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of l’Hôpital’s rule, 152.—
Proof of the fundamental the-
orem of calculus, 154.—The
intermediate value theorem,
156.—Proof of the extreme
value theorem, 159.—Proof
of the mean value theorem,
161.—Proof of the fundamen-
tal theorem of algebra, 162.

B Answers and solutions
165

C Photo Credits 199

D References and Fur-
ther Reading 201

Further Reading, 201.—
References, 201.

E Reference 203
E.1 Review . . . . . . . 203

Algebra, 203.—Geometry,
area, and volume, 203.—
Trigonometry with a right
triangle, 203.—Trigonometry
with any triangle, 203.

E.2 Hyperbolic functions. . 203
E.3 Calculus . . . . . . 204

Rules for differentiation,
204.—Integral calculus,
204.—Table of integrals, 204.



1 Rates of Change
1.1 Change in

discrete steps
Toward the end of the eighteenth
century, a German elementary
school teacher decided to keep his
pupils busy by assigning them a
long, boring arithmetic problem:
to add up all the numbers from
one to a hundred.1 The chil-
dren set to work on their slates,
and the teacher lit his pipe, con-
fident of a long break. But al-
most immediately, a boy named
Carl Friedrich Gauss brought up
his answer: 5,050.

a / Adding the numbers
from 1 to 7.

Figure a suggests one way of solv-
ing this type of problem. The
filled-in columns of the graph rep-
resent the numbers from 1 to 7,
and adding them up means find-

1I’m giving my own retelling of a
hoary legend. We don’t really know the
exact problem, just that it was supposed
to have been something of this flavor.

b / A trick for finding the
sum.

ing the area of the shaded region.
Roughly half the square is shaded
in, so if we want only an approxi-
mate solution, we can simply cal-
culate 72/2 = 24.5.

But, as suggested in figure b, it’s
not much more work to get an ex-
act result. There are seven saw-
teeth sticking out out above the di-
agonal, with a total area of 7/2,
so the total shaded area is (72 +
7)/2 = 28. In general, the sum of
the first n numbers will be (n2 +
n)/2, which explains Gauss’s re-
sult: (1002 + 100)/2 = 5, 050.

Two sides of the same coin

Problems like this come up fre-
quently. Imagine that each house-
hold in a certain small town sends
a total of one ton of garbage to the
dump every year. Over time, the
garbage accumulates in the dump,
taking up more and more space.

7



8 CHAPTER 1. RATES OF CHANGE

c / Carl Friedrich Gauss
(1777-1855), a long time
after graduating from ele-
mentary school.

Let’s label the years as n = 1, 2,
3, . . ., and let the function2 x(n)
represent the amount of garbage
that has accumulated by the end
of year n. If the population is
constant, say 13 households, then
garbage accumulates at a constant
rate, and we have x(n) = 13n.

But maybe the town’s population
is growing. If the population starts
out as 1 household in year 1, and
then grows to 2 in year 2, and so
on, then we have the same kind
of problem that the young Gauss
solved. After 100 years, the accu-
mulated amount of garbage will be
5,050 tons. The pile of refuse grows
more quickly every year; the rate of
change of x is not constant. Tabu-
lating the examples we’ve done so
far, we have this:

2Recall that when x is a function, the
notation x(n) means the output of the
function when the input is n. It doesn’t
represent multiplication of a number x by
a number n.

rate of change accumulated
result

13 13n
n (n2 + n)/2

The rate of change of the function
x can be notated as ẋ. Given the
function ẋ, we can always deter-
mine the function x for any value
of n by doing a running sum.

Likewise, if we know x, we can de-
termine ẋ by subtraction. In the
example where x = 13n, we can
find ẋ = x(n) − x(n − 1) = 13n −
13(n − 1) = 13. Or if we knew
that the accumulated amount of
garbage was given by (n2 + n)/2,
we could calculate the town’s pop-
ulation like this:

n2 + n

2
− (n− 1)2 + (n− 1)

2

=
n2 + n−

(
n2 − 2n+ 1 + n− 1

)
2

= n

d / ẋ is the slope of x .

The graphical interpretation of
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this is shown in figure d: on a
graph of x = (n2 + n)/2, the slope
of the line connecting two succes-
sive points is the value of the func-
tion ẋ.

In other words, the functions x and
ẋ are like different sides of the same
coin. If you know one, you can find
the other — with two caveats.

First, we’ve been assuming im-
plicitly that the function x starts
out at x(0) = 0. That might
not be true in general. For in-
stance, if we’re adding water to a
reservoir over a certain period of
time, the reservoir probably didn’t
start out completely empty. Thus,
if we know ẋ, we can’t find out
everything about x without some
further information: the starting
value of x. If someone tells you
ẋ = 13, you can’t conclude x =
13n, but only x = 13n+ c, where c
is some constant. There’s no such
ambiguity if you’re going the op-
posite way, from x to ẋ. Even
if x(0) 6= 0, we still have ẋ =
13n+ c− [13(n− 1) + c] = 13.

Second, it may be difficult, or even
impossible, to find a formula for
the answer when we want to de-
termine the running sum x given
a formula for the rate of change ẋ.
Gauss had a flash of insight that
led him to the result (n2 + n)/2,
but in general we might only be
able to use a computer spreadsheet
to calculate a number for the run-
ning sum, rather than an equation
that would be valid for all values

of n.

Some guesses

Even though we lack Gauss’s ge-
nius, we can recognize certain pat-
terns. One pattern is that if ẋ is a
function that gets bigger and big-
ger, it seems like x will be a func-
tion that grows even faster than
ẋ. In the example of ẋ = n and
x = (n2 +n)/2, consider what hap-
pens for a large value of n, like
100. At this value of n, ẋ = 100,
which is pretty big, but even with-
out pawing around for a calculator,
we know that x is going to turn out
really really big. Since n is large,
n2 is quite a bit bigger than n, so
roughly speaking, we can approxi-
mate x ≈ n2/2 = 5, 000. 100 may
be a big number, but 5,000 is a lot
bigger. Continuing in this way, for
n = 1000 we have ẋ = 1000, but
x ≈ 500, 000 — now x has far out-
stripped ẋ. This can be a fun game
to play with a calculator: look at
which functions grow the fastest.
For instance, your calculator might
have an x2 button, an ex button,
and a button for x! (the factorial
function, defined as x! = 1·2·. . .·x,
e.g., 4! = 1 · 2 · 3 · 4 = 24). You’ll
find that 502 is pretty big, but e50

is incomparably greater, and 50! is
so big that it causes an error.

All the x and ẋ functions we’ve
seen so far have been polynomials.
If x is a polynomial, then of course
we can find a polynomial for ẋ as
well, because if x is a polynomial,
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then x(n)−x(n−1) will be one too.
It also looks like every polynomial
we could choose for ẋ might also
correspond to an x that’s a poly-
nomial. And not only that, but it
looks as though there’s a pattern
in the power of n. Suppose x is a
polynomial, and the highest power
of n it contains is a certain num-
ber — the “order” of the polyno-
mial. Then ẋ is a polynomial of
that order minus one. Again, it’s
fairly easy to prove this going one
way, passing from x to ẋ, but more
difficult to prove the opposite rela-
tionship: that if ẋ is a polynomial
of a certain order, then x must be
a polynomial with an order that’s
greater by one.

We’d imagine, then, that the run-
ning sum of ẋ = n2 would be a
polynomial of order 3. If we cal-
culate x(100) = 12 + 22 + . . . +
1002 on a computer spreadsheet,
we get 338,350, which looks sus-
piciously close to 1, 000, 000/3. It
looks like x(n) = n3/3 + . . ., where
the dots represent terms involving
lower powers of n such as n2. The
fact that the coefficient of the n3

term is 1/3 is proved in problem
21 on p. 23.

Example 1
Figure e shows a pyramid consisting
of a single cubical block on top, sup-
ported by a 2 × 2 layer, supported in
turn by a 3× 3 layer. The total volume
is 12 + 22 + 32, in units of the volume of
a single block.

Generalizing to the sum x(n) = 12 +

e / A pyramid with a vol-
ume of 12 + 22 + 32.

22 + . . . + n2, and applying the result of
the preceding paragraph, we find that
the volume of such a pyramid is ap-
proximately (1/3)Ah, where A = n2 is
the area of the base and h = n is the
height.

When n is very large, we can get as
good an approximation as we like to
a smooth-sided pyramid, and the er-
ror incurred in x(n) ≈ (1/3)n3 + . . . by
omitting the lower-order terms . . . can
be made as small as desired.

We therefore conclude that the vol-
ume is exactly (1/3)Ah for a smooth-
sided pyramid with these proportions.

This is a special case of a theorem
first proved by Euclid (propositions
XII-6 and XII-7) two thousand years
before calculus was invented.

1.2 Continuous
change

Did you notice that I sneaked
something past you in the example
of water filling up a reservoir? The
x and ẋ functions I’ve been using
as examples have all been functions
defined on the integers, so they
represent change that happens in
discrete steps, but the flow of water
into a reservoir is smooth and con-
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f / Isaac Newton (1643-
1727)

tinuous. Or is it? Water is made
out of molecules, after all. It’s just
that water molecules are so small
that we don’t notice them as indi-
viduals. Figure g shows a graph
that is discrete, but almost ap-
pears continuous because the scale
has been chosen so that the points
blend together visually.

g / On this scale, the
graph of (n2 + n)/2 ap-
pears almost continuous.

The physicist Isaac Newton started
thinking along these lines in the
1660’s, and figured out ways of an-

alyzing x and ẋ functions that were
truly continuous. The notation ẋ
is due to him (and he only used it
for continuous functions). Because
he was dealing with the continuous
flow of change, he called his new
set of mathematical techniques the
method of fluxions, but nowadays
it’s known as the calculus.

h / The function x(t) =
t2/2, and its tangent line
at the point (1, 1/2).

Newton was a physicist, and he
needed to invent the calculus as
part of his study of how objects
move. If an object is moving in
one dimension, we can specify its
position with a variable x, and x
will then be a function of time, t.
The rate of change of its position,
ẋ, is its speed, or velocity. Ear-
lier experiments by Galileo had es-
tablished that when a ball rolled
down a slope, its position was pro-
portional to t2, so Newton inferred
that a graph like figure h would
be typical for any object moving
under the influence of a constant
force. (It could be 7t2, or t2/42,
or anything else proportional to t2,
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i / This line isn’t a tangent
line: it crosses the graph.

depending on the force acting on
the object and the object’s mass.)

Because the functions are continu-
ous, not discrete, we can no longer
define the relationship between x
and ẋ by saying x is a running sum
of ẋ’s, or that ẋ is the difference be-
tween two successive x’s. But we
already found a geometrical rela-
tionship between the two functions
in the discrete case, and that can
serve as our definition for the con-
tinuous case: x is the area under
the graph of ẋ, or, if you like, ẋ is
the slope of the graph of x. For
now we’ll concentrate on the slope
idea.

This definition is still a little vague,
because we haven’t defined what
we mean by the “slope” of a curv-
ing graph. For a discrete graph
like figure d, we could define it as
the slope of the line drawn between
neighboring points. Visually, it’s
clear that the continuous version
of this is something like the line
drawn in figure h. This is referred
to as the tangent line.

We still need to convert this in-
tuitive idea of a tangent line into
a formal definition. In a typi-
cal example like figure h, the tan-
gent line can be defined as the line
that touches the graph at a certain
point, but, unlike the line in fig-
ure i, doesn’t cut across the graph
at that point.3 By measuring with
a ruler on figure h, we find that
the slope is very close to 1, so evi-
dently ẋ(1) = 1. To prove this, we
construct the function representing
the line: `(t) = t − 1/2. We want
to prove that this line doesn’t cross
the graph of x(t) = t2/2. The dif-
ference between the two functions,
x− `, is the polynomial t2/2− t+
1/2, and this polynomial will be
zero for any value of t where the
line touches or crosses the curve.
We can use the quadratic formula
to find these points, and the result
is that there is only one of them,
which is t = 1. Since x− ` is posi-
tive for at least some points to the
left and right of t = 1, and it only
equals zero at t = 1, it must never
be negative, which means that the
line always lies below the curve,
never crossing it.

3In the case where the original graph
is itself a line, the tangent line simply co-
incides with the graph, and this also sat-
isfies the definition, because the tangent
line doesn’t cut across the graph; it lies
on top of it. There is one other excep-
tional case, called a point of inflection,
which we won’t worry about right now.
For a more complicated definition that
correctly handles all the cases, see page
139.
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A derivative

That proves that ẋ(1) = 1, but it
was a lot of work, and we don’t
want to do that much work to eval-
uate ẋ at every value of t. There’s
a way to avoid all that, and find a
formula for ẋ. Compare figures h
and j. They’re both graphs of the
same function, and they both look
the same. What’s different? The
only difference is the scales: in fig-
ure j, the t axis has been shrunk
by a factor of 2, and the x axis by
a factor of 4. The graph looks the
same, because doubling t quadru-
ples t2/2. The tangent line here
is the tangent line at t = 2, not
t = 1, and although it looks like
the same line as the one in figure
h, it isn’t, because the scales are
different. The line in figure h had
a slope of rise/run = 1/1 = 1,
but this one’s slope is 4/2 = 2.
That means ẋ(2) = 2. In general,
this scaling argument shows that
ẋ(t) = t for any t.

j / The function t2/2
again. How is this
different from figure h?

This is called differentiating : find-
ing a formula for the function ẋ,
given a formula for the function
x. The term comes from the idea
that for a discrete function, the
slope is the difference between two
successive values of the function.
The function ẋ is referred to as the
derivative of the function x, and
the art of differentiating is differ-
ential calculus. The opposite pro-
cess, computing a formula for x
when given ẋ, is called integrating,
and makes up the field of integral
calculus; this terminology is based
on the idea that computing a run-
ning sum is like putting together
(integrating) many little pieces.

Note the similarity between this re-
sult for continuous functions,

x = t2/2 ẋ = t ,

and our earlier result for discrete
ones,

x = (n2 + n)/2 ẋ = n .

The similarity is no coincidence.
A continuous function is just a
smoothed-out version of a discrete
one. For instance, the continuous
version of the staircase function
shown in figure b on page 7 would
simply be a triangle without the
saw teeth sticking out; the area of
those ugly sawteeth is what’s rep-
resented by the n/2 term in the dis-
crete result x = (n2 + n)/2, which
is the only thing that makes it dif-
ferent from the continuous result
x = t2/2.
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Properties of the derivative

It follows immediately from the
definition of the derivative that
multiplying a function by a con-
stant multiplies its derivative by
the same constant, so for example
since we know that the derivative
of t2/2 is t, we can immediately tell
that the derivative of t2 is 2t, and
the derivative of t2/17 is 2t/17.

Also, if we add two functions, their
derivatives add. To give a good
example of this, we need to have
another function that we can dif-
ferentiate, one that isn’t just some
multiple of t2. An easy one is t: the
derivative of t is 1, since the graph
of x = t is a line with a slope of 1,
and the tangent line lies right on
top of the original line.

Example 2
The derivative of 5t2 +2t is the deriva-
tive of 5t2 plus the derivative of 2t ,
since derivatives add. The derivative
of 5t2 is 5 times the derivative of t2,
and the derivative of 2t is 2 times the
derivative of t , so putting everything
together, we find that the derivative of
5t2 + 2t is (5)(2t) + (2)(1) = 10t + 2.

The derivative of a constant is
zero, since a constant function’s
graph is a horizontal line, with
a slope of zero. We now know
enough to differentiate any second-
order polynomial.

Example 3
. An insect pest from the United

States is inadvertently released in a
village in rural China. The pests

spread outward at a rate of s kilome-
ters per year, forming a widening cir-
cle of contagion. Find the number of
square kilometers per year that be-
come newly infested. Check that the
units of the result make sense. Inter-
pret the result.

. Let t be the time, in years, since
the pest was introduced. The radius
of the circle is r = st , and its area is
a = πr 2 = π(st)2. To make this look
like a polynomial, we have to rewrite it
as a = (πs2)t2. The derivative is

ȧ = (πs2)(2t)

ȧ = (2πs2)t

The units of s are km/year, so squar-
ing it gives km2/year2. The 2 and the
π are unitless, and multiplying by t
gives units of km2/year, which is what
we expect for ȧ, since it represents the
number of square kilometers per year
that become infested.

Interpreting the result, we notice a
couple of things. First, the rate of
infestation isn’t constant; it’s propor-
tional to t , so people might not pay
so much attention at first, but later on
the effort required to combat the prob-
lem will grow more and more quickly.
Second, we notice that the result is
proportional to s2. This suggests that
anything that could be done to reduce
s would be very helpful. For instance,
a measure that cut s in half would re-
duce ȧ by a factor of four.

Higher-order polynomials

So far, we have the following re-
sults for polynomials up to order
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2:

function derivative
1 0
t 1
t2 2t

Interpreting 1 as t0, we detect what
seems to be a general rule, which
is that the derivative of tk is ktk−1.
The proof is straightforward but
not very illuminating if carried out
with the methods developed in this
chapter, so I’ve relegated it to page
140. It can be proved much more
easily using the methods of chapter
2.

Example 4
. If x = 2t7 − 4t + 1, find ẋ .

. This is similar to example 2, the only
difference being that we can now han-
dle higher powers of t . The derivative
of t7 is 7t6, so we have

ẋ = (2)(7t6) + (−4)(1) + 0

= 14t6 − 4

Example 5
. Calculate 3−1 and 3.01−1. Does

this seem consistent with a conjecture
that the rule for differentiating tk holds
for k < 0?

. We have 3−1 ≈ 0.33333 and
3.01−1 ≈ 0.332223, the difference be-
ing −1.1 × 10−3. This suggests that
the graph of x = 1/t has a tangent line
at t = 3 with a slope of about

−1.1× 10−3

0.01
= −0.11 .

If the rule for differentiating tk were to
hold, then we would have ẋ = −t−2,

and evaluating this at x = 3 would give
−1/9, which is indeed about −0.11.
Yes, the rule does appear to hold for
negative k , although this numerical
check does not constitute a proof. A
proof is given in example 10 on p. 27.

The second derivative

I described how Galileo and New-
ton found that an object subject
to an external force, starting from
rest, would have a velocity ẋ that
was proportional to t, and a posi-
tion x that varied like t2. The pro-
portionality constant for the veloc-
ity is called the acceleration, a, so
that ẋ = at and x = at2/2. For
example, a sports car accelerating
from a stop sign would have a large
acceleration, and its velocity at at
a given time would therefore be
a large number. The acceleration
can be thought of as the deriva-
tive of the derivative of x, writ-
ten ẍ, with two dots. In our ex-
ample, ẍ = a. In general, the ac-
celeration doesn’t need to be con-
stant. For example, the sports car
will eventually have to stop accel-
erating, perhaps because the back-
ward force of air friction becomes
as great as the force pushing it for-
ward. The total force acting on the
car would then be zero, and the car
would continue in motion at a con-
stant speed.

Example 6
Suppose the pilot of a blimp has just
turned on the motor that runs its pro-
peller, and the propeller is spinning
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up. The resulting force on the blimp
is therefore increasing steadily, and
let’s say that this causes the blimp to
have an acceleration ẍ = 3t , which in-
creases steadily with time. We want
to find the blimp’s velocity and position
as functions of time.

For the velocity, we need a polynomial
whose derivative is 3t . We know that
the derivative of t2 is 2t , so we need to
use a function that’s bigger by a factor
of 3/2: ẋ = (3/2)t2. In fact, we could
add any constant to this, and make it
ẋ = (3/2)t2 + 14, for example, where
the 14 would represent the blimp’s
initial velocity. But since the blimp
has been sitting dead in the air un-
til the motor started working, we can
assume the initial velocity was zero.
Remember, any time you’re working
backwards like this to find a function
whose derivative is some other func-
tion (integrating, in other words), there
is the possibility of adding on a con-
stant like this.

Finally, for the position, we need
something whose derivative is (3/2)t2.
The derivative of t3 would be 3t2, so
we need something half as big as this:
x = t3/2.

The second derivative can be in-
terpreted as a measure of the cur-
vature of the graph, as shown in
figure k. The graph of the function
x = 2t is a line, with no curvature.
Its first derivative is 2, and its sec-
ond derivative is zero. The func-
tion t2 has a second derivative of 2,
and the more tightly curved func-
tion 7t2 has a bigger second deriva-
tive, 14.

k / The functions 2t , t2

and 7t2.

l / The functions t2 and
3− t2.

Positive and negative signs of the
second derivative indicate concav-
ity. In figure l, the function t2 is
like a cup with its mouth pointing
up. We say that it’s “concave up,”
and this corresponds to its posi-
tive second derivative. The func-
tion 3−t2, with a second derivative
less than zero, is concave down.
Another way of saying it is that if
you’re driving along a road shaped
like t2, going in the direction of in-
creasing t, then your steering wheel
is turned to the left, whereas on a
road shaped like 3 − t2 it’s turned
to the right.
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m / The functions t3 has
an inflection point at t =
0.

Figure m shows a third possibility.
The function t3 has a derivative
3t2, which equals zero at t = 0.
This called a point of inflection.
The concavity of the graph is down
on the left, up on the right. The
inflection point is where it switches
from one concavity to the other. In
the alternative description in terms
of the steering wheel, the inflection
point is where your steering wheel
is crossing from left to right.

1.3 Applications
Maxima and minima

When a function goes up and then
smoothly turns around and comes
back down again, it has zero slope
at the top. A place where ẋ = 0,
then, could represent a place where
x was at a maximum. On the other
hand, it could be concave up, in
which case we’d have a minimum.
The term extremum refers to ei-
ther a maximum or a minimum.

Example 7
. Fred receives a mysterious e-mail tip

telling him that his investment in a cer-
tain stock will have a value given by
x = −2t4 + (6.4577 × 1010)t , where
t ≥ 2005 is the year. Should he sell at
some point? If so, when?

. If the value reaches a maximum at
some time, then the derivative should
be zero then. Taking the derivative
and setting it equal to zero, we have

0 = −8t3 + 6.4577× 1010

t =
(

6.4577× 1010

8

)1/3

t = ±2006.0 .

Obviously the solution at t = −2006.0
is bogus, since the stock market didn’t
exist four thousand years ago, and the
tip only claimed the function would be
valid for t ≥ 2005.

Should Fred sell on New Year’s eve of
2006?

But this could be a maximum, a mini-
mum, or an inflection point. Fred defi-
nitely does not want to sell at t = 2006
if it’s a minimum! To check which of
the three possibilities hold, Fred takes
the second derivative:

ẍ = −24t2 .

Plugging in t = 2006.0, we find that
the second derivative is negative at
that time, so it is indeed a maximum.

Implicit in this whole discussion
was the assumption that the max-
imum or minimum occurred where
the function was smooth. There
are some other possibilities.

In figure n, the function’s mini-
mum occurs at an end-point of its
domain.
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n / The function x =
√

t
has a minimum at t =
0, which is not a place
where ẋ = 0. This point is
the edge of the function’s
domain.

Another possibility is that the
function can have a minimum or
maximum at some point where
its derivative isn’t well defined.
Figure o shows such a situation.
There is a kink in the function at
t = 0, so a wide variety of lines
could be placed through the graph
there, all with different slopes and
all staying on one side of the graph.
There is no uniquely defined tan-
gent line, so the derivative is unde-
fined.

Example 8
. Rancher Rick has a length of cy-
clone fence L with which to enclose a
rectangular pasture. Show that he can
enclose the greatest possible area by
forming a square with sides of length
L/4.

. If the width and length of the rect-
angle are t and u, and Rick is go-
ing to use up all his fencing material,
then the perimeter of the rectangle,
2t + 2u, equals L, so for a given width,
t , the length is u = L/2 − t . The area

o / The function x = |t |
has a minimum at t =
0, which is not a place
where ẋ = 0. This is a
point where the function
isn’t differentiable.

is a = tu = t(L/2 − t). The func-
tion only means anything realistic for
0 ≤ t ≤ L/2, since for values of t out-
side this region either the width or the
height of the rectangle would be neg-
ative. The function a(t) could there-
fore have a maximum either at a place
where ȧ = 0, or at the endpoints of the
function’s domain. We can eliminate
the latter possibility, because the area
is zero at the endpoints.

To evaluate the derivative, we first
need to reexpress a as a polynomial:

a = −t2 +
L
2

t .

The derivative is

ȧ = −2t +
L
2

.

Setting this equal to zero, we find t =
L/4, as claimed. This is a maximum,
not a minimum or an inflection point,
because the second derivative is the
constant ä = −2, which is negative for
all t , including t = L/4.
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Propagation of errors

The Women’s National Basketball
Association says that balls used in
its games should have a radius of
11.6 cm, with an allowable range of
error of plus or minus 0.1 cm (one
millimeter). How accurately can
we determine the ball’s volume?

p / How accurately can we determine
the ball’s volume?

The equation for the volume of
a sphere gives V = (4/3)πr3 =
6538 cm3 (about six and a half
liters). We have a function V (r),
and we want to know how much
of an effect will be produced on
the function’s output V if its in-
put r is changed by a certain small
amount. Since the amount by
which r can be changed is small
compared to r, it’s reasonable to

take the tangent line as an ap-
proximation to the actual graph.
The slope of the tangent line is
the derivative of V , which is 4πr2.
(This is the ball’s surface area.)
Setting (slope) = (rise)/(run) and
solving for the rise, which repre-
sents the change in V , we find
that it could be off by as much as
(4πr2)(0.1 cm) = 170 cm3. The
volume of the ball can therefore be
expressed as 6500±170 cm3, where
the original figure of 6538 has been
rounded off to the nearest hundred
in order to avoid creating the im-
pression that the 3 and the 8 actu-
ally mean anything — they clearly
don’t, since the possible error is
out in the hundreds’ place.

This calculation is an example of a
very common situation that occurs
in the sciences, and even in every-
day life, in which we base a calcu-
lation on a number that has some
range of uncertainty in it, causing a
corresponding range of uncertainty
in the final result. This is called
propagation of errors. The idea is
that the derivative expresses how
sensitive the function’s output is to
its input.

The example of the basketball
could also have been handled with-
out calculus, simply by recalculat-
ing the volume using a radius that
was raised from 11.6 to 11.7 cm,
and finding the difference between
the two volumes. Understanding it
in terms of calculus, however, gives
us a different way of getting at the
same ideas, and often allows us to
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understand more deeply what’s go-
ing on. For example, we noticed in
passing that the derivative of the
volume was simply the surface area
of the ball, which provides a nice
geometric visualization. We can
imagine inflating the ball so that
its radius is increased by a millime-
ter. The amount of added volume
equals the surface area of the ball
multiplied by one millimeter, just
as the amount of volume added to
the world’s oceans by global warm-
ing equals the oceans’ surface area
multiplied by the added depth.

For an example of an insight
that we would have missed if we
hadn’t applied calculus, consider
how much error is incurred in the
measurement of the width of a
book if the ruler is placed on the
book at a slightly incorrect angle,
so that it doesn’t form an angle
of exactly 90 degrees with spine.
The measurement has its minimum
(and correct) value if the ruler is
placed at exactly 90 degrees. Since
the function has a minimum at
this angle, its derivative is zero.
That means that we expect essen-
tially no error in the measurement
if the ruler’s angle is just a tiny
bit off. This gives us the insight
that it’s not worth fiddling exces-
sively over the angle in this mea-
surement. Other sources of error
will be more important. For exam-
ple, is the book a uniform rectan-
gle? Are we using the worn end of
the ruler as its zero, rather than
letting the ruler hang over both

sides of the book and subtracting
the two measurements?
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Problems
1 Graph the function t2 in the
neighborhood of t = 3, draw a tan-
gent line, and use its slope to verify
that the derivative equals 2t at this
point. . Solution, p. 166

2 Graph the function sin et in
the neighborhood of t = 0, draw a
tangent line, and use its slope to
estimate the derivative. Answer:
0.5403023058. (You will of course
not get an answer this precise using
this technique.)

. Solution, p. 166

3 Differentiate the follow-
ing functions with respect to t:
1, 7, t, 7t, t2, 7t2, t3, 7t3.

. Solution, p. 167

4 Differentiate 3t7−4t2 +6 with
respect to t. . Solution, p. 167

5 Differentiate at2 + bt+ c with
respect to t.
. Solution, p. 167 [Thompson, 1919]

6 Find two different functions
whose derivatives are the constant
3, and give a geometrical interpre-
tation. . Solution, p. 167

7 Find a function x whose
derivative is ẋ = t7. In other
words, integrate the given func-
tion. . Solution, p. 168

8 Find a function x whose
derivative is ẋ = 3t7. In other
words, integrate the given func-
tion. . Solution, p. 168

9 Find a function x whose
derivative is ẋ = 3t7 − 4t2 + 6.

In other words, integrate the given
function. . Solution, p. 168

10 Let t be the time that has
elapsed since the Big Bang. In
that time, one would imagine that
light, traveling at speed c, has been
able to travel a maximum distance
ct. (In fact the distance is several
times more than this, because ac-
cording to Einstein’s theory of gen-
eral relativity, space itself has been
expanding while the ray of light
was in transit.) The portion of
the universe that we can observe
would then be a sphere of radius
ct, with volume v = (4/3)πr3 =
(4/3)π(ct)3. Compute the rate v̇
at which the volume of the ob-
servable universe is increasing, and
check that your answer has the
right units, as in example 3 on page
14. . Solution, p. 168

11 Kinetic energy is a measure
of an object’s quantity of motion;
when you buy gasoline, the energy
you’re paying for will be converted
into the car’s kinetic energy (actu-
ally only some of it, since the en-
gine isn’t perfectly efficient). The
kinetic energy of an object with
mass m and velocity v is given by
K = (1/2)mv2. For a car acceler-
ating at a steady rate, with v = at,
find the rate K̇ at which the en-
gine is required to put out kinetic
energy. K̇, with units of energy
over time, is known as the power.
Check that your answer has the
right units, as in example 3 on page
14. . Solution, p. 168
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12 A metal square expands and
contracts with temperature, the
lengths of its sides varying accord-
ing to the equation ` = (1+αT )`o.
Find the rate of change of its sur-
face area a with respect to tem-
perature. That is, find ȧ, where
the variable with respect to which
you’re differentiating is the tem-
perature, T . Check that your an-
swer has the right units, as in ex-
ample 3 on page 14.

. Solution, p. 169

13 Find the second derivative of
2t3 − t. . Solution, p. 169

14 Locate any points of inflec-
tion of the function t3 + t2. Verify
by graphing that the concavity of
the function reverses itself at this
point. . Solution, p. 169

15 Let’s see if the rule that the
derivative of tk is ktk−1 also works
for k < 0. Use a graph to test one
particular case, choosing one par-
ticular negative value of k, and one
particular value of t. If it works,
what does that tell you about the
rule? If it doesn’t work?

. Solution, p. 169

16 Two atoms will interact via
electrical forces between their pro-
tons and electrons. To put them
at a distance r from one another
(measured from nucleus to nu-
cleus), a certain amount of energy
E is required, and the minimum
energy occurs when the atoms are
in equilibrium, forming a molecule.
Often a fairly good approximation
to the energy is the Lennard-Jones

expression

E(r) = k

[(a
r

)12

− 2
(a
r

)6
]

,

where k and a are constants. Note
that, as proved in chapter 2, the
rule that the derivative of tk is
ktk−1 also works for k < 0. Show
that there is an equilibrium at r =
a. Verify (either by graphing or by
testing the second derivative) that
this is a minimum, not a maximum
or a point of inflection.

. Solution, p. 171

17 Prove that the total number
of maxima and minima possessed
by a third-order polynomial is at
most two. . Solution, p. 172

18 Functions f and g are de-
fined on the whole real line, and
are differentiable everywhere. Let
s = f + g be their sum. In what
ways, if any, are the extrema of f ,
g, and s related?

. Solution, p. 172

19 Euclid proved that the vol-
ume of a pyramid equals (1/3)bh,
where b is the area of its base,
and h its height. A pyramidal
tent without tent-poles is erected
by blowing air into it under pres-
sure. The area of the base is easy
to measure accurately, because the
base is nailed down, but the height
fluctuates somewhat and is hard to
measure accurately. If the amount
of uncertainty in the measured
height is plus or minus eh, find the
amount of possible error eV in the
volume. . Solution, p. 173
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20 A hobbyist is going to mea-
sure the height to which her model
rocket rises at the peak of its tra-
jectory. She plans to take a digi-
tal photo from far away and then
do trigonometry to determine the
height, given the baseline from the
launchpad to the camera and the
angular height of the rocket as
determined from analysis of the
photo. Comment on the error in-
curred by the inability to snap the
photo at exactly the right moment.

. Solution, p. 173

21 Prove, as claimed on p. 10,
that if the sum 12 + 22 + . . . + n2

is a polynomial, it must be of third
order, and the coefficient of the n3

term must be 1/3.
. Solution, p. 173
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2 To infinity — and
beyond!

a / Gottfried Leibniz
(1646-1716)

Little kids readily pick up the idea
of infinity. “When I grow up,
I’m gonna have a million Barbies.”
“Oh yeah? Well, I’m gonna have
a billion.” “Well, I’m gonna have
infinity Barbies.” “So what? I’ll
have two infinity of them.” Adults
laugh, convinced that infinity, ∞,
is the biggest number, so 2∞ can’t
be any bigger. This is the idea be-
hind a joke in the movie Toy Story.
Buzz Lightyear’s slogan is “To in-
finity — and beyond!” We assume
there isn’t any beyond. Infinity is
supposed to be the biggest there
is, so by definition there can’t be
anything bigger, right?

2.1 Infinitesimals
Actually mathematicians have in-
vented many different logical sys-

tems for working with infinity, and
in most of them infinity does come
in different sizes and flavors. New-
ton, as well as the German mathe-
matician Leibniz who invented cal-
culus independently,1 had a strong
intuitive idea that calculus was re-
ally about numbers that were in-
finitely small: infinitesimals, the
opposite of infinities. For instance,
consider the number 1.12 = 1.21.
That 2 in the first decimal place
is the same 2 that appears in the
expression 2t for the derivative of
t2.

b / A close-up view of the
function x = t2, show-
ing the line that con-
nects the points (1, 1)
and (1.1, 1.21).

1There is some dispute over this point.
Newton and his supporters claimed that
Leibniz plagiarized Newton’s ideas, and
merely invented a new notation for them.

25
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Figure b shows the idea visually.
The line connecting the points
(1, 1) and (1.1, 1.21) is almost in-
distinguishable from the tangent
line on this scale. Its slope is
(1.21 − 1)/(1.1 − 1) = 2.1, which
is very close to the tangent line’s
slope of 2. It was a good approx-
imation because the points were
close together, separated by only
0.1 on the t axis.

If we needed a better approxi-
mation, we could try calculating
1.012 = 1.0201. The slope of the
line connecting the points (1, 1)
and (1.01, 1.0201) is 2.01, which is
even closer to the slope of the tan-
gent line.

Another method of visualizing the
idea is that we can interpret x = t2

as the area of a square with sides
of length t, as suggested in fig-
ure c. We increase t by an in-
finitesimally small number dt. The
d is Leibniz’s notation for a very
small difference, and dt is to be
read as a single symbol, “dee-tee,”
not as a number d multiplied by

c / A geometrical inter-
pretation of the derivative
of t2.

a number t. The idea is that dt
is smaller than any ordinary num-
ber you could imagine, but it’s not
zero. The area of the square is in-
creased by dx = 2tdt+ dt2, which
is analogous to the finite numbers
0.21 and 0.0201 we calculated ear-
lier. Where before we divided by
a finite change in t such as 0.1 or
0.01, now we divide by dt, produc-
ing

dx

dt
=

2tdt+ dt2

dt
= 2t+ dt

for the derivative. On a graph like
figure b, dx/ dt is the slope of the
tangent line: the change in x di-
vided by the changed in t.

But adding an infinitesimal num-
ber dt onto 2t doesn’t really change
it by any amount that’s even the-
oretically measurable in the real
world, so the answer is really 2t.
Evaluating it at t = 1 gives the
exact result, 2, that the earlier
approximate results, 2.1 and 2.01,
were getting closer and closer to.

Example 9
To show the power of infinitesimals

and the Leibniz notation, let’s prove
that the derivative of t3 is 3t2:

dx
dt

=
(t + dt)3 − t3

dt

=
3t2 dt + 3t dt2 + dt3

dt
= 3t2 + . . . ,

where the dots indicate infinitesimal
terms that we can neglect.
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This result required significant
sweat and ingenuity when proved
on page 140 by the methods of
chapter 1, and not only that
but the old method would have
required a completely different
method of proof for a function that
wasn’t a polynomial, whereas the
new one can be applied more gen-
erally, as we’ll see presently in ex-
amples 10-13.

It’s easy to get the mistaken im-
pression that infinitesimals exist
in some remote fairyland where we
can never touch them. This may
be true in the same artsy-fartsy
sense that we can never truly un-
derstand

√
2, because its decimal

expansion goes on forever, and
we therefore can never compute
it exactly. But in practical work,
that doesn’t stop us from working
with

√
2. We just approximate it

as, e.g., 1.41. Infinitesimals are no
more or less mysterious than irra-
tional numbers, and in particular
we can represent them concretely
on a computer. If you go to
lightandmatter.com/calc/inf,
you’ll find a web-based calculator
called Inf, which can handle
infinite and infinitesimal numbers.
It has a built-in symbol, d, which
represents an infinitesimally small
number such as the dx’s and dt’s
we’ve been handling symbolically.

Let’s use Inf to verify that the
derivative of t3, evaluated at t = 1,
is equal to 3, as found by plug-
ging in to the result of example 9.
The : symbol is the prompt that

shows you Inf is ready to accept
your typed input.

: ((1+d)^3-1)/d

3+3d+d^2

As claimed, the result is 3, or close
enough to 3 that the infinitesimal
error doesn’t matter in real life. It
might look like Inf did this exam-
ple by using algebra to simplify the
expression, but in fact Inf doesn’t
know anything about algebra. One
way to see this is to use Inf to com-
pare d with various real numbers:

: d<1

true

: d<0.01

true

: d<0.0000001

true

: d<0

false

If d were just a variable being
treated according to the axioms of
algebra, there would be no way to
tell how it compared with other
numbers without having some spe-
cial information. Inf doesn’t know
algebra, but it does know that d

is a positive number that is less
than any positive real number that
can be represented using decimals
or scientific notation.

Example 10
In example 5 on p. 15, we made a

rough numerical check to see if the
differentiation rule tk → ktk−1, which
was proved on p. 140 for k = 1, 2, 3,
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. . . , was also valid for k = −1, i.e.,
for the function x = 1/t . Let’s look
for an actual proof. To find a natu-
ral method of attack, let’s first redo
the numerical check in a slightly more
suggestive form. Again approximating
the derivating at t = 3, we have

dx
dt
≈
(

1
3.01

− 1
3

)(
1

0.01

)
.

Let’s apply the grade-school tech-
nique for subtracting fractions, in
which we first get them over the same
denominator:

1
3
− 1

3.01
=

3− 3.01
3× 3.01

.

The result is

dx
dt
≈
(
−0.01

3× 3.01

)(
1

0.01

)
= − 1

3× 3.01
.

Replacing 3 with t and 0.01 with dt ,
this becomes

dx
dt

= − 1
t(t + dt)

= −t−2 + . . .

Example 11
The derivative of x = sin t , with t in

units of radians, is

dx
dt

=
sin(t + dt)− sin t

dt
,

and with the trig identity sin(α + β) =
sinα cosβ + cosα sinβ, this becomes

=
sin t cos dt + cos t sin dt − sin t

dt
.

d / Graphs of sin t , and
its derivative cos t .

Applying the small-angle approxima-
tions sin u ≈ u and cos u ≈ 1, we
have

dx
dt

=
cos t dt

dt
+ . . .

= cos t + . . . ,

where “. . . ” represents the error
caused by the small-angle approxima-
tions.

This is essentially all there is to the
computation of the derivative, except
for the remaining technical point that
we haven’t proved that the small-angle
approximations are good enough. In
example 9 on page 26, when we cal-
culated the derivative of t3, the result-
ing expression for the quotient dx/ dt
came out in a form in which we could
inspect the “. . . ” terms and verify be-
fore discarding them that they were in-
finitesimal. The issue is less trivial in
the present example. This point is ad-
dressed more rigorously on page 141.

Figure d shows the graphs of the func-
tion and its derivative. Note how the
two graphs correspond. At t = 0,
the slope of sin t is at its largest, and
is positive; this is where the deriva-
tive, cos t , attains its maximum posi-
tive value of 1. At t = π/2, sin t has
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reached a maximum, and has a slope
of zero; cos t is zero here. At t = π,
in the middle of the graph, sin t has its
maximum negative slope, and cos t is
at its most negative extreme of −1.

Physically, sin t could represent the
position of a pendulum as it moved
back and forth from left to right, and
cos t would then be the pendulum’s
velocity.

Example 12
What about the derivative of the co-

sine? The cosine and the sine are re-
ally the same function, shifted to the
left or right by π/2. If the derivative
of the sine is the same as itself, but
shifted to the left by π/2, then the
derivative of the cosine must be a co-
sine shifted to the left by π/2:

d cos t
dt

= cos(t + π/2)

= − sin t .

The next example will require a
little trickery. By the end of this
chapter you’ll learn general tech-
niques for cranking out any deriva-
tive cookbook-style, without hav-
ing to come up with any tricks.

Example 13
. Find the derivative of 1/(1− t), eval-
uated at t = 0.

. The graph shows what the function
looks like. It blows up to infinity at t =
1, but it’s well behaved at t = 0, where
it has a positive slope.

For insight, let’s calculate some points
on the curve. The point at which
we’re differentiating is (0, 1). If we
put in a small, positive value of t ,

e / The function x =
1/(1− t).

we can observe how much the re-
sult increases relative to 1, and this
will give us an approximation to the
derivative. For example, we find that
at t = 0.001, the function has the
value 1.001001001001, and so the
derivative is approximately (1.001 −
1)/(.001 − 0), or about 1. We can
therefore conjecture that the deriva-
tive is exactly 1, but that’s not the
same as proving it.

But let’s take another look at that num-
ber 1.001001001001. It’s clearly a re-
peating decimal. In other words, it ap-
pears that

1
1− 1/1000

= 1+
1

1000
+
(

1
1000

)2

+. . . ,

and we can easily verify this by mul-
tiplying both sides of the equation by
1−1/1000 and collecting like powers.
This is a special case of the geometric
series

1
1− t

= 1 + t + t2 + . . . ,

which can be derived2 by doing syn-
thetic division (the equivalent of long

2As a technical aside, it’s not neces-
sary for our present purposes to go into
the issue of how to make the most gen-
eral possible definition of what is meant
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division for polynomials), or simply
verified, after forming the conjec-
ture based on the numerical example
above, by multiplying both sides by
1− t .

As we’ll see in section 2.2, and have
been implicitly assuming so far, in-
finitesimals obey all the same ele-
mentary laws of algebra as the real
numbers, so the above derivation also
holds for an infinitesimal value of t .
We can verify the result using Inf:

: 1/(1-d)

1+d+d^2+d^3+d^4

Notice, however, that the series is
truncated after the first five terms.
This is similar to the truncation that
happens when you ask your calcula-
tor to find

√
2 as a decimal.

The result for the derivative is

dx
dt

=

(
1 + dt + dt2 + . . .

)
− 1

1 + dt − 1
= 1 + . . . .

2.2 Safe use of
infinitesimals

The idea of infinitesimally small
numbers has always irked purists.

by a sum like this one which has an infi-
nite number of terms; the only fact we’ll
need here is that the error in finite sum
obtained by leaving out the “. . . ” has
only higher powers of t . This is taken
up in more detail in ch. 7. Note that
the series only gives the right answer
for t < 1. E.g., for t = 1, it equals
1+1+1+ . . ., which, if it means anything,
clearly means something infinite.

f / Bishop George Berke-
ley (1685-1753)

One prominent critic of the cal-
culus was Newton’s contemporary
George Berkeley, the Bishop of
Cloyne. Although some of his
complaints are clearly wrong (he
denied the possibility of the sec-
ond derivative), there was clearly
something to his criticism of the
infinitesimals. He wrote sarcas-
tically, “They are neither finite
quantities, nor quantities infinitely
small, nor yet nothing. May we not
call them ghosts of departed quan-
tities?”

Infinitesimals seemed scary, be-
cause if you mishandled them, you
could prove absurd things. For
example, let du be an infinitesi-
mal. Then 2 du is also infinites-
imal. Therefore both 1/ du and
1/(2 du) equal infinity, so 1/du =
1/(2 du). Multiplying by du on
both sides, we have a proof that
1 = 1/2.

In the eighteenth century, the use
of infinitesimals became like adul-
tery: commonly practiced, but
shameful to admit to in polite cir-
cles. Those who used them learned
certain rules of thumb for handling
them correctly. For instance, they
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would identify the flaw in my proof
of 1 = 1/2 as my assumption that
there was only one size of infinity,
when actually 1/ du should be in-
terpreted as an infinity twice as big
as 1/(2 du). The use of the sym-
bol ∞ played into this trap, be-
cause the use of a single symbol
for infinity implied that infinities
only came in one size. However,
the practitioners of infinitesimals
had trouble articulating a clear
set of principles for their proper
use, and couldn’t prove that a self-
consistent system could be built
around them.

By the twentieth century, when
I learned calculus, a clear con-
sensus had formed that infinite
and infinitesimal numbers weren’t
numbers at all. A notation like
dx/dt, my calculus teacher told
me, wasn’t really one number di-
vided by another, it was merely
a symbol for something called a
limit,

lim
∆t→0

∆x

∆t
,

where ∆x and ∆t represented fi-
nite changes. I’ll give a formal def-
inition (actually two different for-
mal definitions) of the term “limit”
in section 3.2, but intuitively the
concept is that we can get as good
an approximation to the derivative
as we like, provided that we make
∆t small enough.

That satisfied me until we got to
a certain topic (implicit differen-
tiation) in which we were encour-
aged to break the dx away from

the dt, leaving them on opposite
sides of the equation. I button-
holed my teacher after class and
asked why he was now doing what
he’d told me you couldn’t really
do, and his response was that dx
and dt weren’t really numbers, but
most of the time you could get
away with treating them as if they
were, and you would get the right
answer in the end. Most of the
time!? That bothered me. How
was I supposed to know when it
wasn’t “most of the time?”

g / Abraham Robinson
(1918-1974)

But unknown to me and my
teacher, mathematician Abraham
Robinson had already shown in the
1960’s that it was possible to con-
struct a self-consistent number sys-
tem that included infinite and in-
finitesimal numbers. He called it
the hyperreal number system, and
it included the real numbers as a
subset.3

3The main text of this book treats in-
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Moreover, the rules for what you
can and can’t do with the hy-
perreals turn out to be extremely
simple. Take any true statement
about the real numbers. Suppose
it’s possible to translate it into a
statement about the hyperreals in
the most obvious way, simply by
replacing the word “real” with the
word “hyperreal.” Then the trans-
lated statement is also true. This
is known as the transfer principle.

Let’s look back at my bogus proof
of 1 = 1/2 in light of this sim-
ple principle. The final step of
the proof, for example, is perfectly
valid: multiplying both sides of the
equation by the same thing. The
following statement about the real
numbers is true:

For any real numbers a, b, and
c, if a = b, then ac = bc.

This can be translated in an obvi-
ous way into a statement about the
hyperreals:

For any hyperreal numbers a,
b, and c, if a = b, then ac = bc.

However, what about the state-
ment that both 1/du and 1/(2 du)
equal infinity, so they’re equal to
each other? This isn’t the trans-
lation of a statement that’s true

finitesimals with the minimum fuss nec-
essary in order to avoid the common
goofs. More detailed discussions are of-
ten relegated to the back of the book, as
in example 11 on page 28. The reader
who wants to learn even more about the
hyperreal system should consult the list
of further reading on page 201.

about the reals, so there’s no rea-
son to believe it’s true when ap-
plied to the hyperreals — and in
fact it’s false.

What the transfer principle tells us
is that the real numbers as we nor-
mally think of them are not unique
in obeying the ordinary rules of al-
gebra. There are completely dif-
ferent systems of numbers, such
as the hyperreals, that also obey
them.

How, then, are the hyperreals even
different from the reals, if every-
thing that’s true of one is true of
the other? But recall that the
transfer principle doesn’t guaran-
tee that every statement about the
reals is also true of the hyperre-
als. It only works if the statement
about the reals can be translated
into a statement about the hyper-
reals in the most simple, straight-
forward way imaginable, simply by
replacing the word “real” with the
word “hyperreal.” Here’s an ex-
ample of a true statement about
the reals that can’t be translated
in this way:

For any real number a, there
is an integer n that is greater
than a.

This one can’t be translated so
simplemindedly, because it refers
to a subset of the reals called
the integers. It might be possi-
ble to translate it somehow, but
it would require some insight into
the correct way to translate that
word “integer.” The transfer prin-
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ciple doesn’t apply to this state-
ment, which indeed is false for the
hyperreals, because the hyperre-
als contain infinite numbers that
are greater than all the integers.
In fact, the contradiction of this
statement can be taken as a def-
inition of what makes the hyper-
reals special, and different from
the reals: we assume that there is
at least one hyperreal number, H,
which is greater than all the inte-
gers.

As an analogy from everyday life,
consider the following statements
about the student body of the high
school I attended:

1. Every student at my high
school had two eyes and a face.
2. Every student at my high
school who was on the football
team was a jerk.

Let’s try to translate these into
statements about the population
of California in general. The stu-
dent body of my high school is like
the set of real numbers, and the
present-day population of Califor-
nia is like the hyperreals. State-
ment 1 can be translated mind-
lessly into a statement that ev-
ery Californian has two eyes and
a face; we simply substitute “ev-
ery Californian” for “every student
at my high school.” But state-
ment 2 isn’t so easy, because it
refers to the subset of students
who were on the football team,
and it’s not obvious what the cor-
responding subset of Californians

would be. Would it include ev-
erybody who played high school,
college, or pro football? Maybe
it shouldn’t include the pros, be-
cause they belong to an organiza-
tion covering a region bigger than
California. Statement 2 is the kind
of statement that the transfer prin-
ciple doesn’t apply to.4

Example 14
As a nontrivial example of how to ap-

ply the transfer principle, let’s consider
how to handle expressions like the
one that occurred when we wanted to
differentiate t2 using infinitesimals:

d
(
t2)

dt
= 2t + dt .

I argued earlier that 2t + dt is so close
to 2t that for all practical purposes, the
answer is really 2t . But is it really valid
in general to say that 2t + dt is the
same hyperreal number as 2t? No.
We can apply the transfer principle to
the following statement about the re-
als:

For any real numbers a and b,
with b 6= 0, a + b 6= a.

Since dt isn’t zero, 2t + dt 6= 2t .

More generally, example 14 leads
us to visualize every number as be-
ing surrounded by a “halo” of num-
bers that don’t equal it, but dif-
fer from it by only an infinitesi-
mal amount. Just as a magnify-
ing glass would allow you to see
the fleas on a dog, you would need
an infinitely strong microscope to

4For a slightly more precise and for-
mal statement of the transfer principle,
see page 143.
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see this halo. This is similar to
the idea that every integer is sur-
rounded by a bunch of fractions
that would round off to that inte-
ger. We can define the standard
part of a finite hyperreal number,
which means the unique real num-
ber that differs from it infinitesi-
mally. For instance, the standard
part of 2t+ dt, notated st(2t+ dt),
equals 2t. The derivative of a func-
tion should actually be defined as
the standard part of dx/ dt, but
we often write dx/ dt to mean the
derivative, and don’t worry about
the distinction.

One of the things Bishop Berkeley
disliked about infinitesimals was
the idea that they existed in a
kind of hierarchy, with dt2 being
not just infinitesimally small, but
infinitesimally small compared to
the infinitesimal dt. If dt is the
flea on a dog, then dt2 is a sub-
microscopic flea that lives on the
flea, as in Swift’s doggerel: “Big
fleas have little fleas/ On their
backs to ride ’em,/ and little fleas
have lesser fleas,/And so, ad in-
finitum.” Berkeley’s criticism was
off the mark here: there is such a
hierarchy. Our basic assumption
about the hyperreals was that they
contain at least one infinite num-
ber, H, which is bigger than all
the integers. If this is true, then
1/H must be less than 1/2, less
than 1/100, less then 1/1, 000, 000
— less than 1/n for any integer n.
Therefore the hyperreals are guar-
anteed to include infinitesimals as

well, and so we have at least three
levels to the hierarchy: infinities
comparable to H, finite numbers,
and infinitesimals comparable to
1/H. If you can swallow that,
then it’s not too much of a leap to
add more rungs to the ladder, like
extra-small infinitesimals that are
comparable to 1/H2. If this seems
a little crazy, it may comfort you
to think of statements about the
hyperreals as descriptions of limit-
ing processes involving real num-
bers. For instance, in the sequence
of numbers 1.12 = 1.21, 1.012 =
1.0201, 1.0012 = 1.002001, . . . , it’s
clear that the number represented
by the digit 1 in the final decimal
place is getting smaller faster than
the contribution due to the digit 2
in the middle.

One subtle issue here, which I
avoided mentioning in the differen-
tiation of the sine function on page
28, is whether the transfer princi-
ple is sufficient to let us define all
the functions that appear as famil-
iar keys on a calculator: x2,

√
x,

sinx, cosx, ex, and so on. After
all, these functions were originally
defined as rules that would take a
real number as an input and give a
real number as an output. It’s not
trivially obvious that their defini-
tions can naturally be extended to
take a hyperreal number as an in-
put and give back a hyperreal as
an output. Essentially the answer
is that we can apply the transfer
principle to them just as we would
to statements about simple arith-
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metic, but I’ve discussed this a lit-
tle more on page 149.

2.3 The product rule
When I first learned calculus, it
seemed to me that if the deriva-
tive of 3t was 3, and the deriva-
tive of 7t was 7, then the deriva-
tive of t multiplied by t ought to
be just plain old t, not 2t. The
reason there’s a factor of 2 in the
correct answer is that t2 has two
reasons to grow as t gets bigger: it
grows because the first factor of t
is increasing, but also because the
second one is. In general, it’s pos-
sible to find the derivative of the
product of two functions any time
we know the derivatives of the in-
dividual functions.

The product rule
If x and y are both functions of t,
then the derivative of their product
is

d(xy)

dt
=

dx

dt
· y + x · dy

dt
.

The proof is easy. Changing t by
an infinitesimal amount dt changes
the product xy by an amount

(x+ dx)(y + dy)− xy
= y dx+ x dy + dxdy ,

and dividing by dt makes this into

dx

dt
· y + x · dy

dt
+

dxdy

dt
,

whose standard part is the result
to be proved.

Example 15
. Find the derivative of the function
t sin t .

.

d(t sin t)
dt

= t · d(sin t)
dt

+
dt
dt
· sin t

= t cos t + sin t

Figure h gives the geometrical in-
terpretation of the product rule.
Imagine that the king, in his cas-
tle at the southwest corner of his
rectangular kingdom, sends out a
line of infantry to expand his terri-
tory to the north, and a line of cav-
alry to take over more land to the
east. In a time interval dt, the cav-
alry, which moves faster, covers a
distance dx greater than that cov-
ered by the infantry, dy. However,
the strip of territory conquered by
the cavalry, y dx, isn’t as great as
it could have been, because in our
example y isn’t as big as x.

h / A geometrical interpretation of the
product rule.
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A helpful feature of the Leibniz
notation is that one can easily
use it to check whether the units
of an answer make sense. If we
measure distances in meters and
time in seconds, then xy has units
of square meters (area), and so
does the change in the area, d(xy).
Dividing by dt gives the number
of square meters per second be-
ing conquered. On the right-hand
side of the product rule, dx/dt
has units of meters per second
(velocity), and multiplying it by
y makes the units square meters
per second, which is consistent
with the left-hand side. The units
of the second term on the right
likewise check out. Some begin-
ners might be tempted to guess
that the product rule would be
d(xy)/ dt = (dx/ dt)(dy/dt), but
the Leibniz notation instantly re-
veals that this can’t be the case,
because then the units on the left,
m2/s, wouldn’t match the ones on
the right, m2/s2.

Because this unit-checking feature
is so helpful, there is a special way
of writing a second derivative in
the Leibniz notation. What New-
ton called ẍ, Leibniz wrote as

d2 x

dt2
.

Although the different placement
of the 2’s on top and bottom seems
strange and inconsistent to many
beginners, it actually works out
nicely. If x is a distance, mea-
sured in meters, and t is a time,

in units of seconds, then the sec-
ond derivative is supposed to have
units of acceleration, in units of
meters per second per second, also
written (m/s)/s, or m/s2. (The
acceleration of falling objects on
Earth is 9.8 m/s2 in these units.)
The Leibniz notation is meant to
suggest exactly this: the top of the
fraction looks like it has units of
meters, because we’re not squaring
x, while the bottom of the fraction
looks like it has units of seconds
squared, because it looks like we’re
squaring dt. Therefore the units
come out right. It’s important to
realize, however, that the symbol d
isn’t a number (not a real one, and
not a hyperreal one, either), so we
can’t really square it; the notation
is not to be taken as a literal state-
ment about infinitesimals.

Example 16
A tricky use of the product rule is to

find the derivative of
√

t . Since
√

t can
be written as t1/2, we might suspect
that the rule d(tk )/ dt = ktk−1 would
work, giving a derivative 1

2 t−1/2 =
1/(2
√

t). However, the method from
ch. 1 used to prove that rule proved
on p.140 only work if k is an integer,
so the best we could do would be to
confirm our conjecture approximately
by graphing or numerical estimation.

Using the product rule, we can write
f (t) = d

√
t/ dt for our unknown deriva-

tive, and back into the result using the
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product rule:

dt
dt

=
d(
√

t
√

t)
dt

= f (t)
√

t +
√

t f (t)

= 2f (t)
√

t

But dt/ dt = 1, so f (t) = 1/(2
√

t) as
claimed.

The trick used in example 16 can
also be used to prove that the
power rule d(xn)/ dx = nxn−1 ap-
plies to cases where n is an integer
less than 0, but I’ll instead prove
this on page 41 by a technique that
doesn’t depend on a trick, and also
applies to values of n that aren’t
integers.

2.4 The chain rule
Figure i shows three clowns on see-
saws. If the leftmost clown moves
down by a distance dx, the middle
one will come up by dy, but this
will also cause the one on the right
to move down by dz. If we want
to predict how much the rightmost
clown will move in response to a
certain amount of motion by the
leftmost one, we have

dz

dx
=

dz

dy
· dy

dx
.

This is called the chain rule. It
says that if a change in x causes y
to change, and y then causes z to
change, then this chain of changes
has a cascading effect. Mathemat-
ically, there is no big mystery here.
We simply cancel dy on the top

and bottom. The only minor sub-
tlety is that we would like to be
able to be sloppy by using an ex-
pression like dy/dx to mean both
the quotient of two infinitesimal
numbers and a derivative, which is
defined as the standard part of this
quotient. This sloppiness turns out
to be all right, as proved on page
151.

Example 17
. Jane hikes 3 kilometers in an hour,
and hiking burns 70 calories per kilo-
meter. At what rate does she burn
calories?

. We let x be the number of hours
she’s spent hiking so far, y the dis-
tance covered, and z the calories
spent. Then

dz
dx

=
(

70 cal
1��km

)(
3��km
1 hr

)
= 210 cal/hr .

Example 18
. Figure j shows a piece of farm

equipment containing a train of gears
with 13, 21, and 42 teeth. If the small-
est gear is driven by a motor, relate
the rate of rotation of the biggest gear
to the rate of rotation of the motor.

. Let x , y , and z be the angular posi-
tions of the three gears. Then by the
chain rule,

dz
dx

=
dz
dy
· dy

dx

=
13
21
· 21

42

=
13
42

.
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i / Three clowns on seesaws demonstrate the chain rule.

j / Example 18.

The chain rule lets us find the
derivative of a function that has
been built out of one function stuck
inside another.

Example 19
. Find the derivative of the function
z(x) = sin(x2).

. Let y (x) = x2, so that z(x) =

sin(y (x)). Then

dz
dx

=
dz
dy
· dy

dx
= cos(y ) · 2x

= 2x cos(x2)

The way people usually say it is that
the chain rule tells you to take the
derivative of the outside function, the
sine in this case, and then multiply
by the derivative of “the inside stuff,”
which here is the square. Once you
get used to doing it, you don’t need
to invent a third, intermediate variable,
as we did here with y .

Example 20
Let’s express the chain rule without

the use of the Leibniz notation. Let the
function f be defined by f (x) = g(h(x)).
Then the derivative of f is given by
f ′(x) = g′(h(x)) · h′(x).

Example 21
. We’ve already proved that the

derivative of tk is ktk−1 for k = −1 (ex-
ample 10 on p. 27) and for k = 1, 2, 3,
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. . . (p. 140). Use these facts to extend
the rule to all integer values of k .

. For k < 0, the function x = tk can
be written as x = (t−1)−k , where −k is
positive. Applying the chain rule, we
find dx/ dt = (−k )(t−1)−k−1(−t−2) =
ktk−1.

2.5 Exponentials and
logarithms

The exponential

The exponential function ex,
where e = 2.71828 . . . is the base
of natural logarithms, comes
constantly up in applications as
diverse as credit-card interest, the
growth of animal populations, and
electric circuits. For its derivative
we have

dex

dx
=
ex+dx − ex

dx

=
exedx − ex

dx

= ex
edx − 1

dx

The second factor,
(
edx − 1

)
/ dx,

doesn’t have x in it, so it must
just be a constant. Therefore we
know that the derivative of ex is
simply ex, multiplied by some un-
known constant,

dex

dx
= c ex.

A rough check by graphing at, say
x = 0, shows that the slope is close
to 1, so c is close to 1. Numer-
ical calculation also shows that,

for example, (e0.001 − 1)/0.001 =
1.00050016670838 is very close to
1. But how do we know it’s exactly
one when dx is really infinitesimal?
We can use Inf:

: [exp(d)-1]/d

1+0.5d+...

(The ... indicates where I’ve
snipped some higher-order terms
out of the output.) It seems clear
that c is equal to 1 except for neg-
ligible terms involving higher pow-
ers of dx. A rigorous proof is given
on page 151.

Example 22
. The concentration of a foreign sub-

stance in the bloodstream generally
falls off exponentially with time as c =
coe−t/a, where co is the initial concen-
tration, and a is a constant. For caf-
feine in adults, a is typically about 7
hours. An example is shown in figure
k. Differentiate the concentration with
respect to time, and interpret the re-
sult. Check that the units of the result
make sense.

. Using the chain rule,

dc
dt

= coe−t/a ·
(
−1

a

)
= −co

a
e−t/a

This can be interpreted as the rate
at which caffeine is being removed
from the blood and put into the per-
son’s urine. It’s negative because the
concentration is decreasing. Accord-
ing to the original expression for x ,
a substance with a large a will take
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a long time to reduce its concentra-
tion, since t/a won’t be very big un-
less we have large t on top to com-
pensate for the large a on the bottom.
In other words, larger values of a rep-
resent substances that the body has
a harder time getting rid of efficiently.
The derivative has a on the bottom,
and the interpretation of this is that for
a drug that is hard to eliminate, the
rate at which it is removed from the
blood is low.

It makes sense that a has units of
time, because the exponential func-
tion has to have a unitless argument,
so the units of t/a have to cancel out.
The units of the result come from the
factor of co/a, and it makes sense that
the units are concentration divided by
time, because the result represents
the rate at which the concentration is
changing.

k / Example 22. A typ-
ical graph of the con-
centration of caffeine in
the blood, in units of mil-
ligrams per liter, as a
function of time, in hours.

Example 23
. Find the derivative of the function
y = 10x .

. In general, one of the tricks to do-
ing calculus is to rewrite functions in
forms that you know how to handle.
This one can be rewritten as a base-e
exponent:

y = 10x

ln y = ln
(
10x)

ln y = x ln 10

y = ex ln 10

Applying the chain rule, we have the
derivative of the exponential, which is
just the same exponential, multiplied
by the derivative of the inside stuff:

dy
dx

= ex ln 10 · ln 10 .

In other words, the “c” referred to in
the discussion of the derivative of ex

becomes c = ln 10 in the case of the
base-10 exponential.

The logarithm

The natural logarithm is the func-
tion that undoes the exponential.
In a situation like this, we have

dy

dx
=

1

dx/ dy
,

where on the left we’re thinking of
y as a function of x, and on the
right we consider x to be a function
of y. Applying this to the natural
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logarithm,

y = lnx

x = ey

dx

dy
= ey

dy

dx
=

1

ey

=
1

x
dlnx

dx
=

1

x
.

l / Differentiation and integration of
functions of the form xn. Constants
out in front of the functions are not
shown, so keep in mind that, for ex-
ample, the derivative of x2 isn’t x , it’s
2x .

This is noteworthy because it
shows that there must be an ex-
ception to the rule that the deriva-
tive of xn is nxn−1, and the inte-
gral of xn−1 is xn/n. (On page
37 I remarked that this rule could
be proved using the product rule
for negative integer values of k,
but that I would give a simpler,
less tricky, and more general proof

later. The proof is example 24 be-
low.) The integral of x−1 is not
x0/0, which wouldn’t make sense
anyway because it involves divi-
sion by zero.5 Likewise the deriva-
tive of x0 = 1 is 0x−1, which is
zero. Figure l shows the idea. The
functions xn form a kind of ladder,
with differentiation taking us down
one rung, and integration taking us
up. However, there are two special
cases where differentiation takes us
off the ladder entirely.

Example 24
. Prove d(xn)/ dx = nxn−1 for any real
value of n, not just an integer.

.

y = xn

= en ln x

By the chain rule,

dy
dx

= en ln x · n
x

= xn · n
x

= nxn−1 .

5Speaking casually, one can say that
division by zero gives infinity. This is
often a good way to think when try-
ing to connect mathematics to reality.
However, it doesn’t really work that way
according to our rigorous treatment of
the hyperreals. Consider this statement:
“For a nonzero real number a, there is
no real number b such that a = 0b.” This
means that we can’t divide a by 0 and get
b. Applying the transfer principle to this
statement, we see that the same is true
for the hyperreals: division by zero is un-
defined. However, we can divide a finite
number by an infinitesimal, and get an
infinite result, which is almost the same
thing.
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(For n = 0, the result is zero.)

When I started the discussion of
the derivative of the logarithm, I
wrote y = lnx right off the bat.
That meant I was implicitly as-
suming x was positive. More gen-
erally, the derivative of ln |x| equals
1/x, regardless of the sign (see
problem 29 on page 50).

2.6 Quotients
So far we’ve been successful with
a divide-and-conquer approach to
differentiation: the product rule
and the chain rule offer meth-
ods of breaking a function down
into simpler parts, and finding the
derivative of the whole thing based
on knowledge of the derivatives of
the parts. We know how to find
the derivatives of sums, differences,
and products, so the obvious next
step is to look for a way of handling
division. This is straightforward,
since we know that the derivative
of the function 1/u = u−1 is −u−2.
Let u and v be functions of x.
Then by the product rule,

d(v/u)

dx
=

dv

dx
· 1

u
+ v · d(1/u)

dx

and by the chain rule,

d(v/u)

dx
=

dv

dx
· 1

u
− v · 1

u2

du

dx

This is so easy to rederive on de-
mand that I suggest not memoriz-
ing it.

By the way, notice how the no-
tation becomes a little awkward

when we want to write a derivative
like d(v/u)/dx. When we’re differ-
entiating a complicated function,
it can be uncomfortable trying to
cram the expression into the top of
the d. . . /d. . . fraction. Therefore
it would be more common to write
such an expression like this:

d

dx

( v
u

)
This could be considered an abuse
of notation, making d look like a
number being divided by another
number dx, when actually d is
meaningless on its own. On the
other hand, we can consider the
symbol d/ dx to represent the op-
eration of differentiation with re-
spect to x; such an interpretation
will seem more natural to those
who have been inculcated with the
taboo against considering infinites-
imals as numbers in the first place.

Using the new notation, the quo-
tient rule becomes

d

dx

( v
u

)
=

1

u
· dv

dx
− v

u2
· du

dx
.

The interpretation of the minus
sign is that if u increases, v/u de-
creases.

Example 25
. Differentiate y = x/(1 + 3x), and
check that the result makes sense.

. We identify v with x and u with 1+x .
The result is

d
dx

(v
u

)
=

1
u
· dv

dx
− v

u2 ·
du
dx

=
1

1 + 3x
− 3x

(1 + 3x)2
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One way to check that the result
makes sense is to consider extreme
values of x . For very large values of x ,
the 1 on the bottom of x/(1 + 3x) be-
comes negligible compared to the 3x ,
and the function y approaches x/3x =
1/3 as a limit. Therefore we expect
that the derivative dy/ dx should ap-
proach zero, since the derivative of
a constant is zero. It works: plug-
ging in bigger and bigger numbers for
x in the expression for the derivative
does give smaller and smaller results.
(In the second term, the denominator
gets bigger faster than the numerator,
because it has a square in it.)

Another way to check the result is to
verify that the units work out. Sup-
pose arbitrarily that x has units of gal-
lons. (If the 3 on the bottom is unitless,
then the 1 would have to represent 1
gallon, since you can’t add things that
have different units.) The function y is
defined by an expression with units of
gallons divided by gallons, so y is unit-
less. Therefore the derivative dy/ dx
should have units of inverse gallons.
Both terms in the expression for the
derivative do have those units, so the
units of the answer check out.

2.7 Differentiation on
a computer

In this chapter you’ve learned a set
of rules for evaluating derivatives:
derivatives of products, quotients,
functions inside other functions,
etc. Because these rules exist,
it’s always possible to find a
formula for a function’s derivative,
given the formula for the original
function. Not only that, but there

is no real creativity required, so a
computer can be programmed to
do all the drudgery. For example,
you can download a free, open-
source program called Yacas from
yacas.sourceforge.net and
install it on a Windows or Linux
machine. There is even a version
you can run in a web browser with-
out installing any special software:
http://yacas.sourceforge.net/

yacasconsole.html .

A typical session with Yacas looks
like this:

Example 26
D(x) x^2

2*x

D(x) Exp(x^2)

2*x*Exp(x^2)

D(x) Sin(Cos(Sin(x)))

-Cos(x)*Sin(Sin(x))

*Cos(Cos(Sin(x)))

Upright type represents your in-
put, and italicized type is the pro-
gram’s output.

First I asked it to differentiate x2

with respect to x, and it told me
the result was 2x. Then I did
the derivative of ex

2

, which I also
could have done fairly easily by
hand. (If you’re trying this out
on a computer as you read along,
make sure to capitalize functions
like Exp, Sin, and Cos.) Finally
I tried an example where I didn’t
know the answer off the top of my
head, and that would have been a
little tedious to calculate by hand.

Unfortunately things are a little
less rosy in the world of integrals.
There are a few rules that can help
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you do integrals, e.g., that the inte-
gral of a sum equals the sum of the
integrals, but the rules don’t cover
all the possible cases. Using Ya-
cas to evaluate the integrals of the
same functions, here’s what hap-
pens.6

Example 27

Integrate(x) x^2

x^3/3

Integrate(x) Exp(x^2)

Integrate(x)Exp(x^2)

Integrate(x)

Sin(Cos(Sin(x)))

Integrate(x)

Sin(Cos(Sin(x)))

The first one works fine, and I
can easily verify that the answer
is correct, by taking the derivative
of x3/3, which is x2. (The an-
swer could have been x3/3 + 7, or
x3/3+c, where c was any constant,
but Yacas doesn’t bother to tell us
that.) The second and third ones
don’t work, however; Yacas just
spits back the input at us without
making any progress on it. And
it may not be because Yacas isn’t
smart enough to figure out these
integrals. The function ex

2

can’t
be integrated at all in terms of a
formula containing ordinary oper-
ations and functions such as ad-
dition, multiplication, exponentia-
tion, trig functions, exponentials,
and so on.

6If you’re trying these on your own
computer, note that the long input line
for the function sin cos sinx shouldn’t be
broken up into two lines as shown in the
listing.

That’s not to say that a program
like this is useless. For example,
here’s an integral that I wouldn’t
have known how to do, but that
Yacas handles easily:

Example 28

Integrate(x) Sin(Ln(x))

(x*Sin(Ln(x)))/2

-(x*Cos(Ln(x)))/2

This one is easy to check by dif-
ferentiating, but I could have been
marooned on a desert island for a
decade before I could have figured
it out in the first place. There are
various rules, then, for integration,
but they don’t cover all possible
cases as the rules for differentiation
do, and sometimes it isn’t obvious
which rule to apply. Yacas’s ability
to integrate sin lnx shows that it
had a rule in its bag of tricks that
I don’t know, or didn’t remember,
or didn’t realize applied to this in-
tegral.

Back in the 17th century, when
Newton and Leibniz invented cal-
culus, there were no computers, so
it was a big deal to be able to find
a simple formula for your result.
Nowadays, however, it may not be
such a big deal. Suppose I want to
find the derivative of sin cos sinx,
evaluated at x = 1. I can do some-
thing like this on a calculator:

Example 29

sin cos sin 1 =

0.61813407

sin cos sin 1.0001 =

0.61810240

(0.61810240-0.61813407)



2.7. DIFFERENTIATION ON A COMPUTER 45

/.0001 =

-0.3167

I have the right answer, with
plenty of precision for most realis-
tic applications, although I might
have never guessed that the myste-
rious number −0.3167 was actually
−(cos 1)(sin sin 1)(cos cos sin 1).
This could get a little tedious if I
wanted to graph the function, for
instance, but then I could just use
a computer spreadsheet, or write
a little computer program. In this
chapter, I’m going to show you
how to do derivatives and integrals
using simple computer programs,
using Yacas. The following little
Yacas program does the same
thing as the set of calculator
operations shown above:

Example 30

1 f(x):=Sin(Cos(Sin(x)))

2 x:=1

3 dx:=.0001

4 N( (f(x+dx)-f(x))/dx )

-0.3166671628

(I’ve omitted all of Yacas’s output
except for the final result.) Line
1 defines the function we want to
differentiate. Lines 2 and 3 give
values to the variables x and dx.
Line 4 computes the derivative; the
N( ) surrounding the whole thing
is our way of telling Yacas that we
want an approximate numerical re-
sult, rather than an exact symbolic
one.

An interesting thing to try now is
to make dx smaller and smaller,
and see if we get better and bet-

ter accuracy in our approximation
to the derivative.

Example 31
5 g(x,dx):=

N( (f(x+dx)-f(x))/dx )

6 g(x,.1)

-0.3022356406

7 g(x,.0001)

-0.3166671628

8 g(x,.0000001)

-0.3160458019

9 g(x,.00000000000000001)

0

Line 5 defines the derivative func-
tion. It needs to know both x and
dx. Line 6 computes the derivative
using dx = 0.1, which we expect to
be a lousy approximation, since dx
is really supposed to be infinitesi-
mal, and 0.1 isn’t even that small.
Line 7 does it with the same value
of dx we used earlier. The two re-
sults agree exactly in the first dec-
imal place, and approximately in
the second, so we can be pretty
sure that the derivative is −0.32
to two figures of precision. Line
8 ups the ante, and produces a re-
sult that looks accurate to at least
3 decimal places. Line 9 attempts
to produce fantastic precision by
using an extremely small value of
dx. Oops — the result isn’t bet-
ter, it’s worse! What’s happened
here is that Yacas computed f(x)
and f(x + dx), but they were the
same to within the precision it was
using, so f(x+ dx)−f(x) rounded
off to zero.7

7Yacas can do arithmetic to any
precision you like, although you may
run into practical limits due to the
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Example 31 demonstrates the con-
cept of how a derivative can be de-
fined in terms of a limit:

dy

dx
= lim

∆x→0

∆y

∆x

The idea of the limit is that we
can theoretically make ∆y/∆x ap-
proach as close as we like to dy/dx,
provided we make ∆x sufficiently
small. In reality, of course, we
eventually run into the limits of
our ability to do the computation,
as in the bogus result generated on
line 9 of the example.

amount of memory your computer has
and the speed of its CPU. For fun,
try N(Pi,1000), which tells Yacas to
compute π numerically to 1000 decimal
places.
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Problems

1 Carry out a calculation like
the one in example 9 on page 26
to show that the derivative of t4

equals 4t3. . Solution, p. 173

2 Example 12 on page 29 gave
a tricky argument to show that the
derivative of cos t is − sin t. Prove
the same result using the method
of example 11 instead.

. Solution, p. 174

3 Suppose H is a big number.
Experiment on a calculator to fig-
ure out whether

√
H + 1−

√
H − 1

comes out big, normal, or tiny. Try
making H bigger and bigger, and
see if you observe a trend. Based
on these numerical examples, form
a conjecture about what happens
to this expression when H is infi-
nite. . Solution, p. 174

4 Suppose dx is a small but
finite number. Experiment on a
calculator to figure out how

√
dx

compares in size to dx. Try mak-
ing dx smaller and smaller, and
see if you observe a trend. Based
on these numerical examples, form
a conjecture about what happens
to this expression when dx is in-
finitesimal. . Solution, p. 174

5 To which of the following
statements can the transfer prin-
ciple be applied? If you think it
can’t be applied to a certain state-
ment, try to prove that the state-
ment is false for the hyperreals,
e.g., by giving a counterexample.

(a) For any real numbers x and y,
x+ y = y + x.
(b) The sine of any real number is
between −1 and 1.
(c) For any real number x, there
exists another real number y that
is greater than x.
(d) For any real numbers x 6= y,
there exists another real number z
such that x < z < y.
(e) For any real numbers x 6= y,
there exists a rational number z
such that x < z < y. (A ratio-
nal number is one that can be ex-
pressed as an integer divided by
another integer.)
(f) For any real numbers x, y, and
z, (x+ y) + z = x+ (y + z).
(g) For any real numbers x and y,
either x < y or x = y or x > y.
(h) For any real number x, x+1 6=
x. . Solution, p. 175

6 If we want to pump air
or water through a pipe, com-
mon sense tells us that it will be
easier to move a larger quantity
more quickly through a fatter pipe.
Quantitatively, we can define the
resistance, R, which is the ratio
of the pressure difference produced
by the pump to the rate of flow.
A fatter pipe will have a lower re-
sistance. Two pipes can be used
in parallel, for instance when you
turn on the water both in the
kitchen and in the bathroom, and
in this situation, the two pipes let
more water flow than either would
have let flow by itself, which tells
us that they act like a single pipe
with some lower resistance. The
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equation for their combined resis-
tance is R = 1/(1/R1 + 1/R2).
Analyze the case where one resis-
tance is finite, and the other infi-
nite, and give a physical interpre-
tation. Likewise, discuss the case
where one is finite, but the other is
infinitesimal.

. Solution, p. 175

7 Naively, we would imagine
that if a spaceship traveling at u =
3/4 of the speed of light was to
shoot a missile in the forward di-
rection at v = 3/4 of the speed
of light (relative to the ship), then
the missile would be traveling at
u + v = 3/2 of the speed of light.
However, Einstein’s theory of rela-
tivity tells us that this is too good
to be true, because nothing can go
faster than light. In fact, the rela-
tivistic equation for combining ve-
locities in this way is not u+v, but
rather (u + v)/(1 + uv). In ordi-
nary, everyday life, we never travel
at speeds anywhere near the speed
of light. Show that the nonrela-
tivistic result is recovered in the
case where both u and v are in-
finitesimal. . Solution, p. 175

8 Differentiate (2x+ 3)100 with
respect to x. . Solution, p. 175

9 Differentiate (x + 1)100(x +
2)200 with respect to x.

. Solution, p. 176

10 Differentiate the following
with respect to x: e7x, ee

x

. (In
the latter expression, as in all ex-
ponentials nested inside exponen-
tials, the evaluation proceeds from

the top down, i.e., e(ex), not (ee)x.)
. Solution, p. 176

11 Differentiate a sin(bx + c)
with respect to x.

. Solution, p. 176

12 Let x = tp/q, where p and
q are positive integers. By a tech-
nique similar to the one in exam-
ple 21 on p. 38, prove that the dif-
ferentiation rule for tk holds when
k = p/q.qwe . Solution, p. ??

13 Find a function whose
derivative with respect to x equals
a sin(bx+ c). That is, find an inte-
gral of the given function.

. Solution, p. 176

14 Use the chain rule to differ-
entiate ((x2)2)2, and show that you
get the same result you would have
obtained by differentiating x8.
. Solution, p. 176 [M. Livshits]

15 The range of a gun, when
elevated to an angle θ, is given by

R =
2v2

g
sin θ cos θ .

Find the angle that will produce
the maximum range.

. Solution, p. 177

16 Differentiate sin cos tanx
with respect to x.

17 The hyperbolic cosine func-
tion is defined by

coshx =
ex + e−x

2
.

Find any minima and maxima of
this function.

. Solution, p. 177
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18 Show that the function
sin(sin(sinx)) has maxima and
minima at all the same places
where sinx does, and at no other
places. . Solution, p. 177

19 Let f(x) = |x|+x and g(x) =
x|x| + x. Find the derivatives of
these functions at x = 0 in terms
of (a) slopes of tangent lines and
(b) infinitesimals.

. Solution, p. 178

20 In free fall, the acceleration
will not be exactly constant, due
to air resistance. For example, a
skydiver does not speed up indefi-
nitely until opening her chute, but
rather approaches a certain maxi-
mum velocity at which the upward
force of air resistance cancels out
the force of gravity. The expres-
sion for the distance dropped by of
a free-falling object, with air resis-
tance, is8

d = A ln

[
cosh

(
t

√
g

A

)]
,

where g is the acceleration the ob-
ject would have without air resis-
tance, the function cosh has been
defined in problem 17, and A is a
constant that depends on the size,
shape, and mass of the object, and
the density of the air. (For a sphere
of massm and diameter d dropping
in air, A = 4.11m/d2. Cf. problem
10, p. 115.)
(a) Differentiate this expression to
find the velocity. Hint: In order to

8Jan Benacka and Igor Stubna, The
Physics Teacher, 43 (2005) 432.

simplify the writing, start by defin-
ing some other symbol to stand for
the constant

√
g/A.

(b) Show that your answer can be
reexpressed in terms of the func-
tion tanh defined by tanhx = (ex−
e−x)/(ex + e−x).
(c) Show that your result for the
velocity approaches a constant for
large values of t.
(d) Check that your answers to
parts b and c have units of velocity.

. Solution, p. 179

21 Differentiate tan θ with re-
spect to θ. . Solution, p. 179

22 Differentiate 3
√
x with re-

spect to x. . Solution, p. 179

23 Differentiate the following
with respect to x:
(a) y =

√
x2 + 1

(b) y =
√
x2 + a2

(c) y = 1/
√
a+ x

(d) y = a/
√
a− x2

. Solution, p. 179 [Thompson, 1919]

24 Differentiate ln(2t+ 1) with
respect to t. . Solution, p. 180

25 If you know the derivative of
sinx, it’s not necessary to use the
product rule in order to differenti-
ate 3 sinx, but show that using the
product rule gives the right result
anyway. . Solution, p. 180

26 The Γ function (capital
Greek letter gamma) is a contin-
uous mathematical function that
has the property Γ(n) = 1 · 2 ·
. . . · (n − 1) for n an integer. Γ(x)
is also well defined for values of x
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that are not integers, e.g., Γ(1/2)
happens to be

√
π. Use computer

software that is capable of evalu-
ating the Γ function to determine
numerically the derivative of Γ(x)
with respect to x, at x = 2. (In Ya-
cas, the function is called Gamma.)

. Solution, p. 180

27 For a cylinder of fixed
surface area, what proportion of
length to radius will give the max-
imum volume?

. Solution, p. 180

28 This problem is a varia-
tion on problem 11 on page 21.
Einstein found that the equation
K = (1/2)mv2 for kinetic energy
was only a good approximation for
speeds much less than the speed of
light, c. At speeds comparable to
the speed of light, the correct equa-
tion is

K =
1
2mv

2√
1− v2/c2

.

(a) As in the earlier, simpler prob-
lem, find the power dK/dt for
an object accelerating at a steady
rate, with v = at.
(b) Check that your answer has the
right units.
(c) Verify that the power required
becomes infinite in the limit as v
approaches c, the speed of light.
This means that no material ob-
ject can go as fast as the speed of
light. . Solution, p. 181

29 Prove, as claimed on page
42, that the derivative of ln |x|
equals 1/x, for both positive and
negative x. . Solution, p. 181

30 On even function is one with
the property f(−x) = f(x). For
example, cosx is an even func-
tion, and xn is an even function
if n is even. An odd function has
f(−x) = −f(x). Prove that the
derivative of an even function is
odd. . Solution, p. 181

31 Suppose we have a list of
numbers x1, . . . xn, and we wish to
find some number q that is as close
as possible to as many of the xi as
possible. To make this a mathe-
matically precise goal, we need to
define some numerical measure of
this closeness. Suppose we let h =
(x1−q)2+. . .+(xn−q)2, which can
also be notated using Σ, uppercase
Greek sigma, as h =

∑n
i=1(xi−q)2.

Then minimizing h can be used as
a definition of optimal closeness.
(Why would we not want to use
h =

∑n
i=1(xi − q)?) Prove that

the value of q that minimizes h is
the average of the xi.

32 Use a trick similar to the one
used in example 16 to prove that
the power rule d(xk)/ dx = kxk−1

applies to cases where k is an inte-
ger less than 0.

. Solution, p. 182 ?

33 The plane of Euclidean ge-
ometry is today often described
as the set of all coordinate pairs
(x, y), where x and y are real. We
could instead imagine the plane F
that is defined in the same way, but
with x and y taken from the set
of hyperreal numbers. As a third
alternative, there is the plane G
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in which the finite hyperreals are
used. In E, Euclid’s parallel postu-
late holds: given a line and a point
not on the line, there exists ex-
actly one line passing through the
point that does not intersect the
line. Does the parallel postulate
hold in F? In G? Is it valid to as-
sociate only E with the plane de-
scribed by Euclid’s axioms?

. Solution, p. 182 ?

34 Discuss the following state-
ment: The repeating decimal
0.999 . . . is infinitesimally less than
one. . Solution, p. 182

35 Example 20 on page 38 ex-
pressed the chain rule without the
Leibniz notation, writing a func-
tion f defined by f(x) = g(h(x)).
Suppose that you’re trying to re-
member the rule, and two of the
possibilities that come to mind are
f ′(x) = g′(h(x)) and f ′(x) =
g′(h(x))h(x). Show that neither
of these can possibly be right, by
considering the case where x has
units. You may find it helpful to
convert both expressions back into
the Leibniz notation.

. Solution, p. 183

36 When you tune in a radio
station using an old-fashioned ro-
tating dial you don’t have to be
exactly tuned in to the right fre-
quency in order to get the station.
If you did, the tuning would be in-
finitely sensitive, and you’d never
be able to receive any signal at all!
Instead, the tuning has a certain
amount of “slop” intentionally de-

signed into it. The strength of the
received signal s can be expressed
in terms of the dial’s setting f by
a function of the form

s =
1√

a(f2 − f2
o )2 + bf2

,

where a, b, and fo are constants.
This functional form is in fact
very general, and is encountered in
many other physical contexts. The
graph below shows the resulting
bell-shaped curve. Find the fre-
quency f at which the maximum
response occurs, and show that if b
is small, the maximum occurs close
to, but not exactly at, fo.

. Solution, p. 183

The function of problem
36, with a = 3, b = 1, and
fo = 1.

37 In a movie theater, the
image on the screen is formed by
a lens in the projector, and orig-
inates from one of the frames on
the strip of celluloid film (or, in the
newer digital projection systems,
from a liquid crystal chip). Let the
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Problem 37. A set of light rays is emitted from the tip of the glamorous movie
star’s nose on the film, and reunited to form a spot on the screen which is the
image of the same point on his nose. The distances have been distorted for
clarity. The distance y represents the entire length of the theater from front to
back.

distance from the film to the lens
be x, and let the distance from the
lens to the screen be y. The pro-
jectionist needs to adjust x so that
it is properly matched with y, or
else the image will be out of focus.
There is therefore a fixed relation-
ship between x and y, and this re-
lationship is of the form

1

x
+

1

y
=

1

f
,

where f is a property of the lens,
called its focal length. A stronger
lens has a shorter focal length.
Since the theater is large, and the
projector is relatively small, x is
much less than y. We can see
from the equation that if y is suffi-
ciently large, the left-hand side of
the equation is dominated by the
1/x term, and we have x ≈ f .
Since the 1/y term doesn’t com-
pletely vanish, we must have x
slightly greater than f , so that the
1/x term is slightly less than 1/f .
Let x = f + dx, and approximate

dx as being infinitesimally small.
Find a simple expression for y in
terms of f and dx.

. Solution, p. 184

38 Why might the expression
1∞ be considered an indeterminate
form? . Solution, p. 185



3 Limits and continuity
3.1 Continuity
Intuitively, a continuous function
is one whose graph has no sudden
jumps in it; the graph is all a single
connected piece. Such a function
can be drawn without picking the
pen up off of the paper. Formally,
a function f(x) is defined to be
continuous if for any real x and any
infinitesimal dx, f(x + dx) − f(x)
is infinitesimal.

Example 32
Let the function f be defined by f (x) =
0 for x ≤ 0, and f (x) = 1 for x > 0.
Then f (x) is discontinuous, since for
dx > 0, f (0+dx)− f (0) = 1, which isn’t
infinitesimal.

a / Example 32. The
black dot indicates that
the endpoint of the lower
ray is part of the ray,
while the white one
shows the contrary for
the ray on the top.

If a function is discontinuous at a
given point, then it is not differen-

tiable at that point. On the other
hand, the example y = |x| shows
that a function can be continuous
without being differentiable.

In most cases, there is no need
to invoke the definition explicitly
in order to check whether a func-
tion is continuous. Most of the
functions we work with are de-
fined by putting together simpler
functions as building blocks. For
example, let’s say we’re already
convinced that the functions de-
fined by g(x) = 3x and h(x) =
sinx are both continuous. Then if
we encounter the function f(x) =
sin(3x), we can tell that it’s con-
tinuous because its definition cor-
responds to f(x) = h(g(x)). The
functions g and h have been set
up like a bucket brigade, so that
g takes the input, calculates the
output, and then hands it off to
h for the final step of the calcu-
lation. This method of combin-
ing functions is called composition.
The composition of two continuous
functions is also continuous. Just
watch out for division. The func-
tion f(x) = 1/x is continuous ev-
erywhere except at x = 0, so for
example 1/ sin(x) is continuous ev-
erywhere except at multiples of π,
where the sine has zeroes.

53
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The intermediate value theorem

Another way of thinking about
continuous functions is given by
the intermediate value theorem.
Intuitively, it says that if you are
moving continuously along a road,
and you get from point A to point
B, then you must also visit every
other point along the road; only by
teleporting (by moving discontin-
uously) could you avoid doing so.
More formally, the theorem states
that if y is a continuous real-valued
function on the real interval from a
to b, and if y takes on values y1 and
y2 at certain points within this in-
terval, then for any y3 between y1

and y2, there is some real x in the
interval for which y(x) = y3.

b / The intermediate value theorem
states that if the function is continu-
ous, it must pass through y3.

The intermediate value theorem
seems so intuitively appealing that
if we want to set out to prove it,
we may feel as though we’re being

asked to prove a proposition such
as, “a number greater than 10 ex-
ists.” If a friend wanted to bet
you a six-pack that you couldn’t
prove this with complete mathe-
matical rigor, you would have to
get your friend to spell out very
explicitly what she thought were
the facts about integers that you
were allowed to start with as ini-
tial assumptions. Are you allowed
to assume that 1 exists? Will she
grant you that if a number n ex-
ists, so does n + 1? The interme-
diate value theorem is similar. It’s
stated as a theorem about certain
types of functions, but its truth
isn’t so much a matter of the prop-
erties of functions as the properties
of the underlying number system.
For the reader with a interest in
pure mathematics, I’ve discussed
this in more detail on page 156 and
given an abbreviated proof. (Most
introductory calculus texts do not
prove it at all.)

Example 33
. Show that there is a solution to the
equation 10x + x = 1000.

. We expect there to be a solution
near x = 3, where the function f (x) =
10x + x = 1003 is just a little too big.
On the other hand, f (2) = 102 is much
too small. Since f has values above
and below 1000 on the interval from
2 to 3, and f is continuous, the inter-
mediate value theorem proves that a
solution exists between 2 and 3. If we
wanted to find a better numerical ap-
proximation to the solution, we could
do it using Newton’s method, which is
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introduced in section 5.1.

Example 34
. Show that there is at least one so-

lution to the equation cos x = x , and
give bounds on its location.

. This is a transcendental equation,
and no amount of fiddling with alge-
bra and trig identities will ever give a
closed-form solution, i.e., one that can
be written down with a finite number of
arithmetic operations to give an exact
result. However, we can easily prove
that at least one solution exists, by
applying the intermediate value theo-
rem to the function x − cos x . The
cosine function is bounded between
−1 and 1, so this function must be
negative for x < −1 and positive for
x > 1. By the intermediate value the-
orem, there must be a solution in the
interval −1 ≤ x ≤ 1. The graph, c,
verifies this, and shows that there is
only one solution.

c / The function x−cos x
constructed in example
34.

Example 35
. Prove that every odd-order polyno-
mial P with real coefficients has at

least one real root x , i.e., a point at
which P(x) = 0.

. Example 34 might have given the
impression that there was nothing
to be learned from the intermediate
value theorem that couldn’t be deter-
mined by graphing, but this example
clearly can’t be solved by graphing,
because we’re trying to prove a gen-
eral result for all polynomials.

To see that the restriction to odd or-
ders is necessary, consider the poly-
nomial x2 + 1, which has no real roots
because x2 > 0 for any real number
x .

To fix our minds on a concrete ex-
ample for the odd case, consider the
polynomial P(x) = x3 − x + 17. For
large values of x , the linear and con-
stant terms will be negligible com-
pared to the x3 term, and since x3

is positive for large values of x and
negative for large negative ones, it fol-
lows that P is sometimes positive and
sometimes negative.

Making this argument more general
and rigorous, suppose we had a poly-
nomial of odd order n that always had
the same sign for real x . Then by the
transfer principle the same would hold
for any hyperreal value of x . Now if x
is infinite then the lower-order terms
are infinitesimal compared to the xn

term, and the sign of the result is de-
termined entirely by the xn term, but
xn and (−x)n have opposite signs, and
therefore P(x) and P(−x) have op-
posite signs. This is a contradiction,
so we have disproved the assumption
that P always had the same sign for
real x . Since P is sometimes nega-
tive and sometimes positive, we con-
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clude by the intermediate value theo-
rem that it is zero somewhere.

Example 36
. Show that the equation x = sin 1/x

has infinitely many solutions.

. This is another example that can’t
be solved by graphing; there is clearly
no way to prove, just by looking at
a graph like d, that it crosses the x
axis infinitely many times. The graph
does, however, help us to gain intu-
ition for what’s going on. As x gets
smaller and smaller, 1/x blows up,
and sin 1/x oscillates more and more
rapidly. The function f is undefined
at 0, but it’s continuous everywhere
else, so we can apply the intermedi-
ate value theorem to any interval that
doesn’t include 0.

We want to prove that for any positive
u, there exists an x with 0 < x < u
for which f (x) has either desired sign.
Suppose that this fails for some real
u. Then by the transfer principle the
nonexistence of any real x with the de-
sired property also implies the nonex-
istence of any such hyperreal x . But
for an infinitesimal x the sign of f is
determined entirely by the sine term,
since the sine term is finite and the lin-
ear term infinitesimal. Clearly sin 1/x
can’t have a single sign for all values
of x less than u, so this is a contradic-
tion, and the proposition succeeds for
any u. It follows from the intermediate
value theorem that there are infinitely
many solutions to the equation.

d / The function
x − sin 1/x .

The extreme value theorem

In chapter 1, we saw that locat-
ing maxima and minima of func-
tions may in general be fairly dif-
ficult, because there are so many
different ways in which a function
can attain an extremum: e.g., at
an endpoint, at a place where its
derivative is zero, or at a nondiffer-
entiable kink. The following theo-
rem allows us to make a very gen-
eral statement about all these pos-
sible cases, assuming only continu-
ity.

The extreme value theorem states
that if f is a continuous real-valued
function on the real-number inter-
val defined by a ≤ x ≤ b, then f
has maximum and minimum val-
ues on that interval, which are at-
tained at specific points in the in-
terval.

Let’s first see why the assumptions
are necessary. If we weren’t con-
fined to a finite interval, then y = x
would be a counterexample, be-
cause it’s continuous and doesn’t
have any maximum or minimum
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value. If we didn’t assume conti-
nuity, then we could have a func-
tion defined as y = x for x < 1,
and y = 0 for x ≥ 1; this func-
tion never gets bigger than 1, but
it never attains a value of 1 for any
specific value of x.

The extreme value theorem is
proved, in a somewhat more gen-
eral form, on page 159.

Example 37
. Find the maximum value of the poly-
nomial P(x) = x3 + x2 + x + 1 for
−5 ≤ x ≤ 5.

. Polynomials are continuous, so the
extreme value theorem guarantees
that such a maximum exists. Suppose
we try to find it by looking for a place
where the derivative is zero. The
derivative is 3x2 + 2x + 1, and setting it
equal to zero gives a quadratic equa-
tion, but application of the quadratic
formula shows that it has no real so-
lutions. It appears that the function
doesn’t have a maximum anywhere
(even outside the interval of interest)
that looks like a smooth peak. Since it
doesn’t have kinks or discontinuities,
there is only one other type of maxi-
mum it could have, which is a maxi-
mum at one of its endpoints. Plugging
in the limits, we find P(−5) = −104
and P(5) = 156, so we conclude that
the maximum value on this interval is
156.
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3.2 Limits

Historically, the calculus of in-
finitesimals as created by New-
ton and Leibniz was reinterpreted
in the nineteenth century by
Cauchy, Bolzano, and Weierstrass
in terms of limits. All mathemati-
cians learned both languages, and
switched back and forth between
them effortlessly, like the lady I
overheard in a Southern California
supermarket telling her mother,
“Let’s get that one, con los nuts.”
Those who had been trained in in-
finitesimals might hear a statement
using the language of limits, but
translate it mentally into infinites-
imals; to them, every statement
about limits was really a state-
ment about infinitesimals. To their
younger colleagues, trained using
limits, every statement about in-
finitesimals was really to be under-
stood as shorthand for a limiting
process. When Robinson laid the
rigorous foundations for the hyper-
real number system in the 1960’s, a
common objection was that it was
really nothing new, because ev-
ery statement about infinitesimals
was really just a different way of
expressing a corresponding state-
ment about limits; of course the
same could have been said about
Weierstrass’s work of the preced-
ing century! In reality, all prac-
titioners of calculus had realized
all along that different approaches
worked better for different prob-
lems; problem 13 on page 84 is an
example of a result that is much

easier to prove with infinitesimals
than with limits.

The Weierstrass definition of a
limit is this:

Definition of the limit
We say that ` is the limit of the
function f(x) as x approaches a,
written

lim
x→a

f(x) = ` ,

if the following is true: for any real
number ε, there exists another real
number δ such that for all x in the
interval a−δ ≤ x ≤ a+δ, the value
of f lies within the range from `−ε
to `+ ε.

Intuitively, the idea is that if I want
you to make f(x) close to `, I just
have to tell you how close, and you
can tell me that it will be that close
as long as x is within a certain dis-
tance of a.

In terms of infinitesimals, we have:

Definition of the limit
We say that ` is the limit of the
function f(x) as x approaches a,
written

lim
x→a

f(x) = ` ,

if the following is true: for any in-
finitesimal number dx, the value of
f(a+dx) is finite, and the standard
part of f(a+ dx) equals `.
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The two definitions are equiva-
lent. As remarked previously, the
derivative dx/ dt can be defined as
the limit lim∆t→0(∆x/∆t), and if
we use the Weierstrass definition
of the limit, this means that the
derivative can be defined entirely
in terms of the real number sys-
tem, without the user of hyperreal
numbers.

Sometimes a limit can be evaluated
simply by plugging in numbers:

Example 38
. Evaluate

lim
x→0

1
1 + x

.

. Plugging in x = 0, we find that the
limit is 1.

In some examples, plugging in fails
if we try to do it directly, but can
be made to work if we massage the
expression into a different form:

Example 39
. Evaluate

lim
x→0

2
x + 7

1
x + 8686

.

. Plugging in x = 0 fails because divi-
sion by zero is undefined.

Intuitively, however, we expect that the
limit will be well defined, and will equal
2, because for very small values of
x , the numerator is dominated by the
2/x term, and the denominator by the
1/x term, so the 7 and 8686 terms will
matter less and less as x gets smaller
and smaller.

To demonstrate this more rigorously, a
trick that works is to multiply both the
top and the bottom by x , giving

2 + 7x
1 + 8686x

,

which equals 2 when we plug in x = 0,
so we find that the limit is zero.

This example is a little subtle, because
when x equals zero, the function is not
defined, and moreover it would not be
valid to multiply both the top and the
bottom by x . In general, it’s not valid
algebra to multiply both the top and
the bottom of a fraction by 0, because
the result is 0/0, which is undefined.
But we didn’t actually multiply both the
top and the bottom by zero, because
we never let x equal zero. Both the
Weierstrass definition and the defini-
tion in terms of infinitesimals only re-
fer to the properties of the function in a
region very close to the limiting point,
not at the limiting point itself.

This is an example in which the func-
tion was not well defined at a certain
point, and yet the limit of the function
was well defined as we approached
that point. In a case like this, where
there is only one point missing from
the domain of the function, it is natural
to extend the definition of the function
by filling in the “gap tooth.” Example
41 below shows that this kind of filling-
in procedure is not always possible.

Example 40
. Investigate the limiting behavior of

1/x2 as x approaches 0, and 1.

. At x = 1, plugging in works, and we
find that the limit is 1.
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e / Example 40, the func-
tion 1/x2.

At x = 0, plugging in doesn’t work,
because division by zero is unde-
fined. Applying the definition in terms
of infinitesimals to the limit as x ap-
proaches 0, we need to find out
whether 1/(0 + dx)2 is finite for in-
finitesimal dx , and if so, whether it al-
ways has the same standard part. But
clearly 1/(0 + dx)2 = dx−2 is always
infinite, and we conclude that this limit
is undefined.

f / Example 41, the func-
tion tan−1(1/x).

Example 41
. Investigate the limiting behavior of

f (x) = tan−1(1/x) as x approaches 0.

. Plugging in doesn’t work, because
division by zero is undefined.

In the definition of the limit in terms
of infinitesimals, the first requirement
is that f (0 + dx) be finite for infinites-
imal values of dx . The graph makes
this look plausible, and indeed we can
prove that it is true by the transfer prin-
ciple. For any real x we have −π/2 ≤
f (x) ≤ π/2, and by the transfer prin-
ciple this holds for the hyperreals as
well, and therefore f (0 + dx) is finite.

The second requirement is that the
standard part of f (0 + dx) have a
uniquely defined value. The graph
shows that we really have two cases
to consider, one on the right side of
the graph, and one on the left. In-
tuitively, we expect that the standard
part of f (0 + dx) will equal π/2 for pos-
itive dx , and −π/2 for negative, and
thus the second part of the definition
will not be satisfied. For a more formal
proof, we can use the transfer princi-
ple. For real x with 0 < x < 1, for ex-
ample, f is always positive and greater
than 1, so we conclude based on the
transfer principle that f (0 + dx) > 1
for positive infinitesimal dx . But on
similar grounds we can be sure that
f (0 + dx) < −1 when dx is negative
and infinitesimal. Thus the standard
part of f (0 + dx) can have different val-
ues for different infinitesimal values of
dx , and we conclude that the limit is
undefined.

In examples like this, we can define
a kind of one-sided limit, notated like
this:

lim
x→0−

tan−1 1
x

= −π
2

lim
x→0+

tan−1 1
x

=
π

2
,
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where the notations x → 0− and
x → 0+ are to be read “as x ap-
proaches zero from below,” and “as x
approaches zero from above.”

3.3 L’Hôpital’s rule
Consider the limit

lim
x→0

sinx

x
.

Plugging in doesn’t work, because
we get 0/0. Division by zero is
undefined, both in the real num-
ber system and in the hyperreals.
A nonzero number divided by a
small number gives a big number; a
nonzero number divided by a very
small number gives a very big num-
ber; and a nonzero number divided
by an infinitesimal number gives
an infinite number. On the other
hand, dividing zero by zero means
looking for a solution to the equa-
tion 0 = 0q, where q is the result
of the division. But any q is a
solution of this equation, so even
speaking casually, it’s not correct
to say that 0/0 is infinite; it’s not
infinite, it’s anything we like.

Since plugging in zero didn’t work,
let’s try estimating the limit by
plugging in a number for x that’s
small, but not zero. On a calcula-
tor,

sin 0.00001

0.00001
= 0.999999999983333 .

It looks like the limit is 1. We can
confirm our conjecture to higher
precision using Yacas’s ability to
do high-precision arithmetic:

N(Sin(10^-20)/10^-20,50)

0.99999999999999999

9999999999999999999

99998333333333

It’s looking pretty one-ish. This is
the idea of the Weierstrass defini-
tion of a limit: it seems like we can
get an answer as close to 1 as we
like, if we’re willing to make x as
close to 0 as necessary. The graph
helps to make this plausible.

g / The graph of sin x/x .

The general idea here is that for
small values of x, the small-angle
approximation sinx ≈ x obtains,
and as x gets smaller and smaller,
the approximation gets better and
better, so sinx/x gets closer and
closer to 1.

But we still haven’t proved rigor-
ously that the limit is exactly 1.
Let’s try using the definition of the
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limit in terms of infinitesimals.

lim
x→0

sinx

x
= st

[
sin(0 + dx)

0 + dx

]
= st

[
dx+ . . .

dx

]
,

where we’ve used the identity
sin(p+ q) = sin p cos q+ sin q cos p,
and . . . stands for terms of order
dx2. So

lim
x→0

sinx

x
= st

[
1 +

. . .

dx

]
,

= 1 .

In fact, this limit is the same one
we would use if we were evaluat-
ing the derivative of the sine func-
tion, applying the definition of the
derivative as a limit.

We can check our work using Inf:

: (sin d)/d

1+(-0.16667)d^2+...

(The ... is where I’ve snipped
trailing terms from the output.)

Our example involving the limit of
sinx/x is a special case of the fol-
lowing rule for calculating limits
involving 0/0:

L’Hôpital’s rule (simplest form)
If u and v are functions with
u(a) = 0 and v(a) = 0, the deriva-
tives v̇(a) and v̇(a) are defined, and
the derivative v̇(a) 6= 0, then

lim
x→a

u

v
=
u̇(a)

v̇(a)
.

Proof: Since u(a) = 0, and the
derivative du/dx is defined at a,
u(a+dx) = du is infinitesimal, and
likewise for v. By the definition of
the limit, the limit is the standard
part of

u

v
=

du

dv
=

du/dx

dv/dx
,

where by assumption the numer-
ator and denominator are both
defined (and finite, because the
derivative is defined in terms of
the standard part). The stan-
dard part of a quotient like p/q
equals the quotient of the stan-
dard parts, provided that both p
and q are finite (which we’ve estab-
lished), and q 6= 0 (which is true
by assumption). But the standard
part of du/dx is the definition of
the derivative u̇, and likewise for
dv/dx, so this establishes the re-
sult.

We will generalize L’Hôpital’s rule
on p. 65.

By the way, the housetop accent
on the “ô” in l’Hôpital means that
in Old French it used to be spelled
and pronounced “l’Hospital,” but
the “s” later became silent, so they
stopped writing it. So yes, it is the
same word as “hospital.”

Example 42
As remarked above, the example of
lim x → 0 sin x/x is in some sense cir-
cular, since the limit is equivalent to
the definition of the derivative of the
sine function, so we already need to
know the limit in order to evaluate the
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limit! As an example that isn’t circular,
let’s evaluate

lim
x→0

sin x
x + x3

The derivative of the top is cos x , and
the derivative of the bottom is 1. Eval-
uating these at x = 0 gives 1 and 1, so
the answer is 1/1 = 1.

Example 43
. Evaluate

lim
x→0

ex − 1
x

. Taking the derivatives of the top and
bottom, we find ex/1, which equals 1
when evaluated at x = 0.

Example 44
. Evaluate

lim
x→1

x − 1
x2 − 2x + 1

. Plugging in x = 1 fails, because both
the top and the bottom are zero. Tak-
ing the derivatives of the top and bot-
tom, we find 1/(2x − 2), which blows
up to infinity when x = 1. To symbol-
ize the fact that the limit is undefined,
and undefined because it blows up to
infinity, we write

lim
x→1

x − 1
x2 − 2x + 1

=∞

3.4 Another
perspective on
indeterminate
forms

An expression like 0/0, called
an indeterminate form, can be

thought of in a different way in
terms of infinitesimals. Suppose
I tell you I have two infinitesimal
numbers d and e in my pocket,
and I ask you whether d/e is fi-
nite, infinite, or infinitesimal. You
can’t tell, because d and e might
not be infinitesimals of the same
order of magnitude. For instance,
if e = 37d, then d/e = 1/37 is fi-
nite; but if e = d2, then d/e is in-
finite; and if d = e2, then d/e is
infinitesimal. Acting this out with
numbers that are small but not in-
finitesimal,

.001

.037
=

1

37
.001

.000001
= 1000

.000001

.001
= .001 .

On the other hand, suppose I tell
you I have an infinitesimal num-
ber d and a finite number x, and
I ask you to speculate about d/x.
You know for sure that it’s going to
be infinitesimal. Likewise, you can
be sure that x/d is infinite. These
aren’t indeterminate forms.

We can do something similar with
infinite numbers. If H and K are
both infinite, then H −K is inde-
terminate. It could be infinite, for
example, if H was positive infinite
and K = H/2. On the other hand,
it could be finite if H = K + 1.
Acting this out with big but finite
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numbers,

1000− 500 = 500

1001− 1000 = 1 .

Example 45
. If H is a positive infinite number,
is
√

H + 1 −
√

H − 1 finite, infinite, in-
finitesimal, or indeterminate?

. Trying it with a finite, big number, we
have
√

1000001−
√

999999

= 1.00000000020373× 10−3 ,

which is clearly a wannabe infinites-
imal. We can verify the result using
Inf:

: H=1/d

d^-1

: sqrt(H+1)-sqrt(H-1)

d^1/2+0.125d^5/2+...

For convenience, the first line of input
defines an infinite number H in terms
of the calculator’s built-in infinitesimal
d . The result has only positive powers
of d , so it’s clearly infinitesimal.

More rigorously, we can rewrite
the expression as

√
H(
√

1 + 1/H −√
1− 1/H). Since the derivative of

the square root function
√

x evaluated
at x = 1 is 1/2, we can approximate
this as

√
H
[
1 +

1
2H

+ . . .−
(

1− 1
2H

+ . . .
)]

=
√

H
[

1
H

+ . . .
]

=
1√
H

,

which is infinitesimal.

3.5 Limits at infinity
The definition of the limit in terms
of infinitesimals extends immedi-
ately to limiting processes where
x gets bigger and bigger, rather
than closer and closer to some fi-
nite value. For example, the func-
tion 3 + 1/x clearly gets closer
and closer to 3 as x gets bigger
and bigger. If a is an infinite
number, then the definition says
that evaluating this expression at
a + dx, where dx is infinitesimal,
gives a result whose standard part
is 3. It doesn’t matter that a
happens to be infinite, the defini-
tion still works. We also note that
in this example, it doesn’t matter
what infinite number a is; the limit
equals 3 for any infinite a. We can
write this fact as

lim
x→∞

(
3 +

1

x

)
= 3 ,

where the symbol ∞ is to be in-
terpreted as “nyeah nyeah, I don’t
even care what infinite number you
put in here, I claim it will work
out to 3 no matter what.” The
symbol ∞ is not to be interpreted
as standing for any specific infinite
number. That would be the type
of fallacy that lay behind the bo-
gus proof on page 30 that 1 = 1/2,
which assumed that all infinities
had to be the same size.

A somewhat different example is
the arctangent function. The arc-
tangent of 1000 equals approxi-
mately 1.5698, and inputting big-
ger and bigger numbers gives an-
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swers that appear to get closer
and closer to π/2 ≈ 1.5707. But
the arctangent of -1000 is approxi-
mately −1.5698, i.e., very close to
−π/2. From these numerical ob-
servations, we conjecture that

lim
x→a

tan−1 x

equals π/2 for positive infinite a,
but −π/2 for negative infinite a.
It would not be correct to write

lim
x→∞

tan−1 x =
π

2
[wrong] ,

because it does matter what infi-
nite number we pick. Instead we
write

lim
x→+∞

tan−1 x =
π

2

lim
x→−∞

tan−1 x = −π
2

.

Some expressions don’t have this
kind of limit at all. For exam-
ple, if you take the sines of big
numbers like a thousand, a million,
etc., on your calculator, the re-
sults are essentially random num-
bers lying between −1 and 1. They
don’t settle down to any particular
value, because the sine function os-
cillates back and forth forever. To
prove formally that limx→+∞ sinx
is undefined, consider that the sine
function, defined on the real num-
bers, has the property that you
can always change its result by at
least 0.1 if you add either 1.5 or
−1.5 to its input. For example,
sin(.8) ≈ 0.717, and sin(.8−1.5) ≈
−0.644. Applying the transfer

principle to this statement, we find
that the same is true on the hyper-
reals. Therefore there cannot be
any value ` that differs infinitesi-
mally from sin a for all positive in-
finite values of a.

Often we’re interested in finding
the limit as x approaches infinity
of an expression that is written as
an indeterminate form like H/K,
where both H and K are infinite.

Example 46
. Evaluate the limit

lim
x→∞

2x + 7
x + 8686

.

. Intuitively, if x gets large enough the
constant terms will be negligible, and
the top and bottom will be dominated
by the 2x and x terms, respectively,
giving an answer that approaches 2.

One way to verify this is to divide both
the top and the bottom by x , giving

2 + 7
x

1 + 8686
x

.

If x is infinite, then the standard part
of the top is 2, the standard part of the
bottom is 1, and the standard part of
the whole thing is therefore 2.

Another approach is to use l’Hôpital’s
rule. The derivative of the top is 2, and
the derivative of the bottom is 1, so the
limit is 2/1=2.

3.6 Generalizations
of l’Hôpital’s rule

Mathematical theorems are some-
times like cars. I own a Honda Fit
that is about as bare-bones as you
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can get these days, but persuad-
ing a dealer to sell me that car
was like pulling teeth. The sales-
man was absolutely certain that
any sane customer would want to
pay an extra $1,800 for such cru-
cial amenities as floor mats and a
chrome tailpipe. L’Hôpital’s rule
in its most general form is a much
fancier piece of machinery than
the stripped down model described
on p. 61. The price you pay for
the deluxe model is that the proof
becomes much more complicated
than the one-liner that sufficed for
the simple version.

Multiple applications of the rule

In the following example, we have
to use l’Hôpital’s rule twice before
we get an answer.

Example 47
. Evaluate

lim
x→π

1 + cos x
(x − π)2

. Applying l’Hôpital’s rule gives

− sin x
2(x − π)

,

which still produces 0/0 when we plug
in x = π. Going again, we get

− cos x
2

=
1
2

.

The reason that this always works
is outlined on p. 152.

The indeterminate form∞/∞

Consider an example like this:

lim
x→0

1 + 1/x

1 + 2/x
.

This is an indeterminate form like
∞/∞ rather than the 0/0 form
for which we’ve already proved
l’Hôpital’s rule. As proved on
p. 153, l’Hôpital’s rule applies to
examples like this as well.

Example 48
. Evaluate

lim
x→0

1 + 1/x
1 + 2/x

.

. Both the numerator and the de-
nominator go to infinity. Differenti-
ation of the top and bottom gives
(−x−2)/(−2x−2) = 1/2. We can see
that the reason the rule worked was
that (1) the constant terms were irrel-
evant because they become negligible
as the 1/x terms blow up; and (2) dif-
ferentiating the blowing-up 1/x terms
makes them into the same x−2 on top
and bottom, which cancel.

Note that we could also have gotten
this result without l’Hôpital’s rule, sim-
ply by multiplying both the top and the
bottom of the original expression by x
in order to rewrite it as (x + 1)/(x + 2).

Limits at infinity

It is straightforward to prove a
variant of l’Hôpital’s rule that al-
lows us to do limits at infinity. The
general proof is left as an exercise
(problem 8, p. 68). The result is
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that l’Hôpital’s rule is equally valid
when the limit is at ±∞ rather
than at some real number a.

Example 49
. Evaluate

lim
x→∞

2x + 7
x + 8686

.

. We could use a change of variable
to make this into example 39 on p. 59,
which was solved using an ad hoc and
multiple-step procedure. But having
established the more general form of
l’Hôpital’s rule, we can do it in one
step. Differentiation of the top and bot-
tom produces

lim
x→∞

2x + 7
x + 8686

=
2
1

= 1 .
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Problems
1 (a) Prove, using the Weier-
strass definition of the limit,
that if limx→a f(x) = F and
limx→a g(x) = G both exist, them
limx→a[f(x) + g(x)] = F +G, i.e.,
that the limit of a sum is the sum
of the limits. (b) Prove the same
thing using the definition of the
limit in terms of infinitesimals.

. Solution, p. 185

2 Sketch the graph of the func-
tion e−1/x, and evaluate the follow-
ing four limits:

lim
x→0+

e−1/x

lim
x→0−

e−1/x

lim
x→+∞

e−1/x

lim
x→−∞

e−1/x

. Solution, p. 185

3 Verify the following limits.

lim
s→1

s3 − 1

s− 1
= 3

lim
θ→0

1− cos θ

θ2
=

1

2

lim
x→∞

5x2 − 2x

x
=∞

lim
n→∞

n(n+ 1)

(n+ 2)(n+ 3)
= 1

lim
x→∞

ax2 + bx+ c

dx2 + ex+ f
=
a

d

. Solution, p. 185 [Granville, 1911]

4 Evaluate

lim
x→0

x cosx

1− 2x

exactly, and check your result by
numerical approximation.

. Solution, p. 186

5 Amy is asked to evaluate

lim
x→0

ex

x
.

She applies l’Hôpital’s rule, differ-
entiating top and bottom to find
1/ex, which equals 1 when she
plugs in x = 0. What is wrong
with her reasoning?

. Solution, p. 187

6 Evaluate

lim
u→0

u2

eu + e−u − 2

exactly, and check your result by
numerical approximation.

. Solution, p. 187

7 Evaluate

lim
t→π

sin t

t− π

exactly, and check your result by
numerical approximation.

. Solution, p. 187

8 Prove a form of l’Hôpital’s
rule stating that

lim
x→∞

f(x)

g(x)

is equal to the limit of f ′/g′ at in-
finity. Hint: change to some new
variable u such that x→∞ corre-
sponds to u→ 0.

. Solution, p. 187

9 Prove that the linear func-
tion y = ax+ b, where a and b are
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real, is continuous, first using the
definition of continuity in terms of
infinitesimals, and then using the
definition in terms of the Weier-
strass limit. . Solution, p. 187
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4 Integration
4.1 Definite and

indefinite
integrals

Because any formula can be differ-
entiated symbolically to find an-
other formula, the main motiva-
tion for doing derivatives numeri-
cally would be if the function to
be differentiated wasn’t known in
symbolic form. A typical exam-
ple might be a two-person network
computer game, in which player
A’s computer needs to figure out
player B’s velocity based on knowl-
edge of how her position changes
over time. But in most cases, it’s
numerical integration that’s inter-
esting, not numerical differentia-
tion.

As a warm-up, let’s see how to do
a running sum of a discrete func-
tion using Yacas. The following
program computes the sum 1 +
2 + . . . + 100 discussed to on page
7. Now that we’re writing real
computer programs with Yacas, it
would be a good idea to enter each
program into a file before trying to
run it. In fact, some of these exam-
ples won’t run properly if you just
start up Yacas and type them in
one line at a time. If you’re using
Adobe Reader to read this book,
you can do Tools>Basic>Select,
select the program, copy it into a
file, and then edit out the line num-

bers.

Example 50
1 n := 1;

2 sum := 0;

3 While (n<=100) [

4 sum := sum+n;

5 n := n+1;

6 ];

7 Echo(sum);

The semicolons are to separate one
instruction from the next, and they
become necessary now that we’re
doing real programming. Line 1
of this program defines the vari-
able n, which will take on all the
values from 1 to 100. Line 2 says
that we haven’t added anything up
yet, so our running sum is zero so
far. Line 3 says to keep on re-
peating the instructions inside the
square brackets until n goes past
100. Line 4 updates the running
sum, and line 5 updates the value
of n. If you’ve never done any pro-
gramming before, a statement like
n:=n+1 might seem like nonsense
— how can a number equal itself
plus one? But that’s why we use
the := symbol; it says that we’re
redefining n, not stating an equa-
tion. If n was previously 37, then
after this statement is executed, n
will be redefined as 38. To run the
program on a Linux computer, do
this (assuming you saved the pro-
gram in a file named sum.yacas):

% yacas -pc sum.yacas

71
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5050

Here the % symbol is the com-
puter’s prompt. The result is
5,050, as expected. One way of
stating this result is

100∑
n=1

n = 5050 .

The capital Greek letter Σ, sigma,
is used because it makes the “s”
sound, and that’s the first sound in
the word “sum.” The n = 1 below
the sigma says the sum starts at 1,
and the 100 on top says it ends at
100. The n is what’s known as a
dummy variable: it has no mean-
ing outside the context of the sum.
Figure a shows the graphical inter-
pretation of the sum: we’re adding
up the areas of a series of rectan-
gular strips. (For clarity, the figure
only shows the sum going up to 7,
rather than 100.)

a / Graphical interpreta-
tion of the sum 1+2+. . .+
7.

Now how about an integral? Fig-
ure b shows the graphical inter-

pretation of what we’re trying to
do: find the area of the shaded
triangle. This is an example we
know how to do symbolically, so
we can do it numerically as well,
and check the answers against each
other. Symbolically, the area is
given by the integral. To inte-
grate the function ẋ(t) = t, we
know we need some function with
a t2 in it, since we want something
whose derivative is t, and differen-
tiation reduces the power by one.
The derivative of t2 would be 2t
rather than t, so what we want is
x(t) = t2/2. Let’s compute the
area of the triangle that stretches
along the t axis from 0 to 100:
x(100) = 1002/2 = 5000.

b / Graphical interpreta-
tion of the integral of the
function ẋ(t) = t .

Figure c shows how to accomplish
the same thing numerically. We
break up the area into a whole
bunch of very skinny rectangles.
Ideally, we’d like to make the width
of each rectangle be an infinitesi-
mal number dx, so that we’d be
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adding up an infinite number of in-
finitesimal areas. In reality, a com-
puter can’t do that, so we divide up
the interval from t = 0 to t = 100
into H rectangles, each with fi-
nite width dt = 100/H. Instead
of making H infinite, we make it
the largest number we can without
making the computer take too long
to add up the areas of the rectan-
gles.

c / Approximating the in-
tegral numerically.

Example 51

1 tmax := 100;

2 H := 1000;

3 dt := tmax/H;

4 sum := 0;

5 t := 0;

6 While (t<=tmax) [

7 sum := N(sum+t*dt);

8 t := N(t+dt);

9 ];

10 Echo(sum);

In example 51, we split the in-
terval from t = 0 to 100 into
H = 1000 small intervals, each
with width dt = 0.1. The result is
5,005, which agrees with the sym-

bolic result to three digits of preci-
sion. Changing H to 10,000 gives
5, 000.5, which is one more digit.
Clearly as we make the number
of rectangles greater and greater,
we’re converging to the correct re-
sult of 5,000.

In the Leibniz notation, the thing
we’ve just calculated, by two differ-
ent techniques, is written like this:∫ 100

0

tdt = 5, 000

It looks a lot like the Σ notation,
with the Σ replaces by a flattened-
out letter “S.” The t is a dummy
variable. What I’ve been casually
referring to as an integral is re-
ally two different but closely re-
lated things, known as the definite
integral and the indefinite integral.

Definition of the indefinite integral
If ẋ is a function, then a function
x is an indefinite integral of ẋ if, as
implied by the notation, dx/dt =
ẋ.

Interpretation: Doing an indefi-
nite integral means doing the op-
posite of differentiation. All the
possible indefinite integrals are the
same function except for an addi-
tive constant.

Example 52
. Find the indefinite integral of the
function ẋ(t) = t .

. Any function of the form

x(t) = t2/2 + c ,
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where c is a constant, is an indefi-
nite integral of this function, since its
derivative is t .

Definition of the definite integral
If ẋ is a function, then the definite
integral of ẋ from a to b is defined
as ∫ b

a

ẋ(t) dt

= lim
H→∞

H∑
i=0

ẋ (a+ i∆t) ∆t ,

where ∆t = (b− a)/H.

Interpretation: What we’re calcu-
lating is the area under the graph
of ẋ, from a to b. (If the graph
dips below the t axis, we interpret
the area between it and the axis as
a negative area.) The thing inside
the limit is a calculation like the
one done in example 51, but gen-
eralized to a 6= 0. If H was infinite,
then ∆t would be an infinitesimal
number dt.

4.2 The fundamental
theorem of
calculus

The fundamental theorem of calcu-
lus
Let x be an indefinite integral of
ẋ, and let ẋ be a continuous func-
tion (one whose graph is a single
connected curve). Then

∫ b

a

ẋ(t) dt = x(b)− x(a) .

The fundamental theorem is
proved on page 154. The idea it
expresses is that integration and
differentiation are inverse opera-
tions. That is, integration undoes
differentiation, and differentiation
undoes integration.

Example 53
. Interpret the definite integral∫ 2

1

1
t

dt .

graphically; then evaluate it it both
symbolically and numerically, and
check that the two results are consis-
tent.

d / The definite integral∫ 2
1 (1/t) dt .

. Figure d shows the graphical inter-
pretation. The numerical calculation
requires a trivial variation on the pro-
gram from example 51:
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a := 1;

b := 2;

H := 1000;

dt := (b-a)/H;

sum := 0;

t := a;

While (t<=b) [

sum := N(sum+(1/t)*dt);

t := N(t+dt);

];

Echo(sum);

The result is 0.693897243, and
increasing H to 10,000 gives
0.6932221811, so we can be
fairly confident that the result equals
0.693, to 3 decimal places.

Symbolically, the indefinite integral is
x = ln t . Using the fundamental the-
orem of calculus, the area is ln 2 −
ln 1 ≈ 0.693147180559945.

Judging from the graph, it looks plau-
sible that the shaded area is about
0.7.

This is an interesting example, be-
cause the natural log blows up to neg-
ative infinity as t approaches 0, so it’s
not possible to add a constant onto
the indefinite integral and force it to be
equal to 0 at t = 0. Nevertheless, the
fundamental theorem of calculus still
works.

4.3 Properties of the
integral

Let f and g be two functions of x,
and let c be a constant. We already
know that for derivatives,

d

dx
(f + g) =

df

dx
+

dg

dx

and

d

dx
(cf) = c

df

dx
.

But since the indefinite integral is
just the operation of undoing a
derivative, the same kind of rules
must hold true for indefinite inte-
grals as well:∫

(f + g) dx =

∫
f dx+

∫
g dx

and ∫
(cf) dx = c

∫
f dx .

And since a definite integral can be
found by plugging in the upper and
lower limits of integration into the
indefinite integral, the same prop-
erties must be true of definite inte-
grals as well.

Example 54
. Evaluate the indefinite integral∫

(x + 2 sin x) dx .

. Using the additive property, the inte-
gral becomes∫

x dx +
∫

2 sin x dx .

Then the property of scaling by a con-
stant lets us change this to∫

x dx + 2
∫

sin x dx .

We need a function whose derivative
is x , which would be x2/2, and one
whose derivative is sin x , which must
be − cos x , so the result is

1
2

x2 − 2 cos x + c .
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4.4 Applications

Averages

In the story of Gauss’s problem of
adding up the numbers from 1 to
100, one interpretation of the re-
sult, 5,050, is that the average of
all the numbers from 1 to 100 is
50.5. This is the ordinary defini-
tion of an average: add up all the
things you have, and divide by the
number of things. (The result in
this example makes sense, because
half the numbers are from 1 to 50,
and half are from 51 to 100, so the
average is half-way between 50 and
51.)

Similarly, a definite integral can
also be thought of as a kind of aver-
age. In general, if y is a function of
x, then the average, or mean, value
of y on the interval from x = a to
b can be defined as

ȳ =
1

b− a

∫ b

a

y dx .

In the continuous case, dividing by
b− a accomplishes the same thing
as dividing by the number of things
in the discrete case.

Example 55
. Show that the definition of the aver-
age makes sense in the case where
the function is a constant.

. If y is a constant, then we can take

it outside of the integral, so

ȳ =
1

b − a
y
∫ b

a
1 dx

=
1

b − a
y x |ba

=
1

b − a
y (b − a)

= y

Example 56
. Find the average value of the func-

tion y = x2 for values of x ranging from
0 to 1.

ȳ =
1

1− 0

∫ 1

0
x2 dx

=
1
3

x3
∣∣∣∣1
0

=
1
3

The mean value theorem
If the continuous function y(x) has
the average value ȳ on the inter-
val from x = a to b, then y at-
tains its average value at least once
in that interval, i.e., there exists ξ
with a < ξ < b such that y(ξ) = ȳ.

The mean value theorem is proved
on page 161. The special case in
which ȳ = 0 is known as Rolle’s
theorem.

Example 57
. Verify the mean value theorem for
y = x2 on the interval from 0 to 1.
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. The mean value is 1/3, as shown in
example 56. This value is achieved
at x =

√
1/3 = 1/

√
3, which lies be-

tween 0 and 1.

Work

In physics, work is a measure of
the amount of energy transferred
by a force; for example, if a horse
sets a wagon in motion, the horse’s
force on the wagon is putting some
energy of motion into the wagon.
When a force F acts on an ob-
ject that moves in the direction of
the force by an infinitesimal dis-
tance dx, the infinitesimal work
done is dW = F dx. Integrating

both sides, we have W =
∫ b
a
F dx,

where the force may depend on x,
and a and b represent the initial
and final positions of the object.

Example 58
. A spring compressed by an amount
x relative to its relaxed length provides
a force F = kx . Find the amount of
work that must be done in order to
compress the spring from x = 0 to
x = a. (This is the amount of energy
stored in the spring, and that energy
will later be released into the toy bul-
let.)

.

W =
∫ a

0
F dx

=
∫ a

0
kx dx

=
1
2

kx2
∣∣∣∣a
0

=
1
2

ka2

The reason W grows like a2, not just
like a, is that as the spring is com-
pressed more, more and more effort
is required in order to compress it.

Probability

Mathematically, the probability
that something will happen can be
specified with a number ranging
from 0 to 1, with 0 representing im-
possibility and 1 representing cer-
tainty. If you flip a coin, heads and
tails both have probabilities of 1/2.
The sum of the probabilities of all
the possible outcomes has to have
probability 1. This is called nor-
malization.

e / Normalization: the
probability of picking
land plus the probability
of picking water adds up
to 1.

So far we’ve discussed random pro-
cesses having only two possible
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outcomes: yes or no, win or lose,
on or off. More generally, a ran-
dom process could have a result
that is a number. Some processes
yield integers, as when you roll a
die and get a result from one to
six, but some are not restricted to
whole numbers, e.g., the height of
a human being, or the amount of
time that a uranium-238 atom will
exist before undergoing radioactive
decay. The key to handling these
continuous random variables is the
concept of the area under a curve,
i.e., an integral.

f / Probability distribution for the result
of rolling a single die.

Consider a throw of a die. If the die
is “honest,” then we expect all six
values to be equally likely. Since all
six probabilities must add up to 1,
then probability of any particular
value coming up must be 1/6. We
can summarize this in a graph, f.
Areas under the curve can be inter-
preted as total probabilities. For
instance, the area under the curve
from 1 to 3 is 1/6+1/6+1/6 = 1/2,
so the probability of getting a re-

sult from 1 to 3 is 1/2. The func-
tion shown on the graph is called
the probability distribution.

g / Rolling two dice and adding them
up.

Figure g shows the probabilities of
various results obtained by rolling
two dice and adding them to-
gether, as in the game of craps.
The probabilities are not all the
same. There is a small probability
of getting a two, for example, be-
cause there is only one way to do it,
by rolling a one and then another
one. The probability of rolling a
seven is high because there are six
different ways to do it: 1+6, 2+5,
etc.

If the number of possible outcomes
is large but finite, for example the
number of hairs on a dog, the
graph would start to look like a
smooth curve rather than a ziggu-
rat.
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What about probability distribu-
tions for random numbers that are
not integers? We can no longer
make a graph with probability on
the y axis, because the probabil-
ity of getting a given exact num-
ber is typically zero. For instance,
there is zero probability that a per-
son will be exactly 200 cm tall,
since there are infinitely many pos-
sible results that are close to 200
but not exactly two, for exam-
ple 199.99999999687687658766. It
doesn’t usually make sense, there-
fore, to talk about the probability
of a single numerical result, but it
does make sense to talk about the
probability of a certain range of re-
sults. For instance, the probability
that a randomly chosen person will
be more than 170 cm and less than
200 cm in height is a perfectly rea-
sonable thing to discuss. We can
still summarize the probability in-
formation on a graph, and we can
still interpret areas under the curve
as probabilities.

h / A probability distribution for human
height.

But the y axis can no longer be a
unitless probability scale. In the
example of human height, we want
the x axis to have units of meters,
and we want areas under the curve
to be unitless probabilities. The
area of a single square on the graph
paper is then

(unitless area of a square)

= (width of square

with distance units)

×(height of square) .

If the units are to cancel out, then
the height of the square must ev-
idently be a quantity with units
of inverse centimeters. In other
words, the y axis of the graph is
to be interpreted as probability per
unit height, not probability.

Another way of looking at it is that
the y axis on the graph gives a
derivative, dP/ dx: the infinites-
imally small probability that x
will lie in the infinitesimally small
range covered by dx.

Example 59
. A computer language will typically

have a built-in subroutine that pro-
duces a fairly random number that
is equally likely to take on any value
in the range from 0 to 1. If you
take the absolute value of the differ-
ence between two such numbers, the
probability distribution is of the form
dP/ dx = k (1 − x). Find the value of
the constant k that is required by nor-
malization.
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.

1 =
∫ 1

0
k (1− x) dx

= kx − 1
2

kx2
∣∣∣∣1
0

= k − k/2

k = 2

Self-Check
Compare the number of people with
heights in the range of 130-135 cm to
the number in the range 135-140. .

Answer, p. 165

i / The average can be interpreted as
the balance point of the probability dis-
tribution.

When one random variable is re-
lated to another in some mathe-
matical way, the chain rule can be
used to relate their probability dis-
tributions.

j / Example 60.

Example 60
. A laser is placed one meter away

from a wall, and spun on the ground
to give it a random direction, but if
the angle u shown in figure j doesn’t
come out in the range from 0 to π/2,
the laser is spun again until an an-
gle in the desired range is obtained.
Find the probability distribution of the
distance x shown in the figure. The
derivative dtan−1 z/ dz = 1/(1+z2) will
be required (see example 66, page
88).

. Since any angle between 0 and π/2
is equally likely, the probability distri-
bution dP/ du must be a constant, and
normalization tells us that the constant
must be dP/ du = 2/π.

The laser is one meter from the wall,
so the distance x , measured in me-
ters, is given by x = tan u. For the
probability distribution of x , we have

dP
dx

=
dP
du
· du

dx

=
2
π
· dtan−1 x

dx

=
2

π(1 + x2)

Note that the range of possible values
of x theoretically extends from 0 to in-
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finity. Problem 7 on page 104 deals
with this.

If the next Martian you meet asks
you, “How tall is an adult hu-
man?,” you will probably reply
with a statement about the average
human height, such as “Oh, about
5 feet 6 inches.” If you wanted to
explain a little more, you could say,
“But that’s only an average. Most
people are somewhere between 5
feet and 6 feet tall.” Without
bothering to draw the relevant bell
curve for your new extraterrestrial
acquaintance, you’ve summarized
the relevant information by giving
an average and a typical range of
variation. The average of a prob-
ability distribution can be defined
geometrically as the horizontal po-
sition at which it could be balanced
if it was constructed out of card-
board, i. This is a different way
of working with averages than the
one we did earlier. Before, had
a graph of y versus x, we implic-
itly assumed that all values of x
were equally likely, and we found
an average value of y. In this new
method using probability distribu-
tions, the variable we’re averaging
is on the x axis, and the y axis tells
us the relative probabilities of the
various x values.

For a discrete-valued variable with
n possible values, the average
would be

x̄ =

n∑
i=0

x P (x) ,

and in the case of a continuous

variable, this becomes an integral,

x̄ =

∫ b

a

x
dP

dx
dx .

Example 61
. For the situation described in exam-
ple 59, find the average value of x .

.

x̄ =
∫ 1

0
x

dP
dx

dx

=
∫ 1

0
x · 2(1− x) dx

= 2
∫ 1

0
(x − x2) dx

= 2
(

1
2

x2 − 1
3

x3
)∣∣∣∣1

0

=
1
3

Sometimes we don’t just want to
know the average value of a cer-
tain variable, we also want to have
some idea of the amount of varia-
tion above and below the average.
The most common way of measur-
ing this is the standard deviation,
defined by

σ =

√∫ b

a

(x− x̄)2
dP

dx
dx .

The idea here is that if there was
no variation at all above or be-
low the average, then the quantity
(x − x̄) would be zero whenever
dP/ dx was nonzero, and the stan-
dard deviation would be zero. The
reason for taking the square root
of the whole thing is so that the
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result will have the same units as
x.

Example 62
. For the situation described in exam-
ple 59, find the standard deviation of
x .

. The square of the standard deviation
is

σ2 =
∫ 1

0
(x − x̄)2 dP

dx
dx

=
∫ 1

0
(x − 1/3)2 · 2(1− x) dx

= 2
∫ 1

0

(
−x3 +

5
3

x2 − 7
9

x +
1
9

)
dx

=
1
18

,

so the standard deviation is

σ =
1√
18

≈ 0.236
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Problems
1 Write a computer program
similar to the one in example 53
on page 74 to evaluate the definite
integral ∫ 1

0

ex
2

.

. Solution, p. 188

2 Evaluate the integral∫ 2π

0

sinx dx ,

and draw a sketch to explain why
your result comes out the way it
does. . Solution, p. 188

3 Sketch the graph that repre-
sents the definite integral∫ 2

0

(−x2 + 2x) dx ,

and estimate the result roughly
from the graph. Then evaluate the
integral exactly, and check against
your estimate.

. Solution, p. 189

4 Make a rough guess as to the
average value of sinx for 0 < x <
π, and then find the exact result
and check it against your guess.

. Solution, p. 190

5 Show that the mean value the-
orem’s assumption of continuity is
necessary, by exhibiting a discon-
tinuous function for which the the-
orem fails. . Solution, p. 190

6 Show that the fundamental
theorem of calculus’s assumption

of continuity for ẋ is necessary, by
exhibiting a discontinuous function
for which the theorem fails.

. Solution, p. 190

7 Sketch the graphs of y = x2

and y =
√
x for 0 ≤ x ≤ 1. Graph-

ically, what relationship should ex-

ist between the integrals
∫ 1

0
x2 dx

and
∫ 1

0

√
xdx? Compute both in-

tegrals, and verify that the results
are related in the expected way.

8 Evaluate
∫ √

bx
√
xdx, where

b is a constant.
. Solution, p. 190

9 In a gasoline-burning car en-
gine, the exploding air-gas mixture
makes a force on the piston, and
the force tapers off as the piston
expands, allowing the gas to ex-
pand. (a) In the approximation
F = k/x, where x is the position
of the piston, find the work done
on the piston as it travels from
x = a to x = b, and show that
the result only depends on the ra-
tio b/a. This ratio is known as
the compression ratio of the en-
gine. (b) A better approximation,
which takes into account the cool-
ing of the air-gas mixture as it ex-
pands, is F = kx−1.4. Compute
the work done in this case.

10 A certain variable x varies
randomly from -1 to 1, with
probability distribution dP/ dx =
k
(
1− x2

)
.

(a) Determine k from the require-



84 CHAPTER 4. INTEGRATION

Problem 9.

ment of normalization.
(b) Find the average value of x.
(c) Find its standard deviation.

11 Suppose that we’ve already
established that the derivative of
an odd function is even, and vice
versa. (See problem 30, p. 50.)
Something similar can be proved
for integration. However, the fol-
lowing is not quite right.

Let f be even, and let g =∫
f(x) dx be its indefinite integral.

Then by the fundamental theorem
of calculus, f is the derivative of
g. Since we’ve already established
that the derivative of an odd func-
tion is even, we conclude that g is
odd.

Find all errors in the proof.
. Solution, p. 190

12 A perfectly elastic ball
bounces up and down forever, al-
ways coming back up to the same
height h. Find its average height.

?

Problem 13.

13 The figure shows a curve with
a tangent line segment of length 1
that sweeps around it, forming a
new curve that is usually outside
the old one. Prove Holditch’s the-
orem, which states that the new
curve’s area differs from the old
one’s by π. (This is an example
of a result that is much more dif-
ficult to prove without making use
of infinitesimals.) ?



5 Techniques
5.1 Newton’s method
In the 1958 science fiction novel
Have Space Suit — Will
Travel, by Robert Heinlein, Kip
is a high school student who wants
to be an engineer, and his father is
trying to convince him to stretch
himself more if he wants to get any-
thing out of his education:

“Why did Van Buren fail of re-
election? How do you extract the
cube root of eighty-seven?”

Van Buren had been a president;
that was all I remembered. But I
could answer the other one. “If
you want a cube root, you look in
a table in the back of the book.”

Dad sighed. “Kip, do you think
that table was brought down from
on high by an archangel?”

We no longer use tables to com-
pute roots, but how does a pocket
calculator do it? A technique
called Newton’s method allows us
to calculate the inverse of any func-
tion efficiently, including cases that
aren’t preprogrammed into a cal-
culator. In the example from the
novel, we know how to calculate
the function y = x3 fairly accu-
rately and quickly for any given
value of x, but we want to turn the
equation around and find x when
y = 87. We start with a rough
mental guess: since 43 = 64 is a lit-

tle too small, and 53 = 125 is much
too big, we guess x ≈ 4.3. Test-
ing our guess, we have 4.33 = 79.5.
We want y to get bigger by 7.5, and
we can use calculus to find approx-
imately how much bigger x needs
to get in order to accomplish that:

∆x =
∆x

∆y
∆y

≈ dx

dy
∆y

=
∆y

dy/dx

=
∆y

3x2

=
∆y

3x2

= 0.14

Increasing our value of x to 4.3 +
0.14 = 4.44, we find that 4.443 =
87.5 is a pretty good approxima-
tion to 87. If we need higher preci-
sion, we can go through the process
again with ∆y = −0.5, giving

∆x ≈ ∆y

3x2

= 0.14

x = 4.43

x3 = 86.9 .

This second iteration gives an ex-
cellent approximation.

Example 63
. Figure 63 shows the astronomer Jo-
hannes Kepler’s analysis of the motion

85
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a / Example 63.

of the planets. The ellipse is the or-
bit of the planet around the sun. At
t = 0, the planet is at its closest ap-
proach to the sun, A. At some later
time, the planet is at point B. The an-
gle x (measured in radians) is defined
with reference to the imaginary circle
encompassing the orbit. Kepler found
the equation

2π
t
T

= x − e sin x ,

where the period, T , is the time re-
quired for the planet to complete a full
orbit, and the eccentricity of the el-
lipse, e, is a number that measures
how much it differs from a circle. The
relationship is complicated because
the planet speeds up as it falls inward
toward the sun, and slows down again
as it swings back away from it.

The planet Mercury has e = 0.206.
Find the angle x when Mercury has
completed 1/4 of a period.

. We have

y = x − (0.206) sin x ,

and we want to find x when y =
2π/4 = 1.57. As a first guess, we try
x = π/2 (90 degrees), since the ec-
centricity of Mercury’s orbit is actually
much smaller than the example shown
in the figure, and therefore the planet’s
speed doesn’t vary all that much as it
goes around the sun. For this value of
x we have y = 1.36, which is too small
by 0.21.

∆x ≈ ∆y
dy/ dx

=
0.21

1− (0.206) cos x
= 0.21

(The derivative dy/ dx happens to be
1 at x = π/2.) This gives a new value
of x , 1.57+.21=1.78. Testing it, we
have y = 1.58, which is correct to
within rounding errors after only one
iteration. (We were only supplied with
a value of e accurate to three signifi-
cant figures, so we can’t get a result
with precision better than about that
level.)

5.2 Implicit
differentiation

We can differentiate any function
that is written as a formula, and
find a result in terms of a formula.
However, sometimes the original
problem can’t be written in any
nice way as a formula. For exam-
ple, suppose we want to find dy/dx
in a case where the relationship be-
tween x and y is given by the fol-
lowing equation:

y7 + y = x7 + x2 .
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There is no equivalent of the
quadratic formula for seventh-
order polynomials, so we have no
way to solve for one variable in
terms of the other in order to dif-
ferentiate it. However, we can still
find dy/dx in terms of x and y.
Suppose we let x grow to x + dx.
Then for example the x2 term will
grow to (x+dx)2 = x+2 dx+dx2.
The squared infinitesimal is negli-
gible, so the increase in x2 was re-
ally just 2 dx, and we’ve really just
computed the derivative of x2 with
respect to x and multiplied it by
dx. In symbols,

d(x2) =
d(x2)

dx
· dx

= 2xdx .

That is, the change in x2 is 2x
times the change in x. Doing this
to both sides of the original equa-
tion, we have

d(y7 + y) = d(x7 + x2)

7y6 dy + 1 dy = 7x6 dx+ 2xdx

(7y6 + 1) dy = (7x6 + 2x) dx

dy

dx
=

7x6 + 2x

7y6 + 1
.

This still doesn’t give us a for-
mula for the derivative in terms of
x alone, but it’s not entirely use-
less. For instance, if we’re given
a numerical value of x, we can al-
ways use Newton’s method to find
y, and then evaluate the derivative.

5.3 Methods of
integration

Change of variable

Sometimes an unfamiliar-looking
integral can be made into a famil-
iar one by substituting a new vari-
able for an old one. For exam-
ple, we know how to integrate 1/x
— the answer is lnx — but what
about ∫

dx

2x+ 1
?

Let u = 2x + 1. Differentiating
both sides, we have du = 2 dx, or
dx = du/2, so

∫
dx

2x+ 1
=

∫
du/2

u

=
1

2
lnu+ c

=
1

2
ln(2x+ 1) + c .

This technique is known as a
change of variable or a substitu-
tion. (Because the letter u is of-
ten employed, you may also see it
called u-substitution.)

In the case of a definite integral,
we have to remember to change the
limits of integration to reflect the
new variable.

Example 64
. Evaluate

∫ 4
3 dx/(2x + 1).
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. As before, let u = 2x + 1.∫ x=4

x=3

dx
2x + 1

=
∫ u=9

u=7

du/2
u

=
1
2

ln u
∣∣∣∣u=9

u=7

Here the notation |u=9
u=7 means to eval-

uate the function at 7 and 9, and sub-
tract the former from the latter. The
result is∫ x=4

x=3

dx
2x + 1

=
1
2

(ln 9− ln 7)

=
1
2

ln
9
7

.

Sometimes, as in the next example,
a clever substitution is the secret to
doing a seemingly impossible inte-
gral.

Example 65
. Evaluate∫

e
√

x

√
x

dx .

. The only hope for reducing this to a
form we can do is to let u =

√
x . Then

dx = d(u2) = 2u du, so∫
e
√

x

√
x

dx =
∫

eu

u
· 2u du

= 2
∫

eu du

= 2eu

= 2e
√

x .

Example 65 really isn’t so tricky,
since there was only one logical
choice for the substitution that had

any hope of working. The follow-
ing is a little more dastardly.

Example 66
. Evaluate ∫

dx
1 + x2 .

. The substitution that works is x =
tan u. First let’s see what this does
to the expression 1 + x2. The familiar
identity

sin2 u + cos2 u = 1 ,

when divided by cos2 u, gives

tan2 u + 1 = sec2 u ,

so 1 + x2 becomes sec2 u. But differ-
entiating both sides of x = tan u gives

dx = d
[
sin u(cos u)−1

]
= (dsin u)(cos u)−1

+ (sin u) d
[
(cos u)−1

]
=
(

1 + tan2 u
)

du

= sec2 u du ,

so the integral becomes∫
dx

1 + x2 =
∫

sec2 u du
sec2 u

= u + c

= tan−1 x + c .

What mere mortal would ever
have suspected that the substitu-
tion x = tanu was the one that
was needed in example 66? One
possible answer is to give up and
do the integral on a computer:
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Integrate(x) 1/(1+x^2)

ArcTan(x)

Another possible answer is that
you can usually smell the pos-
sibility of this type of substitu-
tion, involving a trig function,
when the thing to be integrated
contains something reminiscent of
the Pythagorean theorem, as sug-
gested by figure b. The 1 + x2

looks like what you’d get if you
had a right triangle with legs 1 and
x, and were using the Pythagorean
theorem to find its hypotenuse.

b / The substitution x =
tan u.

Example 67
. Evaluate

∫
dx/
√

1− x2.

. The
√

1− x2 looks like what you’d
get if you had a right triangle with
hypotenuse 1 and a leg of length
x , and were using the Pythagorean
theorem to find the other leg, as in
figure c. This motivates us to try
the substitution x = cos u, which
gives dx = − sin u du and

√
1− x2 =√

1− cos2 u = sin u. The result is∫
dx√

1− x2
=
∫
− sin u du

sin u

= −u + c

= − cos−1 x .

c / The substitution x =
cos u.

Integration by parts

Figure d shows a technique called
integration by parts. If the inte-
gral

∫
v du is easier than the inte-

gral
∫
udv, then we can calculate

the easier one, and then by sim-
ple geometry determine the one we
wanted. Identifying the large rect-
angle that surrounds both shaded
areas, and the small white rectan-
gle on the lower left, we have∫
udv =(area of large rectangle)

− (area of small rectangle)∫
v du .

In the case of an indefinite integral,
we have a similar relationship de-
rived from the product rule:

d(uv) = udv + v du

udv = d(uv)− v du

Integrating both sides, we have the
following relation.

Integration by parts∫
udv = uv −

∫
v du .
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d / Integration by parts.

Since a definite integral can al-
ways be done by evaluating an in-
definite integral at its upper and
lower limits, one usually uses this
form. Integrals don’t usually come
prepackaged in a form that makes
it obvious that you should use inte-
gration by parts. What the equa-
tion for integration by parts tells
us is that if we can split up the
integrand into two factors, one of
which (the dv) we know how to
integrate, we have the option of
changing the integral into a new
form in which that factor becomes
its integral, and the other fac-
tor becomes its derivative. If we
choose the right way of splitting up
the integrand into parts, the result
can be a simplification.

Example 68
. Evaluate

∫
x cos x dx

. There are two obvious possibilities
for splitting up the integrand into fac-
tors,

u dv = (x)(cos x dx)

or

u dv = (cos x)(x dx) .

The first one is the one that lets us
make progress. If u = x , then du = dx ,
and if dv = cos x dx , then integration
gives v = sin x .

∫
x cos x dx =

∫
u dv

= uv −
∫

v du

= x sin x −
∫

sin x dx

= x sin x + cos x

Of the two possibilities we consid-
ered for u and dv , the reason this
one helped was that differentiating x
gave dx , which was simpler, and in-
tegrating cos x dx gave sin x , which
was no more complicated than be-
fore. The second possibility would
have made things worse rather than
better, because integrating x dx would
have given x2/2, which would have
been more complicated rather than
less.

Example 69
. Evaluate

∫
ln x dx .

. This one is a little tricky, because it
isn’t explicitly written as a product, and
yet we can attack it using integration
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by parts. Let u = ln x and dv = dx .∫
ln x dx =

∫
u dv

= uv −
∫

v du

= x ln x −
∫

x
dx
x

= x ln x − x

Example 70
. Evaluate

∫
x2ex dx .

. Integration by parts lets us split
the integrand into two factors, inte-
grate one, differentiate the other, and
then do that integral. Integrating or
differentiating ex does nothing. In-
tegrating x2 increases the exponent,
which makes the problem look harder,
whereas differentiating x2 knocks the
exponent down a step, which makes
it look easier. Let u = x2 and dv =
ex dx , so that du = 2x dx and v = ex .
We then have∫

x2ex dx = x2ex − 2
∫

xex dx .

Although we don’t immediately know
how to evaluate this new integral, we
can subject it to the same type of inte-
gration by parts, now with u = x and
dv = ex dx . After the second integra-
tion by parts, we have:∫

x2ex dx = x2ex − 2
(

xex −
∫

ex dx
)

= x2ex − 2
(
xex − ex)

= (x2 − 2x + 2)ex

Partial fractions

Given a function like

−1

x− 1
+

1

x+ 1
,

we can rewrite it over a common
denominator like this:(

−1

x− 1

)(
x+ 1

x+ 1

)
+

(
1

x+ 1

)(
x− 1

x− 1

)
=
−x− 1 + x− 1

(x− 1)(x+ 1)

=
−2

x2 − 1
.

But note that the original form is
easily integrated to give∫ (

−1

x− 1
+

1

x+ 1

)
dx

= − ln(x−1)+ln(x+1)+c ,

while faced with the form
−2/(x2 − 1), we wouldn’t have
known how to integrate it.

Note that the original function was
of the form (−1)/ . . . + (+1)/ . . .
It’s not a coincidence that the two
constants on top, −1 and +1, are
opposite in sign but equal in abso-
lute value. To see why, consider
the behavior of this function for
large values of x. Looking at the
form −1/(x − 1) + 1/(x + 1), we
might naively guess that for a large
value of x such as 1000, it would
come out to be somewhere on the
order thousandths. But looking at
the form −2/(x2 − 1), we would
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expect it to be way down in the
millionths. This seeming paradox
is resolved by noting that for large
values of x, the two terms in the
form −1/(x − 1) + 1/(x + 1) very
nearly cancel. This cancellation
could only have happened if the
constants on top were opposites
like plus and minus one.

The idea of the method of partial
fractions is that if we want to do
an integral of the form∫

dx

P (x)
,

where P (x) is an nth order polyno-
mial, we rewrite 1/P as

1

P (x)
=

A1

x− r1
+ . . .

An
x− rn

,

where r1 . . . rn are the roots of the
polynomial, i.e., the solutions of
the equation P (r) = 0. If the poly-
nomial is second-order, you can
find the roots r1 and r2 using
the quadratic formula; I’ll assume
for the time being that they’re
real. For higher-order polynomi-
als, there is no surefire, easy way
of finding the roots by hand, and
you’d be smart simply to use com-
puter software to do it. In Yacas,
you can find the real roots of a
polynomial like this:

FindRealRoots(x^4-5*x^3

-25*x^2+65*x+84)

{3.,7.,-4.,-1.}

(I assume it uses Newton’s method
to find them.) The constants Ai

can then be determined by algebra,
or by the following trick.

Numerical method

Suppose we evaluate 1/P (x) for a
value of x very close to one of the
roots. In the example of the poly-
nomial x4 − 5x3 − 25x2 + 65x +
84, let r1 . . . r4 be the roots in
the order in which they were re-
turned by Yacas. Then A1 can
be found by evaluating 1/P (x) at
x = 3.000001:

P(x):=x^4-5*x^3-25*x^2

+65*x+84

N(1/P(3.000001))

-8928.5702094768

We know that for x very close to
3, the expression

1

P
=

A1

x− 3
+

A2

x− 7
+

A3

x+ 4
+

A4

x+ 1

will be dominated by the A1 term,
so

−8930 ≈ A1

3.000001− 3

A1 ≈ (−8930)(10−6) .

By the same method we can find
the other four constants:

dx:=.000001

N(1/P(7+dx),30)*dx

0.2840908276e-2

N(1/P(-4+dx),30)*dx

-0.4329006192e-2

N(1/P(-1+dx),30)*dx

0.1041666664e-1
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(The N( ,30) construct is to tell
Yacas to do a numerical calcula-
tion rather than an exact symbolic
one, and to use 30 digits of pre-
cision, in order to avoid problems
with rounding errors.) Thus,

1

P
=
−8.93× 10−3

x− 3

+
2.84× 10−3

x− 7

− 4.33× 10−3

x+ 4

+
1.04× 10−2

x+ 1
.

The desired integral is∫
dx

P (x)
= −8.93× 10−3 ln(x− 3)

+ 2.84× 10−3 ln(x− 7)

− 4.33× 10−3 ln(x+ 4)

+ 1.04× 10−2 ln(x+ 1)

+ c .

As in the simpler example I started
off with, where P was second or-
der and we got A1 = −A2, in this
n = 4 example we expect that
A1 + A2 + A3 + A4 = 0, for oth-
erwise the large-x behavior of the
partial-fraction form would be 1/x
rather than 1/x4. This is a useful
way of checking the result: −8.93+
2.84− 4.33 + 10.4 = −.02 ≈ 0.

Complications

There are two possible complica-
tions:

First, the same factor may occur
more than once, as in x3 − 5x2 +
7x− 3 = (x− 1)(x− 1)(x− 3). In
this example, we have to look for
an answer of the form A/(x− 1) +
B/(x−1)2+C/(x−3), the solution
being −.25/(x− 1)− .5/(x− 1)2 +
.25/(x− 3).

Second, the roots may be complex.
This is no show-stopper if you’re
using computer software that han-
dles complex numbers gracefully.
(You can choose a c that makes the
result real.) In fact, as discussed in
section 8.3, some beautiful things
can happen with complex roots.
But as an alternative, any polyno-
mial with real coefficients can be
factored into linear and quadratic
factors with real coefficients. For
each quadratic factor Q(x), we
then have a partial fraction of the
form (A+Bx)/Q(x), where A and
B can be determined by algebra.
In Yacas, this can be done using
the Apart function.

Example 71
. Evaluate the integral∫

dx
(x4 − 8x3 + 8x2 − 8x + 7

using the method of partial fractions.

. First we use Yacas to look for real
roots of the polynomial:

FindRealRoots(x^4-8*x^3

+8*x^2-8*x+7)

{1.,7.}

Unfortunately this polynomial seems
to have only two real roots; the rest
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are complex. We can divide out the
factor (x − 1)(x − 7), but that still
leaves us with a second-order polyno-
mial, which has no real roots. One ap-
proach would be to factor the polyno-
mial into the form (x − 1)(x − 7)(x −
p)(x −q), where p and q are complex,
as in section 8.3. Instead, let’s use Ya-
cas to expand the integrand in terms
of partial fractions:

Apart(1/(x^4-8*x^3

+8*x^2-8*x+7))

((2*x)/25+3/50)/(x^2+1)

+1/(300*(x-7))

+(-1)/(12*(x-1))

We can now rewrite the integral like
this:

2
25

∫
x dx

x2 + 1

+
3

50

∫
dx

x2 + 1

+
1

300

∫
dx

x − 7

− 1
12

∫
dx

x − 1

which we can evaluate as follows:

1
25

ln(x2 + 1)

+
3

50
tan−1 x

+
1

300
ln(x − 7)

− 1
12

ln(x − 1)

+c

In fact, Yacas should be able to do
the whole integral for us from scratch,
but it’s best to understand how these

things work under the hood, and to
avoid being completely dependent on
one particular piece of software. As
an illustration of this gem of wisdom,
I found that when I tried to make Ya-
cas evaluate the integral in one gulp,
it choked because the calculation be-
came too complicated! Because I un-
derstood the ideas behind the proce-
dure, I was still able to get a result
through a mixture of computer calcu-
lations and working it by hand. Some-
one who didn’t have the knowledge of
the technique might have tried the in-
tegral using the software, seen it fail,
and concluded, incorrectly, that the in-
tegral was one that simply couldn’t be
done. A computer is no substitute for
understanding.

Residue method

On p. 92 I introduced the trick of
carrying out the method of par-
tial fractions by evaluating 1/P (x)
numerically at x = ri + ε, near
where 1/P blows up. Sometimes
we would like to have an exact re-
sult rather than a numerical ap-
proximation. We can accomplish
this by using an infinitesimal num-
ber dx rather than a small but fi-
nite ε. For simplicity, let’s assume
that all of the n roots ri are dis-
tinct, and that P ’s highest-order
term is xn. We can then write P
as the product P (x) = (x−r1)(x−
r2) . . . (x − rn). For products like
this, there is a notation Π (capital
Greek letter “pi”) that works like
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Σ does for sums:

P (x) =

n∏
i=1

(x− ri) .

It’s not necessary that the roots be
real, but for now we assume that
they are. We want to find the co-
efficients Ai such that

1

P (x)
=
∑ Ai

x− ri
.

We then have

1

P (ri + dx)

=
1

dx
∏
j 6=i(ri − rj + dx)

=
1

dx
∏
j 6=i(ri − rj)

+ . . .

=
Ai
dx

+ . . . ,

where . . . represents finite terms
that are negligible compared to the
infinite ones. Multiplying on both
sides by dx, we have

1

P ′(ri)
+ . . . = Ai + . . . ,

where the . . . now stand for in-
finitesimals which must in fact can-
cel out, since both Ai and 1/P ′ are
real numbers.

Example 72
. The partial-fraction decomposition
of the function

1
x4 − 5x3 − 25x2 + 65x + 84

was found numerically on p. 92. The
coefficient of the 1/(x − 3) term

was found numerically to be A1 ≈
−8.930 × 10−3. Determine it exactly
using the residue method.

. Differentiation gives P′(x) = 4x3 −
15x2 − 50x + 65. We then have A1 =
1/P′(3) = −1/112.

Integrals that can’t be done

Integral calculus was invented in
the age of powdered wigs and harp-
sichords, so the original emphasis
was on expressing integrals in a
form that would allow numbers to
be plugged in for easy numerical
evaluation by scribbling on scraps
of parchment with a quill pen.
This was an era when you might
have to travel to a large city to get
access to a table of logarithms.

In this computationally impov-
erished environment, one always
wanted to get answers in what’s
known as closed form and in terms
of elementary functions.

A closed form expression means
one written using a finite num-
ber of operations, as opposed to
something like the geometric series
1+x+x2 +x3 + . . ., which goes on
forever.

Elementary functions are usually
taken to be addition, subtraction,
multiplication, division, logs, and
exponentials, as well as other func-
tions derivable from these. For ex-
ample, a cube root is allowed, since
3
√
x = e(1/3) ln x, and so are trig

functions and their inverses, since,
as we will see in chapter 8, they
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can be expressed in terms of logs
and exponentials.

In theory, “closed form” doesn’t
mean anything unless we state the
elementary functions that are al-
lowed. In practice, when people
refer to closed form, they usually
have in mind the particular set
of elementary functions described
above.

A traditional freshman calculus
course spends such a vast amount
of time teaching you how to do in-
tegrals in closed form that it may
be easy to miss the fact that this
is impossible for the vast majority
of integrands that you might ran-
domly write down. Here are some
examples of impossible integrals:

∫
e−x

2

dx∫
xx dx∫
sinx

x
dx∫

ex tanxdx

The first of these is a form that
is extremely important in statis-
tics (it describes the area under the
standard “bell curve”), so you can
see that impossible integrals aren’t
just obscure things that don’t pop
up in real life.

People who are proficient at doing
integrals in closed form generally

seem to work by a process of pat-
tern matching. They recognize cer-
tain integrals as being of a form
that can’t be done, so they know
not to try.

Example 73
. Students! Stand at attention!
You will now evaluate

∫
e−x2+7x dx in

closed form.

. No sir, I can’t do that. By a change of
variables of the form u = x + c, where
c is a constant, we could clearly put
this into the form

∫
e−x2

dx , which we
know is impossible.

Sometimes an integral such as∫
e−x

2

dx is important enough that
we want to give it a name, tab-
ulate it, and write computer sub-
routines that can evaluate it nu-
merically. For example, statisti-
cians define the “error function”
erf(x) = (2/

√
π)
∫
e−x

2

dx. Some-
times if you’re not sure whether an
integral can be done in closed form,
you can put it into computer soft-
ware, which will tell you that it
reduces to one of these functions.
You then know that it can’t be
done in closed form. For exam-
ple, if you ask the popular web site
integrals.com to do

∫
e−x

2+7x dx,
it spits back (1/2)e49/4

√
π erf(x −

7/2). This tells you both that
you shouldn’t be wasting your time
trying to do the integral in closed
form and that if you need to evalu-
ate it numerically, you can do that
using the erf function.

As shown in the following example,
just because an indefinite integral
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can’t be done, that doesn’t mean
that we can never do a related def-
inite integral.

Example 74
. Evaluate

∫ π/2
0 e− tan2 x (tan2 x + 1) dx .

. The obvious substitution to try is u =
tan x , and this reduces the integrand
to e−x2

. This proves that the corre-
sponding indefinite integral is impos-
sible to express in closed form. How-
ever, the definite integral can be ex-
pressed in closed form; it turns out to
be
√
π/2. The trick for proving this is

given in example 99 on p. 134.

Sometimes computer software
can’t say anything about a partic-
ular integral at all. That doesn’t
mean that the integral can’t be
done. Computers are stupid,
and they may try brute-force
techniques that fail because the
computer runs out of memory
or CPU time. For example, the
integral

∫
dx/(x10000 − 1) (prob-

lem 15, p. 127) can be done in
closed form using the techniques
of chapter 8, and it’s not too hard
for a proficient human to figure
out how to attack it, but every
computer program I’ve tried it on
has failed silently.
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Problems
1 Graph the function y = ex −
7x and get an approximate idea of
where any of its zeroes are (i.e., for
what values of x we have y(x) = 0).
Use Newton’s method to find the
zeroes to three significant figures of
precision.

2 The relationship between x and
y is given by xy = sin y + x2y2.
(a) Use Newton’s method to find
the nonzero solution for y when
x = 3. Answer: y = 0.2231
(b) Find dy/dx in terms of x and
y, and evaluate the derivative at
the point on the curve you found in
part a. Answer: dy/dx = −0.0379
Based on an example by Craig B.

Watkins.

3 Suppose you want to evaluate∫
dx

1 + sin 2x
,

and you’ve found∫
dx

1 + sinx
= − tan

(π
4
− x

2

)
in a table of integrals. Use a
change of variable to find the an-
swer to the original problem.

4 Evaluate∫
sinx dx

1 + cosx
.

5 Evaluate∫
sinx dx

1 + cos2 x
.

6 Evaluate∫
x
√
a− xdx .

7 Evaluate∫ √
x4 + bx2 dx ,

where b is a constant.

8 Evaluate∫
xe−x

2

dx .

9 Evaluate∫
xex dx .

10 Use integration by parts to
evaluate the following integrals.∫

sin−1 xdx∫
cos−1 x dx∫
tan−1 x dx

11 Evaluate∫
x2 sinx dx .

Hint: Use integration by parts
more than once.

12 Evaluate∫
dx

x2 − x− 6
.
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13 Evaluate∫
dx

x3 + 3x2 − 4
.

14 Evaluate∫
dx

x3 − x2 + 4x− 4
.

15 Apply integration by parts
twice to∫

e−x cosxdx ,

examine what happens, and ma-
nipulate the result in order to solve
the original integral. (An approach
that doesn’t rely on tricks is given
in example 91 on p. 123.)

16 Plan, but do not actually
carry out the steps that would be
required in order to generalize the
result of example 70 on p. 91 in or-
der to evaluate∫

xab−x dx ,

where a and b are constants.
Which is easier, the generalization
from 2 to a, or the one from e to
b? Do we need to introduce any re-
strictions on a or b?

. Solution, p. 191

17 The integral
∫
e−x

2

dx can’t
be done in closed form. Knowing
this, use a change of variable to
write down a different integral that

also can’t be done in closed form.

18 Consider the integral∫
ex
p

dx ,

where p is a constant. There is an
obvious substitution. If this is to
result in an integral that can be
evaluated in closed form by a se-
ries of integrations by parts, what
are the possible values of p? Don’t
actually complete the integral; just
determine what values of p will
work. . Solution, p. 191

19 Evaluate the hundredth
derivative of the function
(x2 + 1)/(x3 − x) using paper and
pencil. [Vladimir Arnol’d]

. Solution, p. 191 ?
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6 Improper integrals
6.1 Integrating a

function that
blows up

When we integrate a function that
blows up to infinity at some point
in the interval we’re integrating,
the result may be either finite or
infinite.

Example 75
. Integrate the function y = 1/

√
x

from x = 0 to x = 1.

. The function blows up to infinity at
one end of the region of integration,
but let’s just try evaluating it, and see
what happens.

∫ 1

0
x−1/2 dx = 2x1/2

∣∣∣1
0

= 2

The result turns out to be finite. In-
tuitively, the reason for this is that the
spike at x = 0 is very skinny, and gets
skinny fast as we go higher and higher
up.

a / The integral∫ 1
0 dx/

√
x is finite.

Example 76
. Integrate the function y = 1/x2 from
x = 0 to x = 1.

. ∫ 1

0
x−2 dx = −x−1

∣∣∣1
0

= −1 +
1
0

Division by zero is undefined, so the
result is undefined.

Another way of putting it, using the hy-
perreal number system, is that if we
were to integrate from ε to 1, where ε
was an infinitesimal number, then the
result would be −1 + 1/ε, which is infi-
nite. The smaller we make ε, the big-
ger the infinite result we get out.

Intuitively, the reason that this integral
comes out infinite is that the spike at
x = 0 is fat, and doesn’t get skinny
fast enough.

101
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b / The integral
∫ 1

0 dx/x2

is infinite.

These two examples were examples
of improper integrals.

6.2 Limits of
integration at
infinity

Another type of improper integral
is one in which one of the limits of
integration is infinite. The nota-
tion ∫ ∞

a

f(x) dx

means the limit of
∫H
a
f(x) dx,

where H is made to grow big-
ger and bigger. Alternatively, we
can think of it as an integral in
which the top end of the interval
of integration is an infinite hyper-
real number. A similar interpreta-
tion applies when the lower limit is
−∞, or when both limits are infi-
nite.

Example 77
. Evaluate ∫ ∞

1
x−2 dx

. ∫ H

1
x−2 dx = −x−1

∣∣∣H
1

= − 1
H

+ 1

As H gets bigger and bigger, the re-
sult gets closer and closer to 1, so the
result of the improper integral is 1.

Note that this is the same graph as
in example 75, but with the x and y
axes interchanged; this shows that the
two different types of improper inte-
grals really aren’t so different.

c / The integral∫∞
1 dx/x2 is finite.

Example 78
. Newton’s law of gravity states that
the gravitational force between two
objects is given by F = Gm1m2/r 2,
where G is a constant, m1 and m2

are the objects’ masses, and r is
the center-to-center distance between
them. Compute the work that must be
done to take an object from the earth’s
surface, at r = a, and remove it to
r =∞.
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.

W =
∫ ∞

a

Gm1m2

r 2 dr

= Gm1m2

∫ ∞
a

r−2 dr

= −Gm1m2 r−1
∣∣∣∞
a

=
Gm1m2

a

The answer is inversely proportional
to a. In other words, if we were able to
start from higher up, less work would
have to be done.
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Problems
1 Integrate∫ ∞

0

e−x dx ,

or show that it diverges.

2 Integrate∫ ∞
1

dx

x
,

or show that it diverges.

3 Integrate∫ 1

0

dx

x
,

or show that it diverges.

4 Integrate∫ ∞
0

x22−x dx ,

or show that it diverges.
. Solution, p. 191

5 Integrate∫ ∞
0

e−x cosx dx

or show that it diverges. (Problem
15 on p. 99 suggests a trick for do-
ing the indefinite integral.)

6 Prove that∫ ∞
0

e−e
x

dx

converges, but don’t evaluate it.

7 (a) Verify that the probability
distribution dP/ dx given in exam-
ple 60 on page 80 is properly nor-
malized.

(b) Find the average value of x, or
show that it diverges.
(c) Find the standard deviation of
x, or show that it diverges.

8 Prove∫ ∞
0

e−xxn dx = n! .

?



7 Sequences and Series
7.1 Infinite

sequences
Consider an infinite sequence of
numbers like 1/2, 2/3, 3/4, 4/5,
. . . We want to define this as ap-
proaching 1, or “converging to 1.”
The way to do this is to make a
function f(n), which is only well
defined for integer values of n.
Then f(1) = 1/2, f(2) = 2/3, and
in general f(n) = n/(n+ 1). With
just a little tinkering, our defini-
tions of limits can be applied to
this type of function (see problem
1 on page 114).

7.2 Infinite series
A related question is how to rigor-
ously define the sum of infinitely
many numbers, which is referred
to as an infinite series. An exam-
ple is the geometric series 1 + x +
x2 + x3 + . . . = 1/(1 − x), which
we used casually on page 29. The
general concept of an infinite series
goes back to ancient Greek math-
ematics. Various supposed para-
doxes about infinite series, such as
Zeno’s paradox, were exhibited, in-
fluencing Euclid to sidestep the is-
sue in his Elements, where in Book
IX, Proposition 35 he provides only
an expression (1 − xn)/(1 − x) for
the nth partial sum of the geo-
metric series. The case where n
gets so big that xn becomes neg-

ligible is left to the reader’s imag-
ination, as in one of those scenes
in a romance novel that ends with
something like “...and she surren-
dered...” For those with modern
training, the idea is that an infi-
nite sum like 1 + 1 + 1 + . . . would
clearly give an infinite result, but
this is only because the terms are
all staying the same size. If the
terms get smaller and smaller, and
get smaller fast enough, then the
result can be finite. For example,
consider the geometric series in the
case where x = 1/2, for which we
expect the result 1/(1 − 1/2) = 2.
We have

1 +
1

2
+

1

4
+

1

8
+

1

16
+ . . . ,

which at the successive steps of ad-
dition equals 1, 11

2 , 1 3
4 , 1 7

8 , 1 15
16 ,

. . . . We’re getting closer and closer
to 2, cutting the distance in half
at each step. Clearly we can get as
close as we like to 2, if we’re willing
to add enough terms.

Note that we ended up wanting to
talk about the partial sums of the
series. This is the right way to get
a rigorous definition of the conver-
gence of series in general. In the
case of the geometric series, for ex-
ample, we can define a sequence of
the partial sums 1, 1+x, 1+x+x2,
. . . We can then define convergence
and limits of series in terms of con-
vergence and limits of the partial
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sums.

It’s instructive to see what hap-
pens to the geometric series with
x = 0.1. The geometric series be-
comes

1 + 0.1 + 0.01 + 0.001 + . . . .

The partial sums are 1, 1.1, 1.11,
1.111, . . . We can see vividly here
that adding another term will only
affect the result in a certain deci-
mal place, without affecting any of
the earlier ones. For instance, if
we needed a result that was valid
to three digits past the decimal
place, we could stop at 1.111, be-
ing assured that we had attained a
good enough approximation. If we
wanted an exact result, we could
also observe that multiplying the
result by 9 would give 9.999 . . .,
which is the same as 10, so the
result must be 10/9, which is in
agreement with 1/(1 − 1/10) =
10/9.

One thing to watch out for with
infinite series is that the axioms of
the real number system only talk
about finite sums, so it’s easy to
get wrong results by attempting
to apply them to infinite ones (see
problem 2 on page 114).

7.3 Tests for
convergence

There are many different tests that
can be used to determine whether
a sequence or series converges. I’ll
briefly state three of the most use-
ful, with sketches of their proofs.

Bounded and increasing sequences:
A sequence that always increases,
but never surpasses a certain value,
converges.

This amounts to a restatement of
the completeness axiom for the real
numbers stated on page 157, and
is therefore to be interpreted not
so much as a statement about se-
quences but as one about the real
number system. In particular, it
fails if interpreted as a statement
about sequences confined entirely
to the rational number system,
as we can see from the sequence
1, 1.4, 1.41, 1.414, . . . consisting
of the successive decimal approx-
imations to

√
2, which does not

converge to any rational-number
value.

Example 79
. Prove that the geometric series 1 +
1/2 + 1/4 + . . . converges.

. The sequence of partial sums is in-
creasing, since each term is positive.
Each term closes half of the remain-
ing gap separating the previous par-
tial sum from 2, so the sum never sur-
passes 2. Since the partial sums are
increasing and bounded, they con-
verge to a limit.

Once we know that a particular se-
ries converges, we can also easily
infer the convergence of other se-
ries whose terms get smaller faster.
For example, we can be certain
that if the geometric series con-
verges, so does the series

1

1
+

1

1× 2
+

1

1× 2× 3
+ . . . ,



7.3. TESTS FOR CONVERGENCE 107

whose terms get smaller faster
than any base raised to the power
n.

Alternating series with terms ap-
proaching zero: If the terms of
a series alternate in sign and ap-
proach zero, then the series con-
verges.

Sketch of a proof: The even par-
tial sums form an increasing se-
quence, the odd sums a decreas-
ing one. Neither of these sequences
of partial sums can be unbounded,
since the difference between partial
sums n and n+ 1 would then have
to be unbounded, but this differ-
ence is simply the nth term, and
the terms approach zero. Since
the even partial sums are increas-
ing and bounded, they converge
to a limit, and similarly for the
odd ones. The two limits must
be equal, since the terms approach
zero.

Example 80
. Prove that the series 1−1/2+1/3−
1/4 + . . . converges.

. Its convergence follows because it is
an alternating series with decreasing
terms. The sum turns out to be ln 2,
although the convergence of the se-
ries is so slow that an extremely large
number of terms is required in order to
obtain a decent approximation,

The integral test: If the terms of a
series an are positive and decreas-
ing, and f(x) is a positive and de-
creasing function on the real num-
ber line such that f(n) = an, then
the sum of an from n = 1 to ∞

converges if and only if
∫∞

1
f(x) dx

does.

Sketch of proof: Since the theo-
rem is supposed to hold for both
convergence and divergence, and
is also an “if and only if,” there
are actually four cases to prove, of
which we pick the representative
one where the integral is known to
converge and we want to prove con-
vergence of the corresponding sum.
The sum and the integral can be
interpreted as the areas under two
graphs: one like a smooth ramp
and one like a staircase. Sliding the
staircase half a unit to the left, it
lies entirely underneath the ramp,
and therefore the area under it is
also finite.

Example 81
. Prove that the series 1+1/2+1/3+. . .
diverges.

. The integral of 1/x is ln x , which di-
verges as x approaches infinity, so the
series diverges as well.

The ratio test: If the limit R =
limn→∞ |an+1/an| exists, then the
sum of an converges if R < 1 and
diverges if R > 1.

The proof can be obtained by com-
paring with a geometric series.

Example 82
. Prove that the series 1+1/22 +1/33 +
. . . converges.

. R is easily proved to be 0, so the
sum converges by the ratio test.

At this point it will seem like a
mystery how anyone could have
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proved the exact results claimed
for some of the “special” series,
such as 1 − 1/2 + 1/3 − 1/4 +
. . . = ln 2. Problems like these are
not the main focus of the chap-
ter, and in fact there is no well-
defined toolbox of techniques that
will allow any such “nice” series to
be evaluated exactly. Even a rel-
atively innocent-looking example
like 1−2 + 2−2 + 3−2 + . . . defeated
some of the best mathematicians of
Europe for years (see problem 16,
p. 116). It is currently unknown
whether some apparently simple
series such as

∑∞
n=1 1/(n3 sin2 n)

converge.1

7.4 Taylor series
If you calculate e0.1 on your calcu-
lator, you’ll find that it’s very close
to 1.1. This is because the tangent
line at x = 0 on the graph of ex

has a slope of 1 (dex/ dx = ex = 1
at x = 0), and the tangent line is
a good approximation to the expo-
nential curve as long as we don’t
get too far away from the point of
tangency.

How big is the error? The
actual value of e0.1 is
1.10517091807565 . . ., which
differs from 1.1 by about 0.005.
If we go farther from the point
of tangency, the approximation
gets worse. At x = 0.2, the error

1Alekseyev, “On convergence of the
Flint Hills series,” arxiv.org/abs/1104.

5100v1

a / The function ex , and
the tangent line at x = 0.

is about 0.021, which is about
four times bigger. In other words,
doubling x seems to roughly
quadruple the error, so the error
is proportional to x2; it seems to
be about x2/2. Well, if we want
a handy-dandy, super-accurate
estimate of ex for small values of
x, why not just account for this
error. Our new and improved
estimate is

ex ≈ 1 + x+
1

2
x2

for small values of x.

b / The function ex , and
the approximation 1 + x +
x2/2.
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Figure b shows that the approxi-
mation is now extremely good for
sufficiently small values of x. The
difference is that whereas 1 + x
matched both the y-intercept and
the slope of the curve, 1+x+x2/2
matches the curvature as well. Re-
call that the second derivative is a
measure of curvature. The second
derivatives of the function and its
approximation are

d

dx
ex = 1

d

dx

(
1 + x+

1

2
x2

)
= 1

We can do even better. Suppose

c / The function ex , and
the approximation 1 + x +
x2/2 + x3/6.

we want to match the third deriva-
tives. All the derivatives of ex,
evaluated at x = 0, are 1, so we
just need to add on a term pro-
portional to x3 whose third deriva-
tive is one. Taking the first deriva-
tive will bring down a factor of 3
in front, and taking and the sec-
ond derivative will give a 2, so to
cancel these out we need the third-

order term to be (1/2)(1/3):

ex ≈ 1 + x+
1

2
x2 +

1

2 · 3
x3

Figure c shows the result. For a
significant range of x values close
to zero, the approximation is now
so good that we can’t even see the
difference between the two func-
tions on the graph.

On the other hand, figure d shows
that the cubic approximation for
somewhat larger negative and pos-
itive values of x is poor — worse,
in fact, than the linear approxi-
mation, or even the constant ap-
proximation ex = 1. This is to
be expected, because any polyno-
mial will blow up to either posi-
tive or negative infinity as x ap-
proaches negative infinity, whereas
the function ex is supposed to get
very close to zero for large negative
x. The idea here is that derivatives
are local things: they only measure
the properties of a function very
close to the point at which they’re
evaluated, and they don’t necessar-
ily tell us anything about points far
away.

It’s a remarkable fact, then, that
by taking enough terms in a poly-
nomial approximation, we can al-
ways get as good an approximation
to ex as necessary — it’s just that
a large number of terms may be
required for large values of x. In
other words, the infinite series

1 + x+
1

2
x2 +

1

2 · 3
x3 + . . .
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d / The function ex , and the approxi-
mation 1 + x + x2/2 + x3/6, on a wider
scale.

always gives exactly ex. But what
is the pattern here that would al-
lows us to figure out, say, the
fourth-order and fifth-order terms
that were swept under the rug
with the symbol “. . . ”? Let’s do
the fifth-order term as an example.
The point of adding in a fifth-order
term is to make the fifth derivative
of the approximation equal to the
fifth derivative of ex, which is 1.
The first, second, . . . derivatives of
x5 are

d

dx
x5 = 5x4

d2

dx2
x5 = 5 · 4x3

d3

dx3
x5 = 5 · 4 · 3x2

d4

dx4
x5 = 5 · 4 · 3 · 2x

d5

dx5
x5 = 5 · 4 · 3 · 2 · 1

The notation for a product like 1 ·
2 · . . . · n is n!, read “n factorial.”
So to get a term for our polynomial
whose fifth derivative is 1, we need
x5/5!. The result for the infinite
series is

ex =

∞∑
n=0

xn

n!
,

where the special case of 0! = 1
is assumed.2 This infinite series
is called the Taylor series for ex,
evaluated around x = 0, and it’s
true, although I haven’t proved it,
that this particular Taylor series
always converges to ex, no matter
how far x is from zero.

In general, the Taylor series
around x = 0 for a function y is

T0(x) =

∞∑
n=0

anx
n ,

where the condition for equality of
the nth order derivative is

an =
1

n!

dn y

dxn

∣∣∣∣
x=0

.

Here the notation |x=0 means that
the derivative is to be evaluated at
x = 0.

A Taylor series can be used to ap-
proximate other functions besides
ex, and when you ask your calcula-
tor to evaluate a function such as a
sine or a cosine, it may actually be
using a Taylor series to do it. Tay-
lor series are also the method Inf

2This makes sense, because, for exam-
ple, 4!=5!/5, 3!=4!/4, etc., so we should
have 0!=1!/1.
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uses to calculate most expressions
involving infinitesimals. In exam-
ple 13 on page 29, we saw that
when Inf was asked to calculate
1/(1 − d), where d was infinitesi-
mal, the result was the geometric
series:

: 1/(1-d)

1+d+d^2+d^3+d^4

These are also the the first five
terms of the Taylor series for the
function y = 1/(1 − x), evaluated
around x = 0. That is, the geo-
metric series 1+x+x2 +x3 + . . . is
really just one special example of
a Taylor series, as demonstrated in
the following example.

Example 83
. Find the Taylor series of y = 1/(1−

x) around x = 0.

. Rewriting the function as y = (1 −
x)−1 and applying the chain rule, we
have

y |x=0 = 1

dy
dx

∣∣∣∣
x=0

= (1− x)−2
∣∣∣
x=0

= 1

d2 y
dx2

∣∣∣∣
x=0

= 2(1− x)−3
∣∣∣
x=0

= 2

d3 y
dx3

∣∣∣∣
x=0

= 2 · 3(1− x)−4
∣∣∣
x=0

= 2 · 3

. . .

The pattern is that the nth derivative
is n!. The Taylor series therefore has
an = n!/n! = 1:

1
1− x

= 1 + x + x2 + x3 + . . .

If you flip back to page 106 and
compare the rate of convergence of
the geometric series for x = 0.1
and 0.5, you’ll see that the sum
converged much more quickly for
x = 0.1 than for x = 0.5. In
general, we expect that any Taylor
series will converge more quickly
when x is smaller. Now consider
what happens at x = 1. The series
is now 1 + 1 + 1 + . . ., which gives
an infinite result, and we shouldn’t
have expected any better behav-
ior, since attempting to evaluate
1/(1 − x) at x = 1 gives divi-
sion by zero. For x > 1, the re-
sults become nonsense. For exam-
ple, 1/(1 − 2) = −1, which is fi-
nite, but the geometric series gives
1 + 2 + 4 + . . ., which is infinite.

In general, every function’s Taylor
series around x = 0 converges for
all values of x in the range defined
by |x| < r, where r is some num-
ber, known as the radius of con-
vergence. Also, if the function is
defined by putting together other
functions that are well behaved (in
the sense of converging to their
own Taylor series in the relevant
region), then the Taylor series will
not only converge but converge to
the correct value. For the function
ex, the radius happen to be infi-
nite, whereas for 1/(1−x) it equals
1. The following example shows a
worst-case scenario.

Example 84
The function y = e−1/x2

, shown in fig-
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e / The function e−1/x2
never con-

verges to its Taylor series.

ure e, never converges to its Taylor se-
ries, except at x = 0. This is because
the Taylor series for this function, eval-
uated around x = 0 is exactly zero! At
x = 0, we have y = 0, dy/ dx = 0,
d2 y/ dx2 = 0, and so on for every
derivative. The zero function matches
the function y (x) and all its derivatives
to all orders, and yet is useless as
an approximation to y (x). The radius
of convergence of the Taylor series is
infinite, but it doesn’t give correct re-
sults except at x = 0. The reason
for this is that y was built by compos-
ing two functions, w(x) = −1/x2 and
y (w) = ew . The function w is badly
behaved at x = 0 because it blows up
there. In particular, it doesn’t have a
well-defined Taylor series at x = 0.

Example 85
. Find the Taylor series of y = sin x ,

evaluated around x = 0.

. The first few derivatives are

d
dx

sin x = cos x

d2

dx2 sin x = − sin x

d3

dx3 sin x = − cos x

d4

dx4 sin x = sin x

d5

dx5 sin x = cos x

We can see that there will be a cy-
cle of sin, cos, − sin, and − cos, re-
peating indefinitely. Evaluating these
derivatives at x = 0, we have 0, 1, 0,
−1, . . . . All the even-order terms of
the series are zero, and all the odd-
order terms are ±1/n!. The result is

sin x = x − 1
3!

x3 +
1
5!

x5 − . . . .

The linear term is the familiar small-
angle approximation sin x ≈ x .

The radius of convergence of this se-
ries turns out to be infinite. Intuitively
the reason for this is that the factori-
als grow extremely rapidly, so that the
successive terms in the series even-
tually start diminish quickly, even for
large values of x .

Example 86
Suppose that we want to evaluate a

limit of the form

lim
x→0

u(x)
v (x)

,

where u(0) = v (0) = 0. L’Hôpital’s rule
tells us that we can do this by taking
derivatives on the top and bottom to
form u′/v ′, and that, if necessary, we
can do more than one derivative, e.g.,
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u′′/v ′′. This was proved on p. 152 us-
ing the mean value theorem. But if u
and v are both functions that converge
to their Taylor series, then it is much
easier to see why this works. For ex-
ample, suppose that their Taylor se-
ries both have vanishing constant and
linear terms, so that u = ax2 + . . . and
v = bx2 + . . .. Then u′′ = 2a + . . ., and
v ′′ = 2b + . . ..

A function’s Taylor series doesn’t
have to be evaluated around x =
0. The Taylor series around some
other center x = c is given by

Tc(x) =

∞∑
n=0

an(x− c)n ,

where

an
n!

=
dn y

dxn

∣∣∣∣
x=c

.

To see that this is the right gen-
eralization, we can do a change of
variable, defining a new function
g(x) = f(x−c). The radius of con-
vergence is to be measured from
the center c rather than from 0.

Example 87
. Find the Taylor series of ln x , evalu-
ated around x = 1.

. Evaluating a few derivatives, we get

d
dx

ln x = x−1

d2

dx2 ln x = −x−2

d3

dx3 ln x = 2x−3

d4

dx4 ln x = −6x−4

Note that evaluating these at x = 0
wouldn’t have worked, since division
by zero is undefined; this is because
ln x blows up to negative infinity at
x = 0. Evaluating them at x = 1,
we find that the nth derivative equals
±(n − 1)!, so the coefficients of the
Taylor series are ±(n−1)!/n! = ±1/n,
except for the n = 0 term, which is
zero because ln 1 = 0. The resulting
series is

ln x = (x−1)−1
2

(x−1)2+
1
3

(x−1)3+. . . .

We can predict that its radius of con-
vergence can’t be any greater than 1,
because ln x blows up at 0, which is at
a distance of 1 from 1.
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Problems
1 Modify the Weierstrass defini-
tion of the limit to apply to infinite
sequences. . Solution, p. 192

2 (a) Prove that the infinite se-
ries 1 − 1 + 1 − 1 + 1 − 1 + . . .
does not converge to any limit, us-
ing the generalization of the Weier-
strass limit found in problem 1.
(b) Criticize the following argu-
ment. The series given in part a
equals zero, because addition is as-
sociative, so we can rewrite it as
(1 − 1) + (1 − 1) + (1 − 1) + . . .

. Solution, p. 192

3 Use the integral test to prove
the convergence of the geometric
series for 0 < x < 1.

. Solution, p. 192

4 Determine the convergence or
divergence of the following series.
(a) 1 + 1/22 + 1/32 + . . .
(b) 1/ ln ln 3−1/ ln ln 6+1/ ln ln 9−
1/ ln ln 12 + . . .
(c)

1

ln 2
+

1

(ln 2)(ln 3)

+
1

(ln 2)(ln 3)(ln 4)
+ . . .

(d)

2
√

2

9801

∞∑
k=0

(4k)!(1103 + 26390k)

(k!)43964k

. Solution, p. 192

5 Give an example of a series for
which the ratio test is inconclusive.

. Solution, p. 193

6 Find the Taylor series expan-
sion of cosx around x = 0. Check
your work by combining the first
two terms of this series with the
first term of the sine function from
example 85 on page 112 to ver-
ify that the trig identity sin2 x +
cos2 x = 1 holds for terms up to
order x2.

7 In classical physics, the kinetic
energy K of an object of mass m
moving at velocity v is given by
K = 1

2mv
2. For example, if a car is

to start from a stoplight and then
accelerate up to v, this is the the-
oretical minimum amount of en-
ergy that would have to be used
up by burning gasoline. (In real-
ity, a car’s engine is not 100% effi-
cient, so the amount of gas burned
is greater.)

Einstein’s theory of relativity
states that the correct equation is
actually

K =

 1√
1− v2

c2

− 1

mc2 ,

where c is the speed of light. The
fact that it diverges as v → c is
interpreted to mean that no object
can be accelerated to the speed of
light.

Expand K in a Taylor series, and
show that the first nonvanishing
term is equal to the classical ex-
pression. This means that for ve-
locities that are small compared to
the speed of light, the classical ex-
pression is a good approximation,
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and Einstein’s theory does not con-
tradict any of the prior empirical
evidence from which the classical
expression was inferred.

8 Expand (1 + x)1/3 in a Taylor
series around x = 0. The value
x = 28 lies outside this series’ ra-
dius of convergence, but we can
nevertheless use it to extract the
cube root of 28 by recognizing that
281/3 = 3(28/27)1/3. Calculate the
root to four significant figures of
precision, and check it in the ob-
vious way.

9 Find the Taylor series expan-
sion of log2 x around x = 1, and
use it to evaluate log2 1.0595 to
four significant figures of precision.
Check your result by using the fact
that 1.0595 is approximately the
twelfth root of 2. This number is
the ratio of the frequencies of two
successive notes of the chromatic
scale in music, e.g., C and D-flat.

10 In free fall, the acceleration
will not be exactly constant, due
to air resistance. For example, a
skydiver does not speed up indefi-
nitely until opening her chute, but
rather approaches a certain maxi-
mum velocity at which the upward
force of air resistance cancels out
the force of gravity. If an object is
dropped from a height h, and the
time it takes to reach the ground is
used to measure the acceleration of
gravity, g, then the relative error in

the result due to air resistance is3

E =
g − gvacuum

g

= 1− 2b

ln2
(
eb +

√
e2b − 1

) ,

where b = h/A, and A is a constant
that depends on the size, shape,
and mass of the object, and the
density of the air. (For a sphere of
mass m and diameter d dropping
in air, A = 4.11m/d2. Cf. problem
20, p. 49.) Evaluate the constant
and linear terms of the Taylor se-
ries for the function E(b).

11 (a) Prove that the conver-
gence of an infinite series is un-
affected by omitting some initial
terms. (b) Similarly, prove that
convergence is unaffected by mul-
tiplying all the terms by some con-
stant factor.

12 The identity∫ 1

0

x−x dx =

∞∑
n=1

n−n .

is known as the “Sophomore’s
dream,” because at first glance it
looks like the kind of plausible
but false statement that someone
would naively dream up. Verify it
numerically by machine computa-
tion.

13 Does sinx + sin sinx +
sin sin sinx+ . . . converge?

. Solution, p. 194 ?

3Jan Benacka and Igor Stubna, The
Physics Teacher, 43 (2005) 432.
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14 Evaluate

1 +
1

1 + 2
+

1

1 + 2 + 3
+ . . .

. Solution, p. 193 ?

15 Evaluate

∞∑
n=0

(−1)n

n+ 1 + 1/n!

to six decimal places. ?

16 Euler was the first to prove

1

12
+

1

22
+

1

32
+ . . . =

π2

6
.

This problem had defeated other
great mathematicians of his time,
and was famous enough to be given
a special name, the Basel prob-
lem. Here we present an argument
based closely on Euler’s and pose
the problem of how to exploit Eu-
ler’s technique further in order to
prove

1

14
+

1

24
+

1

34
+ . . . =

π4

90
.

From the Taylor series for the sine
function, we find the related series

f(x) =
sin
√
x√

x
= 1− x

3!
+
x2

5!
.

The partial sums of this series are
polynomials that approximate f
for small values of x. If such a
polynomial were exact rather than
approximate, then it would have
zeroes at x = π2, 4π2, 9π2, . . . ,
and we could write it as the prod-
uct of its linear factors. Euler as-
sumed, without any more rigorous

proof, that this factorization pro-
cedure could be extended to the
infinite series, so that f could be
represented as the infinite product

f(x) =
(

1− x

π2

)(
1− x

4π2

)
. . .

By multiplying this out and equat-
ing its linear term to that of the
Taylor series, we find the claimed
result.

Extend this procedure to the x2

term and prove the result claimed
for the sum of the inverse fourth
powers of the integers. (The
sums with odd exponents ≥ 3 are
much harder, and relatively little
is known about them. The sum
of the inverse cubes is known as
Apèry’s constant.) ?

17 Does∫ ∞
0

sin(x2) dx

converge, or not?
. Solution, p. 193 ?

18 Evaluate

lim
n→∞

cos(π
√
n2 − n) ,

where n is an integer. ?

19 Determine the convergence
of the series

∞∑
n=0

n22−n ,

and if it converges, evaluate it.
. Solution, p. 194 ?
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20 Determine the convergence
of the series

∞∑
n=0

n22−n ,

and if it converges, evaluate it.
. Solution, p. 194 ?

21 For what integer values of p
should we expect the series

∞∑
n=1

| cosn|n

np

to converge? A rigorous proof is
very difficult and may even be an
open problem, but it is relatively
straightforward to give a convinc-
ing argument.

. Solution, p. 195 ?
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8 Complex number
techniques

8.1 Review of
complex
numbers

For a more detailed treatment of
complex numbers, see ch. 3 of
James Nearing’s free book at
http://www.physics.miami.edu/

nearing/mathmethods/.

a / Visualizing complex numbers as
points in a plane.

We assume there is a number, i,
such that i2 = −1. The square
roots of −1 are then i and −i. (In
electrical engineering work, where
i stands for current, j is sometimes
used instead.) This gives rise to
a number system, called the com-
plex numbers, containing the real

b / Addition of complex numbers is
just like addition of vectors, although
the real and imaginary axes don’t ac-
tually represent directions in space.

numbers as a subset. Any com-
plex number z can be written in
the form z = a + bi, where a and
b are real, and a and b are then
referred to as the real and imagi-
nary parts of z. A number with
a zero real part is called an imag-
inary number. The complex num-
bers can be visualized as a plane,
figure a, with the real number line
placed horizontally like the x axis
of the familiar x−y plane, and the
imaginary numbers running along
the y axis. The complex num-
bers are complete in a way that the
real numbers aren’t: every nonzero
complex number has two square
roots. For example, 1 is a real

119
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c / A complex number and its conju-
gate.

number, so it is also a member
of the complex numbers, and its
square roots are −1 and 1. Like-
wise, −1 has square roots i and −i,
and the number i has square roots
1/
√

2 + i/
√

2 and −1/
√

2− i/
√

2.

Complex numbers can be added
and subtracted by adding or sub-
tracting their real and imaginary
parts, figure b. Geometrically, this
is the same as vector addition.

The complex numbers a + bi and
a − bi, lying at equal distances
above and below the real axis, are
called complex conjugates. The re-
sults of the quadratic formula are
either both real, or complex conju-
gates of each other. The complex
conjugate of a number z is notated
as z̄ or z∗.

The complex numbers obey all the
same rules of arithmetic as the re-
als, except that they can’t be or-
dered along a single line. That is,

it’s not possible to say whether one
complex number is greater than
another. We can compare them
in terms of their magnitudes (their
distances from the origin), but
two distinct complex numbers may
have the same magnitude, so, for
example, we can’t say whether 1 is
greater than i or i is greater than
1.

Example 88
. Prove that 1/

√
2 + i/

√
2 is a square

root of i .

.Our proof can use any ordinary rules
of arithmetic, except for ordering.

(
1√
2

+
i√
2

)2 =
1√
2
· 1√

2
+

1√
2
· i√

2

+
i√
2
· 1√

2
+

i√
2
· i√

2

=
1
2

(1 + i + i − 1)

= i

Example 88 showed one method
of multiplying complex numbers.
However, there is another nice in-
terpretation of complex multiplica-
tion. We define the argument of
a complex number, figure d, as its
angle in the complex plane, mea-
sured counterclockwise from the
positive real axis. Multiplying
two complex numbers then corre-
sponds to multiplying their magni-
tudes, and adding their arguments,
figure e.

Self-Check
Using this interpretation of multiplica-
tion, how could you find the square
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d / A complex number can be de-
scribed in terms of its magnitude and
argument.

roots of a complex number? .

Answer, p. 165

Example 89
The magnitude |z| of a complex num-
ber z obeys the identity |z|2 = zz̄.
To prove this, we first note that z̄ has
the same magnitude as z, since flip-
ping it to the other side of the real axis
doesn’t change its distance from the
origin. Multiplying z by z̄ gives a re-
sult whose magnitude is found by mul-
tiplying their magnitudes, so the mag-
nitude of zz̄ must therefore equal |z|2.
Now we just have to prove that zz̄ is a
positive real number. But if, for exam-
ple, z lies counterclockwise from the
real axis, then z̄ lies clockwise from
it. If z has a positive argument, then
z̄ has a negative one, or vice-versa.
The sum of their arguments is there-
fore zero, so the result has an argu-
ment of zero, and is on the positive
real axis. 1

1I cheated a little. If z’s argument is

e / The argument of uv is the sum of
the arguments of u and v .

This whole system was built up
in order to make every number
have square roots. What about
cube roots, fourth roots, and so
on? Does it get even more weird
when you want to do those as well?
No. The complex number system
we’ve already discussed is sufficient
to handle all of them. The nicest
way of thinking about it is in terms
of roots of polynomials. In the
real number system, the polyno-
mial x2− 1 has two roots, i.e., two
values of x (plus and minus one)
that we can plug in to the polyno-
mial and get zero. Because it has
these two real roots, we can rewrite
the polynomial as (x − 1)(x + 1).
However, the polynomial x2+1 has
no real roots. It’s ugly that in the
real number system, some second-

30 degrees, then we could say z̄’s was -30,
but we could also call it 330. That’s OK,
because 330+30 gives 360, and an argu-
ment of 360 is the same as an argument
of zero.
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order polynomials have two roots,
and can be factored, while others
can’t. In the complex number sys-
tem, they all can. For instance,
x2 + 1 has roots i and −i, and can
be factored as (x − i)(x + i). In
general, the fundamental theorem
of algebra states that in the com-
plex number system, any nth-order
polynomial can be factored com-
pletely into n linear factors, and
we can also say that it has n com-
plex roots, with the understand-
ing that some of the roots may be
the same. For instance, the fourth-
order polynomial x4 + x2 can be
factored as (x− i)(x+ i)(x−0)(x−
0), and we say that it has four
roots, i, −i, 0, and 0, two of which
happen to be the same. This is a
sensible way to think about it, be-
cause in real life, numbers are al-
ways approximations anyway, and
if we make tiny, random changes to
the coefficients of this polynomial,
it will have four distinct roots, of
which two just happen to be very
close to zero. I’ve given a proof of
the fundamental theorem of alge-
bra on page 162.

8.2 Euler’s formula

Having expanded our horizons to
include the complex numbers, it’s
natural to want to extend func-
tions we knew and loved from the
world of real numbers so that they
can also operate on complex num-
bers. The only really natural way
to do this in general is to use Tay-
lor series. A particularly beautiful

thing happens with the functions
ex, sinx, and cosx:

ex = 1 +
1

2!
x2 +

1

3!
x3 + . . .

cosx = 1− 1

2!
x2 +

1

4!
x4 − . . .

sinx = x− 1

3!
x3 +

1

5!
x5 − . . .

If x = iφ is an imaginary number,
we have

eiφ = cosφ+ i sinφ ,

a result known as Euler’s formula.
The geometrical interpretation in
the complex plane is shown in fig-
ure f.

f / The complex number eiφ lies on the
unit circle.

Although the result may seem like
something out of a freak show at
first, applying the definition2 of the

2See page 151 for an explanation of
where this definition comes from and why
it makes sense.
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exponential function makes it clear
how natural it is:

ex = lim
n→∞

(
1 +

x

n

)n
.

When x = iφ is imaginary, the
quantity (1 + iφ/n) represents a
number lying just above 1 in the
complex plane. For large n, (1 +
iφ/n) becomes very close to the
unit circle, and its argument is the
small angle φ/n. Raising this num-
ber to the nth power multiplies its
argument by n, giving a number
with an argument of φ.

g / Leonhard Euler
(1707-1783)

Euler’s formula is used frequently
in physics and engineering.

Example 90
. Write the sine and cosine functions
in terms of exponentials.

. Euler’s formula for x = −iφ gives
cosφ− i sinφ, since cos(−θ) = cos θ,
and sin(−θ) = − sin θ.

cos x =
eix + e−ix

2

sin x =
eix − e−ix

2i

Example 91
. Evaluate ∫

ex cos x dx

. Problem 15 on p. 99 suggested a
special-purpose trick for doing this in-
tegral. An approach that doesn’t rely
on tricks is to rewrite the cosine in
terms of exponentials:∫

ex cos x dx

=
∫

ex
(

eix + e−ix

2

)
dx

=
1
2

∫
(e(1+i)x + e(1−i)x ) dx

=
1
2

(
e(1+i)x

1 + i
+

e(1−i)x

1− i

)
+ c

Since this result is the integral of a
real-valued function, we’d like it to be
real, and in fact it is, since the first and
second terms are complex conjugates
of one another. If we wanted to, we
could use Euler’s theorem to convert
it back to a manifestly real result.3

3In general, the use of complex num-
ber techniques to do an integral could re-
sult in a complex number, but that com-
plex number would be a constant, which
could be subsumed within the usual con-
stant of integration.
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Example 92
Euler found the equation

π = 20 tan−1 1
7

+ 8 tan−1 3
79

,

which allowed the computation of π to
high precision in the era before elec-
tronic calculators, since the Taylor se-
ries for the inverse tangent converges
rapidly for small inputs. A cute way of
proving the validity of the equation is
to calculate

(7 + i)20(79 + 3i)8

as follows in Yacas:

(7+I)^20*(79+3*I)^8;

-1490116119384765625

00000000000000

The fact that it is purely real, and has
a negative real part, demonstrates
that the quantity on the right side of
the original equation equals π + 2πn,
where n is an integer. Numerical esti-
mation shows that n = 0. Although the
proof was straightforward, it provides
zero insight into how Euler figured it
out in the first place!

8.3 Partial fractions
revisited

Suppose we want to evaluate the
integral ∫

dx

x2 + 1

by the method of partial fractions.
The quadratic formula tells us that
the roots are i and −i, setting
1/(x2 + 1) = A/(x+ i) +B/(x− i)

gives A = i/2 and B = −i/2, so∫
dx

x2 + 1
=
i

2

∫
dx

x+ i

− i

2

∫
dx

x− i

=
i

2
ln(x+ i)

− i

2
ln(x− i)

=
i

2
ln
x+ i

x− i
.

The attractive thing about this ap-
proach, compared with the method
used on page 88, is that it doesn’t
require any tricks. If you came
across this integral ten years from
now, you could pull out your old
calculus book, flip through it, and
say, “Oh, here we go, there’s a way
to integrate one over a polynomial
— partial fractions.” On the other
hand, it’s odd that we started out
trying to evaluate an integral that
had nothing but real numbers, and
came out with an answer that isn’t
even obviously a real number.

But what about that expression
(x+i)/(x−i)? Let’s give it a name,
w. The numerator and denomina-
tor are complex conjugates of one
another. Since they have the same
magnitude, we must have |w| = 1,
i.e., w is a complex number that
lies on the unit circle, the kind of
complex number that Euler’s for-
mula refers to. The numerator
has an argument of tan−1(1/x) =
π/2 − tan−1 x, and the denomi-
nator has the same argument but
with the opposite sign. Division
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means subtracting arguments, so
argw = π−2 tan−1 x. That means
that the result can be rewritten us-
ing Euler’s formula as∫

dx

x2 + 1
=
i

2
ln ei(π−2 tan−1 x)

=
i

2
· i(π − 2 tan−1 x)

= tan−1 x+ c .

In other words, it’s the same result
we found before, but found with-
out the need for trickery.

Example 93
. Evaluate

∫
dx/ sin x .

. This can be tackled by rewriting the
sine function in terms of complex ex-
ponentials, changing variables to u =
eix , and then using partial fractions.∫

dx
sin x

= −2i
∫

dx
eix − e−ix

= −2i
∫

du/iu
u − 1/u

= −2
∫

du
u2 − 1

=
∫

du
u − 1

−
∫

du
u + 1

= ln(u − 1)− ln(u + 1) + c

= ln
eix − 1
eix + 1

+ c

= ln(−i tan(x/2)) + c

= ln tan(x/2) + c′
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Problems
1 Find arg i, arg(−i), and arg 37,
where arg z denotes the argument
of the complex number z.

2 Visualize the following multi-
plications in the complex plane
using the interpretation of mul-
tiplication in terms of multiply-
ing magnitudes and adding argu-
ments: (i)(i) = −1, (i)(−i) = 1,
(−i)(−i) = −1.

3 If we visualize z as a point in
the complex plane, how should we
visualize −z?

4 Find four different complex
numbers z such that z4 = 1.

5 Compute the following:

|1 + i| , arg(1 + i) ,∣∣∣∣ 1

1 + i

∣∣∣∣ , arg

(
1

1 + i

)
,

1

1 + i

6 Write the function tanx in
terms of complex exponentials.

7 Evaluate
∫

sin3 xdx.

8 Use Euler’s theorem to derive
the addition theorems that express
sin(a + b) and cos(a + b) in terms
of the sines and cosines of a and b.

. Solution, p. 196

9 Evaluate∫ π/2

0

cosx cos 2x dx .

. Solution, p. 195

10 Find every complex number
z such that z3 = 1.

. Solution, p. 196

11 Factor the expression x3−y3

into factors of the lowest possible
order, using complex coefficients.
(Hint: use the result of problem
10.) Then do the same using real
coefficients. . Solution, p. 196

12 Evaluate∫
dx

x3 − x2 + 4x− 4
.

13 Evaluate∫
e−ax cos bxdx .

14 Consider the equation
f ′(x) = f(f(x)). This is known
as a differential equation: an equa-
tion that relates a function to its
own derivatives. What is unusual
about this differential equation is
that the right-hand side involves
the function nested inside itself.
Given, for example, the value of
f(0), we expect the solution of
this equation to exist and to be
uniquely defined for all values of x.
That doesn’t mean, however, that
we can write down such a solution
as a closed-form expression. Show
that two closed-form expressions
do exist, of the form f(x) = axb,
and find the two values of b.

. Solution, p. 196
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15 (a) Discuss how the integral∫
dx

x10000 − 1

could be evaluated, in principle, in
closed form. (b) See what happens
when you try to evaluate it using
computer software. (c) Express it
as a finite sum.

. Solution, p. 197 ?
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9 Iterated integrals
9.1 Integrals inside

integrals
In various applications, you need
to do integrals stuck inside other
integrals. These are known as it-
erated integrals, or double inte-
grals, triple integrals, etc. Simi-
lar concepts crop up all the time
even when you’re not doing cal-
culus, so let’s start by imagining
such an example. Suppose you
want to count how many squares
there are on a chess board, and you
don’t know how to multiply eight
times eight. You could start from
the upper left, count eight squares
across, then continue with the sec-
ond row, and so on, until you
how counted every square, giving
the result of 64. In slightly more
formal mathematical language, we
could write the following recipe:
for each row, r, from 1 to 8, con-
sider the columns, c, from 1 to 8,
and add one to the count for each
one of them. Using the sigma no-
tation, this becomes

8∑
r=1

8∑
c=1

1 .

If you’re familiar with computer
programming, then you can think
of this as a sum that could be
calculated using a loop nested in-
side another loop. To evaluate the
result (again, assuming we don’t

know how to multiply, so we have
to use brute force), we can first
evaluate the inside sum, which
equals 8, giving

8∑
r=1

8 .

Notice how the “dummy” variable
c has disappeared. Finally we do
the outside sum, over r, and find
the result of 64.

Now imagine doing the same thing
with the pixels on a TV screen.
The electron beam sweeps across
the screen, painting the pixels in
each row, one at a time. This is re-
ally no different than the example
of the chess board, but because the
pixels are so small, you normally
think of the image on a TV screen
as continuous rather than discrete.
This is the idea of an integral in
calculus. Suppose we want to find
the area of a rectangle of width a
and height b, and we don’t know
that we can just multiply to get
the area ab. The brute force way
to do this is to break up the rect-
angle into a grid of infinitesimally
small squares, each having width
dx and height dy, and therefore the
infinitesimal area dA = dxdy. For
convenience, we’ll imagine that the
rectangle’s lower left corner is at
the origin. Then the area is given

129
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by this integral:

area =

∫ b

y=0

∫ a

x=0

dA

=

∫ b

y=0

∫ a

x=0

dxdy

Notice how the leftmost integral
sign, over y, and the rightmost
differential, dy, act like bookends,
or the pieces of bread on a sand-
wich. Inside them, we have the in-
tegral sign that runs over x, and
the differential dx that matches it
on the right. Finally, on the inner-
most layer, we’d normally have the
thing we’re integrating, but here’s
it’s 1, so I’ve omitted it. Writ-
ing the lower limits of the integrals
with x = and y = helps to keep
it straight which integral goes with
with differential. The result is

area =

∫ b

y=0

∫ a

x=0

dA

=

∫ b

y=0

∫ a

x=0

dx dy

=

∫ b

y=0

(∫ a

x=0

dx

)
dy

=

∫ b

y=0

a dy

= a

∫ b

y=0

dy

= ab .

Area of a triangle Example 94
. Find the area of a 45-45-90 right tri-
angle having legs a.

. Let the triangle’s hypotenuse run
from the origin to the point (a, a), and

let its legs run from the origin to (0, a),
and then to (a, a). In other words, the
triangle sits on top of its hypotenuse.
Then the integral can be set up the
same way as the one before, but for a
particular value of y , values of x only
run from 0 (on the y axis) to y (on the
hypotenuse). We then have

area =
∫ a

y=0

∫ y

x=0
dA

=
∫ a

y=0

∫ y

x=0
dx dy

=
∫ a

y=0

(∫ y

x=0
dx
)

dy

=
∫ a

y=0
y dy

=
1
2

a2

Note that in this example, because the
upper end of the x values depends
on the value of y , it makes a differ-
ence which order we do the integrals
in. The x integral has to be on the in-
side, and we have to do it first.

Volume of a cube Example 95
. Find the volume of a cube with sides
of length a.

. This is a three-dimensional example,
so we’ll have integrals nested three
deep, and the thing we’re integrating
is the volume dV = dx dy dz.
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volume =
∫ a

z=0

∫ a

y=0

∫ a

x=0
dV

=
∫ a

z=0

∫ a

y=0

∫ a

x=0
dx dy dz

=
∫ a

z=0

∫ a

y=0
a dy dz

= a
∫ a

z=0

∫ a

y=0
dy dz

= a
∫ a

z=0
a dz

= a2
∫ a

z=0
dz

= a3

Area of a circle Example 96
. Find the area of a circle.

. To make it easy, let’s find the area
of a semicircle and then double it. Let
the circle’s radius be r , and let it be
centered on the origin and bounded
below by the x axis. Then the curved
edge is given by the equation R2 =
x2 + y2, or y =

√
R2 − x2. Since the

y integral’s limit depends on x , the x
integral has to be on the outside. The
area is

area =
∫ r

x=−R

∫ √R2−x2

y=0
dy dx

=
∫ r

x=−R

√
R2 − x2 dx

= r
∫ r

x=−R

√
1− (x/R)2 dx .

Substituting u = x/R,

area = R2
∫ 1

u=−1

√
1− u2 du

The definite integral equals π, as you
can find using a trig substitution or
simply by looking it up in a table, and
the result is, as expected, πR2/2 for
the area of the semicircle. Doubling it,
we find the expected result of πR2 for
a full circle.

9.2 Applications
Up until now, the integrand of the
innermost integral has always been
1, so we really could have done all
the double integrals as single inte-
grals. The following example is one
in which you really need to do it-
erated integrals.

a / The famous tightrope
walker Charles Blondin
uses a long pole for its
large moment of inertia.

Moments of inertia Example 97
The moment of inertia is a measure

of how difficult it is to start an ob-
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ject rotating (or stop it). For example,
tightrope walkers carry long poles be-
cause they want something with a big
moment of inertia. The moment of in-
ertia is defined by I =

∫
R2 dm, where

dm is the mass of an infinitesimally
small portion of the object, and R is
the distance from the axis of rotation.

To start with, let’s do an example that
doesn’t require iterated integrals. Let’s
calculate the moment of inertia of a
thin rod of mass M and length L about
a line perpendicular to the rod and
passing through its center.

I =
∫

R2 dm

=
∫ L/2

−L/2
x2 M

L
dx

[r = |x |, so R2 = x2]

=
1

12
ML2

Now let’s do one that requires iter-
ated integrals: the moment of inertia
of a cube of side b, for rotation about
an axis that passes through its center
and is parallel to four of its faces.

Let the origin be at the center of the
cube, and let x be the rotation axis.

I =
∫

R2 dm

= ρ
∫

R2 dV

= ρ
∫ b/2

b/2

∫ b/2

b/2

∫ b/2

b/2

(
y2 + z2

)
dx dy dz

= ρb
∫ b/2

b/2

∫ b/2

b/2

(
y2 + z2

)
dy dz

The fact that the last step is a trivial in-
tegral results from the symmetry of the

problem. The integrand of the remain-
ing double integral breaks down into
two terms, each of which depends on
only one of the variables, so we break
it into two integrals,

I =ρb
∫ b/2

b/2

∫ b/2

b/2
y2 dy dz

+ ρb
∫ b/2

b/2

∫ b/2

b/2
z2 dy dz

which we know have identical results.
We therefore only need to evaluate
one of them and double the result:

I = 2ρb
∫ b/2

b/2

∫ b/2

b/2
z2 dy d z

= 2ρb2
∫ b/2

b/2
z2 dz

=
1
6
ρb5

=
1
6

Mb2
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9.3 Polar coordinates

b / René Descartes
(1596-1650)

Philosopher and mathematician
René Descartes originated the idea
of describing plane geometry using
(x, y) coordinates measured from
a pair of perpendicular coordinate
axes. These rectangular coordi-
nates are known as Cartesian co-
ordinates, in his honor.

As a logical extension of Descartes’
idea, one can find different ways of
defining coordinates on the plane,
such as the polar coordinates in fig-
ure c. In polar coordinates, the
differential of area, figure d can be
written as da = R dR dφ. The idea
is that since dR and dφ are in-
finitesimally small, the shaded area
in the figure is very nearly a rect-
angle, measuring dR is one dimen-
sion and R dφ in the other. (The
latter follows from the definition of
radian measure.)

c / Polar coordinates.

d / The differential of
area in polar coordinates

Example 98
. A disk has mass M and radius b.
Find its moment of inertia for rota-
tion about the axis passing perpendic-
ularly through its center.
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.

I =
∫

R2 dM

=
∫

R2 dM
da

da

=
∫

R2 M
πb2 da

=
M
πb2

∫ b

R=0

∫ 2π

φ=0
R2 · R dφ dR

=
M
πb2

∫ b

R=0
R3
∫ 2π

φ=0
dφ dR

=
2M
b2

∫ b

R=0
R3 dR

=
Mb4

2

e / The function e−x2
, ex-

ample 99.

Example 99
In statistics, the standard “bell curve”

(also known as the normal distribution
or Gaussian) is shaped like e−x2

. An
area under this curve is proportional
to the probability that x lies within a
certain range. To fix the constant of
proportionality, we need to evaluate

I =
∫ ∞
−∞

e−x2
dx ,

which corresponds to a probability of
1. As discussed on p. 95, the cor-
responding indefinite integral can’t be
done in closed form. The definite in-
tegral from −∞ to +∞, however, can
be evaluated by the following devious
trick due to Poisson. We first write I2

as a product of two copies of the inte-
gral.

I2 =
(∫ ∞
−∞

e−x2
dx
)(∫ ∞

−∞
e−x2

dx
)

Since the variable of integration x is
a “dummy” variable, we can choose it
to be any letter of the alphabet. Let’s
change the second one to y :

I2 =
(∫ ∞
−∞

e−x2
dx
)(∫ ∞

−∞
e−y2

dy
)

This is in principle a pointless and triv-
ial change, but it suggests visualizing
the right-hand side in the Cartesian
plane, and considering it as the inte-
gral of a single function that depends
on both x and y :

I2 =
∫ ∞
−∞

∫ ∞
−∞

(
e−y2

e−x2
)

dx dy

Switching to polar coordinates, we
have

I2 =
∫ 2π

0

∫ ∞
0

e−R2
R dR dφ

= 2π
∫ ∞

0
e−R2

R dR ,

which can be done using the substitu-
tion u = R2, du = 2R dR:

I2 = 2π
∫ ∞

0
e−u(du/2)

= π

I =
√
π
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9.4 Spherical and
cylindrical
coordinates

In cylindrical coordinates (R,φ, z),
z measures distance along the axis,
R measures distance from the axis,
and φ is an angle that wraps
around the axis.

f / Cylindrical coordinates.

The differential of volume in cylin-
drical coordinates can be written
as dv = R dR dz dφ. This fol-
lows from adding a third dimen-
sion, along the z axis, to the rect-
angle in figure d.

Example 100
. Show that the expression for dv has
the right units.

. Angles are unitless, since the defini-
tion of radian measure involves a dis-

tance divided by a distance. There-
fore the only factors in the expression
that have units are R, dR, and dz. If
these three factors are measured, say,
in meters, then their product has units
of cubic meters, which is correct for a
volume.

Example 101
. Find the volume of a cone whose
height is h and whose base has radius
b.

. Let’s plan on putting the z integral
on the outside of the sandwich. That
means we need to express the radius
rmax of the cone in terms of z. This
comes out nice and simple if we imag-
ine the cone upside down, with its tip
at the origin. Then since we have
rmax (z = 0) = 0, and rmax (h) = b, ev-
idently rmax = zb/h.

v =
∫

dv

=
∫ h

z=0

∫ zb/h

r=0

∫ 2π

φ=0
R dφ dR dz

= 2π
∫ h

z=0

∫ zb/h

r=0
R dR dz

= 2π
∫ h

z=0
(zb/h)2/2 dz

= π(b/h)2
∫ h

z=0
z2 dz

=
πb2h

3

As a check, we note that the answer
has units of volume. This is the classi-
cal result, known by the ancient Egyp-
tians, that a cone has one third the vol-
ume of its enclosing cylinder.

In spherical coordinates (r, θ,φ),
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the coordinate r measures the dis-
tance from the origin, and θ and φ
are analogous to latitude and lon-
gitude, except that θ is measured
down from the pole rather than
from the equator.

g / Spherical coordinates.

The differential of volume in
spherical coordinates is dv =
r2 sin θ dr dθ dφ.

Example 102
. Find the volume of a sphere.

.

v =
∫

dv

=
∫ π

θ=0

∫ r=b

r=0

∫ 2π

φ=0
r 2 sin θ dφ dr dθ

= 2π
∫ π

θ=0

∫ r=b

r=0
r 2 sin θ dr dθ

= 2π · b3

3

∫ π

θ=0
sin θ dθ

=
4πb3

3
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Problems
1 Pascal’s snail (named after
Étienne Pascal, father of Blaise
Pascal) is the shape shown in the
figure, defined by R = b(1 + cos θ)
in polar coordinates.
(a) Make a rough visual estimate
of its area from the figure.
(b) Find its area exactly, and check
against your result from part a.
(c) Show that your answer has the
right units. [Thompson, 1919]

Problem 1: Pascal’s snail with b = 1.

2 A cone with a curved base is
defined by r ≤ b and θ ≤ π/4 in
spherical coordinates.
(a) Find its volume.
(b) Show that your answer has the
right units.

3 Find the moment of inertia of
a sphere for rotation about an axis
passing through its center.

4 A jump-rope swinging in circles
has the shape of a sine function.

Find the volume enclosed by the
swinging rope, in terms of the ra-
dius b of the circle at the rope’s
fattest point, and the straight-line
distance ` between the ends.

5 A curvy-sided cone is defined in
cylindrical coordinates by 0 ≤ z ≤
h and R ≤ kz2. (a) What units
are implied for the constant k? (b)
Find the volume of the shape. (c)
Check that your answer to b has
the right units.

6 The discovery of nuclear fis-
sion was originally explained by
modeling the atomic nucleus as a
drop of liquid. Like a water bal-
loon, the drop could spin or vi-
brate, and if the motion became
sufficiently violent, the drop could
split in half — undergo fission. It
was later learned that even the
nuclei in matter under ordinary
conditions are often not spherical
but deformed, typically with an
elongated ellipsoidal shape like an
American football. One simple
way of describing such a shape is
with the equation

r ≤ b[1 + c(cos2 θ − k)] ,

where c = 0 for a sphere, c > 0 for
an elongated shape, and c < 0 for
a flattened one. Usually for nuclei
in ordinary matter, c ranges from
about 0 to +0.2. The constant k
is introduced because without it, a
change in c would entail not just
a change in the shape of the nu-
cleus, but a change in its volume
as well. Observations show, on the
contrary, that the nuclear fluid is
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highly incompressible, just like or-
dinary water, so the volume of the
nucleus is not expected to change
significantly, even in violent pro-
cesses like fission. Calculate the
volume of the nucleus, throwing
away terms of order c2 or higher,
and show that k = 1/3 is required
in order to keep the volume con-
stant.

7 This problem is a continua-
tion of problem 6, and assumes the
result of that problem is already
known. The nucleus 168Er has the
type of elongated ellipsoidal shape
described in that problem, with
c > 0. Its mass is 2.8 × 10−25 kg,
it is observed to have a moment
of inertia of 2.62 × 10−54 kg ·m2

for end-over-end rotation, and its
shape is believed to be described
by b ≈ 6 × 10−15 m and c ≈ 0.2.
Assuming that it rotated rigidly,
the usual equation for the moment
of inertia could be applicable, but
it may rotate more like a water bal-
loon, in which case its moment of
inertia would be significantly less
because not all the mass would ac-
tually flow. Test which type of ro-
tation it is by calculating its mo-
ment of inertia for end-over-end ro-
tation and comparing with the ob-
served moment of inertia. ?

8 Von Kármán found empirically
that when a fluid flows turbulently
through a cylindrical pipe, the ve-
locity of flow v varies according
to the “1/7 power law,” v/vo =
(1−r/R)1/7, where vo is the veloc-
ity at the center of the pipe, R is

the radius of the pipe, and r is the
distance from the axis. Find the
average velocity at which water is
transported through the pipe.
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Formal definition of the tangent line

Given a function x(t), consider any point P = (a,x(a)) on its graph.
Let the function `(t) be a line passing through P. We say that ` cuts
through x at P if there exists some real number d > 0 such that the
graph of ` is on one side of the graph of x for all a− d < t < a, and is
on the other side for all a < t < a+ d.

Definition (Marsden1): A line ` through P is said to be the line tangent
to x at P if all lines through P with slopes less than that of ` cut
through x in one direction, while all lines with slopes greater than P’s
cut through it in the opposite direction.

The reason for the complication in the definition is that there are cases
in which the function is smooth and well-behaved throughout a certain
region, but for a certain point P in that region, all lines through P cut
through P. For example, the function x(t) = t3 is blessed everywhere
with lines that don’t cut through it — everywhere, that is, except at
t = 0, which is an inflection point (p. 17). Our definition fills in the
“gap tooth” in the derivative function in the obvious way.

Example 103
As an example, we demonstrate that the derivative of t3 is zero where it passes
through the origin. Define the line `(t) = bt with slope b, passing through the
origin. For b < 0, ` cuts the graph of t3 once at the origin, going down and to
the right. For b > 0, ` cuts the graph of t3 in three places, at t = 0 and ±

√
b.

Picking any positive value of d less than
√

b, we find that ` cuts the graph at
the origin, going up and to the right. Therefore b = 0 gives the tangent line at
the origin.

1Calculus Unlimited, by Jerrold Marsden and Alan Weinstein,
http://resolver.caltech.edu/CaltechBOOK:1981.001

139
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Derivatives of polynomials

Some ideas in this proof are due to Tom Goodwillie.

Theorem: For n = 0, 1, 2, . . . , the derivative of the function x defined
by x(t) = tn is ẋ = ntn−1.

The results for n = 0 and 1 hold by direct application of the definition
of the derivative.

For n > 1, it suffices to prove ẋ(0) = 0 and ẋ(1) = n, since the result for
other nonzero values of t then follows by the kind of scaling argument
used on page 13 for the n = 2 case.

We use the following properties of the derivative, all of which follow
immediately from its definition as the slope of the tangent line:

Shift. Shifting a function x(t) horizontally to form a new function x(t+c)
gives a derivative at any newly shifted point that is the same as
the derivative at the corresponding point on the unshifted graph.

Flip. Flipping the function x(t) to form a new function x(−t) negates
its derivative at t = 0.

Add. The derivative of the sum or difference of two functions is the sum
or difference of their derivatives.

For even n, ẋ(0) = 0 follows from the flip property, since x(−t) is the
same function as x(t). For n = 3, 5, . . . , we apply the definition of the
derivative in the same manner as was done in the preceding section for
n = 3.

We now need to show that ẋ(1) = n. Define the function u as

u(t) = x(t+ 1)− x(t)

= 1 + nt+ . . . ,

where the second line follows from the binomial theorem, and
. . . represents terms involving t2 and higher powers. Since we’ve already
established the results for n = 0 and 1, differentiation gives

u̇(t) = n+ . . . .

Now let’s evaluate this at t = 0, where, as shown earlier, the terms
represented by . . . all vanish. Applying the add and shift properties, we
have

ẋ(1)− ẋ(0) = n .
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But since ẋ(0) = 0, this completes the proof.

Although this proof was for integer exponents n ≥ 1, the result is also
true for any real value of n; see example 24 on p. 41.

Details of the proof of the derivative of the sine function

Some ideas in this proof are due to Jerome Keisler (see references, p.
201).

On page 28, I computed the derivative of sin t to be cos t as follows:

dx = sin(t+ dt)− sin t ,

= sin t cos dt

+ cos t sin dt− sin t

= cos tdt+ . . . .

We want to prove prove that the error “. . . ” introduced by the small-
angle approximations really is of order dt2.

A quick and dirty way to check whether this is likely to be true is to
use Inf to calculate sin(t+ dt) at some specific value of t. For example,
at t = 1 we have this result:

: sin(1+d)

(0.84147)+(0.54030)d

+(-0.42074)d^2+(-0.09006)d^3

+(0.03506)d^4

The small-angle approximations give sin(1 + d) ≈ sin 1 + (cos 1)d. The
coefficients of the first two terms of the exact result are, as expected
sin(1) = 0.84147 and cos(1) = 0.5403 . . ., so although the small-angle
approximations have introduced some errors, they involve only higher
powers of dt, as claimed.

The demonstration with Inf has two shortcomings. One is that it only
works for t = 1, but we need to prove that the result for all values
of t. That doesn’t mean that the check for t = 1 was useless. Even
though a general mathematical statement about all numbers can never
be proved by demonstrating specific examples for which it succeeds, a
single counterexample suffices to disprove it. The check for t = 1 was
worth doing, because if the first term had come out to be 0.88888, it
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would have immediately disproved our claim, thereby saving us from
wasting hours attempting to prove something that wasn’t true.

The other problem is that I’ve never explained how Inf calculates this
kind of thing. The answer is that it uses something called a Taylor
series, discussed in section 7.4. Using Inf here without knowing yet
how Taylor series work is like using your calculator as a “black box”
to extract the square root of

√
2 without knowing how it does it. Not

knowing the inner workings of the black box makes the demonstration
less than satisfying.

In any case, this preliminary check makes it sound like it’s reasonable
to go on and try to produce a real proof. We have

sin(t+ dt) = sin t+ cos tdt− E ,

where the error E introduced by the approximations is

E = sin t(1− cos dt)

+ cos t(dt− sin dt) .

Let the radius of the circle in figure a be one, so AD is cos dt and CD is

a / Geometrical interpre-
tation of the error term.

sin dt. The area of the shaded pie slice is dt/2, and the area of triangle
ABC is sin dt/2, so the error made in the approximation sin dt ≈ dt
equals twice the area of the dish shape formed by line BC and arc BC.
Therefore dt−sin dt is less than the area of rectangle CEBD. But CEBD
has both an infinitesimal width and an infinitesimal height, so this error
is of no more than order dt2.

For the approximation cos dt ≈ 1, the error (represented by BD) is

1 − cos dt = 1 −
√

1− sin2 dt, which is less than 1 −
√

1− dt2, since
sin dt < dt. Therefore this error is of order dt2.
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Formal statement of the transfer principle

On page 33, I gave an informal description of the transfer principle. The
idea being expressed was that the phrases “for any” and “there exists”
can only be used in phrases like “for any real number x” and “there
exists a real number y such that. . . ” The transfer principle does not
apply to statements like “there exists an integer x such that. . . ” or
even “there exists a subset of the real numbers such that. . . ”

The way to state the transfer principle more rigorously is to get rid of
the ambiguities of the English language by restricting ourselves to a well-
defined language of mathematical symbols. This language has symbols
∀ and ∃, meaning ”for all” and ”there exists,” and these are called
quantifiers. A quantifier is always immediately followed by a variable,
and then by a statement involving that variable. For example, suppose
we want to say that a number greater than 1 exists. We can write the
statement ∃x x > 1, read as “there exists a number x such that x is
greater than 1.” We don’t actually need to say “there exists a number
x in the set of real numbers such that . . . ,” because our intention here
is to make statements that can be translated back and forth between
the reals and the hyperreals. In fact, we forbid this type of explicit
reference to the domain to which the quantifiers apply. This restriction
is described technically by saying that we’re only allowing first-order
logic.

Quantifiers can be nested. For example, I can state the commutativity
of addition as ∀x∀y x+ y = y+x, and the existence of additive inverses
as ∀x∃y x+ y = 0.

After the quantifier and the variable, we have some mathematical as-
sertion, in which we’re allowed to use the symbols =, >, × and + for
the basic operations of arithmetic, and also parentheses and the logical
operators ¬, ∧ and ∨ for “not,” “and,” and “or.” Although we will
often find it convenient to use other symbols, such as 0, 1, −, /, ≤,
6=, etc., these are not strictly necesary. We use them only as a way of
making the formulas more readable, with the understanding that they
could be translated into the more basic symbols. For instance, I can
restate ∃x x > 1 as ∃x∃y∀z yz = z ∧ x > y. The number y ends up
just being a name for 1, because it’s the only number that will always
satisfy yz = z.

Finally, these statements need to satisfy certain syntactic rules. For
example, we can’t have a string of symbols like x + ×y, because the
operators + and × are supposed to have numbers on both sides.
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A finite string of symbols satisfying all the above rules is called a well-
formed formula (wff) in first-order logic.

The transfer principle states that a wff is true on the real numbers if
and only if it is true on the hyperreal numbers.

If you look in an elementary algebra textbook at the statement of all the
elementary axioms of the real number system, such as commutativity
of multiplication, associativity of addition, and so on, you’ll see that
they can all be expressed in terms of first-order logic, and therefore
you can use them when manipulating hyperreal numbers. However, it’s
not possible to fully characterize the real number system without giving
at least some further axioms that cannot be expressed in first order.
There is more than one way to set up these additional axioms, but
for example one common axiom to use is the Archimedean principle,
which states that there is no number that is greater than 1, greater
than 1 + 1, greater than 1 + 1 + 1, and so on. If we try to express
this as a well-formed formula in first order logic, one attempt would
be ¬∃x x > 1 ∧ x > 1 + 1 ∧ x > 1 + 1 + 1 . . ., where the . . .
indicates that the string of symbols would have to go on forever. This
doesn’t work because a well-formed formula has to be a finite string
of symbols. Another attempt would be ∃x∀n ∈ N x > n, where N
means the set of integers. This one also fails to be a wff in first-order
logic, because in first-order logic we’re not allowed to explicitly refer
to the domain of a quantifier. We conclude that the transfer principle
does not necessarily apply to the Archimedean principle, and in fact
the Archimedean principle is not true on the hyperreals, because they
include numbers that are infinite.

Now that we have a thorough and rigorous understanding of what the
transfer principle says, the next obvious question is why we should be-
lieve that it’s true. This is discussed in the following section.

Is the transfer principle true?

The preceding section stated the transfer principle in rigorous language.
But why should we believe that it’s true?

One approach would be to begin deducing things about the hyperreals,
and see if we can deduce a contradiction. As a starting point, we can
use the axioms of elementary algebra, because the transfer principle
tells us that those apply to the hyperreals as well. Since we also assume
that the Archimedean principle does not hold for the hyperreals, we
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can also base our reasoning on that, and therefore many of the things
we can prove will be things that are true for the hyperreals, but false
for the reals. This is essentially what mathematicians started doing
immediately after Newton and Leibniz invented the calculus, and they
were immediately successful in producing contradictions. However, they
weren’t using formally defined logical systems, and they hadn’t stated
anything as specific and rigorous as the transfer principle. In particular,
they didn’t understand the need for anything like our restriction of the
transfer principle to first-order logic. If we could reach a contradiction
based on the more modern, rigorous statement of the transfer principle,
that would be a different matter. It would tell us that one of two things
was true: either (1) the hyperreal number system lacks logical self-
consistency, or (2) both the hyperreals and the reals lack self-consistency.

Abraham Robinson proved, however, around 1960 that the reals and the
hyperreals have the same level of consistency: one is self-consistent if
and only if the other is. In other words, if the hyperreals harbor a ticking
logical time bomb, so do the reals. Since most mathematicians don’t
lose much sleep worrying about a lack of self-consistency in the real
number system, this is generally taken as meaning that infinitesimals
have been rehabilitated. In fact, it gives them an even higher level
of respectability than they had in the era of Gauss and Euler, when
they were widely used, but mathematicians knew a valid style of proof
involving infinitesimals only because they’d slowly developed the right
“Spidey sense.”

But how in the world could Robinson have proved such a thing? It seems
like a daunting task. There is an infinite number of possible logical trains
of argument in mathematics. How could he have demonstrated, with a
stroke of a pen, that none of them could ever lead to a contradiction
(unless it indicated a contradiction lurking in the real number system
as well)? Obviously it’s not possible to check them all explicitly.

The way modern logicians prove such things is usually by using models.
For an easy example of a model, consider Euclidean geometry. Euclid
believed that the following four postulates2 were all self-evident:

1. Let the following be postulated: to draw a straight line from any
point to any point.

2. To extend a finite straight line continuously in a straight line.

3. To describe a circle with any center and radius.

2modified slightly by me from a translation by T.L. Heath, 1925
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4. That all right angles are equal to one another.

These postulates, which today we would call “axioms,” played the same
role with respect to Euclidean geometry that the elementary axioms of
arithmetic play for the real number system.

Euclid also found that he needed a fifth postulate in order to prove many
of his most important theorems, such as the Pythagorean theorem. I’ll
state a different axiom that turns out to be equivalent to it:

5. Playfair’s version of the parallel postulate: Given any infinite
line L, and any point P not on that line, there exists a unique infinite
line through P that never crosses L.

The ancients believed this to be less obviously self-evident than the first
four, partly because if you were given the two lines, it could theoretically
take an infinite amount of time to inspect them and verify that they
never crossed, even at some very distant point. Euclid avoided even
mentioning infinite lines in postulates 1-4, and he considered postulate 5
to be so much less intuitively appealing in comparison that he organized
the Elements so that the first 28 propositions were those that could be
proved without resorting to it. Continuing the analogy with the reals
and hyperreals, the parallel postulate plays the role of the Archimedean
principle: a statement about infinity that we don’t feel quite so sure
about.

For centuries, geometers tried to prove the parallel postulate from the
first five. The trouble with this kind of thing was that it could be difficult
to tell what was a valid proof and what wasn’t. The postulates were
written in an ambiguous human language, not a formal logical system.
As an example of the kind of confusion that could result, suppose we
assume the following postulate, 5′, in place of 5:

5′: Given any infinite line L, and any point P not on that line, every
infinite line through P crosses L.

Postulate 5′ plays the role for noneuclidean geometry that the negation
of the Archimedean principle plays for the hyperreals. It tells us we’re
not in Kansas anymore. If a geometer can start from postulates 1-4
and 5′ and arrive at a contradiction, then he’s made significant progress
toward proving that postulate 5 has to be true based on postulates 1-4.
(He would also have to disprove another version of the postulate, in
which there is more than one parallel through P.) For centuries, there
have been reasonable-sounding arguments that seemed to give such a
contradiction. For instance, it was proved that a geometry with 5′ in it
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was one in which distances were limited to some finite maximum. This
would appear to contradict postulate 3, since there would be a limit
on the radius of a circle. But there’s plenty of room for disagreement
here, because the ancient Greeks didn’t have any notion of a set of real
numbers. For them, the thing we would call a number was simply a
finite straight line (line segment) with a certain length. If postulate
3 says that we can make a circle given any radius, it’s reasonable to
interpret that as a statement that given any finite straight line as the
specification of the radius, we can make the circle. There is then no
contradiction, because the too-long radius can’t be specified in the first
place. This muddle is similar to the kind of confusion that reigned for
centuries after Newton: did infinitesimals lead to contradictions?

In the 19th century, Lobachevsky and Bolyai came up with a version of
Euclid’s axioms that was more rigorously defined, and that was care-
fully engineered to avoid the kinds of contradictions that had previously
been discovered in noneuclidean geometry. This is analogous to the in-
vention of the transfer principle and the realization that the restriction
to first-order logic was necessary. Lobachevsky and Bolyai slaved away
for year after year proving new results in noneuclidean geometry, won-
dering whether they would ever reach a contradiction. Eventually they
started to doubt that there were ever going to be contradictions, and
finally they proved that the contradictions didn’t exist.

The technique for proving consistency was to make a model of the noneu-
clidean system. Consider geometry done on the surface of a sphere. The
word “line” in the axioms now has to be understood as referring to a
great circle, i.e., one with the same radius as the sphere. The parallel
postulate fails, because parallels don’t exist: every great circle intersects
every other great circle. One modification has to be made to the model
in order to make it consistent with the first postulate. The constructions
described in Euclid’s postulates are tacitly assumed to be unique (and
in more rigorous formulations are explicitly stated to be so). We want
there to be a unique line defined by any two distinct points. This works
fine on the sphere as long as the points aren’t too far apart, but it fails if
the points are antipodes, i.e., they lie at opposite sides of the sphere. For
example, every line of longitude on the Earth’s surface passes through
both poles. The solution to this problem is to modify what we mean by
“point.” Points at each other’s antipodes are considered to be the same
point. (Or, equivalently, we can do geometry on a hemisphere, but agree
that when we go off one edge, we “wrap around” to the opposite side.)

This spherical model obeys all the postulates of this particular system of
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noneuclidean geometry. But consider now that we constructed it inside
a surrounding three-dimensional space in which the parallel postulate
does hold. Now suppose we keep on proving theorems in this system
of noneuclidean geometry, filling up page after page with proofs using
words like “line,” which we mentally associate with great circles on a
certain sphere — and eventually we reach a contradiction. But now we
can go back through our proofs, and in every place where the word “line”
occurs we can cross it out with a red pencil and put in “great circle on
this particular sphere.” It would now be a proof about Euclidean geom-
etry, and the contradiction would prove that Euclidean geometry lacked
self-consistency. We therefore arrive at the result that if noneuclidean
geometry is inconsistent, so is Euclidean geometry. Since nobody be-
lieves that Euclidean geometry is inconsistent, this is considered the
moral equivalent of proving noneuclidean geometry to be consistent.

If you’ve been keeping the system of analogies in mind as you read this
story, it should be clear what’s coming next. If we want to prove that
the hyperreals have the same consistency as the reals, we just have to
construct a model of the hyperreals using the reals. This is done in detail
elsewhere (see Stroyan and Mathforum.org in the references, p. 201).
I’ll just sketch the general idea. A hyperreal number is represented by
an infinite sequence of real numbers. For example, the sequence

7, 7, 7, 7, . . .

would be the hyperreal version of the number 7. A sequence like

1, 2, 3, . . .

represents an infinite number, while

1,
1

2
,

1

3
, . . .

is infinitesimal. All the arithmetic operations are defined by applying
them to the corresponding members of the sequences. For example, the
sum of the 7, 7, 7, . . . sequence and the 1, 2, 3, . . . sequence would be 8,
9, 10, . . . , which we interpret as a somewhat larger infinite number.

The big problem in this approach is how to compare hyperreals, because
a comparison like < is supposed to give an answer that is either true or
false. It’s not supposed to give a hyperreal number as the result.

It’s clear that 8, 9, 10, . . . is greater than 1, 1, 1, . . . , because every
member of the first sequence is greater than every member of the sec-
ond one. But is 8, 9, 10, . . . greater than 9, 9, 9, . . . ? We want the
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answer to be “yes,” because we’re thinking of the first one as an infinite
number and the second one as the ordinary finite number 9. The first
sequence is indeed greater than the second at almost every one of the
infinite number of places at which they could be compared. The only
place where it loses the contest is at the very first position, and the
only spot where we get a tie is the second one. Essentially the idea is
that we want to define a concept of what happens “almost everywhere”
on some infinite list. If one thing happens in an infinite number of
places and something else only happens at some finite number of spots,
then the definition of “almost everywhere” is clear. What’s harder is a
comparison of something like these two sequences:

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . .

and
1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, . . .

where the second sequence has longer and longer runs of ones inter-
spersed between the threes. The two sequences are never equal at any
position, so clearly they can’t be considered to be equal as hyperreal
numbers. But there is an infinite number of spots in which the first
sequence is greater than the second, and likewise an infinite number in
which it’s less. It seems as though there are more in which it’s greater,
so we probably want to define the second sequence as being a hyperreal
number that’s less than 2. The problem is that it can be very difficult to
write down an acceptable definition of this “almost everywhere” notion.
The answer is very technical, and I won’t go into it here, but it can be
done. Because two sequences could be equal almost everywhere, we end
up having to define a hyperreal number not as a particular sequence but
as a set of sequences that are equal to each other almost everywhere.

With the construction of this model, it is possible to prove that the
hyperreals have the same level of consistency as the reals.

The transfer principle applied to functions

On page 34, I told you not to worry about whether it was legitimate
to apply familiar functions like x2,

√
x, sinx, cosx, and ex to hyperreal

numbers. But since you’re reading this, you’re obviously in need of more
reassurance.

For some of these functions, the transfer principle straightforwardly
guarantees that they work for hyperreals, have all the familiar proper-
ties, and can be computed in the same way. For example, the following
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statement is in a suitable form to have the transfer principle applied to
it: For any real number x, x · x ≥ 0. Changing “real” to “hyperreal,”
we find out that the square of a hyperreal number is greater than or
equal to zero, just like the square of a real number. Writing it as x2

or calling it a square is just a matter of notation and terminology. The
same applies to this statement: For any real number x ≥ 0, there exists
a real number y such that y2 = x. Applying the transfer function to it
tells us that square roots can be defined for the hyperreals as well.

There’s a problem, however, when we get to functions like sinx and
ex. If you look up the definition of the sine function in a trigonometry
textbook, it will be defined geometrically, as the ratio of the lengths of
two sides of a certain triangle. The transfer principle doesn’t apply to
geometry, only to arithmetic. It’s not even obvious intuitively that it
makes sense to define a sine function on the hyperreals. In an application
like the differentiation of the sine function on page 28, we only had to
take sines of hyperreal numbers that were infinitesimally close to real
numbers, but if the sine is going to be a full-fledged function defined on
the hyperreals, then we should be allowed, for example, to take the sine
of an infinite number. What would that mean? If you take the sine of a
number like a million or a billion on your calculator, you just get some
apparently random result between −1 and 1. The sine function wiggles
back and forth indefinitely as x gets bigger and bigger, never settling
down to any specific limiting value. Apparently we could have sinH = 1
for a particular infinite H, and then sin(H+π/2) = 0, sin(H+π) = −1,
. . .

It turns out that the moral equivalent of the transfer function can indeed
be applied to any function on the reals, yielding a function that is in
some sense its natural “big brother” on the the hyperreals, but the
consequences can be either disturbing or exhilirating depending on your
tastes. For example, consider the function [x] that takes a real number
x and rounds it down to the greatest integer that is less than or equal
to to x, e.g., [3] = 3, and [π] = 3. This function, like any other real
function, can be extended to the hyperreals, and that means that we
can define the hyperintegers, the set of hyperreals that satisfy [x] = x.
The hyperintegers include the integers as a subset, but they also include
infinite numbers. This is likely to seem magical, or even unreasonable,
if we come at the hyperreals from a purely axiomatic point of view. The
extension of functions to the hyperreals seems much more natural in
view of the construction of the hyperreals in terms of sequences given in
the preceding section. For example, the sequence 1.3, 2.3, 3.3, 4.3, 5.3, . . .
represents an infinite number. If we apply the [x] function to it, we get
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1, 2, 3, 4, 5, . . ., which is an infinite integer.

Proof of the chain rule

In the statement of the chain rule on page 37, I followed my usual
custom of writing derivatives as dy/dx, when actually the derivative is
the standard part, st(dy/dx). In more rigorous notation, the chain rule
should be stated like this:

st

(
dz

dx

)
= st

(
dz

dy

)
st

(
dy

dx

)
.

The transfer principle allows us to rewrite the left-hand side as
st[(dz/dy)(dy/dx)], and then we can get the desired result using the
identity st(ab) = st(a)st(b).

Derivative of ex

All of the reasoning on page 39 would have applied equally well to any
other exponential function with a different base, such as 2x or 10x.
Those functions would have different values of c, so if we want to deter-
mine the value of c for the base-e case, we need to bring in the definition
of e, or of the exponential function ex, somehow.

We can take the definition of ex to be

ex = lim
n→∞

(
1 +

x

n

)n
.

The idea behind this relation is similar to the idea of compound interest.
If the interest rate is 10%, compounded annually, then x = 0.1, and
the balance grows by a factor (1 + x) = 1.1 in one year. If, instead,
we want to compound the interest monthly, we can set the monthly
interest rate to 0.1/12, and then the growth of the balance over a year
is (1+x/12)12 = 1.1047, which is slightly larger because the interest from
the earlier months itself accrues interest in the later months. Continuing
this limiting process, we find e1.1 = 1.1052.

If n is large, then we have a good approximation to the base-e ex-
ponential, so let’s differentiate this finite-n approximation and try to
find an approximation to the derivative of ex. The chain rule tells is
that the derivative of (1 + x/n)n is the derivative of the raising-to-
the-nth-power function, multiplied by the derivative of the inside stuff,
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d(1 + x/n)/ dx = 1/n. We then have

d
(
1 + x

n

)n
dx

=

[
n
(

1 +
x

n

)n−1
]
· 1

n

=
(

1 +
x

n

)n−1

.

But evaluating this at x = 0 simply gives 1, so at x = 0, the approxi-
mation to the derivative is exactly 1 for all values of n — it’s not even
necessary to imagine going to larger and larger values of n. This estab-
lishes that c = 1, so we have

dex

dx
= ex

for all values of x.

Proofs of the generalizations of l’Hôpital’s rule

Multiple applications of the rule

Here we prove, as claimed on p. 66, that the form of L’Hôpital’s rule
rule given on p. 61 can be generalized to the case where more than
one application of the rule is required. The proof requires material
from ch. 4 (integration and the mean value theorem), and, as discussed
in example 86 on p. 112, the motivation for the result becomes much
more transparent once has read ch. 7 and knows about Taylor series.
The reader who has arrived here while reading ch. 3 will need to defer
reading this section of the proof until after ch. 4, and may wish to wait
until after ch. 7.

The proof can be broken down into two steps.

Step 1: We first have to establish a stronger form of l’Hôpital’s rule that
states that limu/v = lim u̇/v̇ rather than limu/v = u̇/v̇. This form is
stronger, because in a case like example 47 on p. 66, u̇/v̇ isn’t defined,
but lim u̇/v̇ is.

We prove the stronger form using the mean value theorem (p. 76). For
simplicity of notation, let’s assume that the limit is being taken at x = 0.
By the fundamental theorem of calculus, we have u(x) =

∫ x
0
u̇(x′) dx′,

and the mean value theorem then tells us that for some p between 0 and
x, u(x) = xu̇(p). Likewise for a q in this interval, v(x) = xv̇(q). So

lim
x→0

u

v
= lim
p→0
q→0

u̇(p)

v̇(q)
,
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but since both p and q are closer to zero than x is, the limit as they
simultaneously approach zero is the same as the limit as x approaches
zero.

Step 2: If we need to take n derivatives, the proof follows by applying
the extra-strength rule n times.3

Change of variable

We will build up the rest of the features of l’Hôpital’s rule using the
technique of a change of variable. To demonstrate how this works, let’s
imagine that we were starting from an even more stripped-down version
of l’Hôpital’s rule than the one on p. 61. Say we only knew how to do
limits of the form x→ 0 rather than x→ a for an arbitrary real number
a. We could then evaluate limx→a u/v simply by defining t = x− a and
reexpressing u and v in terms of t.

Example 104
. Reduce

lim
x→π

sin x
x − π

to a form involving a limit at 0.

. Define t = x − π. Solving for x gives x = t + π. We substitute into the above
expression to find

lim
x→π

sin x
x − π = lim

t→0

sin(t + π)
t

.

If all we knew was the → 0 form of l’Hôpital’s rule, then this would suffice to
reduce the problem to one we knew how to solve. In fact, this kind of change of
variable works in all cases, not just for a limit at π, so rather then going through
a laborious change of variable every time, we could simply establish the more
general form on p. 61, with→ a.

The indeterminate form ∞/∞

To prove that l’Hôpital’s rule works in general for ∞/∞ forms, we do a
change of variable on the outputs of the functions u and v rather than

3There is a logical subtlety here, which is that although we’ve given a clearcut
recipe for cooking up a proof for any given n, that isn’t quite the same thing as
proving it for any positive integer n. This is an example where what we really need
is a technique called proof by induction. In general, proof by induction works like
this. Suppose we prove some statement about the integer 1, e.g., that l’Hôpital’s
rule is valid when you take 1 derivative. Now say that we can also prove that if that
statement holds for a given n, it also holds for n+ 1. Proof by induction means that
we can then consider the statement as having been proved for all positive integers.
For suppose the contrary. Then there would be some least n for which it failed, but
this would be a contradiction, since it would hold for n− 1.
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their inputs. Suppose that our original problem is of the form

lim
u

v
,

where both functions blow up.4 We then define U = 1/u and V = 1/v.
We now have

lim
u

v
= lim

1/U

1/V
= lim

V

U
,

and since U and V both approach zero, we have reduced the problem
to one that can be solved using the version of l’Hôpital’s rule already
proved for indeterminate forms like 0/0. Differentiating and applying
the chain rule, we have

lim
u

v
= lim

V̇

U̇
= lim

−v−2v̇

−u−2u̇
.

Since lim ab = lim a lim b provided that lim a and lim b are both defined,
we can rearrange factors to produce the desired result.

This change of variable is a specific example of a much more general
method of problem-solving in which we look for a way to reduce a hard
problem to an easier one. We will encounter changes of variable again on
p. 87 as a technique for integration, which means undoing the operation
of differentiation.

Proof of the fundamental theorem of calculus

There are three parts to the proof: (1) Take the equation that states
the fundamental theorem, differentiate both sides with respect to b, and
show that they’re equal. (2) Show that continuous functions with equal
derivatives must be essentially the same function, except for an additive
constant. (3) Show that the constant in question is zero.

1. By the definition of the indefinite integral, the derivative of x(b)−x(a)
with respect to b equals ẋ(b). We have to establish that this equals the

4Think about what happens when only u blows up, or only v.
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following:

d

db

∫ b

a

ẋ(t) dt = st
1

db

[∫ b+db

a

ẋ(t) dt−
∫ b

a

ẋ(t) dt

]

= st
1

db

∫ b+db

b

ẋ(t) dt

= st
1

db
lim
H→∞

H∑
i=0

ẋ(b + idb/H)
db

H

= st lim
H→∞

1

H

H∑
i=0

ẋ(b + idb/H)

Since ẋ is continuous, all the values of ẋ occurring inside the sum can
differ only infinitesimally from ẋ(b). Therefore the quantity inside the
limit differs only infinitesimally from ẋ(b), and the standard part of its
limit must be ẋ(b).5

2. Suppose f and g are two continuous functions whose derivatives are
equal. Then d = f − g is a continuous function whose derivative is zero.
But the only continuous function with a derivative of zero is a constant,
so f and g differ by at most an additive constant.

3. I’ve established that the derivatives with respect to b of x(b)− x(a)

and
∫ b
a
ẋ dt are the same, so they differ by at most an additive constant.

But at b = a, they’re both zero, so the constant must be zero.

5If you don’t want to use infinitesimals, then you can express the derivative as a
limit, and in the final step of the argument use the mean value theorem, introduced
later in the chapter.
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The intermediate value theorem

On page 54 I asserted that the intermediate value theorem was really
more a statement about the (real or hyperreal) number system than
about functions. For insight, consider figure b, which is a geometrical
construction that constitutes the proof of the very first proposition in
Euclid’s celebrated Elements. The proposition to be proved is that given
a line segment AB, it is possible to construct an equilateral triangle with
AB as its base. The proof is by construction; that is, Euclid doesn’t
just give a logical argument that convinces us the triangle must exist,
he actually demonstrates how to construct it. First we draw a circle
with center A and radius AB, which his third postulate says we can do.
Then we draw another circle with the same radius, but centered at B.
Pick one of the intersections of the circles and call it C. Construct the
line segments AC and BC (postulate 1). Then AC equals AB by the
definition of the circle, and likewise BC equals AB. Euclid also has an
axiom that things equal to the same thing are equal to one another, so
it follows that AC equals BC, and therefore the triangle is equilateral.

b / A proof from Euclid’s Elements.

It seems like a model of mathematical rigor, but there’s a flaw in the
reasoning, which is that he assumes without justififcation that the cir-
cles do have a point in common. To see that this is not as secure an
assumption as it seems, consider the usual Cartesian representation of
plane geometry in terms of coordinates (x, y). Usually we assume that x
and y are real numbers. What if we instead do our Cartesian geometry
using rational numbers as coordinates? Euclid’s five postulates are all
consistent with this. For example, circles do exist. Let A = (0, 0) and
B = (1, 0). Then there are infinitely many pairs of rational numbers in
the set that satisfies the definition of the circle centered at A. Examples
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include (3/5, 4/5) and (−7/25, 24/25). The circle is also continuous in
the sense that if I specify a point on it such as (−7/25, 24/25), and a
distance that I’m allowed to make as small as I please, say 10−6, then
other points exist on the circle within that distance of the given point.
However, the intersection assumed by Euclid’s proof doesn’t exist. It
would lie at (1/2,

√
3/2), but

√
3 doesn’t exist in the rational number

system.

In exactly the same way, we can construct counterexamples to the in-
termediate value theorem if the underlying system of numbers doesn’t
have the same properties as the real numbers. For example, let y = x2.
Then y is a continuous function, on the interval from 0 to 1, but if
we take the rational numbers as our foundation, then there is no x for
which y = 1/2. The solution would be x = 1/

√
2, which doesn’t exist in

the rational number system. Notice the similarity between this problem
and the one in Euclid’s proof. In both cases we have curves that cut
one another without having an intersection. In the present example, the
curves are the graphs of the functions y = x2 and y = 1/2.

The interpretation is that the real numbers are in some sense more
densely packed than the rationals, and with two thousand years worth of
hindsight, we can see that Euclid should have included a sixth postulate
that expressed this density property. One possible way of stating such
a postulate is the following. Let L be a ray, and O its endpoint. We
think of O as the origin of the positive number line. Let P and Q be
sets of points on L such that every point in P is closer to O than every
point in Q. Then there exists some point Z on L such that Z lies at
least as far from O as every point in P, but no farther than any point in
Q. Technically this property is known as completeness. As an example,
let P = {x|x2 < 2} and Q = {x|x2 ≥ 2}. Then the point Z would
have to be

√
2, which shows that the rationals are not complete. The

reals are complete, and the completeness axiom can serve as one of the
fundamental axioms of the real numbers.

Note that the axiom refers to sets P and Q, and says that a certain
fact is true for any choice of those sets; it therefore isn’t the type of
proposition that is covered by the transfer principle, and in fact it fails
for the hyperreals, as we can see if P is the set of all infinitesimals and
Q the positive real numbers.

Here is a skeletal proof of the intermediate value theorem, in which I’ll
make some simplifying assumptions and leave out some cases. We want
to prove that if y is a continuous real-valued function on the real interval
from a to b, and if y takes on values y1 and y2 at certain points within
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this interval, then for any y3 between y1 and y2, there is some real x in
the interval for which y(x) = y3. I’ll assume the case in which x1 < x2

and y1 < y2. Define sets of real numbers P = {x|y ≤ y3}, and let
Q = {x|y ≥ y3}. For simplicity, I’ll assume that every member of P is
less than or equal to every member of Q, which happens, for example,
if the function y(x) is always increasing on the interval [a, b]. If P and
Q intersect, then the theorem holds. Suppose instead that P and Q do
not intersect. Using the completeness axiom, there exists some real x
which is greater than or equal to every element of P and less than or
equal to every element of Q. Suppose x belongs to P. Then the following
statement is in the right form for the transfer principle to apply to it:
for any number x′ > x, y(x′) > y3. We can conclude that the statement
is also true for the hyperreals, so that if dx is a positive infinitesimal and
x′ = x+dx, we have y(x) < y3, but y(x+dx) > y3. Then by continuity,
y(x)− y(x+ dx) is infinitesimal. But y(x) < y3 and y(x+ dx) > y3, so
the standard part of y(x) must equal y3. By assumption y takes on real
values for real arguments, so y(x) = y3. The same reasoning applies if
x belongs to Q, and since x must belong either to P or to Q, the result
is proved.

For an alternative proof of the intermediate value theorem by an entirely
different technique, see Keisler (references, p. 201).

As a side issue, we could ask whether there is anything like the interme-
diate value theorem that can be applied to functions on the hyperreals.
Our definition of continuity on page 53 explicitly states that it only
applies to real functions. Even if we could apply the definition to a
function on the hyperreals, the proof given above would fail, since the
hyperreals lack the completeness property. As a counterexample, let ε
be some positive infinitesimal, and define a function y such that y = −ε
when st(x) ≤ 0 and y = ε everywhere else. If we insist on applying
the definition of continuity to this function, it appears to be continuous,
so it violates the intermediate value theorem. Note, however, that the
way this function is defined is different from the way we usually define
functions on the hyperreals. Usually we define a function on the reals,
say y = x2, in language to which the transfer principle applies, and then
we use the transfer principle to reason about the function’s analog on
the hyperreals. For instance, the function y = x2 has the property that
y ≥ 0 everywhere, and the transfer principle guarantees that that’s also
true if we take y = x2 as the definition of a function on the hyperreals.
For functions defined in this way, the intermediate value theorem makes
a statement that the transfer principle applies to, and it is therefore
true for the hyperreal version of the function as well.
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Proof of the extreme value theorem

The extreme value theorem was stated on page 56. Before we can prove
it, we need to establish some preliminaries, which turn out to be inter-
esting for their own sake.

Definition: Let C be a subset of the real numbers whose definition can
be expressed in the type of language to which the transfer principle
applies. Then C is compact if for every hyperreal number x satisfying
the definition of C, the standard part of x exists and is a member of C.

To understand the content of this definition, we need to look at the two
ways in which a set could fail to satisfy it.

First, suppose U is defined by x ≥ 0. Then there are positive infinite
hyperreal numbers that satisfy the definition, and their standard part is
not defined, so U is not compact. The reason U is not compact is that
it is unbounded.

Second, let V be defined by 0 ≤ x < 1. Then if dx is a positive infinites-
imal, 1−dx satisfies the definition of V , but its standard part is 1, which
is not in V , so V is not compact. The set V has boundary points at
0 and 1, and the reason it is not compact is that it doesn’t contain its
right-hand boundary point. A boundary point is a real number which
is infinitesimally close to some points inside the set, and also to some
other points that are on the outside.

We therefore arrive at the following alternative characterization of the
notion of a compact set, whose proof is straightforward.

Theorem: A set is compact if and only if it is bounded and contains all
of its boundary points.

Intuitively, the reason compact sets are interesting is that if you’re stand-
ing inside a compact set and start taking steps in a certain direction,
without ever turning around, you’re guaranteed to approach some point
in the set as a limit. (You might step over some gaps that aren’t in-
cluded in the set.) If the set was unbounded, you could just walk forever
at a constant speed. If the set didn’t contain its boundary point, then
you could asymptotically approach the boundary, but the goal you were
approaching wouldn’t be a member of the set.

The following theorem turns out to be the most difficult part of the
discussion.

Theorem: A compact set contains its maximum and minimum.
Proof: Let C be a compact set. We know it’s bounded, so let M be the
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set of all real numbers that are greater than any member of C. By the
completeness property of the real numbers, there is some real number x
between C and M . Let ∗C be the set of hyperreal numbers that satisfies
the same definition that C does.

Every real x′ greater than x fails to satisfy the condition that defines
C, and by the transfer principle the same must be true if x′ is any
hyperreal, so if dx is a positive infinitesimal, x+ dx must be outside of
∗C.

But now consider x − dx. The following statement holds for the reals:
there is no number x′ < x that is greater than every member of C. By
the transfer principle, we find that there is some hyperreal number q
in ∗C that is greater than x − dx. But the standard part of q must
equal x, for otherwise stq would be a member of C that was greater
than x. Therefore x is a boundary point of C, and since C is compact,
x is a member of C. We conclude C contains its maximum. A similar
argument shows that C contains its minimum, so the theorem is proved.

There were two subtle things about this proof. The first was that we
ended up constructing the set of hyperreals ∗C, which was the hyperreal
“big brother” of the real set C. This is exactly the sort of thing that the
transfer principle does not guarantee we can do. However, if you look
back through the proof, you can see that ∗C is used only as a notational
convenience. Rather than talking about whether a certain number was a
member of ∗C, we could have referred, more cumbersomely, to whether
or not it satisfied the condition that had originally been used to define
C. The price we paid for this was a slight loss of generality. There
are so many different sets of real numbers that they can’t possibly all
have explicit definitions that can be written down on a piece of paper.
However, there is very little reason to be interested in studying the
properties of a set that we were never able to define in the first place.
The other subtlety was that we had to construct the auxiliary point
x − dx, but there was not much we could actually say about x − dx
itself. In particular, it might or might not have been a member of C.
For example, if C is defined by the condition x = 0, then ∗C likewise
contains only the single element 0, and x − dx is not a member of ∗C.
But if C is defined by 0 ≤ x ≤ 1, then x− dx is a member of ∗C.

The original goal was to prove the extreme value theorem, which is a
statement about continuous functions, but so far we haven’t said any-
thing about functions.

Lemma: Let f be a real function defined on a set of points C. Let D be
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the image of C, i.e., the set of all values f(x) that occur for some x in
C. Then if f is continous and C is compact, D is compact as well. In
other words, continuous functions take compact sets to compact sets.
Proof: Let y = f(x) be any hyperreal output corresponding to a hy-
perreal input x in ∗C. We need to prove that the standard part of y
exists, and is a member of D. Since C is compact, the standard part
of x exists and is a member of C. But then by continuity y differs only
infinitesimally from f(stx), which is real, so sty = f(stx) is defined and
is a member of D.

We are now ready to prove the extreme value theorem, in a version
slightly more general than the one originally given on page 56.

The extreme value theorem: Any continuous function on a compact set
achieves a maximum and minimum value, and does so at specific points
in the set.

Proof: Let f be continuous, and let C be the compact set on which
we seek its maximum and minimum. Then the image D as defined in
the lemma above is compact. Therefore D contains its maximum and
minimum values.

Proof of the mean value theorem

Suppose that the mean value theorem is violated. Let L be the set of all
x in the interval from a to b such that y(x) < ȳ, and likewise let M be
the set with y(x) > ȳ. If the theorem is violated, then the union of these
two sets covers the entire interval from a to b. Neither one can be empty;
if, for example, M was empty, then we would have y < ȳ everywhere

and also
∫ b
a
y =

∫ b
a
ȳ, but it follows directly from the definition of the

definite integral that when one function is less than another, its integral
is also less than the other’s. Since y takes on values less than and greater
than ȳ, it follows from the intermediate value theorem that y takes on
the value ȳ somewhere (intuitively, at a boundary between L and M).
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Proof of the fundamental theorem of algebra

We start with the following lemma, which is intuitively obvious, because
polynomials don’t have asymptotes. Its proof is given after the proof of
the main theorem.

Lemma: For any polynomial P (z) in the complex plane, its magnitude
|P (z)| achieves its minimum value at some specific point zo.

The fundamental theorem of algebra: In the complex number system, a
nonzero nth-order polynomial has exactly n roots, i.e., it can be factored
into the form P (z) = (z−a1)(z−a2) . . . (z−an), where the ai are complex
numbers.

Proof: The proofs in the cases of n = 0 and 1 are trivial, so our strategy
is to reduce higher-n cases to lower ones. If an nth-degree polynomial P
has at least one root, a, then we can always reduce it to a polynomial of
degree n− 1 by dividing it by (z − a). Therefore the theorem is proved
by induction provided that we can show that every polynomial of degree
greater than zero has at least one root.

Suppose, on the contrary, that there is an nth order polynomial P (z),
with n > 0, that has no roots at all. Then by the lemma |P | achieves
its minimum value at some point zo. To make things more simple and
concrete, we can construct another polynomial Q(z) = P (z+zo)/P (zo),
so that |Q| has a minimum value of 1, achieved at Q(0) = 1. This means
thatQ’s constant term is 1. What about its other terms? LetQ(z) = 1+
c1z+ . . .+cnz

n. Suppose c1 was nonzero. Then for infinitesimally small
values of z, the terms of order z2 and higher would be negligible, and
we could make Q(z) be a real number less than one by an appropriate
choice of z’s argument. Therefore c1 must be zero. But that means that
if c2 is nonzero, then for infinitesimally small z, the z2 term dominates
the z3 and higher terms, and again this would allow us to make Q(z) be
real and less than one for appropriately chosen values of z. Continuing
this process, we find that Q(z) has no terms at all beyond the constant
term, i.e., Q(z) = 1. This contradicts the assumption that n was greater
than zero, so we’ve proved by contradiction that there is no P with the
properties claimed.

Uninteresting proof of the lemma: Let M(r) be the minimum value of
|P (z)| on the disk defined by |z| ≤ r. We first prove that M(r) can’t
asymptotically approach a minimum as r approaches infinity. Suppose
to the contrary: for every r, there is some r′ > r with M(r′) < M(r).
Then by the transfer principle, the same would have to be true for
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hyperreal values of r. But it’s clear that if r is infinite, the lower-order
terms of P will be infinitesimally small compared to the highest-order
term, and therefore M(r) is infinite for infinite values of r, which is
a contradiction, since by construction M is decreasing, and finite for
finite r. We can therefore conclude by the extreme value theorem that
M achieves its minimum for some specific value of r. The least such r
describes a circle |z| = r in the complex plane, and the minimum of |P |
on this circle must be the same as its global minimum. Applying the
extreme value function to |P (z)| as a function of arg z on the interval
0 ≤ argz ≤ 2π, we establish the desired result.
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B Answers and solutions

Answers to Self-Checks

Answers to self-checks for chapter 4

page 80, self-check 1:

The area under the curve from 130 to 135 cm is about 3/4 of a rectangle.
The area from 135 to 140 cm is about 1.5 rectangles. The number of peo-
ple in the second range is about twice as much. We could have converted
these to actual probabilities (1 rectangle = 5 cm×0.005 cm−1 = 0.025),
but that would have been pointless, because we were just going to com-
pare the two areas.

Answers to self-checks for chapter 6

page 120, self-check 1: Say we’re looking for u =
√
z, i.e., we want a

number u that, multiplied by itself, equals z. Multiplication multiplies
the magnitudes, so the magnitude of u can be found by taking the square
root of the magnitude of z. Since multiplication also adds the arguments
of the numbers, squaring a number doubles its argument. Therefore we
can simply divide the argument of z by two to find the argument of
u. This results in one of the square roots of z. There is another one,
which is −u, since (−u)2 is the same as u2. This may seem a little odd:
if u was chosen so that doubling its argument gave the argument of z,
then how can the same be true for −u? Well for example, suppose the
argument of z is 4 ◦. Then arg u = 2 ◦, and arg(−u) = 182 ◦. Doubling
182 gives 364, which is actually a synonym for 4 degrees.

165



166 B Answers and solutions

Solutions to homework problems

Solutions for chapter 1

page 21, problem 1:

The tangent line has to pass through the point (3,9), and it also seems,
at least approximately, to pass through (1.5,0). This gives it a slope of
(9− 0)/(3− 1.5) = 9/1.5 = 6, and that’s exactly what 2t is at t = 3.

a / Problem 1.

page 21, problem 2:

The tangent line has to pass through the point (0, sin(e0)) = (0, 0.84),
and it also seems, at least approximately, to pass through (-1.6,0). This
gives it a slope of (0.84− 0)/(0− (−1.6)) = 0.84/1.6 = 0.53. The more
accurate result given in the problem can be found using the methods of
chapter 2.
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b / Problem 2.

page 21, problem 3:
The derivative is a rate of change, so the derivatives of the constants
1 and 7, which don’t change, are clearly zero. The derivative can be
interpreted geometrically as the slope of the tangent line, and since the
functions t and 7t are lines, their derivatives are simply their slopes, 1,
and 7. All of these could also have been found using the formula that
says the derivative of tk is ktk−1, but it wasn’t really necessary to get
that fancy. To find the derivative of t2, we can use the formula, which
gives 2t. One of the properties of the derivative is that multiplying a
function by a constant multiplies its derivative by the same constant, so
the derivative of 7t2 must be (7)(2t) = 14t. By similar reasoning, the
derivatives of t3 and 7t3 are 3t2 and 21t2, respectively.

page 21, problem 4:

One of the properties of the derivative is that the derivative of a sum is
the sum of the derivatives, so we can get this by adding up the derivatives
of 3t7, −4t2, and 6. The derivatives of the three terms are 21t6, −8t,
and 0, so the derivative of the whole thing is 21t6 − 8t.

page 21, problem 5:

This is exactly like problem 4, except that instead of explicit numerical
constants like 3 and −4, this problem involves symbolic constants a, b,
and c. The result is 2at+ b.

page 21, problem 6:

The first thing that comes to mind is 3t. Its graph would be a line with
a slope of 3, passing through the origin. Any other line with a slope of
3 would work too, e.g., 3t+ 1.
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page 21, problem 7:

Differentiation lowers the power of a monomial by one, so to get some-
thing with an exponent of 7, we need to differentiate something with an
exponent of 8. The derivative of t8 would be 8t7, which is eight times
too big, so we really need (t8/8). As in problem 6, any other function
that differed by an additive constant would also work, e.g., (t8/8) + 1.

page 21, problem 8:

This is just like problem 7, but we need something whose derivative
is three times bigger. Since multiplying by a constant multiplies the
derivative by the same constant, the way to accomplish this is to take
the answer to problem 7, and multiply by three. A possible answer is
(3/8)t8, or that function plus any constant.

page 21, problem 9:

This is just a slight generalization of problem 8. Since the derivative
of a sum is the sum of the derivatives, we just need to handle each
term individually, and then add up the results. The answer is (3/8)t8−
(4/3)t3 + 6t, or that function plus any constant.

page 21, problem 10:

The function v = (4/3)π(ct)3 looks scary and complicated, but it’s
nothing more than a constant multiplied by t3, if we rewrite it as v =[
(4/3)πc3

]
t3. The whole thing in square brackets is simply one big

constant, which just comes along for the ride when we differentiate.
The result is v̇ =

[
(4/3)πc3

]
(3t2), or, simplifying, v̇ =

(
4πc3

)
t2. (For

further physical insight, we can factor this as
[
4π(ct)2

]
c, where ct is the

radius of the expanding sphere, and the part in brackets is the sphere’s
surface area.)

For purposes of checking the units, we can ignore the unit-
less constant 4π, which just leaves c3t2. This has units of
(meters per second)3(seconds)2, which works out to be cubic meters per
second. That makes sense, because it tells us how quickly a volume is
increasing over time.

page 21, problem 11:
This is similar to problem 10, in that it looks scary, but we can rewrite
it as a simple monomial, K = (1/2)mv2 = (1/2)m(at)2 = (ma2/2)t2.
The derivative is (ma2/2)(2t) = ma2t. The car needs more and more
power to accelerate as its speed increases.
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To check the units, we just need to show that the expression ma2t has
units that are like those of the original expression for K, but divided
by seconds, since it’s a rate of change of K over time. This indeed
works out, since the only change in the factors that aren’t unitless is
the reduction of the powet of t from 2 to 1.

page 22, problem 12:

The area is a = `2 = (1+αT )2`2o. To make this into something we know
how to differentiate, we need to square out the expression involving T ,
and make it into something that is expressed explicitly as a polynomial:

a = `2o + 2`2oαT + `2oα
2T 2

Now this is just like problem 5, except that the constants superficially
look more complicated. The result is

ȧ = 2`2oα+ 2`2oα
2T

= 2`2o
(
α+ α2T

)
.

We expect the units of the result to be area per unit temperature, e.g.,
degrees per square meter. This is a little tricky, because we have to
figure out what units are implied for the constant α. Since the question
talks about 1 + αT , apparently the quantity αT is unitless. (The 1 is
unitless, and you can’t add things that have different units.) Therefore
the units of α must be “per degree,” or inverse degrees. It wouldn’t
make sense to add α and α2T unless they had the same units (and
you can check for yourself that they do), so the whole thing inside the
parentheses must have units of inverse degrees. Multiplying by the `2o
in front, we have units of area per degree, which is what we expected.

page 22, problem 13:

The first derivative is 6t2 − 1. Going again, the answer is 12t.

page 22, problem 14:

The first derivative is 3t2+2t, and the second is 6t+2. Setting this equal
to zero and solving for t, we find t = −1/3. Looking at the graph, it
does look like the concavity is down for t < −1/3, and up for t > −1/3.

page 22, problem 15:

I chose k = −1, and t = 1. In other words, I’m going to check the slope
of the function x = t−1 = 1/r at t = 1, and see whether it really equals
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c / Problem 14.

ktk−1 = −1. Before even doing the graph, I note that the sign makes
sense: the function 1/t is decreasing for t > 0, so its slope should indeed
be negative.

d / Problem 15.

The tangent line seems to connect the points (0,2) and (2,0), so its slope
does indeed look like it’s −1.

The problem asked us to consider the logical meaning of the two pos-
sible outcomes. If the slope had been significantly different from −1
given the accuracy of our result, the conclusion would have been that it
was incorrect to extend the rule to negative values of k. Although our
example did come out consistent with the rule, that doesn’t prove the
rule in general. An example can disprove a conjecture, but can’t prove
it. Of course, if we tried lots and lots of examples, and they all worked,
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our confidence in the conjecture would be increased.

page 22, problem 16:

A minimum would occur where the derivative was zero. First we rewrite
the function in a form that we know how to differentiate:

E(r) = ka12r−12 − 2ka6r−6

We’re told to have faith that the derivative of tk is ktk−1 even for k < 0,
so

0 = Ė

= −12ka12r−13 + 12ka6r−7

To simplify, we divide both sides by 12k. The left side was already zero,
so it keeps being zero.

0 = −a12r−13 + a6r−7

a12r−13 = a6r−7

a12 = a6r6

a6 = r6

r = ±a

To check that this is a minimum, not a maximum or a point of inflection,
one method is to construct a graph. The constants a and k are irrelevant
to this issue. Changing a just rescales the horizontal r axis, and changing
k does the same for the vertical E axis. That means we can arbitrarily
set a = 1 and k = 1, and construct the graph shown in the figure. The
points r = ±a are now simply r = ±1. From the graph, we can see
that they’re clearly minima. Physically, the minimum at r = −a can
be interpreted as the same physical configuration of the molecule, but
with the positions of the atoms reversed. It makes sense that r = −a
behaves the same as r = a, since physically the behavior of the system
has to be symmetric, regardless of whether we view it from in front or
from behind.

The other method of checking that r = a is a minimum is to take the
second derivative. As before, the values of a and k are irrelevant, and
can be set to 1. We then have

Ė = −12r−13 + 12r−7

Ë = 156r−14 − 84r−8 .
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e / Problem 16.

Plugging in r = ±1, we get a positive result, which confirms that the
concavity is upward.

page 22, problem 17:

Since polynomials don’t have kinks or endpoints in their graphs, the
maxima and minima must be points where the derivative is zero. Dif-
ferentiation bumps down all the powers of a polynomial by one, so the
derivative of a third-order polynomial is a second-order polynomial. A
second-order polynomial can have at most two real roots (values of t for
which it equals zero), which are given by the quadratic formula. (If the
number inside the square root in the quadratic formula is zero or nega-
tive, there could be less than two real roots.) That means a third-order
polynomial can have at most two maxima or minima.

page 22, problem 18:

Since f , g, and s are smooth and defined everywhere, any extrema they
possess occur at places where their derivatives are zero. The converse is
not necessarily true, however; a place where the derivative is zero could
be a point of inflection. The derivative is additive, so if both f and g
have zero derivatives at a certain point, s does as well. Therefore in
most cases, if f and g both have an extremum at a point, so will s.
However, it could happen that this is only a point of inflection for s, so
in general, we can’t conclude anything about the extrema of s simply
from knowing where the extrema of f and g occur.

Going the other direction, we certainly can’t infer anything about ex-
trema of f and g from knowledge of s alone. For example, if s(x) = x2,
with a minimum at x = 0, that tells us very little about f and g. We
could have, for example, f(x) = (x−1)2/2−2 and g(x) = (x+1)2/2+1,
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neither of which has an extremum at x = 0.

page 22, problem 19:

Considering V as a function of h, with b treated as a constant, we have
for the slope of its graph

V̇ =
eV
eh

,

so

eV = V̇ · eh

=
1

3
beh

page 23, problem 20:

Thinking of the rocket’s height as a function of time, we can see that
goal is to measure the function at its maximum. The derivative is zero
at the maximum, so the error incurred due to timing is approximately
zero. She should not worry about the timing error too much. Other
factors are likely to be more important, e.g., the rocket may not rise
exactly vertically above the launchpad.

page 23, problem 21: If ẋ = n2, and x is a polynomial in n, then
we must have ẋ(n) = x(n) − x(n − 1) = n2. If x is a polynomial of
order k, then x(n) and x(n − 1) both have nk terms with coefficients
of 1, so ẋ has no nk term. We want ẋ to have a nonvanishing n2

term, so we must have k ≥ 3. For k > 3, it’s easy to show that the
n3 term in x(n) − x(n − 1) is nonzero, so we must have k = 3. Let
x(n) = an3 + bn2 + . . ., where a is the coefficient that we want to prove
is 1/3, and . . . represents lower-order terms. By the binomial theorem,
we have x(n − 1) = an3 − 3an2 + bn2 + . . ., and subtracting this from
x(n) gives ẋ(n) = 3an3 + . . .. Since 3a = 1, we have a = 1/3.

Solutions for chapter 2

page 47, problem 1:
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dx

dt
=

(t+ dt)4 − t4

dt

=
4t3 dt+ 6t2 dt2 + 4tdt3 + dt4

dt

= 4t3 + . . . ,

where . . . indicates infinitesimal terms. The derivative is the standard
part of this, which is 4t3.

page 47, problem 2:

dx

dt
=

cos(t+ dt)− cos t

dt

The identity cos(α+ β) = cosα cosβ − sinα sinβ then gives

dx

dt
=

cos t cos dt− sin t sin dt− cos t

dt
.

The small-angle approximations cos dt ≈ 1 and sin dt ≈ dt result in

dx

dt
=
− sin tdt

dt
= − sin t .

page 47, problem 3:

H
√
H + 1−

√
H − 1

1000 .032
1000, 000 0.0010
1000, 000, 000 0.00032

The result is getting smaller and smaller, so it seems reasonable to guess
that if H is infinite, the expression gives an infinitesimal result.

page 47, problem 4:

dx
√

dx
.1 .32
.001 .032
.00001 .0032

The square root is getting smaller, but is not getting smaller as fast as
the number itself. In proportion to the original number, the square root
is actually getting bigger. It looks like

√
dx is infinitesimal, but it’s still
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infinitely big compared to dx. This makes sense, because
√

dx equals
dx1/2. we already knew that dx0, which equals 1, was infinitely big
compared to dx1, which equals dx. In the hierarchy of infinitesimals,
dx1/2 fits in between dx0 and dx1.

page 47, problem 5:
Statements (a)-(d), and (f)-(g) are all valid for the hyperreals, because
they meet the test of being directly translatable, without having to
interpret the meaning of things like particular subsets of the reals in the
context of the hyperreals.

Statement (e), however, refers to the rational numbers, a particular
subset of the reals, and that means that it can’t be mindlessly translated
into a statement about the hyperreals, unless we had figured out a way
to translate the set of rational numbers into some corresponding subset
of the hyperreal numbers like the hyperrationals! This is not the type of
statement that the transfer principle deals with. The statement is not
true if we try to change “real” to “hyperreal” while leaving “rational”
alone; for example, it’s not true that there’s a rational number that lies
between the hyperreal numbers 0 and 0 + dx, where dx is infinitesimal.

page 47, problem 6: If R1 is finite and R2 infinite, then 1/R2 is
infinitesimal, 1/R1 + 1/R2 differs infinitesimally from 1/R1, and the
combined resistance R differs infinitesimally from R1. Physically, the
second pipe is blocked or too thin to carry any significant flow, so it’s
as though it weren’t present.

If R1 is finite and R2 is infinitesimal, then 1/R2 is infinite, 1/R1 + 1/R2

is also infinite, and the combined resistance R is infinitesimal. It’s so
easy for water to flow through R2 that R1 might as well not be present.
In the context of electrical circuits rather than water pipes, this is known
as a short circuit.

page 48, problem 7: The velocity addition is only interesting if the
infinitesimal velocities u and v are comparable to one another, i.e., their
ratio is finite. Let’s write ε for the size of these infinitesimals, so that
both u and v can be written as ε multiplied by some finite number.
Then 1 + uv differs from 1 by an amount that is on the order of ε2,
which is infinitesimally small compared to ε. The same then holds true
for 1/(1 + uv) as well. The result of velocity addition (u+ v)/(1 + uv)
is then u + v + . . ., where . . . represents quantities of order ε3, which
are amount to a correction that is infinitesimally small compared to the
nonrelativistic result u+ v.

page 48, problem 8: This would be a horrible problem if we had to
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expand this as a polynomial with 101 terms, as in chapter 1! But now
we know the chain rule, so it’s easy. The derivative is[

100(2x+ 3)99
]

[2] ,

where the first factor in brackets is the derivative of the function on
the outside, and the second one is the derivative of the “inside stuff.”
Simplifying a little, the answer is 200(2x+ 3)99.

page 48, problem 9:
Applying the product rule, we get

(x+ 1)99(x+ 2)200 + (x+ 1)100(x+ 2)199 .

(The chain rule was also required, but in a trivial way — for both of
the factors, the derivative of the “inside stuff” was one.)

page 48, problem 10:
The derivative of e7x is e7x · 7, where the first factor is the derivative of
the outside stuff (the derivative of a base-e exponential is just the same
thing), and the second factor is the derivative of the inside stuff. This
would normally be written as 7e7x.

The derivative of the second function is ee
x

ex, with the second expo-
nential factor coming from the chain rule.

page 48, problem 11:
We need to put together three different ideas here: (1) When a function
to be differentiated is multiplied by a constant, the constant just comes
along for the ride. (2) The derivative of the sine is the cosine. (3) We
need to use the chain rule. The result is −ab cos(bx+ c).

page 48, problem 13:
If we just wanted to fine the integral of sinx, the answer would be − cosx
(or − cosx plus an arbitrary constant), since the derivative would be
−(− sinx), which would take us back to the original function. The
obvious thing to guess for the integral of a sin(bx + c) would therefore
be −a cos(bx+ c), which almost works, but not quite. The derivative of
this function would be ab sin(bx+ c), with the pesky factor of b coming
from the chain rule. Therefore what we really wanted was the function
−(a/b) cos(bx+ c).

page 48, problem 14:
The chain rule gives

d

dx
((x2)2)2 = 2((x2)2)(2(x2))(2x) = 8x7 ,
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which is the same as the result we would have gotten by differentiating
x8.

page 48, problem 15:
To find a maximum, we take the derivative and set it equal to zero. The
whole factor of 2v2/g in front is just one big constant, so it comes along
for the ride. To differentiate the factor of sin θ cos θ, we need to use
the chain rule, plus the fact that the derivative of sin is cos, and the
derivative of cos is − sin.

0 =
2v2

g
(cos θ cos θ + sin θ(− sin θ))

0 = cos2 θ − sin2 θ

cos θ = ± sin θ

We’re interested in angles between, 0 and 90 degrees, for which both
the sine and the cosine are positive, so

cos θ = sin θ

tan θ = 1

θ = 45 ◦ .

To check that this is really a maximum, not a minimum or an inflection
point, we could resort to the second derivative test, but we know the
graph of R(θ) is zero at θ = 0 and θ = 90 ◦, and positive in between, so
this must be a maximum.

page 48, problem 17:
Taking the derivative and setting it equal to zero, we have
(ex − e−x) /2 = 0, so ex = e−x, which occurs only at x = 0. The
second derivative is (ex + e−x) /2 (the same as the original function),
which is positive for all x, so the function is everywhere concave up, and
this is a minimum.

page 49, problem 18:
There are no kinks, endpoints, etc., so extrema will occur only in places
where the derivative is zero. Applying the chain rule, we find the deriva-
tive to be cos(sin(sinx)) cos(sinx) cosx. This will be zero if any of the
three factors is zero. We have cosu = 0 only when |u| ≥ π/2, and π/2
is greater than 1, so it’s not possible for either of the first two factors
to equal zero. The derivative will therefore equal zero if and only if
cosx = 0, which happens in the same places where the derivative of
sinx is zero, at x = π/2 + πn, where n is an integer.
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f / Problem 18.

This essentially completes the required demonstration, but there is one
more technical issue, which is that it’s conceivable that some of these
could be points of inflection. Constructing a graph of sin(sin(sinx))
gives us the necessary insight to see that this can’t be the case. The
function essentially looks like the sine function, but its extrema have
been “shaved down” a little, giving them slightly flatter tips that don’t
quite extend out to ±1. It’s therefore fairly clear that these aren’t points
of inflection. To prove this more rigorously, we could take the second
derivative and show that it was nonzero at the places where the first
derivative is zero. That would be messy. A less tedious argument is
as follows. We can tell from its formula that the function is periodic,
i.e., it has the property that f(x + `) = f(x), for ` = 2π. This follows
because the innermost sine function is periodic, and the outer layers
only depend on the result of the inner layer. Therefore all the points of
the form π/2 + 2πn have the same behavior. Either they’re all maxima
or they’re all points of inflection. But clearly a function can’t oscillate
back and forth without having any maxima at all, so they must all be
maxima. A similar argument applies to the minima.

page 49, problem 19:
The function f has a kink at x = 0, so it has no uniquely defined tangent
line there, and its derivative at that point is undefined. In terms of
infinitesimals, positive values of dx give df/dx = (dx + dx)/ dx = 2,
while negative ones give df/dx = (−dx + dx)/ dx = 0. Since the
standard part of the quotient dy/dx depends on the specific value of
dx, the derivative is undefined.

The function g has no kink at x = 0. The graph of x|x| looks like two
half-parabolas glued together, and since both of them have slopes of 0
at x = 0, the slope of the tangent line is well defined, and is zero. In
terms of infinitesimals, dg/dy is the standard part of |dx|+ 1, which is
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1.

page 49, problem 20:
(a) As suggested, let c =

√
g/A, so that d = A ln cosh ct =

A ln (ect + e−ct). Applying the chain rule, the velocity is

A
cect − ce−ct

cosh ct
.

(b) The expression can be rewritten as Ac tanh ct.
(c) For large t, the e−ct terms become negligible, so the velocity is
Acect/ect = Ac. (d) From the original expression, A must have units of
distance, since the logarithm is unitless. Also, since ct occurs inside a
function, ct must be unitless, which means that c has units of inverse
time. The answers to parts b and c get their units from the factors of
Ac, which have units of distance multiplied by inverse time, or velocity.

page 49, problem 21:
Since I’ve advocated not memorizing the quotient rule, I’ll do this one
from first principles, using the product rule.

d

dθ
tan θ

=
d

dθ

(
sin θ

cos θ

)
=

d

dθ

[
sin θ (cos θ)

−1
]

= cos θ (cos θ)
−1

+ (sin θ)(−1)(cos θ)−2(− sin θ)

= 1 + tan2 θ

(Using a trig identity, this can also be rewritten as sec2 θ.)

page 49, problem 22:
Reexpressing 3

√
x as x1/3, the derivative is (1/3)x−2/3.

page 49, problem 23:
(a) Using the chain rule, the derivative of (x2 + 1)1/2 is (1/2)(x2 +
1)−1/2(2x) = x(x2 + 1)−1/2.
(b) This is the same as a, except that the 1 is replaced with an a2, so
the answer is x(x2 + a2)−1/2. The idea would be that a has the same
units as x.
(c) This can be rewritten as (a+x)−1/2, giving a derivative of (−1/2)(a+
x)−3/2.
(d) This is similar to c, but we pick up a factor of −2x from the chain
rule, making the result ax(a− x2)−3/2.
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page 49, problem 24:
By the chain rule, the result is 2/(2t+ 1).

page 49, problem 25:
Using the product rule, we have(

d

dx
3

)
sinx+ 3

(
d

dx
sinx

)
,

but the derivative of a constant is zero, so the first term goes away, and
we get 3 cosx, which is what we would have had just from the usual
method of treating multiplicative constants.

page 49, problem 26:

N(Gamma(2))

1

N(Gamma(2.00001))

1.0000042278

N( (1.0000042278-1)/(.00001) )

0.4227799998

Probably only the first few digits of this are reliable.

page 50, problem 27:
The area and volume are

A = 2πr`+ 2πr2

and

V = πr2` .

The strategy is to use the equation for A, which is a constant, to elimi-
nate the variable `, and then maximize V in terms of r.

` = (A− 2πr2)/2πr

Substituting this expression for ` back into the equation for V ,

V =
1

2
rA− πr3 .
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To maximize this with respect to r, we take the derivative and set it
equal to zero.

0 =
1

2
A− 3πr2

A = 6πr2

` = (6πr2 − 2πr2)/2πr

` = 2r

In other words, the length should be the same as the diameter.

page 50, problem 28:
(a) We can break the expression down into three factors: the constant
m/2 in front, the nonrelativistic velocity dependence v2, and the rela-
tivistic correction factor (1−v2/c2)−1/2. Rather than substituting in at
for v, it’s a little less messy to calculate dK/ dt = (dK/dv)(dv/dt) =
a dK/ dv. Using the product rule, we have

dK

dt
= a · 1

2
m

[
2v
(

1− v2

c2

)−1/2

+v2 ·
(
− 1

2

) (
1− v2

c2

)−3/2 (
− 2v
c2

)]
= ma2t

[(
1− v2

c2

)−1/2

+
v2

2c2

(
1− v2

c2

)−3/2
]

(b) The expression ma2t is the nonrelativistic (classical) result, and has
the correct units of kinetic energy divided by time. The factor in square
brackets is the relativistic correction, which is unitless.
(c) As v gets closer and closer to c, the expression 1− v2/c2 approaches
zero, so both the terms in the relativistic correction blow up to positive
infinity.

page 50, problem 29:
We already know it works for positive x, so we only need to check it
for negative x. For negative values of x, the chain rule tells us that the
derivative is 1/|x|, multiplied by −1, since d|x|/dx = −1. This gives
−1/|x|, which is the same as 1/x, since x is assumed negative.

page 50, problem 30:
Since f(x) = f(−x),

df(x)

dx
=

df(−x)

dx
.
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But by the chain rule, the right-hand side equals −f ′(x), as claimed.

page 50, problem 32:
Let f = dxk/dx be the unknown function. Then

1 =
dx

dx

=
d

dx

(
xkx−k+1

)
= fx−k+1 + xk(−k + 1)x−k ,

where we can use the ordinary rule for derivatives of powers on x−k+1,
since −k + 1 is positive. Solving for f , we have the desired result.

page 50, problem 33: Since the parallel postulate can be expressed
in terms of algebra through Cartesian geometry, the transfer principle
tells us that it holds for F as well. But G is defined in terms of the
finite hyperreals, so statements about E don’t carry over to statements
about G simply by replacing “real” with “hyperreal,” and the transfer
principle does not guarantee that the parallel postulate applies to G.

In fact, it is easy to find a counterexample in G. Let ε be an infinitesimal
number. Consider the lines with equations y = 1 and y = 1+εx. Neither
of these intersects the x axis.

No, it is not valid to associate only E with the plane described by Eu-
clid’s axioms. All of Euclid’s axioms hold equally well in F. F is referred
to as a nonstandard model of Euclid’s axioms. It has the same relation
to standard Euclidean geometry as the hyperreals have to the reals. If
we want to make up a set of axioms that describes E and can’t describe
F, then we need to add an additional axiom to Euclid’s set. An exam-
ple of such an axiom would be an axiom stating that given any two line
segments with lengths `1 and `2, there exists some integer n such that
n`1 > `2. Note that although this axiom holds in E, the transfer prin-
ciple cannot be used to show that it holds in F — it is false in F. The
transfer principle doesn’t apply because the transfer principle doesn’t
apply to statements that include phrases such as “for any integer.”

page 51, problem 34:

The normal definition of a repeating decimal such as 0.999 . . . is that it
is the limit of the sequence 0.9, 0.99, . . ., and the limit is a real number,
by definition. 0.999 . . . equals 1. However, there is an intuition that the
limiting process 0.9, 0.99, . . . “never quite gets there.” This intuition
can, in fact, be formalized in the construction described beginning on
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page 144; we can define a hyperreal number based on the sequence
0.9, 0.99, . . ., and it is a number infinitesimally less than one. This is
not, however, the normal way of defining the symbol 0.999 . . ., and we
probably wouldn’t want to change the definition so that it was. If it
was, then 0.333 . . . would not equal 1/3.

page 51, problem 35:

Converting these into Leibniz notation, we find

df

dx
=

dg

dh

and

df

dx
=

dg

dh
· h .

To prove something is not true in general, it suffices to find one coun-
terexample. Suppose that g and h are both unitless, and x has units
of seconds. The value of f is defined by the output of g, so f must
also be unitless. Since f is unitless, df/dx has units of inverse sec-
onds (“per second”). But this doesn’t match the units of either of the
proposed expressions, because they’re both unitless. The correct chain
rule, however, works. In the equation

df

dx
=

dg

dh
· dh

dx
,

the right-hand side consists of a unitless factor multiplied by a factor
with units of inverse seconds, so its units are inverse seconds, matching
the left-hand side.

page 51, problem 36:

We can make life a lot easier by observing that the function s(f) will
be maximized when the expression inside the square root is minimized.
Also, since f is squared every time it occurs, we can change to a variable
x = f2, and then once the optimal value of x is found we can take its
square root in order to find the optimal f . The function to be optimized
is then

a(x− f2
o )2 + bx .

Differentiating this and setting the derivative equal to zero, we find

2a(x− f2
o ) + b = 0 ,
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which results in x = f2
o − b/2a, or

f =
√
f2

o − b/2a ,

(choosing the positive root, since f represents a frequencies, and fre-
quencies are positive by definition). Note that the quantity inside the
square root involves the square of a frequency, but then we take its
square root, so the units of the result turn out to be frequency, which
makes sense. We can see that if b is small, the second term is small, and
the maximum occurs very nearly at fo.

There is one subtle issue that was glossed over above, which is that
the graph on page 51 shows two extrema: a minimum at f = 0 and a
maximum at f > 0. What happened to the f = 0 minimum? The issue
is that I was a little sloppy with the change of variables. Let I stand
for the quantity inside the square root in the original expression for s.
Then by the chain rule,

ds

df
=

ds

dI
· dI

dx
· dx

df
.

We looked for the place where dI/ dx was zero, but ds/df could also
be zero if one of the other factors was zero. This is what happens at
f = 0, where dx/ df = 0.

page 51, problem 37:

y =

(
1

f
− 1

x

)−1

=

(
1

f
− 1

f + dx

)−1

= f

(
1− 1

1 + dx/f

)−1

Applying the geometric series 1/(1 + r) = 1 + r + r2 + . . .,

y ≈ f
(

1−
(

1− dx

f

))−1

=
f2

dx
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As checks on our result, we note that the units work out correctly (me-
ters squared divided by meters give meters), and that the result is indeed
large, since we divide by the small quantity dx.

page 52, problem 38: One way to evaluate an expression like ab is by
using the identity ab = eb ln a. If we try to substitute a = 1 and b =∞,
we get e∞·0, which has an indeterminate form inside the exponential.
One way to express the idea is that if there is even the tiniest error in
the value of a, the value of a∞ can have any positive value.

Solutions for chapter 3

page 68, problem 1:

(a) The Weierstrass definition requires that if we’re given a particular ε,
and we be able to find a δ so small that f(x) + g(x) differs from F +G
by at most ε for |x− a| < δ. But the Weierstrass definition also tells us
that given ε/2, we can find a δ such that f differs from F by at most
ε/2, and likewise for g and G. The amount by which f + g differs from
F +G is then at most ε/2 + ε/2, which completes the proof.

(b) Let dx be infinitesimal. Then the definition of the limit in terms of
infinitesimals says that the standard part of f(a + dx) differs at most
infinitesimally from F , and likewise for g and G. This means that f + g
differs from F + G by the sum of two infinitesimals, which is itself an
infinitesimal, and therefore the standard part of f+g evaluated at x+dx
equals F +G, satisfying the definition.

page 68, problem 2:

The shape of the graph can be found by considering four cases: large
negative x, small negative x, small positive x, and large positive x. In
these four cases, the function is respectively close to 1, large, small, and
close to 1.

The four limits correspond to the four cases described above.

page 68, problem 3: All five of these can be done using l’Hôpital’s
rule:
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g / Problem 2.

lim
s→1

s3 − 1

s− 1
= lim

3s2

1
= 3

lim
θ→0

1− cos θ

θ2
= lim

sin θ

2θ
= lim

cos θ

2
=

1

2

lim
x→∞

5x2 − 2x

x
= lim

10x− 2

1
=∞

lim
n→∞

n(n+ 1)

(n+ 2)(n+ 3)
= lim

n2 + . . .

n2 + . . .
= lim

2n+ . . .

2n+ . . .
= lim

2

2
= 1

lim
x→∞

ax2 + bx+ c

dx2 + ex+ f
= lim

2ax+ . . .

2dx+ . . .
= lim

2a

2d
=
a

d

In examples 2, 4, and 5, we differentiate more than once in order to
get an expression that can be evaluated by substitution. In 4 and 5,
. . . represents terms that we anticipate will go away after the second
differentiation. Most people probably would not bother with l’Hôpital’s
rule for 3, 4, or 5, being content merely to observe the behavior of the
highest-order term, which makes the limiting behavior obvious. Exam-
ples 3, 4, and 5 can also be done rigorously without l’Hôpit rule, by
algebraic manipulation; we divide on the top and bottom by the highest
power of the variable, giving an expression that is no longer an indeter-
minate form ∞/∞.

page 68, problem 4:

Both numerator and denominator go to zero, so we can apply l’Hôpital’s
rule. Differentiating top and bottom gives (cosx− x sinx)/(− ln 2 · 2x),
which equals −1/ln2 at x = 0. To check this numerically, we plug
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x = 10−3 into the original expression. The result is −1.44219, which is
very close to −1/ln2 = −1.44269 . . ..

page 68, problem 5:

L’Hôpital’s rule only works when both the numerator and the denomi-
nator go to zero.

page 68, problem 6: Applying l’Hôpital’s rule once gives

lim
u→0

2u

eu − e−u
,

which is still an indeterminate form. Applying the rule a second time,
we get

lim
u→0

2

eu + e−u
= 1 .

As a numerical check, plugging u = 0.01 into the original expression
results in 0.9999917.

page 68, problem 7: L’Hôpital’s rule gives cos t/1→ −1. Plugging in
t = 3.1 gives -0.9997.

page 68, problem 8: Let u = 1/x. Then

df/dx

dg/dx
=

df/du

dg/du
,

simply by algebraic manipulation of the infinitesimals. (If we want to
interpret these quantities as derivatives, then our notational convention
is that they stand for the standard parts of the quotients of the infinites-
imals, in which case the equality is only for the standard parts.) This
equality holds not just in the limit but everywhere that the functions
are differentiable. The expression on the left is the thing whose limit
we’re trying to prove equals lim f/g. The right-hand side is equal to
lim f/g by the previously established form of l’Hôpital’s rule.

page 68, problem 9: By the definition of continuity in terms of in-
finitesimals, the function is continuous, because an infinitesimal change
dx leads to a change dy = a dx in the output of the function which is
likewise infinitesimals. (This depends on the fact that a is assumed to
be real, which implies that it is finite.)

Continuity in terms of the Weierstrass limit holds because we can take
δ = ε/a.
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Solutions for chapter 4

page 83, problem 1:

a := 0;

b := 1;

H := 1000;

dt := (b-a)/H;

sum := 0;

t := a;

While (t<=b) [

sum := N(sum+Exp(x^2)*dt);

t := N(t+dt);

];

Echo(sum);

The result is 1.46.

h / Problem 2.

page 83, problem 2:
The derivative of the cosine is minus the sine, so to get a function whose



189

derivative is the sine, we need minus the cosine.∫ 2π

0

sinxdx

= (− cosx)|2π0
= (− cos 2π)− (− cos 0)

= (−1)− (−1)

= 0

As shown in figure h, the graph has equal amounts of area above and
below the x axis. The area below the axis counts as negative area, so
the total is zero.

page 83, problem 3:

i / Problem 3.

The rectangular area of the graph is 2, and the area under the curve
fills a little more than half of that, so let’s guess 1.4.

∫ 2

0

−x2 + 2x =

(
−1

3
x3 + x2

)∣∣∣∣2
0

= (−8/3 + 4)− (0)

= 4/3

This is roughly what we were expecting from our visual estimate.
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page 83, problem 4:
Over this interval, the value of the sin function varies from 0 to 1, and
it spends more time above 1/2 than below it, so we expect the average
to be somewhat greater than 1/2. The exact result is

sin =
1

π − 0

∫ π

0

sinxdx

=
1

π
(− cosx)|π0

=
1

π
[− cosπ − (− cos 0)]

=
2

π
,

which is, as expected, somewhat more than 1/2.

page 83, problem 5:
Consider a function y(x) defined on the interval from x = 0 to 2 like
this:

y(x) =

{
−1 if 0 ≤ x ≤ 1

1 if 1 < x ≤ 2

The mean value of y is zero, but y never equals zero.

page 83, problem 6:
Let ẋ be defined as

ẋ(t) =

{
0 if t < 0

1 if t ≥ 0

Integrating this function up to t gives

x(t) =

{
0 if t ≤ 0

t if t ≥ 0

The derivative of x at t = 0 is undefined, and therefore integration
followed by differentiation doesn’t recover the original function ẋ.

page 83, problem 8: First we put the integrand into the more familiar
and convenient form cxp, whose integral is (c/(p + 1))xp+1.

√
bx
√
x =

b1/2x3/4. Applying the general rule, the result is (4/7)b1/2x7/4.

page 84, problem 11: The claim is false for indefinite integrals, since
indefinite integrals can have a constant of integration. So, for example,
a possible indefinite integral of x2 is x3/3 + 7, which is neither even nor
odd. The fundamental theorem doesn’t even refer to indefinite integrals,
which are simply defined through inverse differentiation.
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Let’s fix the claim by changing g to a definite integral, g(x) =∫ x
0
f(u) du. The claim is now true. However, the proof still doesn’t

quite work. We’ve established that all odd functions have even deriva-
tives, but we haven’t ruled out possibilities such as functions that are
neither even nor odd, but that have even derivatives.

Solutions for chapter 5
page 99, problem 16:

It’s pretty trivial to generalize from e to b. If we write bx as ex ln b, then
we can substitute u = x ln b and reduce the b 6= e case to b = e.

The generalization of the exponent of x from 2 to a is less straightfor-
ward. To do it with a = 2, we needed two integrations by parts, so
clearly if we wanted to do a case with a = 37, we could do it with 37
integrations by parts. However, we would have no easy way to write
down the complete answer without going through the whole tedious
calculation. Furthermore, this is only going to work if a is a positive
integer.

page 99, problem 18: The obvious substitution is u = xp, which leads
to the form

∫
euu1/p−1 du. If the exponent 1/p−1 equals a nonnegative

integer n, then through n integrations by parts, we can reduce this to
the form

∫
ex dx. This requires p = 1, 1/2, 1/3, . . .

page 99, problem 19: This is a mess if attacked by brute force. The
trick is to reexpress the function using partial fractions:

x2 + 1

x3 − x
=

x2 + 1

2(x+ 1)
+

x2 + 1

2(x− 1)
− x2 + 1

x
.

Writing u = x+ 1 and v = x− 1, this becomes

u−1 + v−1 − x−1 + . . . ,

where . . . represents terms that will not survive multiple differentiations.
Since du/dx = dv/dx = 1, the chain rule tells us that differentiation
with respect to u or v is the same as differentiation with respect to x.
The result is 100!(u−101 +v−101−x−101), where the notation 100! means
1× 2× . . . 100.

Solutions for chapter 6

page 104, problem 4:
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The method of finding the indefinite integral is discussed in ex-
ample 70 on p. 91 and problem 16 on p. 99. The result is
−(ln 2)−3e−u

(
−u2 − 2u+ 2

)
, where u = −x ln 2. Plugging in the limits

of integration, we obtain 2(ln 2)−3.

Solutions for chapter 7

page 114, problem 1:

We can define the sequence f(n) as converging to ` if the following is
true: for any real number ε, there exists an integer N such that for all n
greater than N , the value of f lies within the range from `− ε to `+ ε.

page 114, problem 2:

(a) The convergence of the series is defined in terms of the convergence
of its partial sums, which are 1, 0, 1, 0, . . . In the notation used in the
definition given in the solution to problem 1 above, suppose we pick
ε = 1/4. Then there is clearly no way to choose any numbers ` and N
that would satisfy the definition, for regardless of N , ` would have to
be both greater than 3/4 and less than 1/4 in order to agree with the
zeroes and ones that occur beyond the Nth member of the sequence.

(b) As remarked on page 106, the axioms of the real number system,
such as associativity, only deal with finite sums, not infinite ones. To see
that absurd conclusions result from attempting to apply them to infinite
sums, consider that by the same type of argument we could group the
sum as 1 + (−1 + 1) + (−1 + 1) + . . ., which would equal 1.

page 114, problem 3:

The quantity xn can be reexpressed as en ln x, where lnx is negative
by hypothesis. The integral of this exponential with respect to n is a
similar exponential with a constant factor in front, and this converges
as n approaches infinity.

page 114, problem 4:

(a) Applying the integral test, we find that the integral of 1/x2 is −1/x,
which converges as x approaches infinity, so the series converges as well.

(b) This is an alternating series whose terms approach zero, so it con-
verges. However, the terms get small extremely slowly, so an extraor-
dinarily large number of terms would be required in order to get any
kind of decent approximation to the sum. In fact, it is impossible to
carry out a straightforward numerical evaluation of this sum because
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it would require such an enormous number of terms that the rounding
errors would overwhelm the result.

(c) This converges by the ratio test, because the ratio of successive terms
approaches 0.

(d) Split the sum into two sums, one for the 1103 term and one for
the 26390k. The ratio of the two factorials is always less than 44k,
so discarding constant factors, the first sum is less than a geometric
series with x = (4/396)4 < 1, and must therefore converge. The second
sum is less than a series of the form kxk. This one also converges, by
the integral test. (It has to be integrated with respect to k, not x,
and the integration can be done by parts.) Since both separate sums
converge, the entire sum converges. This bizarre-looking expression was
formulated and shown to equal 1/π by the self-taught genius Srinivasa
Ramanujan (1887-1920).

page 114, problem 5: E.g.,
∑∞
n=0 sinn diverges, but the ratio test

won’t establish that, because the limit limn→∞ | sin(n+ 1)/ sin(n)| does
not exist.

page 116, problem 14: The nth term an can be rewritten as 2/[n(n+
1)], and using partial fractions this can be changed into 2/n−2/(n+1).
Let the partial sums be sn =

∑n
1 an. For insight, let’s write out s3:

s3 =

(
2

1
− 2

2

)
+

(
2

2
− 2

3

)
+

(
2

3
− 2

4

)
This is called a telescoping series. The second part of one term cancels
out with the first part of the next. Therefore we have

s3 =
2

1
− 2

4
,

and in general

sn =
2

1
− 2

n+ 1
.

Letting n→∞, we find that the series sums to 2.

page 116, problem 17: Yes, it converges. To see this, consider that its
graph consists of a series of peaks and valleys, each of which is narrower
than the last and therefore has less area. In fact, the width of these
humps approaches zero, so that the area approaches zero. This means
that the integral can be represented as a decreasing, alternating series
that approaches zero, which must converge.
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page 115, problem 13: There are certainly some special values of x
for which it does converge, such as 0 and π. For a general value of x,
however, things become more complicated. Let the nth term be given
by the function t(n). |t| converges to a limit, since the first application
of the sine function brings us into the range 0 ≤ |t| ≤ 1, and from
then on, |t| is decreasing and bounded below by 0. It can’t approach a
nonzero limit, for given such a limit t∗, there would always be values of
t slightly greater than t∗ such that sin t was less than t∗. Therefore the
terms in the sum approach zero. This is necessary but not sufficient for
the series to converge.

Once t gets small enough, we can approximate the sine using a Taylor
series. Approximating the discrete function t by a continuous one, we
have dt/ dn ≈ −(1/6)t3, which can be rewritten as t−3 dt ≈ −(1/6) dn.
This is known as separation of variables. Integrating, we find that at
large values of n, where the constant of integration becomes negligible,
t ≈ ±

√
3/n. The sum diverges by the integral test. Therefore the sum

diverges for all values of x except for multiples of π, which cause t to hit
zero immediately without passing through the region where the Taylor
series is a good approximation.

page 117, problem 20: Our first impression is that it must converge,
since the 2−n factor shrinks much more rapidly than the n2 factor.
To prove this rigorously, we can apply the integral test. The relevant
improper integral was carried out in problem 4 on p. 104.

Finding the sum is far more difficult, and there is no obvious technique
that is guaranteed to work. However, the integral test suggests an ap-
proach that does lead to a solution. The fact that the indefinite integral
can be evaluated suggests that perhaps the partial sum

Sn =

n∑
j=0

j22−j

can also be evaluated. Furthermore, the fact that the integral was of
the form 2−xP (x), for some polynomial x, suggests that perhaps Sn is
of the same form. Based on this conjecture, we try to determine the
unknown coefficients in P (n) = an2 + bn+ c.

Sn − Sn−1 = n22−n

n22−n = 2−n
[
−an2 + (4a− b)n− 2a+ 2b− c

]
Solving for a, b, and c results in P (n) = −n2 − 4n − 6. This gives the
correct value for the difference Sn − Sn−1, but doesn’t give Sn = 0 as
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it should. But this is easy to fix simply by changing the form of our
conjectured partial sum slightly to Sn = 2−nP (n) + k, where k = 6.
Evaluating limn→∞ Sn, we get 6.

page 117, problem 21: The function cos2 averages to 1/2, so we
might naively expect that cosn would average to about 2−n/2, in which
case the sum would converge for any value of p whatsoever. But the
average is misleading, because there are some “lucky” values of n for
which cos2 n ≈ 1, and these will have a disproportionate effect on the
sum. We know by the integral test that

∑
1/n diverges, but

∑
1/n2

converges, so clearly if p ≥ 2, then even these occasional “lucky” terms
will not cause divergence.

What about p = 1? Suppose we have some value of n for which cos2 n =
1 − ε, where ε is some small number. If this is to happen, then we
must have n = kπ + δ, where k is an integer and δ is small, so that
cos2 n ≈ 1− δ2, i.e., ε ≈ δ2. This occurs with a probability proportional
to δ, and the resulting contribution to the sum is about (1 − δ2)n/n,
which by the binomial theorem is roughly of order of 1/n if nδ2 ∼ 1.
This happens with probability ∼ n−1/2, so the expected value of the
nth term is ∼ n−3/2. Since

∑
n−3/2 converges by the integral test, this

suggests, but does not prove rigorously, that we also get convergence for
p = 1.

A similar argument suggests that the sum diverges for p = 0.

Answers to self-checks for chapter 9

page 126, problem 9: First we rewrite the integrand as

1

4

(
eix + e−ix

) (
e2ix + 2−2ix

)
=

1

4

(
e3ix + e−3ix + eix + e−ix

)
.

The indefinite integral is

1

12i

(
e3ix − e−3ix

)
+

1

4i

(
eix − e−ix

)
Evaluating this at 0 gives 0, while at π/2 we find 1/3. The result is 1/3.
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page 126, problem 8:

sin(a+ b) =
(
ei(a+b) − e−i(a+b)

)
/2i

=
(
eiaeib − e−iae−ib

)
/2i

= [(cos a+ i sin a)(cos b+ i sin b)− (cos a− i sin a)(cos b− i sin b)] /2i

= [(cos a+ i sin a)(cos b+ i sin b)− (cos a− i sin a)(cos b− i sin b)] /2i

= cos a sin b+ sin a cos b

By a similar computation, we find cos(a+ b) = cos a cos b− sin a sin b.

page 126, problem 10: If z3 = 1, then we know that |z| = 1, since
cubing z cubes its magnitude. Cubing z triples its argument, so the
argument of z must be a number that, when tripled, is equivalent to an
angle of zero. There are three possibilities: 0× 3 = 0, (2π/3)× 3 = 2π,
and (4π/3)×3 = 4π. (Other possibilities, such as (32π/3), are equivalent
to one of these.) The solutions are:

z = 1, e2πi/3, e4πi/3

page 126, problem 11: We can think of this as a polynomial in x or a
polynomial in y — their roles are symmetric. Let’s call x the variable.
By the fundamental theorem of algebra, it must be possible to factor it
into a product of three linear factors, if the coefficients are allowed to
be complex. Each of these factors causes the product to be zero for a
certain value of x. But the condition for the expression to be zero is
x3 = y3, which basically means that the ratio of x to y must be a third
root of 1. The problem, then, boils down to finding the three third roots
of 1, as in problem 10. Using the result of that problem, we find that
there are zeroes when x/y equals 1, e2πi/3, and e4πi/3. This tells us that
the factorization is (x− y)(x− e2πi/3y)(x− e4πi/3y).

The second part of the problem asks us to factorize as much as possible
using real coefficients. Our only hope of doing this is to multiply out
the two factors that involve complex coefficients, and see if they produce
something real. In fact, we can anticipate that it will work, because the
coefficients are complex conjugates of one another, and when a quadratic
has two complex roots, they are conjugates. The result is (x− y)(x2 +
xy + y2).

page 126, problem 14: Applying the differential equation to the form
suggested gives abxb−1 = ab+1xb

2

. The exponents must be equal on
both sides, so b must be a solution of b2 − b + 1. The solutions are
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b = (1 ±
√

3i)/2. For a more detailed discussion of this cute problem,
see mathoverflow.net/questions/111066.

page 127, problem 15: (a) Let m = 10, 000. We know that integrals
of this form can be done, at least in theory, using partial fractions.
The ten thousand roots of the polynomial will be ten thousand points
evenly spaced around the unit circle in the complex plane. They can
be expressed as rk = e2πk/m for k = 0 to m − 1. Since all the roots
are unequal, the partial-fraction form of the integrand contains only
terms of the form Ak/(x− rk). Integrating, we would get a sum of ten
thousand terms of the form Ak ln(x− rk).
(b) I tried inputting the integral into three different pieces of symbolic
math software: the open-source packages Yacas and Maxima, and the
web-based interface to Wolfram’s proprietary Mathematica software at
integrals.com. Maxima gave a partially integrated result after a couple
of minutes of computation. Yacas crashed. Mathematica’s web interface
timed out and suggested buying a stand-alone copy of Mathematica. All
three programs probably embarked on the computation of the Ak by
attempting to solve 10,000 equations in the 10,000 unknowns Ak, and
then ran out of resources (either memory or CPU time).
(c) The expressions look nicer if we let ω = e2π/m, so that rk = ωk. The
residue method gives

1

xm − 1
=
∑ 1

(x− ωk)mωk(m−1)
.

Integration gives∫
dx

xm − 1
=
∑ 1

mωk(m−1)
ln
(
x− ωk

)
.

(Thanks to math.stackexchage.com user zulon for suggesting the
residue mathod, and to Robert Israel for pointing out that for
|x| < 1 this can also be expressed as a hypergeometric function:
(−x) 2F1

(
1
m , 1; 1 + 1

m ;xm
)
.)
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30 Berkeley: public domain. 31 Robinson: public-domain 1951 passport photo.
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D References and
Further Reading

Further Reading

The amount of high-quality material on elementary calculus available
for free online these days is an embarrassment of riches, so most of my
suggestions for reading are online. I’ll refer to books in this section only
by the surname of the first author; the references section below tells you
where to find the book online or in print.

The reader who wants to learn more about the hyperreal system might
want to start with Stroyan and the Mathforum.org article. For more
depth, one could next read the relevant parts of Keisler. The standard
(difficult) treatise on the subject is Robinson.

Given sufficient ingenuity, it’s possible to develop a surprisingly large
amount of the machinery of calculus without using limits or infinitesi-
mals. Two examples of such treatments that are freely available online
are Marsden and Livshits. Marsden gives a geometrical definition of the
derivative similar to the one used in ch. 1 of this book, but in my opin-
ion his efforts to develop a sufficient body of techniques without limits
or infinitesimals end up bogging down in complicated formulations that
have the same flavor as the Weierstrass definition of the limit and are
just as complicated. Livshits treats differentiation of rational functions
as division of functions.

Tall gives an interesting construction of a number system that is smaller
than the hyperreals, but easier to construct explicitly, and sufficient to
handle calculus involving analytic functions.
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Marsden and Weinstein, Calculus Unlimited,
www.cds.caltech.edu/~marsden/books/Calculus_Unlimited.html

Mathforum.org, Nonstandard Analysis and the Hyperreals,
http://mathforum.org/dr.math/faq/analysis_hyperreals.html

Robinson, A., Non-Standard Analysis, Princeton University Press

Stroyan, K., A Brief Introduction to Infinitesimal Calculus,
www.math.uiowa.edu/~stroyan/InfsmlCalculus/InfsmlCalc.htm

Tall, D., Looking at graphs through infinitesimal microscopes,
windows and telescopes, Mathematical Gazette, 64, 22-49,
http://www.warwick.ac.uk/staff/David.Tall/downloads.html



E Reference
E.1 Review

Algebra

Quadratic equation:

The solutions of ax2 + bx+ c = 0

are x =
−b±
√
b2−4ac

2a
.

Logarithms and exponentials:

ln(ab) = ln a+ ln b

ea+b = eaeb

ln ex = eln x = x

ln(ab) = b ln a

Geometry, area, and volume

area of a triangle of
base b and height h

= 1
2
bh

circumference of a
circle of radius r

= 2πr

area of a circle of ra-
dius r

= πr2

surface area of a
sphere of radius r

= 4πr2

volume of a sphere of
radius r

= 4
3
πr3

Trigonometry with a right
triangle

sin θ = o/h cos θ = a/h tan θ = o/a

Pythagorean theorem: h2 = a2 + o2

Trigonometry with any triangle

Law of Sines:

sinα

A
=

sinβ

B
=

sin γ

C

Law of Cosines:

C2 = A2 +B2 − 2AB cos γ

E.2 Hyperbolic
functions

sinhx =
ex − e−x

2

coshx =
ex + e−x

2

tanhx =
sinhx

coshx
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E.3 Calculus
Let f and g be functions of x, and let
c be a constant.

Linearity of the derivative:

d

dx
(cf) = c

df

dx

d

dx
(f + g) =

df

dx
+

dg

dx

Rules for differentiation

The chain rule:

d

dx
f(g(x)) = f ′(g(x))g′(x)

Derivatives of products and quo-
tients:

d

dx
(fg) =

df

dx
g +

dg

dx
f

d

dx

(
f

g

)
=
f ′

g
− fg′

g2

Integral calculus

The fundamental theorem of calculus:∫
df

dx
dx = f

Linearity of the integral:∫
cf(x) dx = c

∫
f(x) dx∫

[f(x) + g(x)] =

∫
f(x) dx+

∫
g(x) dx

Integration by parts:∫
f dg = fg −

∫
g df

Table of integrals

∫
xm dx =

1

m+ 1
xm+1 + c, m 6= −1∫

dx

x
= ln |x|+ c∫

sinxdx = − cosx+ c∫
cosxdx = sinx+ c∫
ex dx = ex + c∫
lnxdx = x lnx− x+ c∫

dx

1 + x2
= tan−1 x+ c∫

dx√
1− x2

= sin−1 x+ c∫
coshxdx = sinhx+ c∫
sinhxdx = coshx+ c∫
tanxdx = − ln | cosx|+ c∫
cotxdx = ln | sinx|+ c∫
secx dx = ln | secx+ tanx|+ c∫
sec2 xdx = tanx+ c∫
csc2 x dx = − cotx+ c
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derivative
chain rule, 37
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of a second-order polynomial, 14
of square root, 36
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of the logarithm, 40
of the sine, 28, 141
product rule, 35
properties of, 14
second, 15
undefined, 18

Descartes, Réne, 133
differentiation

computer-aided, 43
numerical, 45
symbolic, 43

implicit, 86

errors
propagation of, 19

Euclid, 105
Euler, 116
Euler’s formula, 122
Euler, Leonhard, 123
exponential

definition of, 151
derivative of, 39

extreme value theorem, 56
proof, 159

extremum of a function, 17

factorial, 9, 110
fission, 137
fundamental theorem of algebra

proof, 162
statement, 122
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fundamental theorem of calculus
proof, 154
statement, 74

Galileo, 11
Gauss, Carl Friedrich, 7

portrait, 7
geometric series, 29, 105

halo, 33
Holditch’s theorem, 84
hyperbolic cosine, 48
hyperbolic tangent, 49
hyperinteger, 150
hyperreal number, 31

imaginary number, 119
implicit differentiation, 86
improper integral, 101
indeterminate form, 63
Inf (calculator), 27
infinitesimal number, 25

criticism of, 30
safe use of, 30

infinity, 25
inflection point, 17
integral, 13

definite
definition, 74

improper, 101
indefinite

definition, 73
iterated, 129
properties of, 75

integral test, 107
integration

computer-aided
numerical, 73
symbolic, 44

methods of
by parts, 89
change of variable, 87
partial fractions, 91, 124
substitution, 87

intermediate value theorem, 54, 156
iterated integral, 129

Kepler, Johannes, 85

l’Hôpital’s rule
general form, 65

proofs, 152
simplest form, 61

Leibniz notation
derivative, 26
infinitesimal, 26
integral, 73

Leibniz, Gottfried, 25
limit, 31

definition
infinitesimals, 58
Weierstrass, 58

liquid drop model, 137
logarithm

definition of, 40

magnitude of a complex number, 120
maximum of a function, 17
mean value theorem

proof, 161
statement, 76

minimum of a function, 17
model, 145
moment of inertia, 131

Newton’s method, 85
Newton, Isaac, 10
normalization, 77
nucleus, 137

partial fractions, 91, 124
residue method, 94

periodic function, 178
planets, motion of, 85
polar coordinates, 133
probability, 77
product rule, 35
propagation of errors, 19

quantifier, 143
quotient

derivative of, 42

radius of convergence, 111



INDEX 207

ratio test, 107
residue method, 94
Robinson, Abraham, 31
Rolle’s theorem, 76

sequence, 105
series

geometric, 29, 105
infinite, 105
Taylor, 108
telescoping, 193

series, infinite, 109
sine

derivative of, 28
Sophomore’s dream, 115
spherical coordinates, 135
standard deviation, 81
standard part, 34
substitution, 87
synthetic division, 29

tangent line
formal definition, 139
informal definition, 12

Taylor series, 108
telescoping series, 193
transfer principle, 32

applied to functions, 150

volume
in cylindrical coordinates, 135
in spherical coordinates, 136

well-formed formula, 144
work, 77

Zeno’s paradox, 105


