Intermediate General and Applied Science Chemistry Module: Lecture Manual

Developed by Christine Miller © 2018

The Intermediate General and Applied Science Chemistry Module: Lecture Manual by Christine Miller is licensed under a <u>Creative Commons Attribution-ShareAlike 4.0 International Licence</u>, except where otherwise noted.

Table of Contents

WELCOME AND THE SCIENTIFIC METHOD	3
MEASUREMENT	6
MATTER AND ATOMS	9
THE PERIODIC TABLE	14
CHEMICAL COMPOUNDS	21
CHEMICAL EQUATIONS	29
ACID-BASE CHEMISTRY	33
CHEMICAL REACTIONS	36

Welcome and the Scientific Method

Learning Objectives

At the end of this unit, you will be able to:

- Describe the nature of science and the scientific method, including its limitations.
- List the stages in the cycle of the scientific method.
- Identify, in a given experiment:
 - The hypothesis
 - The independent variable
 - The dependent variable
 - The control(s)
- Describe some of the methods of dissemination of scientific research.

Science and its Limits

Science is	Science is not					

Scientific Method

The scientific method is an organized way of learning about the world around us.

It generally begins with an ______, the formation of a ______, and the creation of an ______ specifically designed to determine if the hypothesis is correct or incorrect.

Experimental Design

- An experiment is an activity or procedure designed to test a ______.
- A hypothesis is typically an _____ statement.
- A hypothesis is the starting point for designing an experiment.

In an experiment, there are two types of variables:

An independent variable is what we _____.

A dependent variable is what we ______

Controls are an important part of experimental design. They serve one or both purposes of:

- Setting a standard to which other results are compared.
- Ensuring a fair test.

TRY IT OUT

Work with a partner and choose one of the following scenarios. Determine what a possible hypothesis may be, what sort of experimental design might work, and what your dependent variable, independent variable and controls might be.

Scenario 1

 Amy thinks her mom should only buy namebrand paper towels for cleaning up spills, but her mom thinks that the less expensive ones from the dollar store are just as good. How can you, as a good friend, help resolve this issue using the scientific method?

Scenario 2

• You buy your goldfish some food and when you open the container, you see that the granules of food inside come in three different colours: red, orange and brown. You wonder if your fish have a preference for any of these colours. How can you use the scientific method to figure dthis out?

Scenario 3

• The neighbour who lives to the left of your house firmly believes that her compost is the "best compost" for growing flowers. Your neighbour who lives to the right also believes his compost is the "best compost" for flowers. How can you use use the scientific method to settle this friendly competition once and for all?

We chose scenario _____. I worked with ______ and _____.

Hypothesis: (What do you think will happen?)

Experimental Design: (What do you plan to do?)

Independent Variable: (What will you manipulate?)

Dependent Variable: (What will you measure?)

Controls: (How will you keep it "fair"?)

Organizing Data

Once you have recorded your results, you need to organize your data in a way that makes sense to you and others. Then you need to see if your data shows any trends or relationships.

How would you organize your data?

Do it here:

Once you have organized your data and analyzed your results, you need to share them with the scientific community. This can be in the form of:

- _____
- •
- •
- _____

It is also important to consider with whom you are sharing your information. This may change the way in which you share your information based on who will be viewing it.

• TALK IT OUT

How would you present the ice cream preference data to your friends? The owner of an ice cream shop? A marketing executive promoting a particular flavor? Someone who has never tried ice cream?

Measurement

Learning Objectives

At the end of this unit, you will be able to:

- Define measurement.
- Match certain types of measurement with their appropriate units.
- Identify the purpose of measurement in the field of Chemistry.

Measurement is the process of comparing a _____ of an object to a

Units

The referent is what we call a _____.

List some properties we can measure and their corresponding unit:

TRY IT OUT

How long is each line? What are the units? (The measurement is not to actual scale, but that is OK.)

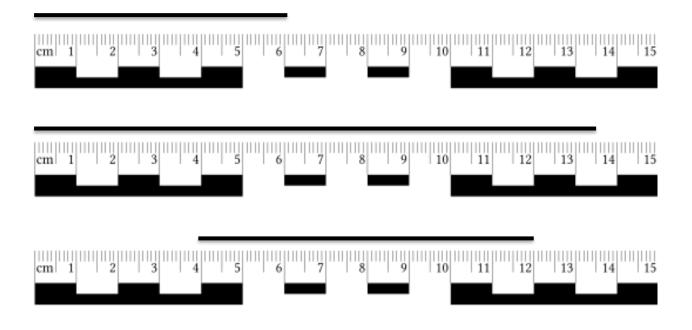
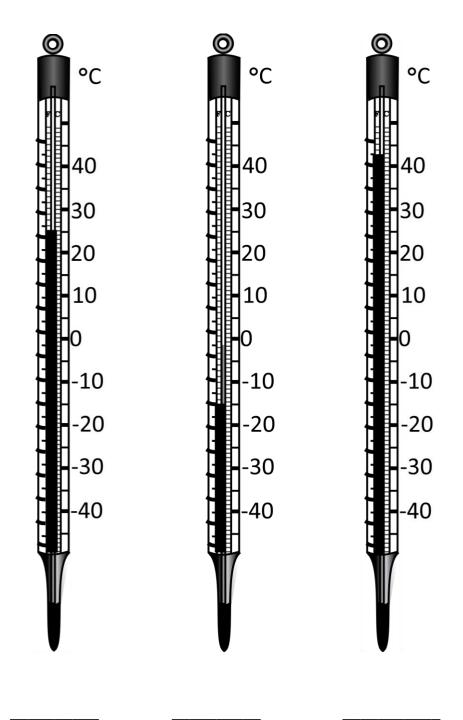



Image Source: File:Ruler Lineal 25 cm Zentimeter and Millimeters on DIN A4, by Erik Streb [CC0 1.0], via Wikimedia Commons

What is the temperature? What are the units?

Image Source: Adapted from <u>Advanced Thermometer</u>, by Tom, from openclipart.org, [<u>CC0 1.0</u>].

Matter and Atoms

Learning Objectives

At the end of this unit, you will be able to:

- Define the term "matter."
- Differentiate between what is and what is not matter.
- Describe the particle model of matter.
- Define the terms "atom" and "element."
- Identify and describe the three types of subatomic particles.
- Compare properties of the three states of matter.
- Identify and describe different examples of mixtures.

Matter

Matter is anything that has both ______ and _____.

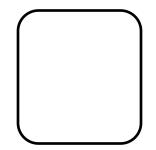
Which of the following are examples of matter?

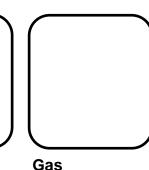
- Helium
- Feathers
- Light
- Cement
- Vibrations
- Water
- Electricity (this is a tricky one!)

Particle Model of Matter

Particles are always _____.

Particles at a ______ temperature move ______ than particles at a ______ temperature.


Particles in a	_ are closer together than the particles in a liquid, a	and
particles in a liquid are close	r together than the particles in a	


States of Matter

The three states of matter are:

- Solid
- Liquid
- Gas

DRAW IT OUT

Solid Atoms are very close together and do not exhibit very much movement. Solids maintain their shape when placed in a container. Liquid Atoms are slightly spread out and move in a random pattern. Liquids take the shape of the bottom of any container they are placed in.

Atoms are very spread out and move very quickly in an extremely random manner. Gases take the shape of the entire container they are placed in.

A substance can change from one state to another depending on temperature changes, and how far apart the atoms are.

There are specific terms for each change in state:

As temperatures increase:

- solid \rightarrow liquid = _____
- liquid \rightarrow gas = _____
- solid \rightarrow gas = _____

As temperatures decrease:

- ∘ gas → liquid = _____
- liquid \rightarrow solid = _____
- gas \rightarrow solid = _____

TRY IT OUT

- Your ice cream has now turned into ice cream soup. It has ______.
- You are boiling water for tea, and some of the water has come out of the kettle as steam. It has ______.
- You are making Jello. You add the powder to boiling water and then put it into the fridge for a few hours. It has _____.

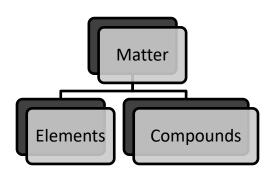
• You are taking a very hot shower and now your mirror is covered in drops of water. The water in the air hit the cold surface of the mirror and has

Atoms

Matter is made up of atoms.

Atoms are the smallest unit of matter that retain their ______.

Atoms of one kind differ from atoms of another kind.


Atoms take up ______ and have ______.

Atomic Theory was developed in the early 1800s by John Dalton. It states:

- All matter is made up of small particles called atoms
- Atoms cannot be created, destroyed or divided into smaller particles
- All atoms of the same element have the same properties
- Compounds are created when atoms of different elements combine

Elements are made up of ______. You can't break them down into anything simpler.

Compounds are made up of ______. You can break compounds down into elements again through chemical processes.

Properties

Each element and compound has a unique set of **properties**. Properties are separated into two types: physical and chemical

	Physical Properties
•	
•	
•	
•	
•	

Chemical Properties

Subatomic Particles

Atoms are made up of three types of subatomic particles:

- Protons
- Neutrons
- Electrons

Each of these particles has a particle mass, charge, and location

Protons

- Protons exist in the _____ of the atom
- They carry a _____ charge (1+)
- They have a mass of _____ atomic unit

The number of protons in an atom determines the type element that atom is.

For example, is an atom has 2 protons, it is a Helium atom, no matter how many neutrons or electrons it may have.

Neutrons

- Neutrons exist in the _____ of the atom
- Neutrons have _____ charge, they are considered neutral
- They have a mass of _____ atomic unit

Neutrons are a critical part of the nucleus of an atom because they provide a buffer so that positively charged protons don't repel each other and tear the nucleus apart.

Neutrons also affect atomic mass and play a role in radioactivity.

Electrons

- Electrons exist _____ the nucleus
- They carry a _____ charge (1-)

They have such a small mass that it is considered ______

Electrons are crucial in the ability of atoms for form compounds. All chemical bonding is due to interactions between the nucleus and the electrons in neighboring atoms.

	Protons	Neutrons	Electrons
Location			
Charge			
Mass			

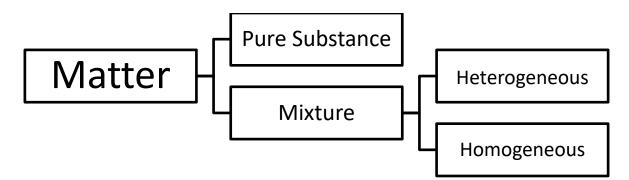
FILL IT OUT

Atoms and lons

When the numbers of electrons and protons in a single atom are _____, then the atom has a neutral charge (no charge)

When the number of electrons and protons is _____, the atom is termed an **ion.**

An **ion** is an atom or molecule with a net electric charge due to the gain or loss of one or more electrons.


The Periodic Table

The **Periodic Table** is an organized way of displaying all known elements. It is made up of rows and columns; elements are placed from the top left in ascending order of the number of protons in their nucleus. We'll be revisiting the periodic table very soon!

Mixtures of Matter

Not only can matter be in a specific state, but it can also exist as a **pure substance** or as a **mixture**

- A pure substance is matter that contains ______
- A mixture is matter that contains ______

A specific mixture can be either **homogeneous** or **heterogeneous**.

- In a _____ mixture, particles are uniformly scattered, and the mixture will look uniform
- In a ______ mixture, particles are not uniformly scattered, and if the particles are large enough, you will be able to see the different particles in the mixture

The Periodic Table

Learning Objectives

At the end of this unit, you will be able to:

- Identify what type of information is presented in the periodic table.
- Explain how the periodic table organizes elements.
- Use the periodic table to determine information about a specific element.
- Use the periodic table to predict the properties of elements.
- Use the periodic table to draw Bohr and Lewis diagrams of specific elements.

Dmitri Mendeleev created the first periodic table of elements in 1869. He developed it based on 63 known elements, and by arranging these elements according to mass.

7	ი	ы	4	ω	2	Ц
87 Fr Francium 223	55 Cs Cesium 132.9	37 Rb Rubidium 85.47	19 K Potassium 39.10	11 Na Sodium 22.99	3 Li Lithium 6.941	1 H Hydrogen 1.008
88 Ra Radium 226	56 Ba Barium 137.3	38 Sr Strontium 87.62	20 Ca Calcium 40.08	12 Mg Magnesium 24.31	4 Be Beryllium 9.012	2
* *	*	39 Y Yttrium 88.91	21 Sc Scandium 44.96	ω		
104 Rf Ruther- fordium 261	72 Hf Hafnium 178.5	40 Zr Zirconium 91.22	22 Ti Titanium 47.88	4		
105 Db Dubnium 262	73 Ta ^{Tantalum} 180.9	41 Nb Niobium 92.91	23 V Vanadium 50.94	ч		
106 Sg Seaborgium 266	74 W Tungsten 183.8	42 Molyb- denum 95.94	24 Cr Chromium 52.00	6		Pe
107 Bh Bohrium 264	75 Re Rhenium 186.2	43 Tc Technetium 98	25 Mn Manganese 54.94	7		Periodic Table of the Elements
108 Hs Hassium 277	76 Os Osmium 190.2	44 Ru Ruthenium 101.1	26 Fe Iron 55.85	8		ic Ta
109 Mt Meitnerium 268	77 Ir Iridium 192.2	45 Rh Rhodium 102.9	27 Co Cobalt 58.93	9		ble
110 Ds Darmstad- tium 281	78 Pt Platinum 195.1	46 Pd Palladium 106.4	28 Ni Nickel 58.69	10		of th
111 Rg Roentgen- ium 272	79 Au Gold 197.0	47 Ag Silver 107.9	29 Cu Copper 63.55	11		e Ele
112 Cn Conipern -icium 285	80 Mg Mercury 200.6	48 Cd Cadmium 112.4	30 Zn Zinc 65.39	12		emer
	81 Tl Thallium 204.4	49 In Indium 114.8	31 Ga Gallium 69.72	13 Al Aluminum 26.98	5 B Boron 10.81	115
	82 Pb Lead 207.2	50 Sn Tin 118.7	32 Ge Germanium 72.61	14 Si Silicon 28.09	6 C Carbon 12.01	14
	83 Bi Bismuth 209.0	51 Sb Antimony 121.8	33 As Arsenic 74.92	15 P Phosphorus 30.97	7 N Nitrogen 14.01	15
	84 Polonium 209	52 Te Tellurium 127.6	34 Se Selenium 78.96	16 S Sulfur 32.07	8 O Oxygen 16.00	16
	85 At Astatine 210	53 lodine 126.9	35 Br Bromine 79.90	17 Cl Chlorine 35.45	9 F Flourine 19.00	17
	86 Rn Radon 222	54 Xe Xenon 131.3	36 Kr Krypton 83.80	18 Ar Argon 39.95	10 Ne 20.18	18 2 Helium 4.003

*

89 Actinium 227

90 **Th** Thorium 232.0

92 Uranium 238.0

93 **Np** Neptuniu 237

94 Pu Plutonium 244

95 Am Americium 243

96 Cm Curium 247

97 Bk Berkelium 247

98 Cf (Californium) 251

99 Es Insteinii 252

100 Fm Fermium 257

101 Mendelevium 258

102 **No** Nobelium 259

103 Lawrencium 262

91 Pa ^Proactiniun 231.0 *

57 **La** anthanum 138.9

58 **Ce** Cerium 140.1

59 Pr Praseodymium 140.9

60 Neodymium 144.2

61 Pm Promethium 145

62 Sm Samarium 150.4

63 **Eu** Europium 152.0

64 **Gd** Gadolinium 157.3

65 **Tb** Terbium 158.9

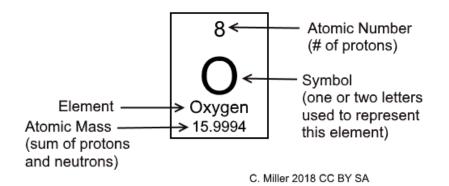
66 Dy Dysprosiu 162.5

67 **Ho** Holmium 164.9

68 **Er** Erbium 167.3

69 Tm Thulium 168.9

70 **Yb** Ytterbium 173.0


71 **Lu** Lutetium 175.0

C. Miller 2018 CC BY SA

How to Read the Periodic Table

A scientist can use the periodic table to quickly find information about a particular element. Elements are listed in increasing order of atomic number.

Each square on the periodic table gives a certain set of facts about the element:

TRY IT OUT

What is the atomic number of Silicon? _____

What is the symbol for lead? _____

What is the atomic mass of Radon? _____

What is the name of the element with the atomic number 99? _____

Elements are arranged according to their properties and behaviours.

Columns in the periodic table form groups. Groups react with other elements in

Rows in the periodic table form **periods.** Elements in the same **period** have

1	Alkali Metals 1 1 H	Alkaline Earth Metals 2	e Periodic Table of the Elements										Noble Gases 18 2 He					
2	з Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3	4	Transition Metals						12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	³¹ Gа	32 Ge	33 As	³⁴ Se	35 Br	³⁶ Кг
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	⁸⁰ Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	⁸⁶ Rn
7	87 Fr	88 Rd	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn						

*	57	58	59	60	61	62	⁶³	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Еи	Gd	Tb	Dy	Ho	Er	Er	Yb	Lu
**	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

C. Miller 2018 CC BY SA

Major Groups of the Periodic Table

Groups in the periodic table share behaviours—they react with other elements in the same way.

• Alkali Metals

Colour this group red on your periodic table.

- o _____ family of the periodic table
- Very reactive, many must be stored in _____, often reactive to

• Earth Metals

Colour this group orange on your periodic table.

- Second family of the periodic table
- o Sometimes called "alkaline"
- o Fairly reactive, do not dissolve in water, unchanged by heat

• Halogens

Colour this group yellow on your periodic table.

• 17th family of the periodic table

- Very _____ with most elements
- Very corrosive and/or harmful
- Examples: chlorine as an antiseptic

• Noble Gases

Colour this group blue on your periodic table.

- Odorless, colorless
- Very stable, _____
- o Examples: helium in balloons, argon in fluorescent tubes

Atoms and Elements

Electron arrangement determines the ______ of an atom.

Atoms can give away, take, or share electrons—when this happens we call it a chemical ______ or a chemical ______.

A chemical reaction results in a new substance _____

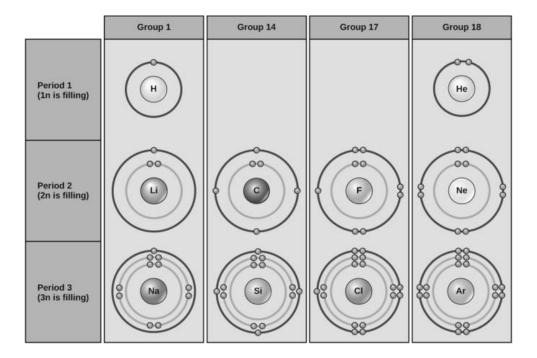
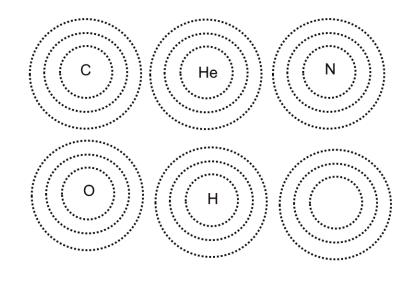
When two elements react to produce something new, a chemical reaction has occurred.

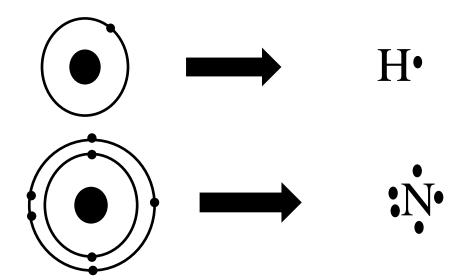
Electron Arrangement

- Electrons are always moving around the nucleus
- Electrons have a certain ______ they can occupy
- According to Bohr's model, electrons orbit the nucleus in a way similar to how ______
- Only a certain number of electrons can fit into one orbit
- Electrons always occupy the innermost (_____)
 orbital possible
- The number of electrons that can fit into the first orbital is 2.
- The second orbital can fit 8 electrons.
- The third and fourth orbitals can fit 18 electrons.

Reminder

An Electron is a subatomic particle. It carries a charge of -1 and exists outside the nucleus


Image Source: Steven Telleen, April 3, 2018, Human Physiology. Open Stax. https://cnx.org/contents/HNrg06vQ@5.13:mPjp2GYc@1/Fundametals-of-Matter-Elements-and-Their-Relationships#fig-ch02_01_06 [CC BY 4.0]

TRY IT OUT

Lewis Diagrams

- Only show electrons in the outermost orbit.
- Electrons are represented by dots accompanying the chemical symbol.

TRY IT OUT

	Group 2	
Be	Oxygen (8)	0
Mg	Sulfur (16)	S
Ca	Selenium (34)	Se
	Mg	Be Oxygen (8) Mg Sulfur (16)

Chemical Compounds

Learning Objectives

At the end of this unit, you will be able to:

- Differentiate between chemical and physical changes.
- Define the term "chemical reaction."
- Describe the role electrons play in chemical reactions.
- Compare and contrast covalent and ionic bonds.
- Describe hydrogen bonds.
- Read a chemical formula and determine which and how many atoms make up the compound.
- Name inorganic compounds based on a given chemical formula.

Physical and Chemical Change

There are two ways that you can change a substance:

- _____: does not change the substance's chemical make-up, and there is no rearrangement of atoms.
- _____: beginning material(s) are changed into a completely new compound due to a rearrangement of atoms.

Physical change is any change of phase or change in size of pieces in a sample.

Change of Phase	Change in size of pieces
Examples:	Examples:
•	•
•	•

Chemical change is a change in the identity of the matter, creating new substances with a new set of properties.

- The _____ all remain, but are _____ into new compounds.
- In this process, _____ are broken and/or made.
- This is called a _____.

Chemical Reactions

- In a _____, substances combine or degrade.
- The ______ are the starting materials for a chemical reaction.
- The ______ are the substances formed as a result of the reaction.

Chemical Equations

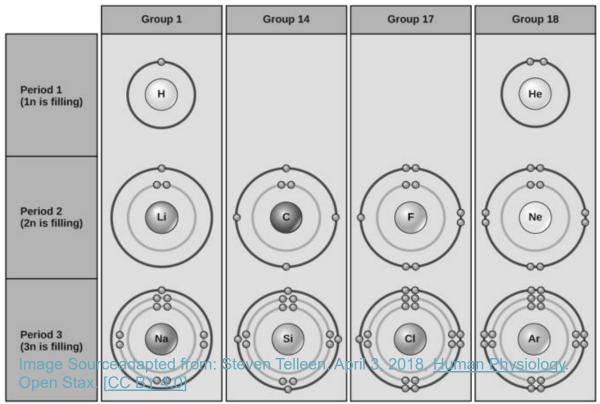
A ______ is the equation we write to describe the steps of the chemical reaction.

A chemical equation shows the chemicals ______ and _____ during a chemical reaction.

Chemical Reactions and Electrons

The chemical properties of a substance are ultimately determined by

_____ of the atoms that make up the reactants.


In a chemical reaction, atoms can be:

- _____
- •
- •

When this happens, a new substance is formed.

Electron Arrangement

- Electrons are always orbiting around the _____.
- Electrons have a certain energy level they occupy. We can refer to this as an
- Only a certain number of _____ can fit onto one orbit.
- Atoms have this innate desire for a _____ outer shell.

Chemical Bonding Rules

Chemical bonding follows two general rules:

- 1. It MUST result in a _____.
- It MUST result in ______. for all atoms involved.

These rules are satisfied as chemical compounds are created by donating, accepting or sharing electrons.

Bonding Makes Compounds

When two or more atoms have electrons interacting (being shared, donated or received), this makes a ______.

Compounds have different properties than the	that make
them up.	

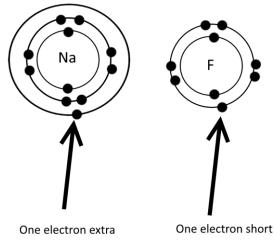
Three Main Types of Chemical Bonding

 Transfer of electrons One atom loses on or more electrons, the other gains 	 One or more electrons are shared between atoms 	 A weak attraction between two adjacent molecules A hydrogen atom is shared between molecules

Ionic Bonds

lonic bonds form as a result of the attraction between ions of opposite charge.

- _____ = an atom which has lost or gained an electron from/to the outer shell resulting in a + or – charge.
- Losing an electron = a _____ charged ion.
- Gaining an electron = a _____ charged ion.


So, an ionic bond is created by the pull of 2 or more oppositely charged ions resulting in a neutral compound.

lonic bonds form when electrons are donated and received between two or more atoms.

These bonds typically form between metals and non-metals.

This is because of the nature of the ______ of metals and non-metals.

In order to form ionic bonds, each atom needs to have a full outer shell of electrons. This often requires more than just two atoms.

Match made in heaven!

DRAW IT OUT

Bohr Diagram:

Ca Cl

Lewis Diagram:

Ca Cl

Chemical formula:

TRY IT OUT

How many of each type of atom are needed to satisfy each outer shell?

Lithium + Sulfur _____ Magnesium + Bromine _____ Beryllium + Oxygen _____

Subscripts and Coefficients

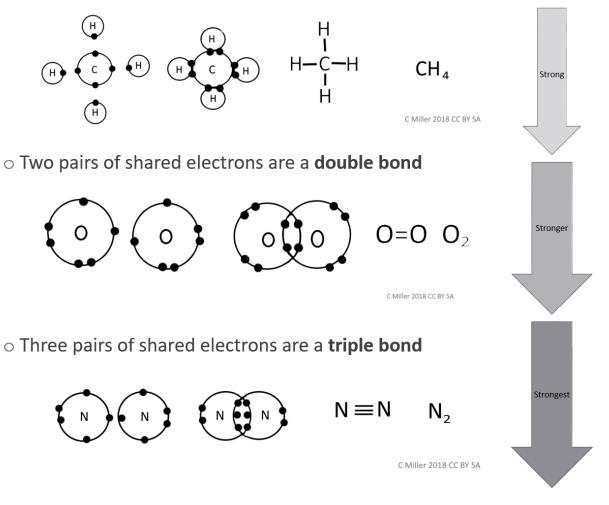
Subscripts show how many of a particular ______ are present.

Circle the subscript: CaCl₂

How many of each atom is present?

Coefficients show how many of a particular ______ are present.

Circle the coefficient: 2CaCl₂


How many of each atom is present?

Covalent Bonds

Covalent bonds occur when two or more atoms share electrons.

- One atom equally shares one or more of its electrons with another atom.
- Electron sharing is common between like atoms. Ex: Oxygen = O₂
- The resulting compound is neutral.

 \circ One pair of shared electrons is a single bond

FILL IT OUT

Ionic	VS.	Covalent

TRY IT OUT

Which of these chemical bonds are ionic? Which are covalent?

NaCl

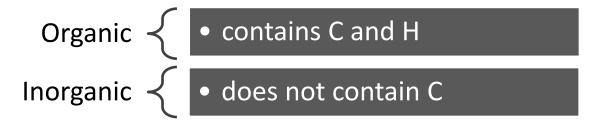
HCI

• MgBr₂

• O₂

C₆H₁₂O₆

MgBi
 CO₂


Compounds and Formulas

When we are talking about a particular compound, sometimes we will use the chemical formula—this formula gives more information about what atoms make up the compound than just its name.

FILL IT OUT

Compounds

There are two main categories of chemical compounds:

Name of Compound	Formula of Molecule	Elements Present	# of Atoms of Each
Water	H ₂ 0		
Carbon Dioxide	CO ₂		
Glucose	C ₆ H12O ₆		
Propane	C ₃ H ₈		
Hydrochloric Acid	HCI		
Sodium Acetate	NaC ₂ H ₃ O ₂		

FILL IT OUT

Name of Compound	Formula of Molecule	Organic or Inorganic
Water	H ₂ 0	
Carbon Dioxide	CO ₂	
Glucose	C ₆ H12O ₆	
Propane	C ₃ H ₈	
Hydrochloric Acid	HCI	
Sodium Acetate	NaC ₂ H ₃ O ₂	

Naming Inorganic Compounds

When naming a compound made of a metal and a non-metal you can follow these rules:

- The _____ name goes first.
- The ______ name goes second, but remove the original ending and add "ide."

Ex: Na+ CI = sodium chloride

TRY IT OUT

NO:			

CaF₂: _____

KCI: _____

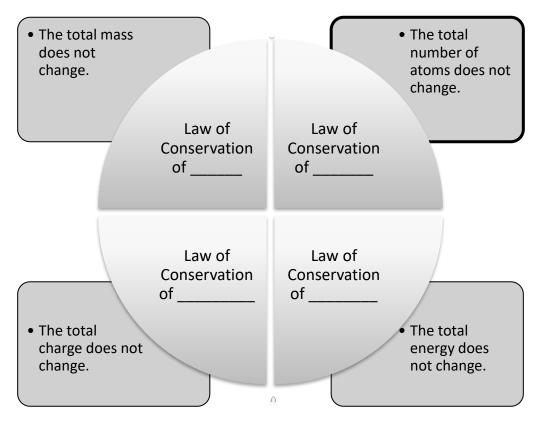
MgCl ₂ :	
---------------------	--

Chemical Equations

Learning Objectives

At the end of this unit, you will be able to:

- State the four conservation laws that apply to chemical reactions.
- Recognize if a chemical equation is balanced or not.
- Accurately follow the steps required to balance a chemical equation.


A **chemical equation** is the equation we write to describe the steps of the chemical reaction.

A chemical equation shows the chemicals used up and produced during a chemical reaction.

 $H_2O_2 \rightarrow H_2O + O_2$

Chemical Reactions

There are four important conservation laws in chemical reactions in a closed system:

A chemical equation is balanced when the **mass, atoms,** and **electrical charge** are conserved (_____).

FILL IT OUT

 $H_2S + PbCl_2 \rightarrow PbS + HCl$

Left	Right
Pb	Pb
CI	CI
S	S
Н	Н

Balancing Chemical Equations

- Start with an atom that occurs in a compound on each side of the equation. Chose **one** of these as your starting point.
- Start with a metal.
- Save O and H for last.
- Do NOT change subscripts, only coefficients.
- Once a coefficient is added, you must check the other side of the equation to balance the atoms.
- Keep placing coefficients until the equation is balanced.
- A blank is a co-efficient of 1.

TRY IT OUT

 $__CH_4 + __O_2 \rightarrow __CO_2 + __H_2O$

Left	Right
С	С
0	0
Н	Н

$_$ Cr + $_$ O₂ \rightarrow $_$ Cr₂O₃

Left	Right
Cr	Cr
0	0

$\underline{\qquad} CaC_2 + \underline{\qquad} O_2 \rightarrow \underline{\qquad} Ca + \underline{\qquad} CO_2$

Left	Right
Са	Са
С	С
0	0

$$__ Al_2O_3 \rightarrow __ Al + __ O_2$$

Left	Right
AI	AI
0	0

$\underline{\qquad} \mathsf{Fe} + \underline{\qquad} \mathsf{H}_2\mathsf{O} \xrightarrow{} \underline{\qquad} \mathsf{Fe}_3\mathsf{O}_4 + \underline{\qquad} \mathsf{H}_2$

Left	Right
Fe	Fe
0	0
Н	Н

$\underline{\qquad} C_2H_6 + \underline{\qquad} O_2 \rightarrow \underline{\qquad} CO_2 + \underline{\qquad} H_2O$

Left	Right
С	С
0	0
Н	Н

 $\underline{\qquad} \mathsf{KNO}_3 \xrightarrow{} \underline{\qquad} \mathsf{KNO}_2 \xrightarrow{} \mathsf{O}_2$

Left	Right
К	к
Ν	N
0	0

$\underline{\qquad} C_2H_6 + \underline{\qquad} O_2 \rightarrow \underline{\qquad} CO2 + \underline{\qquad} H_2O$

Left	Right
С	С
0	0
Н	Н

 $\underline{\qquad} Na + \underline{\qquad} ZnI_2 \xrightarrow{} \underline{\qquad} NaI + \underline{\qquad} Zn$

Left	Right
Na	Na
Zn	Zn
I	1

Acid-Base Chemistry

Learning Objectives

At the end of this unit, you will be able to:

- Define pH and describe the pH scale.
- Use indicators to determine if a substance is an acid or a base.

Acids

- Define the term acid.
- List common properties of acids.
- List three examples of acids.

Bases

- Define the term base.
- List common properties of bases.
- List three examples of bases.

Acids and Bases

Many of the things you use on a daily basis are acids or bases.

- The main difference between acids and bases is whether they will form ______
 ions (acidic) or ______ ions (basic) when dissolved in water.
- Acids share many of the same properties with other acids. Similarly, bases share many of the same properties with other bases.

TRY IT OUT

Substance	Acid or Base: Guess	Acid or Base: Actual
Lemon		
Soap		
Water		
Bleach		
Cola		
Coffee		

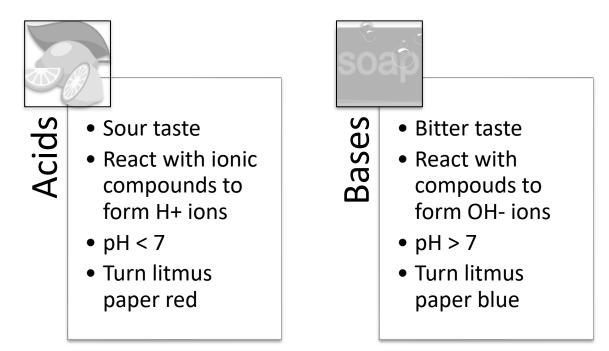


Image sources: Lemons, by oksmith [CC0 1.0]; Bar of Soap, by laurianne [CC0 1.0]

pH Scale

The pH scale is a tool for comparing the acidity or basicity of a substance.

The scale ranges from 0-14.

- 1-6 is considered _____ (more H+ ions than OH- ions).
- 8-14 is considered _____ (more OH- ions than H+ ions).
- 7 is considered _____ (equivalent amounts of H+ and OH- ions).

DRAW IT OUT

pH Scale

The "p" in pH stands for "power" meaning that pH scale is a power scale. Each step away from neutral is 10x stronger than the last.

For example:

- If pH rises from 8 to 9 on the pH scale, the substance is now 10x more basic than before (10x more OH- ions).
- If pH drops from 5 to 3, the substance is now 100x more acidic (100x more H+ ions).

This means that a small change in the **number** of the pH can have a large effect on the properties of the substance.

Lemon juice has a pH of 2 and you can eat it. Battery acid has a pH of one and you *should not* eat it!

Measuring pH

There are several substances that undergo a colour change when exposed to an acid or a base.

These materials are called ______. They indicate a change in _____.

Litmus paper is a common indicator for determining general pH.

- Red litmus paper will turn blue in the presence of a ______.
- Blue litmus paper will turn blue in the presence of an ______.

If you want more specific information about pH than just whether a substance is acidic or basic you can use:

- **pH paper** is strips of paper that change a variety of colours based on the pH of a substance.
- **Digital pH meters** are probes that measure the electrical property of a solution to determine pH.

Chemical Reactions

Learning Objectives

At the end of this unit, you will be able to:

- Identify different types of chemical reactions based on their chemical equations, including:
 - o Synthesis
 - o Decomposition
 - Single Replacement
 - Double Replacement
 - Neutralization
 - Combustion
- Identify factors that affect rate of reaction.
- Describe energy transformations that take place during chemical reactions, including:
 - Exothermic reactions
 - Endothermic reactions

Types of Chemical Reactions

We can categorize chemical reactions into six main types:

- 1. Synthesis (makes something)
- 2. **Decomposition** (breaks something)
- 3. **Single replacement** (one type of atom changes place)
- 4. **Double replacement** (two types of atoms change place)
- 5. **Neutralizing** (an acid and base neutralize each other)
- 6. **Combustion** (reaction with oxygen which releases heat)

Synthesis

In a synthesis reaction, two or more reactants combine to create a ______

The general formula to represent a synthesis reaction is:

Real world examples:

 $2Na + Cl_2 \rightarrow 2NaCl$ What did this make? When would you use it?

 $2H_2 + O_2 \rightarrow 2H_2O$ What did this make? When would you use it?

Decomposition

In a decomposition reaction, a single reactant breaks down to create multiple

The general formula to represent a decomposition reaction is:

Real world examples:

 $2Al_2O_3 \rightarrow 4Al + 3O_2$ What did this make? When would you use it? $CaCO_3 \rightarrow CaO + CO_2$ What did this make? When would you use it?

Single Replacement

In a single replacement reaction, a reactive element and a compound produce another element and another compound.

The general formula to represent a single replacement reaction is:

Real world examples:

 $2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe$ $3C + 2Cr_2O_3 \rightarrow 4Cr + 3CO_2$ What did this make? When would you use it?

What did this make? When would you use it?

Double Replacement

In a double replacement reaction, two compounds react to form two different compounds.

The general formula to represent a double replacement reaction is:

Real world examples:

HCL + NaHCO₃ \rightarrow NaCl + H₂CO₃ What did this make? When would you use it?

Neutralization

In a neutralization reaction, an acid and a base react with one another to produce ______. This is a special type of double replacement reaction.

The general formula to represent a double replacement reaction is:

Real world examples:

HCL + NaHCO₃ \rightarrow NaCl + H₂CO₃ What did this make? When would you use it?

Combustion

In a combustion reaction, a hydrocarbon or carbohydrate is reacted with oxygen in order to produce an ______.

The general formula to represent a combustion reaction is:

Real world examples:

 $CH_4 + 2O_2 \rightarrow CO_2 + H_2O$ What did this make? When would you use it? $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ What did this make? When would you use it?

Reaction Type Summary

Reaction Type	Formula	Identifiers
Synthesis	A + B → AB	One product only
Decomposition	AB → A + B	One reactant only
Single Replacement	$A + BC \rightarrow B + AC$	One element and one compound
Double Replacement	AB + CD → AD + CB	Two compounds
Neutralization	HA + BOH → BA + H ₂ O	Acid and base, water as product
Combustion	$C_xH_y + O_2 \rightarrow CO_2 + H_2O$	Organic compound with oxygen

Determining Reaction Type

We can often look at the formula of a chemical reaction and determine which of the six types it is. Some things to look for are:

- How many reactants are there?
- How many products are there?
- Was oxygen a reactant?
- Was water a product?
- Were H and OH present in the reactants?

TRY IT OUT

 $I_2 + 2K \rightarrow 2 KI$

 $2\text{HCI} + \text{MG} (\text{OH})_2 \rightarrow \text{MgCI}_2 + 2 \text{ H}_2\text{O}$

 $AI + NiBr_3 \rightarrow Ni + AIBr_3$

$2HF \rightarrow H_2 + F_2$

Equation	Туре	How do you know?
Ag + Br → AgBr		
$HCI + Pb(OH)_2 \rightarrow PbCI + H_2O$		
CaS + NaOH → CaOH + NaS		
$C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$		
Csl → Cs + I		
$F_2 + Nal \rightarrow I_2 + NaF$		
$AICI_3 + CuNO_3 \rightarrow AINO_3$		

Rate of Reaction

Chemical reactions occur at different speeds.

Reaction rate is the measure of how quickly a reaction occurs. It is a measure that combines information about how fast a reactant is being used up (or how quickly a product is being formed) per unit of time.

There are four ways to increase the rate at which a reaction takes place:

- 1. Increase _____
- 2. Increase _____
- 3. Increase _____
- 4. Increase _____

Energy in Chemical Reactions

In a chemical reaction, bonds are ______.

Energy can be absorbed or released in many forms: heat, light, sound, etc. Chemical reactions are categorized based on whether there is an overall

_____ of energy.

Endothermic

Reactions

- Absorb energy, and require a large input of energy to occur
- Example: baking soda in cookie dough in the oven

Exothermic

Reactions

- Release energy and require a small amount of energy to begin, and then releases a large amount of energy
- Example: burning natural gas in a furnace