but does not provide a second solution yo such that {y1,y2} is a fundamental set of solutions. The
following extension of Theorem 7.5.2 provides a way to find a second solution.

Theorem 7.6.1 Let
Ly = 2*(o + a1z + az®)y" + 2(Bo + Brz + Boz?)y + (0 + 112 + 1227)y, (7.6.2)
where o # 0 and define

po(r) = aor(r—1)+ Bor + 0,
pi(r) = oqr(r—1)+pBir+m,
pa(r) = aor(r—1)+ Bor + 2.

Suppose r is a real number such that po(n + 1) is nonzero for all positive integers n, and define

ao(r) = 1, )
pi(r
ar(r) = —m,
an(r) = pn+r—1a, 1lgzzn+fign +r—2)a, 2(1")’ n>2.
Then the Frobenius series -
y(x,r) =2y an(r)a" (7.6.3)

n=0
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satisfies
Ly(x,7) = po(r)z”. (7.6.4)

Moreover,

8y _ T — / n

E(I’ r)=ylz,r)Inz +x ; a, (r)z", (7.6.5)
and 5

L (8—y(x, T)) =po(r)a” + = po(r) Ina. (1.6.6)

-

Proof Theorem 7.5.2 implies (7.6.4). Differentiating formally with respect to r in (7.6.3) yields

o0
= ylx,r)lnz+z" Z an (r)z™,
n=1

which proves (7.6.5).
To prove that Jy(x, r)/Or satisfies (7.6.6), we view y in (7.6.2) as a function y = y(x,r) of two
variables, where the prime indicates partial differentiation with respect to z; thus,

Jy 0%y
o _ Y9 "no__ 1 _
Yy =y (.I,T) - 8$(‘rar) and y =y (.I,T) - a$2(xar)'

With this notation we can use (7.6.2) to rewrite (7.6.4) as

Pl Y 1) + 2 (@) 1) + aa(whyC ) = polr)” (767
where
q(z) = ag+a1r+ ar?,
q(x) = Bo+ frx+ faa®,

q2(x) Yo + 11T + Y227

Differentiating both sides of (7.6.7) with respect to r yields

Py >’y dy
2 _ JE—
€ qO (‘I) a,rax2 (‘I’ T) + $g1($) a,rax (.I, T) + q2($) aT (

By changing the order of differentiation in the first two terms on the left we can rewrite this as

z,7) = po(r)z” + po(r)z” Inz.

Oy 02
z2qo (z) 20r (z,7) + xzq1(x)

0
argr (z,7)+ Q2(33)8_::(33a r) = pé(T)ﬂfr +po(r)z" Inz,




Section 7.6 The Method of Frobenius II 367
or
O [y d [0y dy
2 - _< _ _J _J o T T
x“qo(x) 92 (81" (x,r)) + zq1(x) B (83: (x,r)) + g2() o (x,7) = py(r)x” + po(r)z" Inz,

which is equivalent to (7.6.6).

Theorem 7.6.2 Let L be as in Theorem 7.6.1 and suppose the indicial equation po(r) = 0 has a repeated
real root r1. Then

(@) = yla,r) =2 Y- an(r)a”
n=0
and
8y 'S — / n
ya(z) = E(x, r1) = y1(x) Inz + 2™ a, (ri)x (7.6.8)

n=1

form a fundamental set of solutions of Ly = 0.

Proof Since r is a repeated root of pg(r) = 0, the indicial polynomial can be factored as

po(T) = 040(7" - T1)2,

SO
po(n+m1) = aon?,

which is nonzero if n > 0. Therefore the assumptions of Theorem 7.6.1 hold with r = r;, and (7.6.4)
implies that Ly; = po(r1)z™ = 0. Since

it follows that p((r1) = 0, so (7.6.6) implies that
Lys = pi(r1)z™ + 2" po(r1) Inz = 0.

This proves that y; and y- are both solutions of Ly = 0. We leave the proof that {y;, y- } is a fundamental
set as an exercise (Exercise 53).

Example 7.6.1 Find a fundamental set of solutions of
2?2(1—2x +2%)y — 23+ 2)y + (4 + )y =0. (7.6.9)

Compute just the terms involving ™"+, where 0 < n < 4 and 71 is the root of the indicial equation.

Solution For the given equation, the polynomials defined in Theorem 7.6.1 are

po(r) = r(r—1)-=3r+4 = (r—2)%
pi(r) = =2rr—1)—r+1 = —(r—1)(2r+1),
pa2(r) = r(r—1).

Since r; = 2 is a repeated root of the indicial polynomial py, Theorem 7.6.2 implies that

Y1 = z2 Z an(2)z" and Yo =y lnz + 2 Z a;l (2)z™ (7.6.10)
n=0

n=1
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form a fundamental set of Frobenius solutions of (7.6.9). To find the coefficients in these series, we use
the recurrence formulas from Theorem 7.6.1:

a’O(T) - 15
pi(r)  (r=1)@2r+1) 2r+41
Cl,l(T) - _po(T-l-l)__ (T—1)2 - r—1 5
an(r) = _pl(n—i-r— Dan—1(r) + p2(n+r — 2)a,—o(r)
" po(n+7) (7.6.11)
(m+r—=2)[2n+2r — Dap_1(r) — (n+r — 3)an_2(r)]
B (n+r—2)2
2n+2r —1 +r—3
= %anl(ﬂ — HQHQ(T% n>2.
Differentiating yields
, 3
ay(r) = —m,
2n+2r—-1, +r—3,
ahr) = Sl ()~ e () (7.612)

3 1
rr ) T gtk n22

Setting r = 2 in (7.6.11) and (7.6.12) yields

CLo(Z) = 15
a1(2) = 5,
(7.6.13)
2 3 -1
@ = EF ) Uy ) s
and
a/1(2) = _35
(7.6.14)
2 3 -1 3 1
@) = TR0 ) - Tl o(2) — San(2) - —pena(2), n>2

Computing recursively with (7.6.13) and (7.6.14) yields

143 355
CLO(2) = 1, a1(2) = 5, a2(2) = 17, CL3(2) = ?, a4(2) — ?,

e 29 859 4693
ay(2) = =3, a5(2) = R az(2) = EETR ay(2) = T35

Substituting these coefficients into (7.6.10) yields

14
Yy = x? (1+5x+17x2+?3x3+?x4+~~>

and

=y lnz— 23 3+§x+@x2+@x3+ ]
2= 2 18 36 '
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Since the recurrence formula (7.6.11) involves three terms, it’s not possible to obtain a simple explicit
formula for the coefficients in the Frobenius solutions of (7.6.9). However, as we saw in the preceding
sections, the recurrrence formula for {a, ()} involves only two terms if either «; = 31 = 71 = 0 or
ag = B2 = 72 = 01in (7.6.1). In this case, it’s often possible to find explicit formulas for the coefficients.
The next two examples illustrate this.

Example 7.6.2 Find a fundamental set of Frobenius solutions of
22%(2 4+ )y + 5%y + (1 +x)y = 0. (7.6.15)

Give explicit formulas for the coefficients in the solutions.

Solution For the given equation, the polynomials defined in Theorem 7.6.1 are

po(r) = dr(r—1)+1 = (2r —1)2,
pi(r) = 2r(r—=1)+54+1 = (r+1)2r+1),
pa(r) = 0.

Since r; = 1/2is a repeated zero of the indicial polynomial pg, Theorem 7.6.2 implies that

v =22 " an(1/2)a" (7.6.16)
n=0
and .
yo =y Inz+2'2> al,(1/2)z" (7.6.17)
n=1

form a fundamental set of Frobenius solutions of (7.6.15). Since po = 0, the recurrence formulas in
Theorem 7.6.1 reduce to

ap(r) = 1,
-1
an(r) = —Manfl(ﬂ,
po(n+7)
B (n+7r)2n+2r—-1)
- Gntar—1p i)
n+r
= —manfl(r), n Z O

We leave it to you to show that

n > 0. (7.6.18)

Setting r = 1/2 yields

|
—~
~—
3
<
+
—_
~
[\
|
—~
~—
3
==
[\
<
+
—_

an(1/2)
(7.6.19)
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Substituting this into (7.6.16) yields
L2+
y = at/? E 4"n' "

To obtain ys in (7.6.17), we must compute a,(1/2) forn = 1, 2,.... We’ll do this by logarithmic
differentiation. From (7.6.18),

it +T|
n = > 1.
jan(r)] = H |2] + 2r — "=
Therefore .
In |a, (1) Zln|j+r|—1n|2j+2r—1|).
j=1

Differentiating with respect to r yields

Zig:; _.zn:(jj-r_Zj—l-;r—l)'

Jj=1

. 2
) = an(r Z(]—‘,—T 2j+2r—1>'

Jj=1

Therefore

Setting » = 1/2 here and recalling (7.6.19) yields

()" (27+ 1) z": 1 "1

a,(1/2) = : -> . (7.6.20)
4nn) —J+ 1/2 =
Since
1 1 j—-j—-1/2 1
i+1/2 g gE+12) i+’
(7.6.20) can be rewritten as
-1 12+ &
g = - )
4"n' il 2] +1)
Therefore, from (7.6.17),
S (DM @+ D) [($
_ 1 _1/2 n
Yo =y1lnzr—x ; 4"n' ; 2j+1 x
Example 7.6.3 Find a fundamental set of Frobenius solutions of
222 — 2y — 22(1 + 22%)y + (2 — 22%)y = 0. (7.6.21)

Give explicit formulas for the coefficients in the solutions.
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Solution For (7.6.21), the polynomials defined in Theorem 7.6.1 are

po(r) = 2r(r—1)—-2r+2 = 2(r —1)2,
pi(r) = 0,
pa(r) = —r(r—1)—4r—2 = —(r+1)(r+2).

As in Section 7.5, since p; = 0, the recurrence formulas of Theorem 7.6.1 imply that a,,(r) = 0if n is
odd, and

ap(r) = 1, ( )
- pa(2m+1r—2
azm(r) = N ——— azm—2(r)
2m+r—1)2m+r) r)
22m +r—1)2 2l
2m +r
o T G2m—2(T), > L
Som 12, m

Since r; = 1 is a repeated root of the indicial polynomial py, Theorem 7.6.2 implies that

y=x Y agm(1)z”" (7.6.22)
and .
yo=yilnz+z ) dh,(1)z"" (7.6.23)
m=1

form a fundamental set of Frobenius solutions of (7.6.21). We leave it to you to show that

m

27 +1
m 7.6.24
a2m(r) 2mH2]+r—1 (7.6.24)
Setting r = 1 yields
2] + 1 1(2j +1)
aam (1 = om H 4mm! , (7.6.25)
Jj=1
and substituting this into (7.6.22) yields
25+1)
=12 Z 4mm|
To obtain yo in (7.6.23), we must compute ab,,(1) for m = 1, 2, .... Again we use logarithmic
differentiation. From (7.6.24),
25+
[azm(r) 2mH|2]+r—1|

Taking logarithms yields

In |ag (r)] = —mIn2+ Y (In]2j + | — In[2j +r —1]).
j=1
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Differentiating with respect to r yields

ab,, (1) _ i 1 1
aom(r) 4 2j+r 2j4+r—1)°

Jj=1

Therefore

- 1 1
G (r) = a2m(r) D (2j+r N 2j+r_1>'

Jj=1
Setting = 1 and recalling (7.6.25) yields
T2+ & 1 1
ah, (1) = i ) > ( ) (7.6.26)

4mm]! = 27+1 25

Since

(7.6.26) can be rewritten as

) IS+ ) & 1
@2m(D) = = =5 Jomi Zj(2j+1)'

j=1

Substituting this into (7.6.23) yields

e SIS 2+ (&1
=gy lnz — = E o= E — |2 =
PERRETY LT = j(2j+1) !

If the solution y; = y(z,r1) of Ly = 0 reduces to a finite sum, then there’s a difficulty in using
logarithmic differentiation to obtain the coefficients {a/, (1)} in the second solution. The next example
illustrates this difficulty and shows how to overcome it.

Example 7.6.4 Find a fundamental set of Frobenius solutions of
22y — (5 — )y + (9 —4dx)y = 0. (7.6.27)

Give explicit formulas for the coefficients in the solutions.

Solution For (7.6.27) the polynomials defined in Theorem 7.6.1 are

po(r) = r(r—=1)—=5r+9 = (r—3)2
pl(r) = r—= 45
pa(r) = 0.

Since r; = 3 is a repeated zero of the indicial polynomial py, Theorem 7.6.2 implies that

y=2") " an(3)z" (7.6.28)
n=0
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and
yo=yilnz+2°Y a),(3)z" (7.6.29)
n=1
are linearly independent Frobenius solutions of (7.6.27). To find the coefficients in (7.6.28) we use the
recurrence formulas

ap(r) = 1,
B piln+r—1)
“ = e )
n+r—>5
= —man,l(r), n>1.
We leave it to you to show that
L j4r—5
an(r) = ()" || m—=- (7.6.30)
jl;ll (j+r—23)2

Setting r = 3 here yields

so a1(3) = 1 and a,(3) = 0if n > 2. Substituting these coefficients into (7.6.28) yields
y =231+ ).

To obtain y2 in (7.6.29) we must compute a,, (3) forn = 1, 2, .... Let’s first try logarithmic differenti-
ation. From (7.6.30),

j=1 Jr =3
o) .
In|ay, (r Zln]+r—5|—2ln|]+r—3|)
j=1
Differentiating with respect to r yields
a,(r) i 1 2
an(r) S \j+r-5 j+r-3)°
Therefore
- 2
Z ( : ) . (7.6.31)
= jt+r— ] +r—3

However, we can’t simply set » = 3 here if n > 2, since the bracketed expression in the sum correspond-
ing to j = 2 contains the term 1/(r — 3). In fact, since a,,(3) = 0 for n > 2, the formula (7.6.31) for
a’, (r) is actually an indeterminate form at r = 3.

We overcome this difficulty as follows. From (7.6.30) withn = 1,

r—4

CLl(T) = —m
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Therefore

SO
a,(3) = 3. (7.6.32)

From (7.6.30) with n > 2,
H?:?)(j +r— 5)

an(r) = (=1)"(r —4)(r - 3) H?:l(] Tr—3)2 = (r—=3)cn(r),
where H G 5)
_ j=3 71—
en(r) = (=1)"(r —4)1_[ Grr—3 n> 2.
Therefore

ap(r) = cn(r) + (r =3)c,(r), n=2,
which implies that a, (3) = ¢,,(3) if n > 3. We leave it to you to verify that

(_1)n+1 <9
- n>2
n(n — 1)n!’ -

ap(3) = cn(3) =

Substituting this and (7.6.32) into (7.6.29) yields

_ .3 4 300 (_1)71 n
yp=a"(1+2z)lnx — 32" —z gmx

7.6 Exercises

In Exercises 1-11 find a fundamental set of Frobenius solutions. Compute the terms involving 2™+,
where 0 < n < N (/V at least 7) and 7 is the root of the indicial equation. Optionally, write a computer
program to implement the applicable recurrence formulas and take N > 7.

2?2y —x(l—-2)y +(1—2%)y =0

221+ 2+ 22%)y + 2(3 + 62 + 722)y + (1 + 62 — 322)y =0
2?2(14 22+ 22)y" + (1 + 3z + 42?)y’ —z(1 —22)y =0
4r?(1+ o+ 22)y" + 1222(1 + 2)y’ + (1 + 32 + 322)y = 0
2(1+x+22)y" —2(1—4dr —22%)y +y=0

. [C] 922y + 32(5 4 3z — 202y + (1 + 120 — 142%)y = 0

2?2y +x(l+z+23)y +2(2—2)y =0

2?(1 4 2z)y" + x(5 + 14z + 322)y’ + (4 + 18z + 1222)y = 0
C|42%y 4+ 2x(4+ 2+ 22y + (1 4+ 5z + 323y =0

162%y" + 42(6 4+ 2 + 222)y + (1 + 5z + 1822)y = 0

[C] 922(1 + 2)y” + 32(5 + 11z — 22)y + (1 + 162 — Tz2)y = 0

I R U I P SR

_— e
= e
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In Exercises 12-22 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-
cients.

12. 42%y” + (1 +4z2)y =0
13, 362%(1 — 22)y” + 242(1 — 92)y’ + (1 — 70x)y =0
4. 22(1+2)y" —2B—2)y +4y=0
15. 22(1 —22)y" — 2(5 —4x)y + (9 — 42)y =0
16. 252%y" +z(15+2)y + (1 +x)y =0
17. 22224 z)y" + 2% +(1—2)y=0
18. 2?(9+4z)y" + 32y’ + (1+2)y=0
19. 2%y —2(3-22)y +(4+32)y=0
20. 2%(1—4x)y” +32(1 —62)y’ + (1 —122)y =0
21, 2?(1+22)y" +2(3+52)y + (1 —22)y =0
22, 22%(1+a)y" —z(6—2)y + (8 —x)y =0
In Exercises 23-27 find a fundamental set of Frobenius solutions. Compute the terms involving x™ 7",

where 0 < n < N (N atleast 7) and 71 is the root of the indicial equation. Optionally, write a computer
program to implement the applicable recurrence formulas and take N > 7.

23. 22(1+ 22)y" + 2(5+ 92)y + (4 + 32)y =
24. x2(1 —2z)y’ —x(5+4z)y + (9 +4x)y =
25. 22(1+4z)y’ —z(1 —4z)y + (1 + z)y =
26. 2?21+ 2)y +2(1+22)y +2y=0

27. 2?1-2)y +z2(T+2)y +9—2)y=0

In Exercises 28-38 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-
cients.

28. 2%y —x(1 -2y +(1+2%)y=0

29. 2?2(1+2%)y —3z(1—22)y +4y=0

30.  4a?y’ + 2%y + (1+322)y =0

31. 221+ 22y —2(1 —22H)y +y =0

32, 2222+ 2?)y" + 7% + (14 322y =0

33. 221+ 22y —2(1 —42H)y + (1 +22%)y =0
34, 4224+ 22y + 328+ 322y + (1 — 922y =0
35. 3223 +a2?)y’ + (3 + 1122)y + (1 + 5a?)y =0
36. 4z%(1+42?)y’ + 3223y +y =0

37, 92%y" —3x(7 — 222y + (25+ 222)y = 0

38, 2(1+4222)y" +2(3+ 722y + (1 —322)y =0
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In Exercises 39-43 find a fundamental set of Frobenius solutions. Compute the terms involving x?>™+71,

where 0 < m < M (M at least 3) and 1 is the root of the indicial equation. Optionally, write a computer
program to implement the applicable recurrence formulas and take M > 3.

39. 22(1+ 2%)y" + 2(3 + 82?%)y' + (1 + 122?)y

40. 22y —x(1—2?)y + (1 +2%)y=0

41. 22(1 = 222)y" + 2(5 — 922)y + (4 — 322)y = 0
42. 222+ 22)y’ +a(14 —22)y +2(9+ 22y =0
43. 22(1+ 22y + 23+ 722)y + (1 +82%)y =0

In Exercises 44-52 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-
cients.

4. 2?(1—22)y" +3zy + (1 +42)y=0

45. z(l+az)y" +(1—-2)y +y=0

46. 2%(1—2)y +z(3—-22)y + (1 +22)y=0

47. 42?(1+2)y” —42%y + (1 —5z)y =0

48. 2%(1—2)y’ —x(3—=52)y + (4 —5z)y=0

49. 2%(1+ 22y’ —2(1+92%)y + (1 +252%)y =0

50. 922y +3x(1 — 2y + (1 + 723y =0

5. z(1+2H)y" +(1 -2y —8xy=0

52, 42y’ +2x(4— 2y + (1 + 723y =0

53. Under the assumptions of Theorem 7.6.2, suppose the power series

an(r1)z"” and Z al (ry)z™
n=0 n=1
converge on (—p, p).
(a) Show that

fe'e) o0
y = Z an(r1)z” and Yy =y lnz + 2™ Z ay, (r1)z"
n=0

n=1

are linearly independent on (0, p). HINT: Show that if ¢ and co are constants such that
c1y1 + cay2 = 0 0n (0, p), then

(c1 + c2lnx) Z an(r1)z” + co Z a(r))z™ =0, 0<z<p.
n=0 n=1
Then let x — 0+ to conclude that co = 0.
(b) Use the result of (a) to complete the proof of Theorem 7.6.2.

54. Let
Ly = 2*(ag + onz)y” + z(Bo + Br1z)y + (o + nz)y
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and define

po(r) =aor(r—1) 4+ Bor+70 and pi(r) =aqr(r— 1)+ Gir + .

Theorem 7.6.1 and Exercise 7.5.55(a) imply that if

ylx,r) =" Z an (r)zx
n=0

where

a ﬁ ]—i-r—l,

j=1 Po (J+r)

then

Ly(z,r) = po(r)z”
Now suppose po(r) = ag(r — r1)? and p1(k + 1) # 0 if k is a nonnegative integer.
(a) Show that Ly = 0 has the solution

o0
Yy =a" Z an(r)x",
n=0

where

an(r1) = ( (1) 5 le (G+ri—1).
ag

(b) Show that Ly = 0 has the second solution

o0
yo=yiInz+a™ Y an(ry)Jua",
n=1
where

+ n
"_Zp1]+:1_1 z::

(¢) Conclude from (a) and (b) that if 7; # 0 then

1
;'

and

yo = y1 Inx — 2™

WK
=T
=~

o=
VRS
S
N———

3
M:

n=1 ’ j=1

are solutions of
apz’y" + Bozy' + (0 + nz)y = 0.

(The conclusion is also valid if v; = 0. Why?)

377
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55. Let
Ly = 2*(ao + agz?)y” + (6o + Bex?)y + (0 + 142y
where ¢ is a positive integer, and define
po(r) =aor(r — 1)+ for +7v0 and  pg(r) = agr(r —1) + Byr + 4.
Suppose
po(r) = ag(r —r1)? and pqe(r) Z 0.
(a) Recall from Exercise 7.5.59 that Ly = 0 has the solution

o0
Yy =" Z Aqm ()™,
m=0

where
CO L patati—1)+m).

agm(r1) = ( H

q?ag)™(m!)?

(b) Show that Ly = 0 has the second solution

o0
Y2 =yilnz+a" Z g (T1) T 2T,

m=1
where . .
J 721’;(‘](]‘_1)4'7"1) _gzl
" G- D) a &

(¢) Conclude from (a) and (b) that if 7, # O then

and

are solutions of
a0y + Bory’ + (0 + 142!y = 0.
56. The equation
xy//+y/+xy:0

is Bessel’s equation of order zero. (See Exercise 53.) Find two linearly independent Frobenius
solutions of this equation.

57. Suppose the assumptions of Exercise 7.5.53 hold, except that

po(r) = ag(r —ry)?.

Show that .

T ™ Inx

Yy = and Yo =

oo + o1 x + aox?
are linearly independent Frobenius solutions of

oo + o1 x + aox?

2 (o + a1z + ax?)y” + x(Bo + Bz + 222y + (Yo + 117 + 122y =0

on any interval (0, p) on which g + a1z + a22? has no zeros.


http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
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In Exercises 58—65 use the method suggested by Exercise 57 to find the general solution on some interval
0, p)-

58. 4z?(1+a2)y’ +82%y +(1+2)y=0

59. 922(3+ )y +3x(3+Tx)y + (3+4x)y =0

60. 2%(2—2?)y —x(2+32%)y +(2—2%)y=0

61. 162%(1 +2?)y” +8x(1+92%)y + (1 + 492%)y = 0

62. 2%(4+3x)y" —xz(4—-3x)y +4y=0

63. 42%(1+ 3z + 22)y" + 82%(3 + 22)y' + (1 + 3z + 92%)y = 0

64. 22(1—2)%y —2(1+22-32%)y + (1 +2%)y=0

65. 922(1+x + 2?)y” + 3x(1 + 7o + 132%)y’ + (1 + 42 + 252%)y = 0

66. (a) Let L and y(x,r) be as in Exercises 57 and 58. Extend Theorem 7.6.1 by showing that

L (%(x, m) = p)(r)z" + 2"po(r) Inz.

(b) Show that if

po(r) = ag(r —r1)?

then 9
y1 =y(z,r1) and yo = a—z(xaﬁ)

are solutions of Ly = 0.

7.7 THE METHOD OF FROBENIUS III

In Sections 7.5 and 7.6 we discussed methods for finding Frobenius solutions of a homogeneous linear
second order equation near a regular singular point in the case where the indicial equation has a repeated
root or distinct real roots that don’t differ by an integer. In this section we consider the case where the
indicial equation has distinct real roots that differ by an integer. We’ll limit our discussion to equations
that can be written as

22 (ap + 1)y + (8o + Brz)y + (0 +11z)y =0 (7.7.1)

or
2% (o + a22?)y’ + 2(Bo + B2y + (0 + 122?)y =0,

where the roots of the indicial equation differ by a positive integer.
We begin with a theorem that provides a fundamental set of solutions of equations of the form (7.7.1).

Theorem 7.7.1 Let
Ly = 2*(ao + ar2)y” +z(Bo + frx)y’ + (o +na)y,
where o # 0, and define

po(r) = aor(r—1)+ Bor + 70,

pi(r) = ar(r—1)+Gir+m.
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Suppose r is a real number such that po(n + 1) is nonzero for all positive integers n., and define

ap(r) = 1, ( )
= pintr=1b a r n
an(r) = — po(TL+T> nfl( ), Z 1

(7.7.2)

Let 11 and ro be the roots of the indicial equation py(r) = 0, and suppose r1 = ro + k, where k is a
positive integer. Then

o0
Yy =" Z an (r)x”
n=0

is a Frobenius solution of Ly = 0. Moreover, if we define

QQ(TQ) = 1,
-1
an(r2) = _pmlntrz—1) )anfl(TQ)a 1<n<k-1, (7.7.3)
po(n + r2)
and ( 0
—
c= —%am(m), (7.7.4)
then

k—1 oo
Yy = a2 Z an(r2)z™ + C <y1 Inz 4 2™ Z an, (Tl)x"> (7.7.5)

n=0 n=1

is also a solution of Ly = 0, and {y1, y2} is a fundamental set of solutions.

Proof Theorem 7.5.3 implies that Ly; = 0. We’ll now show that Lys = 0. Since L is a linear operator,
this is equivalent to showing that

k—1 00
L (3:” Z an(T2)$n> +CL (yl Inz 42" Z a;(rl)ﬂfn) =0. (7.7.6)
n=0 n=1

To verify this, we’ll show that

k—1
L (m“ > an(rz)x"> =p1(r1 — Dag_1(r2)z™ (7.7.7)
n=0

and

L (yl Inx + 2™ Z al (T1)3:"> = kagz™. (7.7.8)

n=1

This will imply that Lys = 0, since substituting (7.7.7) and (7.7.8) into (7.7.6) and using (7.7.4) yields

Lys = [pi(r1 — Dag—1(r2) + Ckaglz™
= [p(r — Dag-1(r2) —p1(r1 — Dag—1(r2)] "™ = 0.

We'll prove (7.7.8) first. From Theorem 7.6.1,

L (y(az, r)lnz + 2" Z a%(r)a:") =po(r)z” +2"po(r) Inz.
n=1
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Setting = 77 and recalling that po(r1) = 0 and y; = y(x, r1) yields

o0

L (yl Inz + 2™ a;l(rl)x") = pp(r1)z™. (7.7.9)

n=1
Since 71 and 79 are the roots of the indicial equation, the indicial polynomial can be written as

po(r) = ap(r —r1)(r —r2) = ag [T2 —(ri +ro)r+ T1T2] )

Differentiating this yields
po(r) = ap(2r — ri — ra).

Therefore p((r1) = ao(r1 — r2) = kag, so (7.7.9) implies (7.7.8).

Before proving (7.7.7), we first note a,,(r2) is well defined by (7.7.3) for 1 < n < k — 1, since
po(n 4+ r2) # 0 for these values of n. However, we can’t define a,,(r2) for n > k with (7.7.3), since
po(k +r2) = po(r1) = 0. For convenience, we define a,,(r2) = 0 for n > k. Then, from Theorem 7.5.1,

k—1 oo -
L <x7”2 Z an(Tz)x"> =1L <x7”2 Z an(TQ)xn> — T2 Z bnz™, (7.7.10)
n=0 n=0 n=0
where by = po(r2) = 0 and
bn = po(n +r2)an(r2) +p1(n+re —ay_1(r2), n>1.

If — 1, then (7.7.3) implies that b, = 0. If n > k + 1, then b,, = 0 because a,,_1(r2) =

<n<k
= 0. Therefore (7.7.10) reduces to

1
an(r2)
k—1
L (x” > an(rz)x"> = [po(k + ra)ar(ra) + pr(k + ro — Dag_1(rs)] 2472
n=0

Since ay(r2) = 0 and k + ro = 71, this implies (7.7.7).
We leave the proof that {y;, y2} is a fundamental set as an exercise (Exercise 41).
Example 7.7.1 Find a fundamental set of Frobenius solutions of

22%(2 + )y — (4 —Tx)y — (5 — 3z)y = 0.

Give explicit formulas for the coefficients in the solutions.

Solution For the given equation, the polynomials defined in Theorem 7.7.1 are

po(r) = 4dr(r—1)—4r—5 = (2r+1)(2r—25),
pi(r) = 2r(r—1)+7+3 = (r+1)(2r+3).
The roots of the indicial equation are 7y = 5/2 and ro = —1/2,s0 k = r1 — ro = 3. Therefore

Theorem 7.7.1 implies that
v =22 " an(5/2)a" (7.7.11)
n=0

and

*xl/QZa (-1/2) +C<yllnx+x5/22 (5/2)x ) (7.7.12)

n=1
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(with C as in (7.7.4)) form a fundamental set of solutions of Ly = 0. The recurrence formula (7.7.2) is

ap(r) = 1,
_pl(n—i-r—l)
po(n+r)

(n+7r)2n+2r+1) (7.7.13)

= iz en@ra—5 )

ap—1(7)

an (1)

— _”7”%71(7"), n>1,
2n+2r —5

which implies that
S
() = (~1 ,n>0. 7.7.14
an(r) = ( )g2j+2r—5" (77.14)

Therefore " _
(=)™ IT;=: (25 +5)
4np) '

an(5/2) =

Substituting this into (7.7.11) yields

1= x5/2 Z 4"71'

To compute the coefficients ag(—1/2),a1(—1/2) and az(—1/2) in yo, we set r = —1/2 in (7.7.13)
and apply the resulting recurrence formula for n = 1, 2; thus,

ao(—=1/2) = 1,
2n—1

an(—1/2) = —man,l(—l/ﬂ, n = 1,2

(7.7.15)

1(2j+5)
X

The last formula yields
a1(—1/2) =1/8 and a2(—1/2)=3/32.

Substituting 1 = 5/2,79 = —1/2,k = 3, and g = 4 into (7.7.4) yields C = —15/128. Therefore,
from (7.7.12),

1 3 15
yo = /2 (1 +3T+ 3—2x2> o8 <y1 1nx+:c5/22a (5/2)z ) (7.7.16)
We use logarithmic differentiation to obtain obtain a/,(r). From (7.7.14),
i
[an(r) H |2j+2r—5|
Therefore
In |a, (1) Zln|j+r|—1n|2j+2r—5|).
j=1

Differentiating with respect to r yields

Zig:; __zn:(jir_2j+§r—5>'

Jj=1
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Therefore

S 2
Z(]—l—r 2j+2r—5>'

Jj=1

Setting » = 5/2 here and recalling (7.7.15) yields

, DT (25 +5) & 1
an(5/2) = 4nn, ; (] -y 3> . (7.7.17)
Since
1 1 5

j+5/2 j §(2j+5)

we can rewrite (7.7.17) as

(D" (25 45) (&
a!\(5/2) = —5 o Z 2] 5
Substituting this into (7.7.16) yields
1 3 15
= 712 (1 — - —yl
b2 v ( TR R ) 12870 T
75 5/ 127 +5) [ & N
. n
Z 4”n' z:: 2] 5 )"

If C = 0in (7.7.4), there’s no need to compute

o0
y1lnz + 2™ Z a (r)z

n=1

in the formula (7.7.5) for y,. Therefore it’s best to compute C' before computing {a/,(r1)}52,. This is
illustrated in the next example. (See also Exercises 44 and 45.)

Example 7.7.2 Find a fundamental set of Frobenius solutions of
22(1 = 2z)y” + 2(8 — 92)y + (6 — 3z)y = 0.

Give explicit formulas for the coefficients in the solutions.

Solution For the given equation, the polynomials defined in Theorem 7.7.1 are

po(r) = r(r—1)48+6 = (r+1)(r +6)
p(r) = =2(r=1)-9r—3 = —(r+3)(2r+1).
The roots of the indicial equation are 7 = —1 and 7, = —6, s0 k = 7, —ro = 5. Therefore Theorem 7.7.1

implies that

p=a"Y an(-1)z" (7.7.18)
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and A .
yo =20 Z an(—6) +C (yl Inz + 2 * Z a%(—l):c") (7.7.19)
n=0 n=1
(with C as in (7.7.4)) form a fundamental set of solutions of Ly = 0. The recurrence formula (7.7.2) is
ao(r) = 1,
an(r) = _plz()::(:i r)l) an-1(r) (7.7.20)

_ (n+r+2)(2n+2r—1)anil(r), n>1,
(n+r+1)(n+r+6)

which implies that

n

(G+r+2)2j+2r—1)
an(r) = ]] G N G
o Ut )i+7r+6)
n n (7.7.21)
- Hj+r+2 H2j+2r—1
j:1]+r+1 - j+r+6
Since .
J+r+2 (r+3)(r+4)---(n+r+2) n4r+2
j:1j+r+1 (r+2)(r+3)---(n+r+1) r+2
because of cancellations, (7.7.21) simplifies to
n4+r+24x2i+2r—1
an(r) = H _ .
T+ 2 i +r+6
Therefore
a (_1)—(n+1)ﬁ2j_3
" N 1L 457
Jj=1
Substituting this into (7.7.18) yields
1=z IZ(n—i-l) H J "
- L JTo
n=0 J=1
To compute the coefficients ag(—6),...,as(—6) in yo, we set r = —6 in (7.7.20) and apply the
resulting recurrence formula for n = 1, 2, 3, 4; thus,
ao(—ﬁ) = 1,
—4)(2n —13
an(—6) = Pz e 12,34,
n(n —5)
The last formula yields
33 99 231
a1(—6) = R az(—6) = s az(—6) = g as(—6) = 0.

Since a4(—6) = 0, (7.7.4) implies that the constant C'in (7.7.19) is zero. Therefore (7.7.19) reduces to

231
yo =2 ° (1—§x+%x2—%x3>.l
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We now consider equations of the form
a?(ao + aza?)y" +x(Bo + Box®)y + (0 +722%)y = 0,

where the roots of the indicial equation are real and differ by an even integer. The case where the roots
are real and differ by an odd integer can be handled by the method discussed in 56.
The proof of the next theorem is similar to the proof of Theorem 7.7.1 (Exercise 43).

Theorem 7.7.2 Let
Ly = 2*(ao + aza?)y” + x(Bo + B2x)y + (0 +722%)y,
where o # 0, and define
po(r) = aor(r—1)+ Bor + 0,
pa(r) = aor(r—1)+ Bor + 2.
Suppose r is a real number such that po(2m + ) is nonzero for all positive integers m, and define

ap(r) = 1,
_p2(2m +r—2)
po(2m+7)

(7.7.22)

aom(r) = agm—2(r), m>1.

Let 11 and 72 be the roots of the indicial equation po(r) = 0, and suppose 1 = ro + 2k, where k is a
positive integer. Then

o0
2
Y1 = SCTI Z QQm(Tl)SC m
m=0
is a Frobenius solution of Ly = 0. Moreover, if we define

QQ(TQ) = 1,
_p2(2m +7ro—2)

m = m— ) 1 S S k - 1
ag (TQ) 20 (2m T T2) ag 2(7"2) m
and )
C = —MQ%,Q(TQ), (7.7.23)
2,’{0[0
then
k—1 0o
Yy = a2 Z agm(re)z*™ + C <y1 Inz 4 2™ Z aém(rl)xm”) (7.7.24)
m=0 m=1

is also a solution of Ly = 0, and {y1, y2} is a fundamental set of solutions.

Example 7.7.3 Find a fundamental set of Frobenius solutions of
22(1+ 2%)y" + 2(3 + 102?)y’ — (15 — 142?)y = 0.

Give explicit formulas for the coefficients in the solutions.
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Solution For the given equation, the polynomials defined in Theorem 7.7.2 are

po(r) = r(r—1)43r—15 = (r—=3)(r+5)
pa(r) = rir—=1)+10r4+14 = (r+2)(r+7).
The roots of the indicial equation are 1 = 3 and ro = —5, so k = (r1 — r2)/2 = 4. Therefore

Theorem 7.7.2 implies that

y1:x3§:a%xmﬁm (7.7.25)
m=0

and

3 oo
Yo =" Z agm(—5)z*™ + C (yl Inz + 2* Z aém(3)x2m>
m=0

m=1

(with C' as in (7.7.23)) form a fundamental set of solutions of Ly = 0. The recurrence formula (7.7.22) is

ap(r) = 1, ( )
- pa(2m+1r — 2
azm(r) = —3£Ezgj;;y—amn7200
B (2m + r)(2m + 7 + 5) ) (7.7.26)
N (2m+r—3)(2m+r+5)a2m72 "
2m +r
= oty m2l

which implies that

m

m 2] +r
azm(r) = (1) H 2]._1_73, m 2> 0. (7.7.27)
j=1

Therefore

()" 15,2 +3)

2mim)

CLQm(3) -

Substituting this into (7.7.25) yields

(7.7.28)

= (D)™ IG5 (25 +3)
_ .3 J= 2m
e 3 I
m=0
To compute the coefficients az(—5), as(—5), and ag(—5) in y2, we set r = —5 in (7.7.26) and apply
the resulting recurrence formula for m = 1, 2, 3; thus,

2m —5
agm(=5) = —m@mfz(—@, m=1,2,3.
This yields
(-5) = —7. as(~5) = <. ag(~5) = -
a2 - 2,@4 _8;a6 _16

Substituting 1 = 3, ro = =5, k = 4, and «p = 1 into (7.7.23) yields C' = —3/16. Therefore, from
(7.7.24),

1 1 1 3
_ ,.=5 =2 -4 61 3 / 2m
Yo = (1 5% + g% + 6% ) 16 (yl Inz+ g as,,(3)z ) . (7.7.29)

m=1
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To obtain a),,, () we use logarithmic differentiation. From (7.7.27),

2+ +T|
m = > 1.
|azm(r)] = H |2 +r — =
Therefore .
In |agm(r) Z (In|2j +7r|—In|2j +7—3|).
j=1

Differentiating with respect to r yields

ab,, (1) _ i 1 1
aom(r) 4 2j+r 2j+r—-3)°

Jj=1

= 1 1
Gy (1) = azm(r) Y (2j+r - 2j+r—3> '

Jj=1

Therefore

Setting r = 3 here and recalling (7.7.28) yields

gy~ U249 Ly,
m 2mn) 2j+3 2j
Jj=1
Since
1 1 3

we can rewrite (7.7.30) as

-1 125 +3) [ &
PR Lo\ ICE 38
m 2 2mm' = 2]+3
Substituting this into (7.7.29) yields
- R ) Ry
o= 2" TR T 16T ) et

2mim)
m=1 j=1

9 3 = mH] 1(2J+3) = 1 2m

325 +3)
Example 7.7.4 Find a fundamental set of Frobenius solutions of
22(1 = 222)y" + (7 — 1322)y — 1422y = 0.

Give explicit formulas for the coefficients in the solutions.

Solution For the given equation, the polynomials defined in Theorem 7.7.2 are

pO(T) = T(T - 1) + 7T - T(T + 6)5
palr) = =2r(r—1)—13r—14 = —(r+2)(2r+7).

(7.7.30)
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The roots of the indicial equation are 1 = 0 and ro = —6, so k = (r1 — r2)/2 = 3. Therefore
Theorem 7.7.2 implies that
= Z agm (0)z2™, (7.7.31)
m=0
and
2 [e%e}
=gz Z agm(—6)z*™ 4+ C (yl Inz + Z aém(())x%”) (7.7.32)
m=0 m=1

(with C as in (7.7.23)) form a fundamental set of solutions of Ly = 0. The recurrence formulas (7.7.22)

are
ap(r) = 1,
p2(2m + 1 — 2)

a2m (7") = - ma2m—2 (7")

~ (2mA+r)(4m 4 2r 4+ 3) u r) (7.7.33)
T 2m+r)C2m+r+6) 7
dm+2r+3

= T ) m > 1,
mtr+6 2 2(r), m 2

which implies that

45+ 2r 43
)= 15757
=1

Setting r = 0 yields
(45 +3
aam(0) = 6M.
2m(m + 3)!
Substituting this into (7.7.31) yields

_, (45 +3)
91—62 2mm+3

2m

To compute the coefficients ag(—6), az(—6), and a4(—6) in yo, we set r = —6 in (7.7.33) and apply
the resulting recurrence formula for m = 1, 2; thus,

0,0(—6) = 15
im —9

n(—6) = TSy a(~6), m = 1,2,

The last formula yields

5

g .

Since pa(—2) = 0, the constant C' in (7.7.23) is zero. Therefore (7.7.32) reduces to

yo = ° (1 - gx2 + gx4> .

7.7 Exercises

az(—6) = —g and a4(—06) =

In Exercises 1-40 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-
cients.
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2%y — 3y + (3 +4x)y =0
zy" +y=0

422(1 + 2)y" + 4x(1 + 22)y' — (1 4+ 32)y =0

wy +zy +y=0

22224 3z)y" + x(4 +21z2)y — (1 —92)y =0

2%y + 22+ 1)y — (2—3x)y =0
4x2%y" +dxy — (9 —2)y =0
2%y + 102y + (14 +2)y =0

422(1 + 2)y" + 423 + 8z)y' — (5 — 492)y = 0

2?(14 z)y" —z(3 + 102)y’ + 302y =0
2?y" +x(l+a)y - 33 +2)y=0
2%y + (1 -22)y — (4+2)y=0
z(1+2)y" —4y —2y =0

22(1+22)y" + 2(9 + 132)y’ + (7 + 5x)y =0

422y —2x(4—2)y — (T+52)y=0
322(3+ )y’ — x(15+ )y’ — 20y =0

22(1+2)y" +2(1 —102)y — (9 — 10z)y =0

2?(1+ )y’ +32%y — (6 —2)y=0
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22(1 + 22)y" — 22(3 + 142)y’ + (6 + 100z)y = 0

22(1+2)y" —2(6 4+ 112)y + (6 + 322)y =0

422(1 + 2)y" + 4o(1 +4x)y’ — (49 +272)y =0

2?14 2z)y” — 2(9+ 8z)y’ — 122y =0
2?2(1+ 22y’ — 2(7—222)y + 12y =0
22y —2(7T— 22y + 12y =0

xy”" =5y +xy=0

2%y + (1 + 222y — (1 —102%)y =0
?y" —ay —(3-2*)y=0

422y + 228 + 22y + (5 + 32%)y =0
22y + (1 + 22y — (1 -322)y=0
2%y + 2(1 —222)y — 4(1 +22%)y =0
4x2%y" + 8xy — (35— 22)y =0

9z22y" — 3x(11 4+ 222)y’ + (13 + 102?)y =0

2%y + (1 -222)y —4(1—2?)y =0
2%y + 2(1 - 322)y — 4(1 — 32%)y =0
2?2(1+ 22y’ + 2(5 + 112?)y + 242%y =0
422(1 + 22)y” + 8zy — (35 — 2%)y =0

2?2(1+ 22y’ —2(5 —2?)y — (7T+ 252%)y =0
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38.
39.
40.
41.

42.

43.
44.

45.

46.
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2?2(1+ 22y’ + 2(5 + 222)y — 21y =0

22(1+ 22%)y" — (3 + 2?)y — 222y =0

422(1 + 22)y” +4z(2+ 22y — (15 + 22y =0

(a) Under the assumptions of Theorem 7.7.1, show that

o0
Yy =" Z an (r)x”
n=0

and
k—1

o0
Yy = " an(r2)a”™ +C (yl Inz + 2™ Z al (Tﬂ:c")

n=0 n=1

are linearly independent. HINT: Show that if c; and co are constants such that c1y1 + cay2 =
0 on an interval (0, p), then

7" (a1 (@) + c2y2(2) =0, 0<z <p.
Then let © — 0+ to conclude that co=0.
(b) Use the result of (a) to complete the proof of Theorem 7.7.1.

Find a fundamental set of Frobenius solutions of Bessel’s equation

x2y” _,’_xy/ 4 (xQ _ I/2)y =0

in the case where v is a positive integer.

Prove Theorem 7.7.2.

Under the assumptions of Theorem 7.7.1, show that C' = 0 if and only if p; (r2 + ) = 0 for some
integer in {0,1,...,k —1}.

Under the assumptions of Theorem 7.7.2, show that C' = 0 if and only if p2(r2 + 2) = 0 for some
integer £in {0,1,...,k — 1}.

Let
Ly = aoz®y" + foxy + (o + m12)y
and define
po(r) = aor(r — 1) + Bor + Yo-
Show that if

po(r) = ap(r —r1)(r —ra)

where 1 — ro = k, a positive integer, then Ly = 0 has the solutions

yp =" S (=" _ (ﬂ)nx"
0 n! H?:l(] + k) \ao

and

k—1 n
_1)n
ya = 2™ B et (7—1> "

1 7n\" > (=" (”Yl )n "\ 25 +k
T T 77 a1 - 1 - m T - . 1N - . N "
Kk —1)! (a> PETE LT G+ k) \ao 2 iGem]”
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48.
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Let
Ly = aoz®y" + Boxy’ + (vo + 7227y
and define
po(r) = aor(r — 1) + Bor + 0.
Show that if

po(r) = ap(r —r1)(r —ra)

where 1 — ro = 2k, an even positive integer, then Ly = 0 has the solutions

r fo: (_1)m (72 )m 2m
Y =2 1 - - = xT
m—0 4mm! Hj:l(] +k) \ao

T k§71 (_1)m (72>m 2m
Y2 = € m m B X

o0 m

k m
2 gp) z" (=nm gp) 2)+k
-~ (2 lne — = — 12
ARk — 1) (a0> T n;wm!nﬁl(ﬂk) a0 Z 3G+ k)

Let L be as in Exercises 7.5.57 and 7.5.58, and suppose the indicial polynomial of Ly = 0 is

po(r) = ap(r —r1)(r — ra),

with k = r; — ro, where k is a positive integer. Define ag(r) = 1 for all r. If r is a real number
such that po(n + 7) is nonzero for all positive integers 7, define

1 n

ap(r) = ——— pin+r—7g)an—;(r),n>1,
1) = oy P Jan—i(r)
and let -
yp ="t an(r1)x”
n=0

Define

(r2) LS (b ra— fans(ra) ifn > Landn £ b

an(ry) = ——— ‘(n+1r9 —jJ)an—i(re) ifn >1andn ,

2 Po(n +rq) 2P 27 J)n=aiT2

and let ax(r2) be arbitrary.

(a) Conclude from Exercise 7.6..66 that

L (yl Inz+ 2™ Z an, (Tl):c"> = kagx™
n=1
(b) Conclude from Exercise 7.5..57 that

L (x” Z an(rg):c"> = Ax™,

n=0

2m
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where

k
A= ij(ﬁ — Jak—j(ra).

(c) Show that y; and

o0 A o0
Yo =" ;an(m)x" ~ o <y1 Inz + 2™ Z a%(rﬂ:c")

0 n=1

form a fundamental set of Frobenius solutions of Ly = 0.

(d) Show that choosing the arbitrary quantity ay(r2) to be nonzero merely adds a multiple of y;
to yo. Conclude that we may as well take ax(r2) = 0.



CHAPTER 8
Laplace Transforms

IN THIS CHAPTER we study the method of Laplace transforms, which illustrates one of the basic prob-
lem solving techniques in mathematics: transform a difficult problem into an easier one, solve the lat-
ter, and then use its solution to obtain a solution of the original problem. The method discussed here
transforms an initial value problem for a constant coefficient equation into an algebraic equation whose
solution can then be used to solve the initial value problem. In some cases this method is merely an
alternative procedure for solving problems that can be solved equally well by methods that we considered
previously; however, in other cases the method of Laplace transforms is more efficient than the methods
previously discussed. This is especially true in physical problems dealing with discontinuous forcing
functions.

SECTION 8.1 defines the Laplace transform and developes its properties.
SECTION 8.2 deals with the problem of finding a function that has a given Laplace transform.

SECTION 8.3 applies the Laplace transform to solve initial value problems for constant coefficient second
order differential equations on (0, o).

SECTION 8.4 introduces the unit step function.

SECTION 8.5 uses the unit step function to solve constant coefficient equations with piecewise continu-
ous forcing functions.

SECTION 8.6 deals with the convolution theorem, an important theoretical property of the Laplace trans-
form.

SECTION 8.7 introduces the idea of impulsive force, and treats constant coefficient equations with im-
pulsive forcing functions.

SECTION 8.8 is a brief table of Laplace transforms.

393
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8.1 INTRODUCTION TO THE LAPLACE TRANSFORM

Definition of the Laplace Transform

To define the Laplace transform, we first recall the definition of an improper integral. If g is integrable
over the interval [a, T for every T' > a, then the improper integral of g over [a, 00) is defined as

oo T
/ g(t)dt = Tlim g(t) dt. (8.1.1)

We say that the improper integral converges if the limit in (8.1.1) exists; otherwise, we say that the
improper integral diverges or does not exist. Here’s the definition of the Laplace transform of a function

Definition 8.1.1 Let f be defined for ¢ > 0 and let s be a real number. Then the Laplace transform of f
is the function F' defined by

F(s) = /OO e~ (L) dt, (8.1.2)

0
for those values of s for which the improper integral converges.

It is important to keep in mind that the variable of integration in (8.1.2) is ¢, while s is a parameter
independent of ¢. We use ¢ as the independent variable for f because in applications the Laplace transform
is usually applied to functions of time.

The Laplace transform can be viewed as an operator £ that transforms the function f = f(¢) into the
function F' = F(s). Thus, (8.1.2) can be expressed as

F = L(f).
The functions f and F' form a transform pair, which we’ll sometimes denote by
ft) = F(s).

It can be shown that if F'(s) is defined for s = s¢ then it’s defined for all s > s (Exercise 14(b)).

Computation of Some Simple Laplace Transforms

Example 8.1.1 Find the Laplace transform of f(¢) = 1.

Solution From (8.1.2) with f(t) = 1,

oo T
F(s) = / e *tdt = lim e S dt.
0 T—oo Jo

If s # 0 then
T —sT
1 T 1—
/ e~Stdt = ——e~5t| =% (8.1.3)
0 s 0 s
Therefore
T 1 0
lim [ estdt={ 3 - (8.1.4)
T—e0 Jg o0, §<0.
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If s = 0 the integrand reduces to the constant 1, and

T T

lim 1dt = lim 1dt = lim T = oo.
T—o00 0 T—o00 0 T—o00

Therefore F'(0) is undefined, and
s

e 1
F(s):/ e ldt=~, s>0.
0

This result can be written in operator notation as

or as the transform pair
1
le—-, s>0.
S

REMARK: Itis convenient to combine the steps of integrating from 0 to 7" and letting 7" — oo. Therefore,
instead of writing (8.1.3) and (8.1.4) as separate steps we write

1
/Ooefstdt:_lefstooz g’ S>Oa
0 S 0 oo, s<0.

We'll follow this practice throughout this chapter.
Example 8.1.2 Find the Laplace transform of f(t) = ¢.

Solution From (8.1.2) with f(t) = t,

F(s) = /Oo e St dt. (8.1.5)
0

If s # 0, integrating by parts yields

> te—st
/ eShdt = —
0 S

If s = 0, the integral in (8.1.5) becomes

o0 2 100
/ tdt = —| = o0.
0 0
Therefore F'(0) is undefined and
1
S
This result can also be written as )
E(t) = 5—2, s > 0,
or as the transform pair
1
te— —, s>0
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Example 8.1.3 Find the Laplace transform of f(¢) = e®, where a is a constant.

Solution From (8.1.2) with f(t) = e*,
F(s)= / e Ste dt.
0
Combining the exponentials yields
F(s) = / eIt gg
0
However, we know from Example 8.1.1 that

e 1
/ e Stdt=—-, s>0.
0

Replacing s by s — a here shows that

This can also be written as

1 1
L(e™) = , s>a, or e

, S>a.
s—a s—a

Example 8.1.4 Find the Laplace transforms of f(¢) = sinwt and g(t) = cos wt, where w is a constant.

Solution Define

F(s) :/ e Stsinwt dt (8.1.6)
0
and -
G(s) :/ e %" cos wt dt. (8.1.7)
0
If s > 0, integrating (8.1.6) by parts yields
—st 00 oo
F(s) = _C sinwt’ + E/ e *" coswt dt,
s 0 s Jo
o)
w
F(s) = —G(s). (8.1.8)
S

If s > 0, integrating (8.1.7) by parts yields

e Stcoswt|™® w [
G(s) = —7’ — —/ e St sinwt dt,
0

S 0 S
SO 1
G(s) = - — 2F(s).
S S

Now substitute from (8.1.8) into this to obtain
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Solving this for G(s) yields
s

This and (8.1.8) imply that
w

Tables of Laplace transforms

Extensive tables of Laplace transforms have been compiled and are commonly used in applications. The
brief table of Laplace transforms in the Appendix will be adequate for our purposes.

Example 8.1.5 Use the table of Laplace transforms to find £(¢3e*!).

Solution The table includes the transform pair

!
n at n
P P

Setting n = 3 and @ = 4 here yields

, 31 6
L(t3ett) = Gy = Goat ]

We’ll sometimes write Laplace transforms of specific functions without explicitly stating how they are
obtained. In such cases you should refer to the table of Laplace transforms.

Linearity of the Laplace Transform

The next theorem presents an important property of the Laplace transform.

Theorem 8.1.2 [Linearity Property| Suppose L(f;) is defined for s > s;, 1 < i < n). Let so be the
largest of the numbers si, Sa, ...,5n, and let cq, ca,. .., ¢, be constants. Then

Llcifi+eafo+--+enfn) =al(fi) + c2L(f2) + -+ cnl(fn) for s > so.

Proof We give the proof for the case where n = 2. If s > s( then
Lefitef) = [ e @h)+ano)d
0
= cl/ e St (t) dt + 02/ e fo(t) dt
0 0
= al(f1)+ cL(f2)-

Example 8.1.6 Use Theorem 8.1.2 and the known Laplace transform

1

sSs—a

L(e™) =

to find L(cosh bt) (b # 0).
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Solution By definition,
bt ,—bt
cosh bt = e te

Therefore

L(coshbt) = L (%ebt + %ebt>

= %E(ebt) + lE(eibt) (linearity property) (8.1.9)

2
1 1 n 1 1
2s5—b 2s+0b’
where the first transform on the right is defined for s > b and the second for s > —b; hence, both are
defined for s > |b|. Simplifying the last expression in (8.1.9) yields

L(coshbt) = s> |bl.

S
S2_b2’

The First Shifting Theorem

The next theorem enables us to start with known transform pairs and derive others. (For other results of
this kind, see Exercises 6 and 13.)

Theorem 8.1.3 [First Shifting Theorem] If

F(s) = /OO eStF(t) dt (8.1.10)

0

is the Laplace transform of f(t) for s > so, then F(s — a) is the Laplace transform of e f(t) for
s> 50+ a.

PROOF. Replacing s by s — a in (8.1.10) yields
F(s—a)= / eIt r(e) di (8.1.11)
0

if s —a > sg; thatis, if s > sg + a. However, (8.1.11) can be rewritten as

F(s—a)= / e 5 (e™ f(t)) dt,
0
which implies the conclusion.

Example 8.1.7 Use Theorem 8.1.3 and the known Laplace transforms of 1, ¢, cos wt, and sin wt to find

L(e®),  L(te™), L(eMsinwt),and L(eM coswt).

Solution In the following table the known transform pairs are listed on the left and the required transform
pairs listed on the right are obtained by applying Theorem 8.1.3.
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f(t) < F(s) e f(t) & F(s —a)
1 1
1l s>0 et , s>a
s (s—a)
1 . 1
te——, s>0 te — , S>a
52 (s —a)?
: M o w
smwt<—>m, s>0 | eMsinwt « m,s>)\
- A
cos wt 524_%, s>0 | eMsinwt (S_S’)\)ﬁ,s>)\

Existence of Laplace Transforms

Not every function has a Laplace transform. For example, it can be shown (Exercise 3) that

o0 2
/ e St dt = 0o
0

for every real number s. Hence, the function f(t) = et does not have a Laplace transform.

Our next objective is to establish conditions that ensure the existence of the Laplace transform of a
function. We first review some relevant definitions from calculus.

Recall that a limit

lim f()
exists if and only if the one-sided limits
Jim f(t) and - lim f(?)
both exist and are equal; in this case,
fim f(t) = lim f(t)= lm f().

Recall also that f is continuous at a point ¢y in an open interval (a, b) if and only if
t—to

which is equivalent to

lim f(t) = lim f(t) = f(to).

t—to+ t—to—

(8.1.12)

For simplicity, we define

f(t0+):t£g1+f(t) and  f(to—) = lim f(¢),

t—to—
so (8.1.12) can be expressed as
f(to+) = f(to—) = f(to)-
If f(to+) and f(to—) have finite but distinct values, we say that f has a jump discontinuity at t,, and

f(to+) = f(to—)
is called the jump in f at to (Figure 8.1.1).
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\J
>

Figure 8.1.1 A jump discontinuity

If f(to+) and f(to—) are finite and equal, but either f isn’t defined at ¢, or it’s defined but

f(to) # f(to+) = f(to—),

we say that f has a removable discontinuity at ty (Figure 8.1.2). This terminolgy is appropriate since a
function f with a removable discontinuity at ¢, can be made continuous at ¢y by defining (or redefining)

f(to) = f(to+) = f(to—)-

REMARK: We know from calculus that a definite integral isn’t affected by changing the values of its
integrand at isolated points. Therefore, redefining a function f to make it continuous at removable dis-
continuities does not change L(f).

Definition 8.1.4
(i) A function f is said to be piecewise continuous on a finite closed interval [0, 7] if f(04) and
f(T—) are finite and f is continuous on the open interval (0, T') except possibly at finitely many
points, where f may have jump discontinuities or removable discontinuities.

(i) A function f is said to be piecewise continuous on the infinite interval [0, co) if it’s piecewise
continuous on [0, T'] for every T > 0.

Figure 8.1.3 shows the graph of a typical piecewise continuous function.
It is shown in calculus that if a function is piecewise continuous on a finite closed interval then it’s
integrable on that interval. But if f is piecewise continuous on [0, cc), then so is e~ ** f(¢), and therefore

T
/ e St f(t)dt
0
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Figure 8.1.3 A piecewise continuous function on
Figure 8.1.2 [a, b]

exists forevery T' > 0. However, piecewise continuity alone does not guarantee that the improper integral

[eS) T

/ e ' f(t)dt = lim e "L f(t) dt (8.1.13)
0 T—oo Jo

converges for s in some interval (sg,c0). For example, we noted earlier that (8.1.13) diverges for all

sif f(t) = et’. Stated informally, this occurs because e’ increases 00 rapidly as t — oo. The next

definition provides a constraint on the growth of a function that guarantees convergence of its Laplace

transform for s in some interval (sq, 00) .

Definition 8.1.5 A function f is said to be of exponential order sy if there are constants M and t( such
that
If(1)] < Me™t, ¢ > t. (8.1.14)

In situations where the specific value of sq is irrelevant we say simply that f is of exponential order.

The next theorem gives useful sufficient conditions for a function f to have a Laplace transform. The
proof is sketched in Exercise 10.

Theorem 8.1.6 If [ is piecewise continuous on [0, 00) and of exponential order sy, then L(f) is defined
for s > sq.

REMARK: We emphasize that the conditions of Theorem 8.1.6 are sufficient, but not necessary, for f to
have a Laplace transform. For example, Exercise 14(c) shows that f may have a Laplace transform even
though f isn’t of exponential order.

Example 8.1.8 If f is bounded on some interval [to, 00), say
FO <M, t>t,

then (8.1.14) holds with sy = 0, so f is of exponential order zero. Thus, for example, sinwt and cos wt
are of exponential order zero, and Theorem 8.1.6 implies that £(sinwt) and £(coswt) exist for s > 0.
This is consistent with the conclusion of Example 8.1.4.
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Example 8.1.9 Tt can be shown that if lim; ., e~ 0 f(¢) exists and is finite then f is of exponential
order sg (Exercise 9). If « is any real number and sg > 0 then f(¢) = ¢¢ is of exponential order sg, since

lim e %0t = 0,
t—o0o

by L’Hépital’s rule. If & > 0, f is also continuous on [0, c0). Therefore Exercise 9 and Theorem 8.1.6
imply that £(t%) exists for s > so. However, since s is an arbitrary positive number, this really implies
that £(¢) exists for all s > 0. This is consistent with the results of Example 8.1.2 and Exercises 6 and 8.

Example 8.1.10 Find the Laplace transform of the piecewise continuous function
1, 0<t<1,
f@)"{ =37t t>1.

Solution Since f is defined by different formulas on [0, 1) and [1, c0), we write

F(s) = /0 T ety di = /0 1 est(1) dt + /1 T et (3e ) dt.

Since
1—e*

/ISStdt— S ) S?’éoa
0 3 SZO)

—_

and

o] o] —(s+1)
/ e (=3e ) dt = —3/ e~ (D gt = —L, 5> —1,
1 1 S +1

it follows that (o41)
1—e% e~ (st
-3 , s>—1,8#0,
F(s) = s s+1
3
1-2
e

, s=0.
This is consistent with Theorem 8.1.6, since

fB)]<3e™", t>1

3

and therefore f is of exponential order sg = —1.
REMARK: In Section 8.4 we’ll develop a more efficient method for finding Laplace transforms of piece-
wise continuous functions.

Example 8.1.11 We stated earlier that

oo 2
/ e et dt = 0o
0

. . 2. . .
for all s, so Theorem 8.1.6 implies that f(¢) = ¢! is not of exponential order, since
t2 1
2

lim —— = lim —e! %% = 0,

t—o0 MeSOt t—o0
S0 )

el” > Me®o!

for sufficiently large values of ¢, for any choice of M and sg (Exercise 3).
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8.1 Exercises

Find the Laplace transforms of the following functions by evaluating the integral F'(s) = fooo e Stf(t) dt.

(at (b) te™? (c¢) sinh bt

(d) e?* — 3et (e) t?

Use the table of Laplace transforms to find the Laplace transforms of the following functions.
(a) cosh tsint (b) sin?t (c) cos® 2t

(d) cosh? ¢ (e) tsinh 2¢ (f) sint cost

(g) sin (t + g) (h) cos 2t — cos 3t (i) sin 2t + cos 4t

Show that

o0 2
/ e Stel dt = 0o
0

Graph the following piecewise continuous functions and evaluate f(¢+), f(t—), and f(¢) at each
point of discontinuity.

for every real number s.

—t, 0<t<2, ?+2, 0<t<l,
@fit)=<9 t—4, 2<t<3, ) f(t) = 4, t=1,
1, t>3. t, t>1.
t, 0<t<l,
sint, 0<t<m7/2, 2, t=1,
(© f(t) =< 2sint, w/2<t<m, (d)ft)=4 2—t, 1<t<?2
cost, t>m. 3, t=2,
6, t> 2.
Find the Laplace transform:
B et 0<t<1, [ 1, 0<t<A4,
(a) f(t) - { 67215’ t Z 1. (b) f(t) - t, t Z 4.
[t 0<t<1, [ e, 0<t<1,
@so={ V5] @sn={" =t

Prove that if f(t) < F(s) then t*f(t) < (=1)*F®)(s). HINT: Assume that it’s permissible to
differentiate the integral fooo e~ St f(t) dt with respect to s under the integral sign.

Use the known Laplace transforms

s—A

At s —
ﬁ(e tSlnwt) = m

w At _
m and ﬁ(e COS (.()t) =
and the result of Exercise 6 to find £(te* cos wt) and L(te sinwt).
Use the known Laplace transform £(1) = 1/s and the result of Exercise 6 to show that

n!
SnJrl ’

L(t") =

n = integer.

(a) Show thatif lim; .o, e 50! f(t) exists and is finite then f is of exponential order sg.
(b) Show that if f is of exponential order sg then lim; .o, e 5! f(¢) = 0 for all s > sq.
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14.
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16.
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(c) Show thatif f is of exponential order sg and ¢(t) = f(¢ + 7) where 7 > 0, then g is also of
exponential order sg.

Recall the next theorem from calculus.

THEOREM A. Let g be integrable on [0, T for every T > 0. Suppose there’s a function w defined
on some interval [1,00) (withT > 0) such that |g(t)| < w(t) fort > 7 and [~ w(t) dt converges.
Then |, OOO g(t) dt converges.

Use Theorem A to show that if f is piecewise continuous on [0, 00) and of exponential order s,
then f has a Laplace transform F'(s) defined for s > sg.

Prove: If f is piecewise continuous and of exponential order then lim;_,, F'(s) = 0.

Prove: If f is continuous on [0, c0) and of exponential order sy > 0, then

c (/Otf(T)dT> = éﬁ(f), s> so.

HINT: Use integration by parts to evaluate the transform on the left.

Suppose f is piecewise continuous and of exponential order, and that lim; o4 f(¢)/t exists. Show

that
£(10) - [* royar

HINT: Use the results of Exercises 6 and 11.
Suppose f is piecewise continuous on [0, 00).

(a) Prove: If the integral g(t) = fot €77 f(7) dr satisfies the inequality |g(t)| < M (¢t > 0),
then f has a Laplace transform F'(s) defined for s > so. HINT: Use integration by parts to
show that

T T
/ e St f(t) dt = e 7T g(T) + (s — so)/ e~ (57500 g(1) dt.
0 0

(b) Show thatif L(f) exists for s = sq then it exists for s > so. Show that the function
F(t) = tet” cos(e”’)

has a Laplace transform defined for s > 0, even though f isn’t of exponential order.
(¢) Show that the function
2 2
f(t) = te” cos(e’”)
has a Laplace transform defined for s > 0, even though f isn’t of exponential order.

Use the table of Laplace transforms and the result of Exercise 13 to find the Laplace transforms of
the following functions.

sinwt coswt — 1 et — bt
(a) (w>0) (b) — (w>0) (o —
cosht —1 sinh? ¢
@ 2= — © =

The gamma function is defined by

which can be shown to converge if o > 0.
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(a) Use integration by parts to show that
MNa+1)=al'(a), a>0.

(b) ShowthatT'(n+1)=nlifn=1,2,3,....
(¢) From (b) and the table of Laplace transforms,

Ia+1)

prasun 5> 0,

L(t*) =

if o is a nonnegative integer. Show that this formula is valid for any o > —1. HINT: Change
the variable of integration in the integral for T'(o + 1).

17. Suppose f is continuous on [0, 7] and f(t + T') = f(t) for all ¢ > 0. (We say in this case that f
is periodic with period T'.)
(a) Conclude from Theorem 8.1.6 that the Laplace transform of f is defined for s > 0. HINT:
Since f is continuous on [0, T] and periodic with period T, it’s bounded on [0, o).
(b) (b) Show that

1 T
— [ ety s> o
1—esT /0

HINT: Write

Then show that

(n+1)T T
/ e Sty dt = e ™7 / e Stf(t) dt,
n 0

T
and recall the formula for the sum of a geometric series.

18. Use the formula given in Exercise 17(b) to find the Laplace transforms of the given periodic

functions:
1
@ fo-{," 155y sern=so. 120
1
o so-{ ' 9SISE sesn=so. 20
(0 f(t) = [sint|
@ g0 ={ W OSET e =0

8.2 THE INVERSE LAPLACE TRANSFORM

Definition of the Inverse Laplace Transform

In Section 8.1 we defined the Laplace transform of f by

)= £ = [ sy

0

We’ll also say that f is an inverse Laplace Transform of F', and write

!
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To solve differential equations with the Laplace transform, we must be able to obtain f from its transform
F'. There’s a formula for doing this, but we can’t use it because it requires the theory of functions of a
complex variable. Fortunately, we can use the table of Laplace transforms to find inverse transforms that
we’ll need.

Example 8.2.1 Use the table of Laplace transforms to find

1 1 1 S
(a) L (52_1> and (b) L (52+9>.

SOLUTION(a) Setting b = 1 in the transform pair

b

s2 — p2

1
1 e
L <52_1> = sinht.

SOLUTION(b) Setting w = 3 in the transform pair

sinh bt «

shows that

s
s2 4+ w?

L1 ( 219> =cos3t. |
s

The next theorem enables us to find inverse transforms of linear combinations of transforms in the
table. We omit the proof.

cos wt <«

shows that

Theorem 8.2.1 [Linearity Property| If F1, Fs, ..., F, are Laplace transforms and c1, ca, ..., ¢, are
constants, then

L7 e FL ¥ coFs 4 - 4 coFy) = a1l L7 (F) 4+ oL F) + -+ e LT7F,.

8 7
71 -
£ (s+5+52+3>'

Solution From the table of Laplace transforms in Section 8.8,,

Example 8.2.2 Find

1
e and sinwt & ——.
s—a s2 4+ w?
Theorem 8.2.1 with @ = —5 and w = /3 yields
8 7 1 1
£t — ) = 87! 7Lt
(s+5+52+3> (s+5>+ s24+3

= s <541r5> + %‘Cil <52\/E3>

7
= 8¢ % 4+ —sin \/gt.
V3
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3s+8
L= .
<52+25+5>

Solution Completing the square in the denominator yields

Example 8.2.3 Find

3s+8  3s+8
$24+25+5  (s+1)24+4

Because of the form of the denominator, we consider the transform pairs

+1
—t 2t _Sr. d “tein2 e ——
e " cos <—>(S+1)2+4 an e 'sin <—>(S+1)2+4,
and write
35+ 8 3s+3 5
o= - e Lo
((s+1)2+4> ((s+1)2+4>+ Gr12+4

s+1 5 2
3 ——— L —
((s+1)2+4> T3 ((s+ 1)2+4>
¢ 5 .
= e “(3cos2t+ 3 sin 2t).
REMARK: We’ll often write inverse Laplace transforms of specific functions without explicitly stating
how they are obtained. In such cases you should refer to the table of Laplace transforms in Section 8.8.

Inverse Laplace Transforms of Rational Functions

Using the Laplace transform to solve differential equations often requires finding the inverse transform
of a rational function

where P and () are polynomials in s with no common factors. Since it can be shown that lim_,~, F'(s) =
0 if F is a Laplace transform, we need only consider the case where degree(P) < degree(Q). To obtain
L7Y(F), we find the partial fraction expansion of F, obtain inverse transforms of the individual terms in
the expansion from the table of Laplace transforms, and use the linearity property of the inverse transform.
The next two examples illustrate this.

Example 8.2.4 Find the inverse Laplace transform of

35+ 2
F(s)= ———. 2.1
() s2—3s+2 (8.2.1
Solution (METHOD 1) Factoring the denominator in (8.2.1) yields
3s+ 2
F(s) = ——. 822
The form for the partial fraction expansion is
3s+2 A B
il - n . (8.2.3)

(s—=1(s—-2) s—-1 s—2
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Multiplying this by (s — 1)(s — 2) yields
3s+2=(s—2)A+(s—1)B.

Setting s = 2 yields B = 8 and setting s = 1 yields A = —5. Therefore

5 n 8
s—1 s—2

F(s)=-—
and

s—1

E%Pﬂ—-—SE1(—l—>~+8£1(—l§><——6eﬁ+83?
Solution (METHOD 2) We don’t really have to multiply (8.2.3) by (s — 1)(s — 2) to compute A and
B. We can obtain A by simply ignoring the factor s — 1 in the denominator of (8.2.2) and setting s = 1
elsewhere; thus,

3s+2
s—2

3142
-

A

_5. (8.2.4)
s=1
Similarly, we can obtain B by ignoring the factor s — 2 in the denominator of (8.2.2) and setting s = 2

elsewhere; thus,
3-242
= = . .2.
71 8 (8.2.5)

B 3s+2
s—1

s5=2
To justify this, we observe that multiplying (8.2.3) by s — 1 yields
3s+2 B

5s—2 _A+(S_1)s—2’

and setting s = 1 leads to (8.2.4). Similarly, multiplying (8.2.3) by s — 2 yields

3s+2
s—1

=(s—2) + B

s—2

and setting s = 2 leads to (8.2.5). (It isn’t necesary to write the last two equations. We wrote them only

to justify the shortcut procedure indicated in (8.2.4) and (8.2.5).) |
The shortcut employed in the second solution of Example 8.2.4 is Heaviside’s method. The next theo-

rem states this method formally. For a proof and an extension of this theorem, see Exercise 10.

Theorem 8.2.2 Suppose

P(s)
F(s) = , (8.2.6)
() (s—5s1)(s—s82) - (5—sn)
where s1, Sa, ..., sy are distinct and P is a polynomial of degree less than n. Then
A A An
F(s)= ——+——++ ,
§—581  S— S 5 — Sp

where A; can be computed from (8.2.6) by ignoring the factor s — s; and setting s = s; elsewhere.

Example 8.2.5 Find the inverse Laplace transform of

6+ (s+1)(s* —5s+11)
o os(s—=1)(s—2)(s+1)

F(s) (8.2.7)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Heaviside.html
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Solution The partial fraction expansion of (8.2.7) is of the form

A B c D
Fo) =+ —5+ 5+ (8.2.8)

To find A, we ignore the factor s in the denominator of (8.2.7) and set s = 0 elsewhere. This yields

6+ (1)(11) _ 17

Similarly, the other coefficients are given by

6+ _
P=mene -
_6+3(5) 7
“Tame) "2
and 6
P=ooes —
Therefore
F(S):Hl_ 10 z 1 B 1
2 s s—1 2s5—2 s+ 1
and

17 1 1 7 1 1
-1 I -1 | -1
LoF) = 2£ (s) 10£ (s—1>+2£ (s—2> £ (S—i—l)

1
= —7 — 10et + zth — et

2 2

REMARK: We didn’t “multiply out” the numerator in (8.2.7) before computing the coefficients in (8.2.8),
since it wouldn’t simplify the computations.

Example 8.2.6 Find the inverse Laplace transform of

8 —(s+2)(4s+10)

F(s) = 2.
) = T D o (8.22)
Solution The form for the partial fraction expansion is
A B C
F(s) = (8.2.10)

s+1+s+2+(5+2)2'

Because of the repeated factor (s + 2)? in (8.2.9), Heaviside’s method doesn’t work. Instead, we find a

common denominator in (8.2.10). This yields

A(s+2)°+B(s+1)(s+2)+C(s+1)
(s + 1)(s +2)?

F(s) = : (8.2.11)

If (8.2.9) and (8.2.11) are to be equivalent, then

A(s+2)2+B(s+1)(s+2)+C(s+1) =8 — (s + 2)(4s + 10). (8.2.12)
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The two sides of this equation are polynomials of degree two. From a theorem of algebra, they will be
equal for all s if they are equal for any three distinct values of s. We may determine A, B and C by
choosing convenient values of s.

The left side of (8.2.12) suggests that we take s = —2 to obtain C' = —8, and s = —1 to obtain A = 2.
We can now choose any third value of s to determine B. Taking s = 0 yields 44 + 2B + C = —12.
Since A = 2 and C' = —8 this implies that B = —6. Therefore

2 6 8
s+1 s+2 (s+2)?

YR = 2t (%) —oc (%) - (<s+12>2>

= 2¢7t—6e 2 — 8te 2.

F(s) =

and

Example 8.2.7 Find the inverse Laplace transform of

s2—5s+7
FO= "y

Solution The form for the partial fraction expansion is

A N B N C
s+2  (s+2)2  (s+2)%

F(s) =
The easiest way to obtain A, B, and C is to expand the numerator in powers of s + 2. This yields

=55+ T7=[(s5+2)—22=5[(s+2) -2 +7=(s+2)*—9(s +2) +21.

Therefore
2)2 — 2 21
Fls) = (s +2)°—9(s+2) +
(s+2)3
- 1 9 n 21
s+2 (s4+2)2 (s+2)3
and

LNF) = £ (si2>_9£1((si2)2>+22_1£1<(5+22>3>

21
e~ (1 —9t+ ?ﬁ) .

Example 8.2.8 Find the inverse Laplace transform of

1—s(5+3s)

FO=erorr

(8.2.13)



Section 8.2 The Inverse Laplace Transform 411

Solution One form for the partial fraction expansion of F’ is

A Bs+C

o) =S+ Groz+1

(8.2.14)

However, we see from the table of Laplace transforms that the inverse transform of the second fraction
on the right of (8.2.14) will be a linear combination of the inverse transforms

e tcost and e lsint

of
s+ 1 d 1
(s+1)2+1 (s+1)2+1

respectively. Therefore, instead of (8.2.14) we write

_ A B(s+L)+C

F . 2.1
S P VLR (8.2.15)
Finding a common denominator yields
A 1)2+1|+B 1 C
Fs) = [(s+1)2+1] +B(s+1)s+ s (52.16)

s[(s+1)241]
If (8.2.13) and (8.2.16) are to be equivalent, then
Al(s+1)*4+1]+B(s+1)s+Cs=1—15(5+3s).

This is true for all s if it’s true for three distinct values of s. Choosing s = 0, —1, and 1 yields the system

2A = 1
A-C =
5A+2B+C = -T.
Solving this system yields
A=t g T -3
2 20 T2
Hence, from (8.2.15),
F(s) = 1 7 s+1 5 1
YT s T2 +1)2+1 2(s+12 41
Therefore
1 1 7 s+1 ) 1
Yy — et _ Lt 5T N _2p-1 (2
L) = 5 5) ~2F \Griea1) 28 \Grorea
1 7, 5 4 .
= — ——e "cost— —e "sint.
2 2 2
Example 8.2.9 Find the inverse Laplace transform of
F(s) = __8+3s (8.2.17)

(s2+1)(s2+4)
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Solution The form for the partial fraction expansion is

F()7A+BS+C+DS
5_52—1-1 s2 44

The coefficients A, B, C and D can be obtained by finding a common denominator and equating the
resulting numerator to the numerator in (8.2.17). However, since there’s no first power of s in the denom-
inator of (8.2.17), there’s an easier way: the expansion of

1

= es

can be obtained quickly by using Heaviside’s method to expand

(x+1)1(x+4) _%<x—11-1 _x—11-4>

and then setting = s2 to obtain

1 BV 1
(s24+1)(s2+4) 3\s2+1 s2+44)°

Multiplying this by 8 + 3s yields

F(s) = 8+ 3s _1/843s 8+3s
o (s2+1)(s2+4) 3 \s2+1  s244)°
Therefore g 4
LHF) = 3 sint + cost — 3 sin 2t — cos 2t.
USING TECHNOLOGY |

Some software packages that do symbolic algebra can find partial fraction expansions very easily. We
recommend that you use such a package if one is available to you, but only after you’ve done enough
partial fraction expansions on your own to master the technique.

8.2 Exercises

1. Use the table of Laplace transforms to find the inverse Laplace transform.

3 25— 4 1
@ G ® 13 © P a5t 20
2 21 1
@5 © e s

125 — 24 2 2 4543
(&) —— ) )

(s2 —4s + 85)2 (s—3)2-9 (s2 —4s+5)?

2. Use Theorem 8.2.1 and the table of Laplace transforms to find the inverse Laplace transform.
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(@ (i5_+7§’4 b) (22_—‘ © 5o
@5 © ot 05
@283 Jﬁi ;)f LS o rd fsl;i - ) é -
05 e R B Ub e o

Use Heaviside’s method to find the inverse Laplace transform.

3—(s+1)(s—2)
(s+1)(s+2)(s—2)
2+ (s —2)(3—29)
(s —2)(s+2)(s—3)
3+ (s —2)(10 — 2s — s?)
(s=2)(s+2)(s—1)(s+3)
Find the inverse Laplace transform.
24 3s
(s2+1)(s+2)(s+1)
3542
(s —2)(s®> 4+ 2s+5)
252 +54+3
(s =1)%(s +2)°

(a)

(c)

(e)

(a)

(c)

(e)

T4 (s +4)(18 — 35)
(s=3)(s—1)(s+4)
3—(s—1)(s+1)
(s+4)(s—2)(s—1)
3+ (s—3)(2s% +s—21)
(s=3)(s—1)(s+4)(s—2)

(b)

(d)

®

352425+ 1
(s2+1)(s2+2s+2)
352425+ 1
(s—1)2(s+2)(s+3)
35+ 2
(s2+1)(s—1)2

(b)

(d)

®

Use the method of Example 8.2.9 to find the inverse Laplace transform.

@) 3s+2 ) —4s+1 © 55+ 3
(s2+4)(s2+9) (s24+1)(s? + 16) (s2+1)(s2+4)
—s+1 17s — 34 2s—1
D imrnesy Q@ ety P @rnes D
Find the inverse Laplace transform.
@ 17s — 15 (b) 8s + 56
(s2 —2s+5)(s® +2s+ 10) (s2 — 65+ 13)(s2 + 25+ 5)
5$+9 3s —2
(s2+4s+5)(s? —4s+ 13) (s2 —4s+5)(s? — 65+ 13)
© 3s—1 ® 20s + 40
(2 —25+2)(s®2+25+5) (45?2 — 45+ 5)(4s%2 + 45 + 5)
Find the inverse Laplace transform.
1 1
@ ® T =z 17
35+ 2 34 —17s
© G2 + 25 £ 10) @ G 2= 25 55)
s+ 2 25 —2
(e) ®

(s —3)(s2+2s+5)
Find the inverse Laplace transform.

(s —2)(s®> +2s+10)

413



414 Chapter 8 Laplace Transforms

2541 s+2
(@) (s2+1)(s—1)(s—3) (®) (s24+2s+2)(s2—1)
25 —1 s—6
© (s2—254+2)(s+1)(s—2) @ (s2—1)(s2+4)
© 25 —3 ® 55— 15

s(s —2)(s2 —2s+5) (2 —4s+13)(s —2)(s— 1)

9. Given that f(t) <> F(s), find the inverse Laplace transform of F'(as — b), where a > 0.

10. (a) Ifsy, so,..., s, are distinct and P is a polynomial of degree less than n, then
P A A A,
(s) _ LI SRR '
(s—s1)(s—s82) - -(s—8n) S—81 §— 82 S — Sn

Multiply through by s — s; to show that A; can be obtained by ignoring the factor s — s; on
the left and setting s = s; elsewhere.

(b) Suppose P and (7 are polynomials such that degree(P) < degree(®;) and Q1(s1) # 0.
Show that the coefficient of 1/(s — s1) in the partial fraction expansion of

Py
o= e

is P(s1)/Q1(s1)-

(¢) Explain how the results of (a) and (b) are related.

8.3 SOLUTION OF INITIAL VALUE PROBLEMS

Laplace Transforms of Derivatives

In the rest of this chapter we’ll use the Laplace transform to solve initial value problems for constant
coefficient second order equations. To do this, we must know how the Laplace transform of f” is related
to the Laplace transform of f. The next theorem answers this question.

Theorem 8.3.1 Suppose f is continuous on [0,00) and of exponential order sy, and [ is piecewise
continuous on [0, 00). Then f and f" have Laplace transforms for s > sq, and

L(f") = sL(f) = £(0). (83.1)

Proof
We know from Theorem 8.1.6 that £(f) is defined for s > sg. We first consider the case where f’ is
continuous on [0, 00). Integration by parts yields
T T T
/ e Stf(t)ydt = e*stf(t)’ + s/ e St f(t)dt
0 0 0 - (8.3.2)
= e *THT) - f(0) + s/ e ' f(t)dt
0

forany T > 0. Since f is of exponential order sg, limz .o, e~*7 f(T') = 0 and the last integral in (8.3.2)
converges as I' — oo if s > sg. Therefore

/Oo e St (t)ydt = —f(0)+s /Oo e St f(t)dt
0 0
—f(0) +sL(f),
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which proves (8.3.1). Now suppose 7" > 0 and f’ is only piecewise continuous on [0, T], with discon-
tinuities at ¢; < to < --- < t,_;. For convenience, let to = 0 and ¢,, = 7. Integrating by parts
yields
ti 123

+ s/ e Sf(t) dt

ti—1

= e Nf(t) —e i ftia) + S/ | e de.

ti—1

[ emrma = e

ti—1

ti—1

Summing both sides of this equation from ¢ = 1 to n and noting that
(€7 f(tr) — €710 f(t0)) + (7" f(t2) — e f(t2)) + -+ (€7 fltw) — eV f(tn-1))

= e N f(tn) — e f(to) = e T F(T) = £(0)
yields (8.3.2), so (8.3.1) follows as before.

Example 8.3.1 In Example 8.1.4 we saw that

S

L(coswt) = T
Applying (8.3.1) with f(t) = cos wt shows that

. S w?
L(—wsinwt) = o 1T e

Therefore w

L(sinwt) = ool
which agrees with the corresponding result obtained in 8.1.4. [ ]

In Section 2.1 we showed that the solution of the initial value problem

y/ = ay, y(o) = Yo, (833)

is y = yoe®. We’ll now obtain this result by using the Laplace transform.
Let Y(s) = L(y) be the Laplace transform of the unknown solution of (8.3.3). Taking Laplace trans-
forms of both sides of (8.3.3) yields

L(y') = L(ay),
which, by Theorem 8.3.1, can be rewritten as

sL(y) —y(0) = aL(y),

sY (s) —yo = aY (s).

Solving for Y (s) yields

SO
1
y= ) = £ () —unet (51 ) = we
S—a S—a

which agrees with the known result.
We need the next theorem to solve second order differential equations using the Laplace transform.
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Theorem 8.3.2 Suppose [ and ' are continuous on [0, 00) and of exponential order sy, and that " is
piecewise continuous on [0,00). Then f, f', and " have Laplace transforms for s > s,

L(f) = sL(f) — £(0), (8.3.4)

and

L(f")=s*L(f) — f'(0) — s£(0). (8.3.5)

Proof Theorem 8.3.1 implies that £(f’) exists and satisfies (8.3.4) for s > sg. To prove that L(f")
exists and satisfies (8.3.5) for s > sg, we first apply Theorem 8.3.1 to ¢ = f’. Since g satisfies the
hypotheses of Theorem 8.3.1, we conclude that £(g’) is defined and satisfies

L(g") = sL(g) — 9(0)
for s > so. However, since ¢’ = f”/, this can be rewritten as
L(f") = sL(f) = £(0).
Substituting (8.3.4) into this yields (8.3.5).

Solving Second Order Equations with the Laplace Transform

We’ll now use the Laplace transform to solve initial value problems for second order equations.
Example 8.3.2 Use the Laplace transform to solve the initial value problem

Y — 6y +5y=3e*, y(0)=2, ¢ (0)=23. (8.3.6)

Solution Taking Laplace transforms of both sides of the differential equation in (8.3.6) yields

3
L(y" -6y +5y) =L (3e*) = Pt
s —
which we rewrite as 5
Now denote £(y) = Y (s). Theorem 8.3.2 and the initial conditions in (8.3.6) imply that
L(y) = sY(s) —y(0) = sY(s) — 2
and
L") = s*Y (s) — 9 (0) — sy(0) = s?Y(s) — 3 — 2s.
Substituting from the last two equations into (8.3.7) yields
3
(s°Y(s) —3—25) —6(sY(s) —2) +5Y(s) = 5
s —
Therefore 5
(s> —6s+5)Y(s) = P + (3+2s) +6(—2), (8.3.8)
o)

3+ (s —2)(2s — 9)

(s =5)(s = DY () = S22,




Section 8.3 Solution of Initial Value Problems 417

and
3+ (s—2)(25s—9)

(s—2)(s—=5)(s—1)

Heaviside’s method yields the partial fraction expansion

Y(s) =

1 11 5 1
Y(s) = — - 2
=-S5 t35 5251

and taking the inverse transform of this yields

1 )
_2t 15t 2 ¢t
y=—e +2e +2e

as the solution of (8.3.6). |
It isn’t necessary to write all the steps that we used to obtain (8.3.8). To see how to avoid this, let’s
apply the method of Example 8.3.2 to the general initial value problem

ay’ + by +cy=f(t), y(0)=rko, ¥y (0)=k. (83.9)
Taking Laplace transforms of both sides of the differential equation in (8.3.9) yields
al(y”) +bL(y") +cL(y) = F(s). (8.3.10)
Now let Y'(s) = L(y). Theorem 8.3.2 and the initial conditions in (8.3.9) imply that
L(y)=5Y(s)—ko and L(y") =s*Y(s) — k1 — kos.
Substituting these into (8.3.10) yields
a (s*Y(s) — k1 — kos) + b (sY (s) — ko) + cY (s) = F(s). (8.3.11)
The coefficient of Y (s) on the left is the characteristic polynomial
p(s) =as® +bs+c

of the complementary equation for (8.3.9). Using this and moving the terms involving ko and k; to the
right side of (8.3.11) yields

p(s)Y (s) = F(s) + a(ky + kos) + bko. (8.3.12)

This equation corresponds to (8.3.8) of Example 8.3.2. Having established the form of this equation in
the general case, it is preferable to go directly from the initial value problem to this equation. You may
find it easier to remember (8.3.12) rewritten as

p(s)Y (s) = F(s) + a (y'(0) + sy(0)) + by(0). (8.3.13)
Example 8.3.3 Use the Laplace transform to solve the initial value problem

2y + 3y +y =8, y(0)=—4, 4 (0) =2. (8.3.14)

Solution The characteristic polynomial is

p(s) =25 +3s+1=(25+1)(s+1)
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and
8

F(s) = £8e™) = —.

so (8.3.13) becomes

(25 +1)(s + DY (5) = - i 22— 4s) +3(~4).

Solving for Y (s) yields
Y(s) = 4(1—(s+2)(s+1))
S (s+1/2)(s+1)(s+2)

Heaviside’s method yields the partial fraction expansion

4 1 8 8 1

Y(s) == - °
) =35572 531 T35

so the solution of (8.3.14) is

4
y=LHY(s)) geft/Q —8e 4 e
(Figure 8.3.1).
y y
A A
4
B s
1 2 3 4 5 6 ‘1 2 3 4 5 6
1k b
] -2
. -3
4 _4
4 8 17 )
Figure 8.3.1 y = ge*tﬂ — 8t + 567% Figure 832 y = 3~ §e*tcost — —e tsint
Example 8.3.4 Solve the initial value problem
y' 4+ 2y +2y=1, y(0)=-3, y(0)=1. (8.3.15)

Solution The characteristic polynomial is
p(s) =82 +254+2=(s+1)*+1

and
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so (8.3.13) becomes
1
[(s+1)*+1]Y(s) = S+ (1 —3s) +2(-3).
Solving for Y (s) yields
1—3s(5+ 3s)
s[(s+1)2+1]

In Example 8.2.8 we found the inverse transform of this function to be

Y(s) =

L 7 ~tcost > “tgint
=_-—= — —e 'sin
Y 2 2

[\]

(Figure 8.3.2), which is therefore the solution of (8.3.15).

REMARK: In our examples we applied Theorems 8.3.1 and 8.3.2 without verifying that the unknown
function y satisfies their hypotheses. This is characteristic of the formal manipulative way in which the
Laplace transform is used to solve differential equations. Any doubts about the validity of the method for
solving a given equation can be resolved by verifying that the resulting function y is the solution of the
given problem.

8.3 Exercises

In Exercises 1-31 use the Laplace transform to solve the initial value problem.

1. ' +3y +2y=c¢', y0)=1, ¢ (0)=—-6
2. Y=y —6y=2 y0)=1 y(0)=0
3. Y+ —2y=2e% y(0)=-1, ¢ (0)=4
4. o' —dy=2e3%, y(0)=1, 2 (0)=-1
5. y'+y —2y=¢e3 y(0)=1, ¥ (0)=-1
6. ' +3y +2y=6¢c, y0)=1, % (0)=-1
7. ' +y=sin2t, y(0) =0, ¢ (0)=1
8. ' -3y +2y=2e y0)=1, ¢ (0)=-1
9. ' =3y +2y=c¢e* y0)=1, y(0)=-2
10. " -3y +2y=¢e3 y(0)=-1, ¢'(0)=—-4
1. ¢ +3y +2y=2¢!, »(0)=0, ¢ (0)=-1
12 ¢y'+y —2y=—-4, y(0)=2, ¥y (0)=3
13. ¢y’ +4y=4, y(0)=0, (0)=1
4. " —y —6y=2, y(0)=1, ¥(0)=0
15. " +3y +2y=c¢€t, y(0)=0, ¢ (0)=1
16. " —y=1, y(0)=1, ¢ (0)=0
17. ¢" +4y=3sint, y(0) =1, ¢ (0)=-1
18. '+ =23, y0)=-1, 3(0)=4
19. y'+y=1 y0)=2 y(0)=0
20. y'+y=t, y(0)=0, y(0)=2
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21, y'4+y=t—3sin2¢, y0)=1, 3 (0)=-3

22, Y45y +6y=2¢"t y0)=1, % (0)=3

23. ¢ 42y +y==6sint —4cost, y(0)=-1, ¢y (0)=1

24. ' —2y —3y=10cost, y(0)=2, ¢y (0)=7

25. Yy’ +4y=4sint+6cost, y(0)=-6,y'(0)=2

26. 3’ +4y=8sin2t+9cost, y(0)=1, 3 (0)=0

27. " =5y + 6y =10e cost, y(0)=2, ' (0)=1

28. o' +2y +2y=2t, y(0)=2, ¢ (0)=-7

29. ' —2y +2y=>5sint+ 10cost, y(0) =1, y'(0)=2

30. o’ + 4y + 13y = 10e™t —36¢et, y(0) =0, y'(0) = —16
31. ¢ +4y +5y =e (cost +3sint), y(0)=0, ¢'(0)=4
32. 2y =3y —2y=4et, y(0)=1, y(0)=-2

33. 6y —y —y=23e%, y0)=0,y(0)=0

d. 2y +2y +y=2t, y0)=1, ¢y (0)=-1

35. 4y’ — 4y +5y =4sint —4cost, y(0)=0, 3/ (0)=11/17
36. 4y + 4y +y = 3sint +cost, y(0)=2, y/(0) = -1

37. 9y +6y +y=3e3 y(0) =0,y (0)=-3

38. Suppose a, b, and c are constants and a # 0. Let

as+b a
:£71 B d :ﬁil .
hn (a52+bs+c> an 92 (a52+bs+c>

11(0)=1, ¥(0)=0 and y(0) =0, y5(0)=1.

HINT: Use the Laplace transform to solve the initial value problems

Show that

ay’ +by' +cy = 0, y0)=1, %'(0)=0
ay’ +by +cy = 0, y(0)=0, y'(0)=1

8.4 THE UNIT STEP FUNCTION

In the next section we’ll consider initial value problems

ay”" + by +cy=f(t), y0)=ko, ¢ (0)=kFki,

where a, b, and c are constants and f is piecewise continuous. In this section we’ll develop procedures
for using the table of Laplace transforms to find Laplace transforms of piecewise continuous functions,
and to find the piecewise continuous inverses of Laplace transforms.
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Example 8.4.1 Use the table of Laplace transforms to find the Laplace transform of

ft) = (8.4.1)

A+1, 0<t<2,
3, t>2

(Figure 8.4.1).

Solution Since the formula for f changes at t = 2, we write

L) = [ e
9y oo (8.4.2)
= / e S (2t 4 1) dt + / e %t (3t) dt.
0 2
To relate the first term to a Laplace transform, we add and subtract

/ e (2t +1)dt
2

in (8.4.2) to obtain

L(f) = /OO st 2t+1)dt+/ooe’5t(3t—2t—1)dt

OOO 200
= / et 2t+1)dt+/ e St —1)dt (8.4.3)
0 2

L(2t+1) + /e*“(t—l)dt.

To relate the last integral to a Laplace transform, we make the change of variable x = ¢ — 2 and rewrite
the integral as

/ e Sttt —1)dt = / e T2 (x4 1) da
2 0

= 6725/ e (x4 1)dx.
0

Since the symbol used for the variable of integration has no effect on the value of a definite integral, we
can now replace x by the more standard ¢ and write

/ e St —1)dt = 6*25/ e St +1)dt = e 2 L(t+1).
2 0

This and (8.4.3) imply that
L(f)=L2t+1)+e > L(t+1).
Now we can use the table of Laplace transforms to find that

2 1 _as [ 1 1
E(f):5_2+g+e 2 (S—2+—>..

S
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- N W A O O N ® ©

Figure 8.4.1 The piecewise continuous function
(8.4.1) Figure 8.4.2 y = u(t — 1)

Laplace Transforms of Piecewise Continuous Functions

We’ll now develop the method of Example 8.4.1 into a systematic way to find the Laplace transform of a
piecewise continuous function. It is convenient to introduce the unit step function, defined as

0, t<0
u(t) = { L +>o0. (8.4.4)

Thus, u(t) “steps” from the constant value 0 to the constant value 1 at ¢ = 0. If we replace ¢ by ¢t — 7 in
(8.4.4), then
0, t<, |
u(t_T)_{ 1, t>7

that is, the step now occurs at ¢ = 7 (Figure 8.4.2).

The step function enables us to represent piecewise continuous functions conveniently. For example,
consider the function

f(t), t>t, (8.4.5)

where we assume that fy and f; are defined on [0, c0), even though they equal f only on the indicated
intervals. This assumption enables us to rewrite (8.4.5) as

f@_{ folt), 0<t<t,

f@) = fo(t) +ult —t1) (f1(t) — fo(t)) - (8.4.6)
To verify this, note that if ¢ < #; then u(t — ¢1) = 0 and (8.4.6) becomes
f@) = fo(t) +(0) (f1(t) = fo(t)) = fo(t).
If £ > ¢, then u(t — ;) = 1 and (8.4.6) becomes
f@) = fot) + (1) (f1(t) = fo(t)) = f(D).

We need the next theorem to show how (8.4.6) can be used to find L(f).
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Theorem 8.4.1 Let g be defined on [0, 00). Suppose T > 0 and L (g(t + 7)) exists for s > so. Then
L (u(t —7)g(t)) exists for s > so, and

Lu(t —7)g(t)) =e " L(g(t+7)).

Proof By definition,

L(u(t—71)g(t)) = /000 e Stu(t — 7)g(t) dt.

From this and the definition of u(t — 7),

L(u(t—7)g(t)) = /07' e " (0) dt + /°° e *'g(t)dt.

The first integral on the right equals zero. Introducing the new variable of integration x = ¢ — 7 in the
second integral yields

L(u(t—71)g(t)) = /000 675(“7)9(3: +7)der=e"°T /000 e g(x + 1) dx.

Changing the name of the variable of integration in the last integral from z to ¢ yields

Lu(t—"7)g(t) =e"" /000 e Stgt +1)dt=e " L(g(t+7)). M

Example 8.4.2 Find
L(u(t—1)( +1)).

Solution Here 7 = 1 and g(t) =t + 1, so
gt +1) =t +1)* +1=>+2t +2.

Since 5 5 5
Llt+1)=5+5+-,
s s s

Theorem 8.4.1 implies that

L(ut—1)(t*+1)=¢* (533 + % + 2) :

S S

Example 8.4.3 Use Theorem 8.4.1 to find the Laplace transform of the function

A+1, 0<t<2,
t:
1®) { 3,  t>2,

from Example 8.4.1.

Solution We first write f in the form (8.4.6) as

F(t) =20+ 1+ u(t —2)(t — 1).
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Therefore
L(f) = L2t+1)+L(u(t—-2)(t-1))
= L(2t+1)+e ?L(t+1) (from Theorem 8.4.1)
2 n 1 42 1 +1
T 2TsTe 2 s)’
which is the result obtained in Example 8.4.1. [ ]

Formula (8.4.6) can be extended to more general piecewise continuous functions. For example, we can

write
fO(t)a O§t<t1;

ft) =4 filt), t1 <t <t
fa(t), t>t,
f(@t) = fo(t) +ult —t1) (f1(t) — fo(t)) + ult —t2) (f2(t) — fr(?))
if fo, f1, and fo are all defined on [0, c0).

Example 8.4.4 Find the Laplace transform of

L 0<t<2,
=2t+1, 2<t<3,
t) = _ 8.4.7
£ 3,  3<t<5, 847
t—1, t>5
(Figure 8.4.3).
Solution In terms of step functions,
f&) = 14ut—2)(-2t+1-1)+u(t—3)3t+2t—1)

+u(t —5)(t—1—31),

> Ft) = 1= 2u(t — 2)t + ut — 3)(5t — 1) — u(t — 5)(2t + 1).

Now Theorem 8.4.1 implies that
L) = LA)=2eL(t+2)+e > LGBE+3)—1)—e > L(2(t+5)+1)
= L(1) =27 2L({t+2) +e > L(5t+ 14) — e >5L(2t + 11)

1 1 2 5 14 2 11
_ __26725 — 42 —‘1-6735 4= —6755 240 ) e
s s2 s 52 S 52 S

The trigonometric identities

— —

sin(A+ B) = sinAcosB + cos Asin B (8.4.8)
cos(A+ B) = cosAcosB —sinAsin B (8.4.9)

are useful in problems that involve shifting the arguments of trigonometric functions. We’ll use these
identities in the next example.
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16 -
14 |-
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1 2 3 4 5 6
2
—4 \
6

Figure 8.4.3 The piecewise contnuous function (8.4.7)

Example 8.4.5 Find the Laplace transform of

sint, 0<t< g
() =94 cost— 3sint, g <t<m, (8.4.10)
3cost, t>m
(Figure 8.4.4).
Solution In terms of step functions,
f(t) =sint 4+ u(t — 7/2)(cost —4sint) + u(t — 7)(2cost + 3sint).

Now Theorem 8.4.1 implies that

L(f) = L(sint)+e 2L (cos(t+ ) —4sin(t+ %)) 84.11)

+e ™ L (2cos(t + ) + 3sin(t + 7))
Since
cos (t—l— g) — 4sin (t—l— g) = —sint — 4 cost

and

2cos(t + ) + 3sin(t + 7) = —2cost — 3sint,
we see from (8.4.11) that

L(f) = L(sint) —e ™/2L(sint +4cost) — e ™ L(2cost + 3sint)

- 1 P 1+4s g 34+ 2s -
Tos2+41 s2+1 s24+1)°
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\J

-3

Figure 8.4.4 The piecewise continuous function (8.4.10)

The Second Shifting Theorem
Replacing g(t) by g(t — 7) in Theorem 8.4.1 yields the next theorem.

Theorem 8.4.2 [Second Shifting Theorem| If T > 0 and L(g) exists for s > so then L (u(t — 7)g(t — 7))
exists for s > sg and

Lu(t—T)g(t —7)) =e*"L(g()),
or, equivalently,

ifg(t) < G(s), thenu(t —1)g(t — 7) < e *TG(s). (8.4.12)

REMARK: Recall that the First Shifting Theorem (Theorem 8.1.3 states that multiplying a function by e
corresponds to shifting the argument of its transform by a units. Theorem 8.4.2 states that multiplying a

Laplace transform by the exponential e~7* corresponds to shifting the argument of the inverse transform
by 7 units.

Example 8.4.6 Use (8.4.12) to find

Solution To apply (8.4.12) we let 7 = 2 and G(s) = 1/s%. Then g(t) = t and (8.4.12) implies that

! (:j) —u(t—-2)(t—2). m
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Example 8.4.7 Find the inverse Laplace transform 7 of

and find distinct formulas for h on appropriate intervals.

Solution Let . . 5 41
Go(S):— Gl(S):—-i-g, GQ(S):—-FE

52 s3
Then
go(t) =t, g1(t) =t +2, go(t) = 2t* + 1.

Hence, (8.4.12) and the linearity of £~ imply that
h(t) = L7(Go(s) = L7 (e7°Ga(s)) + L7 (74 Ga(s))
= t—ult—1)[(t-1)+2 +ult—4)[20t—4)>°+1]
= t—u(t—1)(t+1)+u(t—4)(2t* — 16t + 33),
which can also be written as

t, 0<t<1,
h(t) = -1, 1<t<4, =
2t — 16t + 32, t>4.

Example 8.4.8 Find the inverse transform of

H(s) = 2s 7%535—1-1_’_ s s+1
5 244 € s249 € 52465+ 10°
Solution Let ) 3 0
S s+
G =— G —
o(s) 244 1(s) s2+97
and ) 5 5
GQ(S) = s = (S+ ) — .
$24+6s+10 (s+3)2+1
Then )
go(t) =2cos2t, g1(t) = —3cos3t— 3 sin 3t,
and

go(t) = e 3 (cost — 2sint).
Therefore (8.4.12) and the linearity of £~ imply that

h(t) = 2cos2t —u(t—1/2) |3cos3(t —m/2) + %sinfi (t - g)]

+u(t — m)e 3= [cos(t — ) — 2sin(t — )] .

427
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Using the trigonometric identities (8.4.8) and (8.4.9), we can rewrite this as
h(t) = 2cos2t+u(t —m/2) (3sin3t — & cos 3t)

(8.4.13)

—u(t — m)e 3¢ (cost — 2sint)

(Figure 8.4.5).

\ / \ ! ! -
1 3 4 5 6
al \
o v
3L
4F
5L
6
7L

Figure 8.4.5 The piecewise continouous function (8.4.13)

N w0
I

8.4 Exercises

In Exercises 1-6 find the Laplace transform by the method of Example 8.4.1. Then express the given
function f in terms of unit step functions as in Eqn. (8.4.6), and use Theorem 8.4.1 to find £(f). Where

indicated by , graph f.

t, 0<t<1,
1, 0<t<d4, 2. f(t)=
1. f(t)= 1, t>1.
t, t>4.
2t —1, 0<t<2, 1, 0<t<1,
3. -C/G fit) = 4. -C/G fit) =
- (® { t, t>2. - () {t+2, t>1.

t—1, 0<t<2, 2, 0<t<1,
5. t == 6. t =
f) 4 t>2. f) 0, t>1.

3
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In Exercises 7-18 express the given function f in terms of unit step functions and use Theorem 8.4.1 to

Sfind L(f). Where indicated by , graph f.

t2+2, 0<t<l1,
f(t) =

0, 0<t<2, 8.
7. f(t) = t,  t>1.
{t1+&,t22
tet, 0<t<1, et 0<t<l1,
9"ﬂﬂ_{ e, t>1. m"ﬂﬂ_{ez%,tzL
—t, 0<t<2, 0, 0<t<1,
1. f(t)=1{ t—4, 2<t<3, 12. f(t)=4 t, 1<t<?2
1, t>3. 0, t>2.
t, 0<t<l, t, 0<t<1,
13, f(t)=4 3, 1<t<2, 4. ft)=1¢ 2—-t, 1<t<2,
0, t>2. 6, t>2.
sint, 0<t< g
15. [C/G] f(t) =< 2sint, g§t<7r,
cost, t

™
2, 0<t<1
16. [C/G] f(t) =4 —2t+2, 1
3t, t>3.
3, 0<t<2,

17. |C/IG] f(t) =4 3t+2, 2<t<4,

4t,  t> 4.
(t+1)2, 0<t<1,
18. |C/G] f(t) =
- () {(t+2)2, t>1.

In Exercises 19-28 use Theorem 8.4.2 to express the inverse transforms in terms of step functions, and
then find distinct formulas the for inverse transforms on the appropriate intervals, as in Example 8.4.7.

Where indicated by , graph the inverse transform.

&
25 20. H(s) =
19. H(s) =~ s(s+1)
s—2
e—s e 2s
21. H(s) = —+ —
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23.

24.

25.

26.

27.

28.

29.
30.

31.

Chapter 8 Laplace Transforms

5 1 35 (6 7 3e~ 0
H(S)—(g—s—2>+€ (g+5_2>+ 3

Hs) = & (1= 25)
6= armes
= (1) + (359)
H(s)=e 2 [(S i(f)?s?)z 5T _51;251_ 2)}

1 1 3 2 4 3
H(S):—+S—2+€75 (g+s—2>+635 (g—l——)

s2
12 L. (3 1 e~ 4
H(s):;——+e s i

53 s

Find £ (u(t — 7)).

Let {t,, }2°_, be a sequence of points such that tg = 0, ty41 > by, and limy, o0 t,, = 0o. For
each nonnegative integer m, let f,,, be continuous on [t,,, c0), and let f be defined on [0, co) by

ft) = fon(t), tm <t <tmy1 (m=0,1,...).

Show that f is piecewise continuous on [0, c0) and that it has the step function representation

) () + Y ult —tm) (fm(t) = frne1(t), 0 < < 0.

How do we know that the series on the right converges for all ¢ in [0, 00)?

In addition to the assumptions of Exercise 30, assume that

|fm()| < Met t > t,, m=0,1,..., (A)

and that the series -
> e ®)

m=0

converges for some p > 0. Using the steps listed below, show that £( f) is defined for s > sy and

L(f) = L(fo) + Z ~L(gm) (©)

for s > sg + p, where
gm(t) = fmn(t +tm) = frn—1(t +tm).
(a) Use (A) and Theorem 8.1.6 to show that

_ T ety ) dt (D)
>

is defined for s > sg.
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(b) Show that (D) can be rewritten as

E(f) = Z (/Oo eistfm(t) dt — /Oo eistfm(t) dt) . (E)

m=0 tm tmt1

(¢) Use (A), the assumed convergence of (B), and the comparison test to show that the series

Ooe*“fm(t)dt and [ e f, (t) dt
> by

m+1

both converge (absolutely) if s > sg + p.
(d) Show that (E) can be rewritten as

L) = L)+ S / T (fun0) — frr (1)) d

if s > 59 + p.
(e) Complete the proof of (C).

32.  Suppose {tm }5°_, and {fn }55_, satisfy the assumptions of Exercises 30 and 31, and there’s a
positive constant K such that £,, > Km for m sufficiently large. Show that the series (B) of
Exercise 31 converges for any p > 0, and conclude from this that (C) of Exercise 31 holds for
S > Sp.

In Exercises 33-36 find the step function representation of f and use the result of Exercise 32 to find
L(f). HINT: You will need formulas related to the formula for the sum of a geometric series.

3. f)=m+1l,m<t<m+1(m=0,1,2,...)
M. fO)=(-1)", m<t<m+1(m=0,1,2,...)
35. f)=m+1)2,m<t<m+1(m=0,1,2,...)
6. fO)=(-1)"m m<t<m+1(m=0,1,2,...)

8.5 CONSTANT COEEFFICIENT EQUATIONS WITH PIECEWISE CONTINUOUS FORCING FUNC-
TIONS

We’ll now consider initial value problems of the form

ay’ + by +cy=f(t), y0)=ky, % (0)=k, (8.5.1)

where a, b, and ¢ are constants (a # 0) and f is piecewise continuous on [0, c0). Problems of this kind
occur in situations where the input to a physical system undergoes instantaneous changes, as when a
switch is turned on or off or the forces acting on the system change abruptly.

It can be shown (Exercises 23 and 24) that the differential equation in (8.5.1) has no solutions on an
open interval that contains a jump discontinuity of f. Therefore we must define what we mean by a
solution of (8.5.1) on [0, c0) in the case where f has jump discontinuities. The next theorem motivates
our definition. We omit the proof.
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Theorem 8.5.1 Suppose a, b, and c are constants (a # 0), and f is piecewise continuous on [0, 00). with
jump discontinuities at ty, ..., t,, where

0<ty < - <ty

Let ko and ky be arbitrary real numbers. Then there is a unique function y defined on [0, 00) with these
properties:

(@) y(0) = ko and y'(0) = k.
(b) yandy are continuous on [0, o).

(¢) v is defined on every open subinterval of [0, 00) that does not contain any of the points ti, ..., tp,

and
ay” + by +cy = f(t)

on every such subinterval.

(d) " has limits from the right and left at t1, ..., t,.

We define the function y of Theorem 8.5.1 to be the solution of the initial value problem (8.5.1).
We begin by considering initial value problems of the form

fO(t)a 0§t<t1;

A@), t>t y(0) = ko, y'(0) = ki, (8.5.2)

ay’ +by' +cy = {

where the forcing function has a single jump discontinuity at ¢;.
We can solve (8.5.2) by the these steps:

Step 1. Find the solution yo of the initial value problem

ay” +by' +cy = fo(t), y(0)=ko, ¥ (0)=ki.
Step 2. Compute ¢y = yo(t1) and c1 = y(t1).
Step 3. Find the solution y; of the initial value problem

ay’ +by +cy = f1(t), y(t) =co, y(t1)=c1.
Step 4. Obtain the solution y of (8.5.2) as

o yO(t)a 0§t<t1
] (), t>t.

It is shown in Exercise 23 that 3/ exists and is continuous at t;. The next example illustrates this
procedure.

Example 8.5.1 Solve the initial value problem
y' +y=[f1), y(0)=2 y(0)=-1, (8.5.3)

where
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\/

Figure 8.5.1 Graph of (8.5.4)

Solution The initial value problem in Step 1 is
y'+y=1 y0)=2, 3 (0)=-1
We leave it to you to verify that its solution is
Yo = 1 4+ cost —sint.

Doing Step 2 yields yo(7/2) = 0 and y((7/2) = —1, so the second initial value problem is

s

/! — _1 (E) — 0 /(_) — _1
Yy +uy Y B » Y B

We leave it to you to verify that the solution of this problem is
y1 = —1 4+ cost +sint.

Hence, the solution of (8.5.3) is

t
y = - (8.5.4)
2

(Figure:8.5.1).
If fo and f; are defined on [0, 00), we can rewrite (8.5.2) as

ay” +by' + cy = fo(t) +ult —t2) (f1(t) = fo(t),  y(0) =ko, 4'(0) =k,

and apply the method of Laplace transforms. We’ll now solve the problem considered in Example 8.5.1
by this method.
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Example 8.5.2 Use the Laplace transform to solve the initial value problem

Yy +y=f1t), y0) =2,y (0)=-1, (8.5.5)
where -
1, 0<t< 5
t =
=11 o5

Solution Here
™

fty=1-2u(t-2).
so Theorem 8.4.1 (with g(¢) = 1) implies that

1— 26771'5/2
L(f) = ——
S
Therefore, transforming (8.5.5) yields
1-2 —7s/2
(2 + 1Y (s) = — 1425,
S
o) 0s 1
Y(s) = (1—2e7™/?)G(s) + —— 8.5.6
() = (1= 2e7™/)G(s) + 5. (85.6)
with
G(S) = #
Cos(s2 1)
The form for the partial fraction expansion of G is
1 A Bs+C
——— =+ . 8.5.7
s(s2+1) s+52+1 ( )
Multiplying through by s(s? + 1) yields
A(s* 4+ 1)+ (Bs +C)s = 1,
or
(A+B)s> +Cs+A=1.
Equating coefficients of like powers of s on the two sides of this equation shows that A =1, B = —A =
—1and C' = 0. Hence, from (8.5.7),
1 S
G(s) =—-—
(s) s s241

Therefore

From this, (8.5.6), and Theorem 8.4.2,
y=1—cost—2u (t— g) (1 — cos (t - g)) + 2cost —sint.
Simplifying this (recalling that cos(t — 7/2) = sint) yields

y=1+cost—sint — 2u (t— g) (1 —sint),
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or

Y= .
—1+cost+sint, ¢ >

which is the result obtained in Example 8.5.1.

REMARK: It isn’t obvious that using the Laplace transform to solve (8.5.2) as we did in Example 8.5.2
yields a function y with the properties stated in Theorem 8.5.1; that is, such that y and 3/ are continuous
on [0, 00) and " has limits from the right and left at ¢;. However, this is true if fy and f; are continuous
and of exponential order on [0, c0). A proof is sketched in Exercises 8.6.11-8.613.

Example 8.5.3 Solve the initial value problem

y' —y=ft), y0)=-1,4(0) =2, (8.5.8)

where
t, 0<t<1,
1, t>1.

3

Solution Here
Ft) =t —ult — 1)t — 1),
L(f) = L) =Lt -1 -1))
= L(t) — e °L(t) (from Theorem 8.4.1)
1 e *

s2 2

S

Since transforming (8.5.8) yields

(82 = 1)Y(s) = L(f) +2 — s,

we see that 5
Y(s) = (1—e ") H(s) + 51, (8.5.9)
s
where 1 1 1
H = = _—
() s2(s2—-1) s2—-1 %’
therefore
h(t) = sinht — ¢. (8.5.10)
Since )
£t ( 2_ i ) = 2sinht — cosht,
s?—1
we conclude from (8.5.9), (8.5.10), and Theorem 8.4.1 that
y =sinht — ¢t —u(t — 1) (sinh(t — 1) — ¢ + 1) + 2sinh ¢ — cosh,
or
y =3sinht — cosht — ¢ —u(t — 1) (sinh(t — 1) — ¢t + 1) (8.5.11)

We leave it to you to verify that iy and 3/’ are continuous and " has limits from the right and leftat t; = 1.
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Example 8.5.4 Solve the initial value problem

y” +y= f(t)a y(()) =0, y/(()) =0,

where -
0 0<t< —
) —_ < 45
f(t) = cos 2t, % <t<m,
0, t>m.

Solution Here
f(&) = u(t — w/4) cos 2t — u(t — ) cos 2t,

SO

5
=
I

L (u(t —7/4) cos2t) — L (u(t — ) cos 2t)
e ™AL (cos2(t + 7/4)) — e ™ L (cos2(t + 7))
= —e ™/*L(sin2t) — "™ L(cos 2t)
_ 2~ Ts/4 _ se” ™8
s2+4 s2+4
Since transforming (8.5.12) yields

(s* + )Y (s) = L(f),
we see that
Y (s) = e ™/ H (s) + e ™ Hy(s),

where
2 S
he=Emmern ™ R ey

To simplify the required partial fraction expansions, we first write

(x+1)1(x+4) _%[x—li-l _xj-él]'

Setting = s? and substituting the result in (8.5.14) yields

Hl(s)_—g[ ! ! ] and HQ(S)__E[ i i ]

2+1 s2+4 30241 s2+4

The inverse transforms are
hi(t) = 22 sint + ! sin2¢t  and ho(t) = 1 cost + ! cos 2t.
3 3 3 3
From (8.5.13) and Theorem 8.4.2,

y:u(t—%) hi (t—g) +u(t —m)ha(t — 7).

h(t E) — 2'(t E)+l'2(t E)
1 1 = 35111 1 35111 1

2 1
= —?(Sint—cost) - gcos2t

Since

(8.5.12)

(8.5.13)

(8.5.14)

(8.5.15)
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1.0 -

0.5 -

y

-0.5 -

-1.0 -

Figure 8.5.2 Graph of (8.5.16)

and
1 1
ho(t —m) = —gcos(t—w)+§cos2(t—7r)
= 1cost+1cos2t
3 3 ’

(8.5.15) can be rewritten as

1 1
y=-—=-u (t - E) (\/i(sint — cost) + cos 2t) + gu(t — 7)(cos t 4 cos 2t)

3 4
or -
0 0<t< —
3 —_ < 4,
2 1
Y= —%(Sint —cost) — 3 €08 2t, % <t<m, (8.5.16)
2 1 2
—% sint + +3\/_ cost, t>m.

We leave it to you to verify that y and ¢’ are continuous and " has limits from the right and left at
t; = w/4 and to = 7 (Figure 8.5.2).

8.5 Exercises

In Exercises 1-20 use the Laplace transform to solve the initial value problem. Where indicated by

, graph the solution.
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10.

11.

12.

13.

w

14.

15.

16.

17.
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} 3, 0<t<m, .
v +y= y(0) =0, %' (0)=0
0, t>m,
3, 0<t<4,
y”+y—{.2t—5 t>4 =1 3 (0)=0
. . 4, 0<t <1, ,
6, t>1,
, e, 0<t<2, ,
y' -y = y(0) =3, y'(0)=-1
1, t>2,
0, 0<t<1,
y' =3y +2y = I, 1<t<2, y(0)=-3, ¥ (0)=1
-1, t>2,
[sint], 0<t<2m,
(CIGy" +4y = y(0) = -3, ¢(0)=1
0, t>2m,
1, 0<t<1
y' =5y +dy=¢ -1, 1<t<2, y(0) =3, ¥ (0)=-5
0, t>2,

y'+9y =
sint

[CiGly" +ay =

Yty = {
_t,

y”—3y’+2y—{

t
7 o 5

3

3

3

3T
cost, 0<t< bR

3

t> =
_2’

0,
2t — 4
0<t< 2,
t > 2m,

0<t<2,

t>2,

3

, y(0)=0, ¢(0)=0

1, 0<t<?2,
y~+3y/+zy_{_1 VSIS o =0y =0

y”—4y’+3y—{
y”+2y’+y—{
y”+2y’+y—{

y”+3y’+2y—{

-1, 0<t<1,
1, t>1,
et, 0<t<1,
et —1, t>1,
4et, 0<t <1,
0, t=>1,
et 0<t<1,
0, t=>1,



18.

19.

20.

21.

22,

23.
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e, 0<t<?2

7 ’ _ > ) _ / _
y—4y+4y—{_2t t>9 y(0) =0, y'(0) = -1

C/Gly" =4 —t

€,

2, 0<t<l,
, 1<t<2, y0)=1,%(0)=0
t4+1, t>2,

1, 0<t<2m,

y' + 2y +2y = t, 2r<t<3m y(0)=2, ¢ (0)=-1

-1, t>3m,

Solve the initial value problem

where

f&)=m+1, m<t<m+1l, m=012,....

Solve the given initial value problem and find a formula that does not involve step functions and
represents y on each interval of continuity of f.

(a)

(b)

(c)

(d)

(e)

®

(a)

(b)

y'+y=f(t), y0)=0, y(0)=0;

f)=m+1, mr<t<(m+1m, m=01,2,...

y'+y=f(t), y0)=0, y(0)=0;

f@&) = m+0t, 2mr <t < 2(m+ 1)x, m = 0,1,2,... HINT: You'll need the
Sformula

m(m+ 1)

142+ 4+m= 5

y'+y =11, y0)=0, y(0)=0;

() =)™, mr<t<(m+lm, m=0,1,2,....
y' -y =11, y(0)=0, y(0)=0;

f&)=m+1, m<t<(m+1l), m=0,12....
HINT: You will need the formula

L+r+- 4™ =—— (r#1).

y' 2y +2y=f(t), y(0)=0, y(0)=0;

f(t) =(m+1)(sint +2cost), 2mr <t<2(m+ L7, m=0,1,2,....

(See the hint in (d).)

y' =3y +2y=f(t), y(0)=0, y(0)=0;

f&)=m+1, m<t<m+1l, m=0,1,2

(See the hints in (b) and (d).)

Let g be continuous on («, 3) and differentiable on the («, t9) and (to, 3). Suppose A =
limy—¢,— ¢'(t) and B = limy_; 4 ¢'(t) both exist. Use the mean value theorem to show

that
g I® —9lo) _ 0y, 9B —9(t)

=B.
t—to— t—to t—to+ t—to

Conclude from (a) that ¢’ (¢o) exists and ¢’ is continuous at ¢ if A = B.
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24.

25.

26.

(c) Conclude from (a) that if g is differentiable on («, 3) then ¢’ can’t have a jump discontinuity

on (a, ).

(a) Leta, b, and cbe constants, with a # 0. Let f be piecewise continuous on an interval («, 3),
with a single jump discontinuity at a point ¢y in (v, 3). Suppose y and ' are continuous on

(cr, ) and 3’ on («, to) and (¢o, 3). Suppose also that
ay’ +by +cy = f(t)
on (a, tg) and (to, 3). Show that

f(tot+) — fto—)

a

Y (to+) — ¢ (to—) = #£0.

(b) Use (a) and Exercise 23(c) to show that (A) does not have solutions on any interval («, )

that contains a jump discontinuity of f.

Suppose Py, P1, and P, are continuous and Py has no zeros on an open interval (a, b), and that F

has a jump discontinuity at a point ¢¢ in (a, b). Show that the differential equation
Po(t)y" + Pi(t)y' + Pa(t)y = F (1)

has no solutions on (a, b).HINT: Generalize the result of Exercise 24 and use Exercise 23(c).

Let0 =ty < t; < --- < ty. Suppose f,, is continuous on [t,,, c0) form = 1,...,n. Let

fm(t); tm§t<tm 5 le,...,n—l,
f@_{ﬁﬁxtzm -

Show that the solution of
ay’ +by +cy=f(t), y(0)=ko, ¥(0)=ky,
as defined following Theorem 8.5.1, is given by
20(t), 0<t<t,
20(t) + 21(t),  t <t <t
20+ -+ zn-1(t), .tn,l <t <tn,
20+t z20(t), t>ty,
where z is the solution of
az’" + b2 +cz= fot), 2(0)=ko, 2'(0)=k
and z,,, is the solution of
az" + b2 +cz= frn(t) = fno1(t), 2(tm) =0, 2'(tm)=0

form=1,...,n.

8.6 CONVOLUTION
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In this section we consider the problem of finding the inverse Laplace transform of a product H(s) =
F(s)G(s), where F and G are the Laplace transforms of known functions f and g. To motivate our
interest in this problem, consider the initial value problem

ay” +by' +cy=f(t), y0)=0, y'(0)=0.

Taking Laplace transforms yields

$O
Y (s) = F(s)G(s), (8.6.1)
where 1
GO = F e re

Until now wen’t been interested in the factorization indicated in (8.6.1), since we dealt only with differ-
ential equations with specific forcing functions. Hence, we could simply do the indicated multiplication
in (8.6.1) and use the table of Laplace transforms to find y = £~ 1(Y’). However, this isn’t possible if we
want a formula for y in terms of f, which may be unspecified.

To motivate the formula for £~1(FG), consider the initial value problem

Y —ay = f(t), y(0)=0, (8.6.2)

which we first solve without using the Laplace transform. The solution of the differential equation in
(8.6.2) is of the form y = ue® where

u = e ().

Integrating this from 0 to ¢ and imposing the initial condition «(0) = y(0) = 0 yields

u= /O Cear £(r)dr.

Therefore . .
y(t) = e / e T f(r)dr = / =) f(7) dr. (8.6.3)
0 0
Now we’ll use the Laplace transform to solve (8.6.2) and compare the result to (8.6.3). Taking Laplace
transforms in (8.6.2) yields

SO

which implies that

y(t) = L1 (F(s) ! ) (8.6.4)

If we now let g(t) = e?, so that

then (8.6.3) and (8.6.4) can be written as

y(t) = / (gt — 7)dr
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and
y=LY(FG),

respectively. Therefore

YFG) = / f(m)g(t —71) (8.6.5)

in this case.
This motivates the next definition.

Definition 8.6.1 The convolution f * g of two functions f and g is defined by

(f *g)(t /f gt —7)

It can be shown (Exercise 6) that f x g = g * f; that s,

/Otf(t—T dT—/f gt —71)d

Eqn. (8.6.5) shows that L~}(FG) = f * g in the special case where g(t) = e®. This next theorem
states that this is true in general.

Theorem 8.6.2 [The Convolution Theorem| If L(f) = F and L(g) = G, then
L(f xg) =FG.

A complete proof of the convolution theorem is beyond the scope of this book. However, we’ll assume
that f * g has a Laplace transform and verify the conclusion of the theorem in a purely computational
way. By the definition of the Laplace transform,

ﬁ(f*g):/o Sk g)(t) dt = / /f g(t — 1) dr dt.

This iterated integral equals a double integral over the region shown in Figure 8.6.1. Reversing the order
of integration yields

L(f*g)= /000 f() /00 e Stg(t —7)dtdr. (8.6.6)

However, the substitution x = ¢ — 7 shows that
/00 e Stgt —7)dt = /00 e ) g () dx
T 0
= e /00 e Tg(r)dx = e TG(s).
0
Substituting this into (8.6.6) and noting that G(s) is independent of 7 yields
fixg) = [ e imeir
= G(s) /000 e ' f(r)dr = F(s)G(s).
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\/

Figure 8.6.1

Example 8.6.1 Let
ft) =€ and g(t) =" (a # D).
Verify that £(f * g) = L(f)L(g), as implied by the convolution theorem.

Solution We first compute

t t
(fxg)t) = / Tt gy = eVt [ elatTgr
0 0
7 b e(afb)‘r t 7 ebt [e(afb)t _ 1]
N a—>b |, N a—"b
B eat _ ebi&
N a—1>
Since )
et s and " < ,
s—a s—b
it follows that
1 1 1
L = -
(F9) a—b[s—a s—b]
B 1
~ (s—a)(s—b)

= L(e")L(e") = L(HL(g).

443
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A Formula for the Solution of an Initial Value Problem

The convolution theorem provides a formula for the solution of an initial value problem for a linear
constant coefficient second order equation with an unspecified. The next three examples illustrate this.

Example 8.6.2 Find a formula for the solution of the initial value problem

' =2y +y=f(t), y0)=ko, %)=k

Solution Taking Laplace transforms in (8.6.7) yields
(s =25 +1)Y (s) = F(s) + (k1 + kos) — 2kq.

Therefore

Y(s) = (s _1 1)2 F(s)+ ul —i(_ski51;22k0

o ko ki—ko
= ottt o

From the table of Laplace transforms,

k ki —k
—1 0 1 0
£ (s—l (s —1)2

Since
Go1e —te! and F(s) < f(t),

the convolution theorem implies that

! (ﬁF@)) _ /Ot e f(t — ) dr.

Therefore the solution of (8.6.7) is

y(t) = €' (ko + (k1 — ko)t) —i—/o e f(t —7)dr.

Example 8.6.3 Find a formula for the solution of the initial value problem

y' +4y = f(t), y(0)=ko, ¥'(0)= k.

Solution Taking Laplace transforms in (8.6.8) yields
(82 +4)Y (s) = F(s) + k1 + kos.

Therefore . o
1 0S
Y(s) = ——F _—.

)= GO+ 2

From the table of Laplace transforms,

Eil (kl + koS

k
514 ) = kg cos 2t + ésin%.
5

) =¢" (ko + (k1 — ko)t).

(8.6.7)

(8.6.8)
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Since . .
m ad 5 sin2t and F(S) — f(t),

the convolution theorem implies that
£t ! F(s) 1/tf(t )sin 27 d

——F(s) | == — 7)sin27dr.

(s2+4) 2 Jo
Therefore the solution of (8.6.8) is

ki . 1 [ .
y(t) = ko cos 2t + ~ sin 2t + 3 f(t —7)sin27dr.
0

Example 8.6.4 Find a formula for the solution of the initial value problem

Y +2y +2y = f(t), y0)=ko, ¥(0)=k. (8.6.9)

Solution Taking Laplace transforms in (8.6.9) yields

(2 425 +2)Y (s) = F(s) + k1 + kos + 2kq.

Therefore
1 k1 + kos + 2kg
Y = F T
() PRV LR Ry pores y
1 (k1 + ko) + ko(s+ 1)
= ——  _F(s)
(s+1)2+1 (s+1)2+1

From the table of Laplace transforms,

-1 ((k1 + ko) +ko(s + 1))

_ .
(s+1)2+1 =e " ((k1 + ko) sint + ko cost) .

Since
1

(s+1)2+1<—>

the convolution theorem implies that

L1 (ﬁﬂg) = /Otf(t—T)eT sin7dr.

Therefore the solution of (8.6.9) is

e“tsint and F(s) < f(t),

¢
y(t) = e " ((k1 + ko) sint + ko cos t) + / f(t —7)e TsinTdr. (8.6.10)
0

Evaluating Convolution Integrals

s . t . . . .
We'll say that an integral of the form [j u(7)v(t — 7)d7 is a convolution integral. The convolution
theorem provides a convenient way to evaluate convolution integrals.
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Example 8.6.5 Evaluate the convolution integral

h(t) = /Ot(t —7)377dr.

Solution We could evaluate this integral by expanding (t — 7)° in powers of 7 and then integrating.
However, the convolution theorem provides an easier way. The integral is the convolution of f(t) = ¢°
and g(t) = t". Since

5! 7!
t5 ad 5_6 and t7 — 5—8,
the convolution theorem implies that
517t 5171 13!
M= ST =

where we have written the second equality because

|
s
Hence, o
IR LYERNT
h(t) = Tar .

Example 8.6.6 Use the convolution theorem and a partial fraction expansion to evaluate the convolution
integral

h(t) :/0 sina(t — 7)cosbrdr (|a| # |b]).

Solution Since

a
sinat < ——— and cosbt < ——
52 +a? 52 + b2’

the convolution theorem implies that

a S

H(s) = 2+ aZs?+b2

Expanding this in a partial fraction expansion yields

a s s
H(s) = -
(5) b2 —a? |82 +a2 52402
Therefore a
h(t) = (] (cosat — cos bt) .

Volterra Integral Equations

An equation of the form

y(t) = f(¥) +/0 k(t—7)y(r)dr (8.6.11)
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is a Volterra integral equation. Here f and k are given functions and y is unknown. Since the integral
on the right is a convolution integral, the convolution theorem provides a convenient formula for solving
(8.6.11). Taking Laplace transforms in (8.6.11) yields

Y(s) = F(s) + K(s)Y (s),

and solving this for Y (s) yields
F(s)
1—-K(s)"

We then obtain the solution of (8.6.11) as y = L71(Y).

Y(s) =

Example 8.6.7 Solve the integral equation

t
y(t) =1+2 / e 2=Ty(7) dr. (8.6.12)
0

Solution Taking Laplace transforms in (8.6.12) yields

V()= 1+ s (s)
and solving this for Y (s) yields
Y(s)=112
(5)=~+ =
Hence,
y(t) =1+ 2t.

Transfer Functions

The next theorem presents a formula for the solution of the general initial value problem

ay” + by +cy=f(t), y0)=ko, ¢ (0)=kFki,

where we assume for simplicity that f is continuous on [0, c0) and that £(f) exists. In Exercises 11-14
it’s shown that the formula is valid under much weaker conditions on f.

Theorem 8.6.3 Suppose f is continuous on [0, c0) and has a Laplace transform. Then the solution of the
initial value problem

ay’ +by' +ey=f(t), y(0)=ko, y'(0)=ki, (8.6.13)
is .
vt = Ko () + bae®) + [ w(r)f(e =) dr (8.6.14)
0
where 1 and Yy satisfy
ayl +byy + ey =0, 4(0) =1, ¢;(0) =0, (8.6.15)
and
ayy +bys +cy2 =0, 12(0) =0, 95(0) =1, (8.6.16)
and
1

w(t) = ~y2(0). (8.6.17)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Volterra.html
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Proof Taking Laplace transforms in (8.6.13) yields

p(s)Y (s) = F(s) + a(k1 + kos) + bk,

where
p(s) = as® +bs +c.

Hence,

Y (s) =W(s)F(s) + V(s) (8.6.18)
with 1

W(s)=— (8.6.19)
p(s)

and

- a(kl + kos) + bko

Vis) = (8.6.20)
p(s)
Taking Laplace transforms in (8.6.15) and (8.6.16) shows that
p(s)Yi(s) =as+b and p(s)Ya(s) = a.
Therefore L
as
Yi(s) =
p(s)
and a
Ya(s) = —. (8.6.21)

Hence, (8.6.20) can be rewritten as
V(s) = koY1(s) + k1Ya(s).

Substituting this into (8.6.18) yields
1
Y(s) = koYi(s) + k1Ya(s) + ~Ya(s) F (s).

Taking inverse transforms and invoking the convolution theorem yields (8.6.14). Finally, (8.6.19) and
(8.6.21) imply (8.6.17). ]
It is useful to note from (8.6.14) that y is of the form

y=v+h,

where
v(t) = koy1 (t) + k1y2(t)

depends on the initial conditions and is independent of the forcing function, while

h(t) = /0 w(r)f(t — 1) dr

depends on the forcing function and is independent of the initial conditions. If the zeros of the character-
istic polynomial
p(s) =as® +bs+c

of the complementary equation have negative real parts, then y; and y, both approach zero as t — oo,
s0 lim; . v(t) = 0 for any choice of initial conditions. Moreover, the value of h(t) is essentially
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independent of the values of f(¢ — 7) for large 7, since lim_,, w(7) = 0. In this case we say that v and
h are transient and steady state components, respectively, of the solution y of (8.6.13). These definitions
apply to the initial value problem of Example 8.6.4, where the zeros of

p(s) =82 +254+2=(s+1)*+1

are —1 =+ ¢. From (8.6.10), we see that the solution of the general initial value problem of Example 8.6.4
isy = v + h, where
v(t) = e " (k1 + ko) sint + ko cost)

is the transient component of the solution and

h(t) = /Ot f(t—7)e TsinTdr

is the steady state component. The definitions don’t apply to the initial value problems considered in
Examples 8.6.2 and 8.6.3, since the zeros of the characteristic polynomials in these two examples don’t
have negative real parts.

In physical applications where the input f and the output y of a device are related by (8.6.13), the
zeros of the characteristic polynomial usually do have negative real parts. Then W = £(w) is called the
transfer function of the device. Since

we see that

is the ratio of the transform of the steady state output to the transform of the input.
Because of the form of

h(t) = /0 w(r) f(t — 7)dr,

w is sometimes called the weighting function of the device, since it assigns weights to past values of the
input f. It is also called the impulse response of the device, for reasons discussed in the next section.

Formula (8.6.14) is given in more detail in Exercises 8—10 for the three possible cases where the zeros
of p(s) are real and distinct, real and repeated, or complex conjugates, respectively.

8.6 Exercises

1. Express the inverse transform as an integral.

® 7T ® T
O TNy @ e

© - a) S 1)(521+ 25+ 2)
® . () :

(s+1)2(s2+4s+5)

(s =1)°(s +2)°
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s—1
s2(s2 —2s+2)
1
(s — 3)5s8
1
s2(s —2)3

()
(k)

(m)

2. Find the Laplace transform.
¢
(a) / sinar cosb(t — 7) dr
0
¢
(© / sinh ar cosh a(t — 7) dr
0
¢
(e) e’ / sinwr cosw(t — 7) dr
0
¢
(ge "’ / e Trcosw(t —T)dr
0
¢
() / Te*Tsin2(t — 7) dr
(k)/ e~ sin3(t — 1) dr

(m)/ t—T Tsin27dT

. s(s+3)
O D + 65 +10)
1
O+
1
) s7(s —2)6

(b) / Cer sina(t — 1) dr

(d)/ (t — 7) sinwr cosw(t — 1) dr
f) e / (t —7)e" dr

(h) ¢! /0 Tsinh(t — 7) dr

G) /Ot(t—T)BeT dr

1)) /OtT?(t—T)?’dT

t
(n)/ (t —7)4sin 27 dr
0

3. Find a formula for the solution of the initial value problem.

@y" +3y +y=f(t), y0)=0, y'(0)=0
M) y" +4y = f(t), y(0)=
©y"+2y+y=f(t), y0)=0, y(0)=0
dy" +ky=f1t), y0) y
(e y" +6y +9y=f(t), y0)=0, y(0)=-2
Oy’ —4y=f@1), y0)=0, y(0)=

(®y" -5y +6y=f(t), y0)=1

() y" +w?y = f(t), y(0)="ko, ¥(0)=hk

4. Solve the integral equation.

@w@:t—A@—ﬂMﬂM

t
(b) y(t) = sint — 2/ cos(t — m)y(r) dr
0

¢ ¢
©@ylt)=1+ 2/ y(r)cos(t — 7)dr (@ y(t) =t+ / y(T)ef(th) dr
0 0

ey t)=t+ /0 y(1) cos(t — 7)dr, y(0) =4
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t
® y(t) = cost —sint + / y(r)sin(t — 1) dr
0

5. Use the convolution theorem to evaluate the integral.

¢
(a) / (t—71)"r8dr (b) / V377 4d
0
¢
(c) / (t—71)%r7dr (d) / Tsin(t — 7)dr
0

¢
(e) / sinTcos2(t — 1) dr
0

6. Show that

/Otf(t—T dT—/f gt —7)d

by introducing the new variable of integration z = ¢ — 7 in the first integral.

7.  Use the convolution theorem to show that if f(¢) <> F'(s) then
t
F(s)
[ 1o .
0 S

8. Show that if p(s) = as® + bs + c has distinct real zeros r; and 7 then the solution of

Y +by +ey=f(t), y0)=ko, ¥(0)=k

is

T2€T1t _ Tleth eth _ eTlt
y(t) = ko + kl
To —T1 To —T1
1 t
+7/ e — ") f(t — 7) dr.
o ) At 7)

9. Show that if p(s) = as® + bs + c has a repeated real zero r; then the solution of
ay’ +by' +cy=f(t), y(0)=ko, ¥ (0)=k
is
1 [t
y(t) = ko(1l — Tlt)e”t + kqyte™t 4+ = / Te"T f(t — 1) dT.
a Jo

10.  Show that if p(s) = as? + bs + c has complex conjugate zeros \ = 4w then the solution of
v by ey =f), y(0) =ko, y(0)=h
is
A k
yt) = eM [ko(cos wt — 2 sinwt) + — sin wt]
w w

1t
+— | eMf(t —7)sinwrdr.
aw Jo

451
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11.

12.

Let

1
S (. —
v (a52+bs+c> ’

where a, b, and c are constants and a # 0.

(a) Show that w is the solution of
1
aw” +bw' + cw =0, w(0)=0, w(0)=-=-.
a

(b) Let f be continuous on [0, co) and define

h(t):/o w(t —7)f(r)dr.

Use Leibniz’s rule for differentiating an integral with respect to a parameter to show that / is
the solution of
ah” +bh/ +ch=f, h(0)=0, A'(0)=0.

(c) Show that the function y in Eqn. (8.6.14) is the solution of Eqn. (8.6.13) provided that f is
continuous on [0, 00); thus, it’s not necessary to assume that f has a Laplace transform.

Consider the initial value problem

ay’ +by +cy=f(t), y0)=0, ¢(0)=0, (A)
where a, b, and ¢ are constants, a # 0, and
fO(t)a O§t<t1;
f(t) =
f (t), t>t.

Assume that f; is continuous and of exponential order on [0, 00) and f; is continuous and of
exponential order on [t1, c0). Let

p(s) = as® +bs +c.
(a) Show that the Laplace transform of the solution of (A) is

Fo(s) +e 511 G(s)

Y(s) = p(s)

where g(t) = .fl (t =+ tl) — fo(t =+ tl).
(b) Let w be as in Exercise 11. Use Theorem 8.4.2 and the convolution theorem to show that the
solution of (A) is

y(t) —/0 w(t —7) fo(T) dT—i—u(t—tl)/O B lw(t—tl—T)g(T) dr
fort > 0.

(c) Henceforth, assume only that f; is continuous on [0, c0) and f; is continuous on [¢1, 00).
Use Exercise 11 (a) and (b) to show that

y’(t):/o w’(t—T)fO(T)dT—l-u(t—tl)/O B 1w/(t—t1—7')g(7')d7'


http://www-history.mcs.st-and.ac.uk/Mathematicians/Leibniz.html
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fort > 0, and

ft)

y'(t) = a) + /0 w' (t — 1) fo(T) dr + u(t — t1) /0 o w'(t —t1 —7)g(T)dr

for0 <t < t; and t > ¢1. Also, show y satisfies the differential equation in (A) on(0, ¢1)
and (t1, 00).
(d) Show that y and y' are continuous on [0, c0).

Suppose
fot), 0<t<ty,
f1(t), t1 <t <to,
ft) = :
Jreoa(t), teo1 <t <ty,
Te(t), t=>tg,
where f,,, is continuous on [¢,,, c0) form =0, ...,k (let ty = 0), and define

Gn(t) = fi(t +tm) — fr—1(t+tm), m=1,... k.

Extend the results of Exercise 12 to show that the solution of

ay” +by +cy=f(t), y0)=0, ¢ (0)=0

is

t—tmm
w(t =ty — 7)gm(7) dT.
0

t k
y(t) :/0 w(t —7)fo(r)dr + Z u(t—tm)/

Let {t,, }2_, be a sequence of points such that tg = 0, ty41 > b, and limy, o0 t,, = oo. For
each nonegative integer m let f,,, be continuous on [¢,,, c0), and let f be defined on [0, co) by

Ft) = fin(t), tm <t <tmyr m=0,1,2....

Let
Gn(t) = f(t+tm) — f—1(t +tm), m=1,... k.

Extend the results of Exercise 13 to show that the solution of
ay" +by +cy=f(t), y(0)=0, y(0)=0
is

tm

y(t)—/o w(t —7)fo(r)dr + Zu(t—tm)/o w(t =ty — 7)gm(7) dT.

HINT: See Exercise30.

8.7 CONSTANT COEFFICIENT EQUATIONS WITH IMPULSES

So far in this chapter, we’ve considered initial value problems for the constant coefficient equation

ay” + by’ + cy = f(t),
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where f is continuous or piecewise continuous on [0, co). In this section we consider initial value prob-
lems where f represents a force that’s very large for a short time and zero otherwise. We say that such
forces are impulsive. Impulsive forces occur, for example, when two objects collide. Since it isn’t feasible
to represent such forces as continuous or piecewise continuous functions, we must construct a different
mathematical model to deal with them.

If f is an integrable function and f(¢) = O for ¢ outside of the interval [to, to + h], then f:oﬁh f(t)dt
is called the fotal impulse of f. We’re interested in the idealized situation where h is so small that the
total impulse can be assumed to be applied instantaneously at ¢ = t;. We say in this case that f is an
impulse function. In particular, we denote by §(¢ — to) the impulse function with total impulse equal to
one, applied at ¢ = ¢g. (The impulse function §(¢) obtained by setting to = 0 is the Dirac 0 function.) It
must be understood, however, that §(¢ — ¢o) isn’t a function in the standard sense, since our “definition”
implies that §(t — tg) = 0if t # to, while

to
/ 5(t—t0)dt:1.
t

0

From calculus we know that no function can have these properties; nevertheless, there’s a branch of
mathematics known as the theory of distributions where the definition can be made rigorous. Since the
theory of distributions is beyond the scope of this book, we’ll take an intuitive approach to impulse
functions.

Our first task is to define what we mean by the solution of the initial value problem

ay” + by/ +ey = 5(t - to), y(()) =0, y/(()) =0,
where () is a fixed nonnegative number. The next theorem will motivate our definition.

Theorem 8.7.1 Suppose to > 0. For each positive number h, let yy, be the solution of the initial value
problem

where
0, 0 <t <tp,

fu®) =4 1/h, to<t<to+h, (8.7.2)
07 t Z tO + h/a

so fn has unit total impulse equal to the area of the shaded rectangle in Figure 8.7.1. Then

hlir(rjl+ yn(t) = u(t — to)w(t — to), (8.7.3)

1
_ a1
w=£ <a52+bs+c)'

Proof Taking Laplace transforms in (8.7.1) yields

where

(as® + bs + ¢)Y(s) = Fu(s),

SO Fh(s)

Yi(s) = — 2%
w(s) as? +bs+c

The convolution theorem implies that

yr(t) = /0 w(t —7) fr(7) dr.
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I

to t0+h
Figure 8.7.1 y = fi(t)
Therefore, (8.7.2) implies that
0, 0<t<ty,
1 t
yh(t): E‘/tow(t_T)dTa t0§t§t0+ha

1 to+h
E/ w(t—7)dr, t>to+h.

to

Since y,(t) = 0 forall hif 0 < ¢ < g, it follows that
Jm (1) =0 it 0<t<to.

We’ll now show that
hlilr(r)l+ yn(t) =w(t —to) if > to.

Suppose t is fixed and t > ty. From (8.7.4),
1 to+h
yh(t)——/ w(t—71)dr if h<t—tp.
h Sy,

Since

we can write

455

(8.7.4)

(8.7.5)

(8.7.6)

(8.7.7)

(8.7.8)
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From this and (8.7.7),

1 to+h
()=t —t) = [ (wlt=) = u(t - t0) dr
to
Therefore
to+h
@ -t <5 [ fult—7) - (- to)]dr (8.79)
to

Now let M}, be the maximum value of |w(t — 7) — w(t — to)| as 7 varies over the interval [to, to + h].
(Remember that ¢ and ¢ are fixed.) Then (8.7.8) and (8.7.9) imply that

1 to+h
lyn(t) — w(t — to)] < EMh/ dr = M. (8.7.10)
to

But limy o4 M}, = 0, since w is continuous. Therefore (8.7.10) implies (8.7.6). This and (8.7.5) imply
(8.7.3). [ |
Theorem 8.7.1 motivates the next definition.

Definition 8.7.2 If ¢y > 0, then the solution of the initial value problem
ay’ +by +cy=95(t—to), y(0)=0, ¥(0)=0, (8.7.11)

is defined to be
y =u(t —to)w(t —to),

1
—r (- ).
v <a52+bs+c)

In physical applications where the input f and the output y of a device are related by the differential
equation

where

ay” + by’ + cy = f(t),

w is called the impulse response of the device. Note that w is the solution of the initial value problem
aw” +bw' +cw =0, w(0)=0, w'(0)=1/a, (8.7.12)

as can be seen by using the Laplace transform to solve this problem. (Verify.) On the other hand, we can

solve (8.7.12) by the methods of Section 5.2 and show that w is defined on (—o0, 00) by

rot _ rit 1 1
w="""C% =t or w=—eMsinwt, (8.7.13)

a(rg —r1) a aw

depending upon whether the polynomial p(r) = ar? + br + c has distinct real zeros r; and 72, a repeated

zero 71, or complex conjugate zeros A £ iw. (In most physical applications, the zeros of the characteristic

polynomial have negative real parts, so lim;_,o, w(t) = 0.) This means that y = u(t — to)w(t — to) is

defined on (—o0o, c0) and has the following properties:

y(t> = Oa t < tO;

ay’ +by +cy=0 on (—o0,tp) and (tg,00),

and
Y (to) =0, ¥ (to) =1/a (8.7.14)
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Figure 8.7.2 An illustration of Theorem 8.7.1

(remember that 4 (t9) and 3/, (to) are derivatives from the right and left, respectively) and 3/ (to) does
not exist. Thus, even though we defined y = u(t —to)w(t—to) to be the solution of (8.7.11), this function
doesn’t satisfy the differential equation in (8.7.11) at ty, since it isn’t differentiable there; in fact (8.7.14)
indicates that an impulse causes a jump discontinuity in velocity. (To see that this is reasonable, think of
what happens when you hit a ball with a bat.) This means that the initial value problem (8.7.11) doesn’t
make sense if to = 0, since 3’ (0) doesn’t exist in this case. However y = wu(t)w(t) can be defined to be
the solution of the modified initial value problem

ay” +by +cy=4(t), y(0)=0, y_ (0)=0,

where the condition on the derivative at ¢ = 0 has been replaced by a condition on the derivative from the
left.

Figure 8.7.2 illustrates Theorem 8.7.1 for the case where the impulse response w is the first expression
in (8.7.13) and r; and 79 are distinct and both negative. The solid curve in the figure is the graph of w.
The dashed curves are solutions of (8.7.1) for various values of h. As h decreases the graph of y;, moves
to the left toward the graph of w.

Example 8.7.1 Find the solution of the initial value problem
y' =2y +y=38(t—1tg), w(0)=0, % (0)=0, (8.7.15)

where ¢y > 0. Then interpret the solution for the case where tg = 0.

1 1
e _ -1 ot
w=L£ <52—25+1> £ ((5—1)2> te™

Solution Here



458 Chapter 8 Laplace Transforms

0.2 —

Figure 8.7.3 y = u(t — to)(t — tg)e~ (=10

so Definition 8.7.2 yields
y = u(t —to)(t — tg)e~ =)

as the solution of (8.7.15) if tyo > 0. If {9 = 0, then (8.7.15) doesn’t have a solution; however, y =
u(t)te™t (which we would usually write simply as y = te™?) is the solution of the modified initial value
problem

y' =2y +y=204(t), y0)=0, % (0)=0.

The graph of y = u(t — to)(t — to)e~(*~*0) is shown in Figure 8.7.3 [
Definition 8.7.2 and the principle of superposition motivate the next definition.

Definition 8.7.3 Suppose « is a nonzero constant and f is piecewise continuous on [0, c0). If ¢y > 0,
then the solution of the initial value problem

ay’ +by +cy=f(t) +ad(t —to), y(0) =ko, ¥ (0)=h
is defined to be
y(t) = 9(t) + ou(t — to)w(t — to),
where g is the solution of
ay’ +by +cy=f(t), y(0)=ko, ¥ (0)=k.
This definition also applies if ¢y = 0, provided that the initial condition y'(0) = k; is replaced by
y_(0) = k.

Example 8.7.2 Solve the initial value problem

y' 46y +5y =3¢ 425(t—1), y0)=-3, 3 (0)=2. (8.7.16)
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Solution We leave it to you to show that the solution of
Yy + 6y +5y=3e, y(0) = -3, y'(0) =2

is

§=—e 24 2Bt geft
Since )
t) = -1 = Y —
w(t) <52+65+5> ((s+1)(s+5)>
1 eft _ 67515
= if ( s+ 5) 4
the solution of (8.7.16) is
1 (t—1) _ ,—5(t—1)
y=—e 4o = e ult— 1)< 26 (8.7.17)
(Figure 8.7.4) u
y
y
A
b
WL
sl
oL
L
-1
2
3+
Figure 8.7.4 Graph of (8.7.17) Figure 8.7.5 Graph of (8.7.19)

Definition 8.7.3 can be extended in the obvious way to cover the case where the forcing function
contains more than one impulse.

Example 8.7.3 Solve the initial value problem

Y +y=1+20(t—m)—30(t—27), y(0)=—1, y'(0) =2. (8.7.18)

Solution We leave it to you to show that
y=1—2cost+2sint

is the solution of
y' +y=1, y(0)=-1, ¢(0)=2

1
w_Ll( 2+1> =sint,
S

Since
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the solution of (8.7.18) is

y = 1—2cost+2sint+ 2u(t — m)sin(t — 7) — 3u(t — 27) sin(t — 27)
1—2cost +2sint — 2u(t — m)sint — 3u(t — 27) sint,
or
1—2cost+ 2sint, 0<t<m,
y = 1— 2cost, T <t<2m, (8.7.19)
1—2cost —3sint, t>27
(Figure 8.7.5).
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8.7 Exercises
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In Exercises 1-20 solve the initial value problem. Where indicated by , graph the solution.

XA AU E W RE

_— e
= e

12.
13.
14.
15.
16.

17.
18.
19.

20.

21.
22,
23.
24.
25.

Y+ 3y +2y=6e2 +25(t—1), y(0)=2, 3 (0)=—6
Yy —2y=—10et+55(t—1), y(0)=7, 3 (0)=-9
Yy —dy=2e"t+55(t—1), y(0)=-1, ¢'(0)=2
y' +y=sin3t+26(t—7/2), y0)=1, 3 (0)=-1
/

y' +dy=4+51t—3n), y(0)=0, y(0)=1

y' —y=8+25(t—2), y(0)=-1, ¢y (0)=1

y' +y =et +35(t—6), y(0)=-1, ¢'(0)=4
(0)=0

Yy +4y =8e2 +6(t —7/2), y(0)=8, ¥
[CIG]y +3y +2y=1+68(t—1), y(0)=1, ¢ (0)=—1
Y+ 2 +y=e +25(t—-2), y(0)=-1, ¢'(0)=2
[CIG] " +4y =sint+6(t—7/2), y(0) =0, ¥ (0)="2
y' +2y +2y=96(t —7) —36(t —2m), y(0)=-1, ¢'(0)=2
y' +4y + 13y =6(t —7/6) +26(t — «/3), y(0)=1, ¢'(0)=2
2y =3y —2y=14+6(t—2), y0)=-1, ¢ (0)=2
4y’ — 4y + by = 4sint —4cost +0(t —w/2) —5(t — ), y(0)
Yy’ +y=cos2t+26(t —7/2) —35(t —7), y(0)=0, ¢ (0)=-1
Y —y=4det —55(t—1)+36(t—2), y(0)=0
Y+ 2 +y=e -5t —-1)+25(t-2), y0)=0, ¢'(0)=-1
y' +y=ft)+5¢t—2m), y(0)=0, ¥ (0)=1,and

sin2t, 0<t<m,
o

Il
—_
Qd\
—~
o
=
Il
—_

0, t> .
y' +4y = f(t) +6(t—7m) —36(t —37/2), y(0)=1, ¢'(0)=—1,and
1, 0<t<m/2,
f@_{ 2, t>7/2
y'+y=146@1), y0)=1, 3y (0)=-2
y' =4y =30(t), y(0)=-1, ¥ (0)=
y'+3y +2y=-56(t), y0)=0, 3 (0)=0
y' + 4y +4y=—6(t), y0)=1, ¢ (0)=5
Ay + 4y +y=35(t), y(0)=1, o (0)=-6

In Exercises 26-28, solve the initial value problem

0, 0<t<ty,
ayj +byp +cyn =1 1/h, to<t<to+h, y,(0)=0, y,(0)=0,
Oa t2t0+h’a
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where tg > 0 and h > 0. Then find

1
1
w=L£ (a52+bs+c>

and verify Theorem 8.7.1 by graphing w and yy, on the same axes, for small positive values of h.

26
27
28

29.

30.

y'+2y +2y=fu(t), y(0)=0, y'(0)=0
y'+2y +y=fult), y0)=0, %(0)=0
y' 43y +2y=fu(t), y(0)=0, ¢'(0)=0

Recall from Section 6.2 that the displacement of an object of mass m in a spring—mass system in
free damped oscillation is

my" +ey’ +ky =0, y(0)=yo, ¥ (0)= o,
and that y can be written as
y = Re™t/?™ cos(wit — ¢)

if the motion is underdamped. Suppose y(7) = 0. Find the impulse that would have to be applied
to the object at ¢ = 7 to put it in equilibrium.

Solve the initial value problem. Find a formula that does not involve step functions and represents
y on each subinterval of [0, c0) on which the forcing function is zero.

@y —y=> 0(t—k), y0)=0, y(0)=1
k=1

)y’ +y =Y 6(t—2kr), y(0)=0, y(0)=1
k=1

©y" =3y +2y=> d(t—k), y0)=0, ¥ (0)=1
k=1

@y’ +y=> 6(t—kr), y0)=0, y(0)=0
k=1
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f(t)

tn
(n = integer > 0)

tP,p>—1

at

tneat

(n = integer > 0)

cos wt
sinwt
eM coswt
e sin wt

cosh bt

sinh bt

t cos wt

1

n!
Sn+1

T(p+1)
5(P+1)

Ss—a

s2 —ph2

ST —w
(52 _|_w2)2

Section 8.8 A Brief Table of Laplace Transforms

(s>0)

(s >0)

(s>0)

(s >a)

(s>0)

(s >0)

(s>0)

(s >N)

(s >N)

(s > 1b)

(s > 1b)

(s>0)
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tsinwt
sin wt — wt cos wt
wt — sinwt

n sin wt

e f(t)
t*f(t)
flwt)

u(t — 1)

u(t—7)f(t—7) (7 >0)

[ rate = ryar

5t —a)

(s >0)

(s >0)

(s >0)

(s >0)

(s >0)

(s >0)



CHAPTER9
Linear Higher Order Equations

IN THIS CHAPTER we extend the results obtained in Chapter 5 for linear second order equations to
linear higher order equations.

SECTION 9.1 presents a theoretical introduction to linear higher order equations.
SECTION 9.2 discusses higher order constant coefficient homogeneous equations.
SECTION 9.3 presents the method of undetermined coefficients for higher order equations.

SECTION 9.4 extends the method of variation of parameters to higher order equations.

465
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9.1 INTRODUCTION TO LINEAR HIGHER ORDER EQUATIONS

An nth order differential equation is said to be linear if it can be written in the form
Y™ 41 (2)y Y 4t pa(2)y = flz). (9.1.1)

We considered equations of this form with n = 1 in Section 2.1 and with n = 2 in Chapter 5. In this
chapter n is an arbitrary positive integer.

In this section we sketch the general theory of linear nth order equations. Since this theory has already
been discussed for n = 2 in Sections 5.1 and 5.3, we’ll omit proofs.

For convenience, we consider linear differential equations written as

Po(2)y™ + Py (2)y" ™Y + - + Py(2)y = F(), 9.1.2)

which can be rewritten as (9.1.1) on any interval on which Py has no zeros, with p; = Pi/P,, ...,
pn = P,/Pyand f = F/Py. For simplicity, throughout this chapter we’ll abbreviate the left side of
(9.1.2) by Ly; that is,
Ly = Poy™ + Pry™ Y ... 4+ Py.
We say that the equation Ly = F' is normal on (a, b) if Py, Py, ..., P,, and F are continuous on (a, b)
and P has no zeros on (a, b). If this is so then Ly = F can be written as (9.1.1) with py, ..., p, and f
continuous on (a, b).
The next theorem is analogous to Theorem 5.3.1.

Theorem 9.1.1 Suppose Ly = F is normal on (a,b), let x¢ be a point in (a,b), and let ko, k1, ..., kn—1
be arbitrary real numbers. Then the initial value problem

Ly = Fa y(Io) = kOa y/(Io) = kla EERE y(nil)('ro) = kﬂfl

has a unique solution on (a, b).

Homogeneous Equations

I
o
-
»

Eqn. (9.1.2) is said to be homogeneous if F' = 0 and nonhomogeneous otherwise. Since y =
obviously a solution of Ly = 0, we call it the trivial solution. Any other solution is nontrivial.
If y1, y2, ..., Yn are defined on (a, b) and ¢y, co, ..., ¢, are constants, then

y=ch + C2Y2 + -+ CnlYn (913)

is a linear combination of {y1,yz ..., yn}. It’s easy to show that if y1, Yo, ..., y, are solutionsof Ly = 0
on (a,b), then so is any linear combination of {y1,y2,...,yn}. (See the proof of Theorem 5.1.2.) We
say that {y1, Yo, . .., Yn} is a fundamental set of solutions of Ly = 0 on (a, b) if every solution of Ly = 0
on (a, b) can be written as a linear combination of {y1, Y2, . .., yn }, as in (9.1.3). In this case we say that
(9.1.3) is the general solution of Ly = 0 on (a, b).

It can be shown (Exercises 14 and 15) that if the equation Ly = 0 is normal on (a, b) then it has in-
finitely many fundamental sets of solutions on (a, b). The next definition will help to identify fundamental
sets of solutions of Ly = 0.

We say that {y1, Y2, .. ., Yn} is linearly independent on (a, b) if the only constants c1, ca, ..., ¢, such
that

ayr(x) + coye(x) + -+ cpyn(x) =0, a<ax <D, (9.1.4)

arecp = cg = - -+ = ¢, = 0. If (9.1.4) holds for some set of constants ¢y, cs, ..., ¢, that are not all zero,

then {y1, Yo, - . ., Yn } is linearly dependent on (a, b)
The next theorem is analogous to Theorem 5.1.3.
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Theorem 9.1.2 If Ly = 0 is normal on (a,b), then a set {y1,y2, ..., yn} of n solutions of Ly = 0 on
(a,b) is a fundamental set if and only if it’s linearly independent on (a, b).

Example 9.1.1 The equation
x3y/// _ x2y” _ ny’ + 6y -0 9.1.5)

is normal and has the solutions y; = 2, yo = 23, and y3 = 1/z on (—0o0,0) and (0, 00). Show that
{y1, Y2, y3} is linearly independent on (—o0, 0) and (0, co). Then find the general solution of (9.1.5) on
(—00,0) and (0, c0).

Solution Suppose

122 + co1® + Cx—?’ =0 (9.1.6)
on (0, 00). We must show that ¢; = ¢o = ¢3 = 0. Differentiating (9.1.6) twice yields the syste